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Abstract

An effective theory of laser–plasma-based particle acceleration is presented. Here we treated the plasma as a continuous
medium with an index of refraction nm in which a single electron propagates. Because of the simplicity of this model, we
did not perform particle-in-cell (PIC) simulations in order to study the properties of the electron acceleration. We studied
the properties of the electron motion due to the Lorentz force and the relativistic equations of motion were numerically
solved and analyzed. We compared our results with PIC simulations and experimental data.
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1. INTRODUCTION

In an early work Tajima and Dawson (1979) showed that
strong laser fields are capable to create large amplitude
waves in plasmas due to the non-linear ponderomotive
force. They suggested two methods for electron acceleration
in plasmas: the first one is based on beating two monochro-
matic laser pulses and the second one needs the usage of
ultra-intense monochromatic pulses. These methods are
called laser plasma beat wave acceleration (PBWA) and
laser wakefield acceleration (LWFA), respectively. Their
studies were based both on analytic calculations and comput-
er simulations. These wakes are responsible for the high-
energy gain of the accelerated electrons. These basic ideas
opens a new horizon of building compact particle accelera-
tors. The key point is the resonant excitation of the plasma
in order to create large amplitude plasma waves. In PBWA
the frequency of the beat wave, which is the difference of
the laser frequencies ω1 and ω2 has to match the plasma fre-
quency: ω1− ω2= ωp, while in LWFA the laser envelope
length a2 is of the order of the plasma wavelength λp. In
the early 1980s only the PBWA method was accessible in
the experiments. However, in the middle of the 1980s a re-
markable improvement has been made: Strickland and

Mourou (1985) invented the chirped pulse amplification
(CPA) method which made possible to reach higher and
higher laser intensities without damaging the lasing medium.
In the early 1990s ultra-high intensities (≥1018 W cm−2)
began to be accessible for experiments. Besides, we mention
that various schemes have been proposed for generating
ultrashort electron pulses (e.g., Lifschitz et al., 2006; Varró
& Farkas, 2008).

The invention of the CPA method has resulted in a consid-
erable development of the plasma-based particle accelerators.
Numerous reviews and experimental studies have been pub-
lished in the last two decades. We mention the works of
Esarey et al. (2009), Geddes et al. (2005), Gonsalves et al.
(2011), Malka et al. (2002), Nakajima et al. (1995). In theo-
retical plasma physics the popular particle-in-cell (PIC) sim-
ulation approach became predominant and an essential tool
for modeling plasma-based particle accelerators. We should
also mention the important works by Pukhov and Meyer-ter
Vehn (2002), Rosenzweig et al. (1991), Vieira and Mendon-
ça (2014). A robust, versatile state-of-the-art PIC code, called
OSIRIS, has also been developed by Fonseca et al. (2002).

In fact, there are alternative ways for modeling electron ac-
celeration in strong electromagnetic fields. For instance, one
way is the direct integration of the relativistic equations of
motion, as it has been done by Wang et al. (1999; 2000).
For some special cases the equations can be integrated ana-
lytically; however, in general the equations can be solved
only by numerical means. A very important case is – from
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both theoretical and experimental point of view – the purely
laser-based particle acceleration. In this scheme, the electrons
are accelerated by the strong electromagnetic field of Gauss-
ian laser pulses, as presented by Sohbatzadeh and Aku
(2011), Sohbatzadeh et al. (2006). Even in the frame of rel-
ativistic quantum mechanical description, Varró (2014) has
recently shown that there exist closed analytic solutions of
the wave equations (Dirac and Klein–Gordon equations) if
one takes into account the effect of the plasma through a phe-
nomenological index of refraction (nm). Needless to say, such
an approach may also be meaningful in the classical (non-
quantum) regime, where the index of refraction is contained
in the Lorentz force. We note that the single-particle dynam-
ics in the presence of collective radiation back reaction has
also been studied by Varró (2007) for describing high-
harmonic generation on plasma layers in the relativistic
domain.
In the following study, the acceleration mechanisms of a

single-electron with strong electromagnetic fields embedded
in plasmas are investigated. The joint interaction of the elec-
tron with the plasma background and with the radiation field
is taken into account by a phenomenological index of refrac-
tion. So the obtained effective theory is completely based on
classical electrodynamics. In Section 2, at first we discuss the
relativistic equation of motion of the electron in plane elec-
tromagnetic radiation. As a second case, a more realistic de-
scription is analyzed where the spatial extent of the laser
pulse has been taken into account. The results are presented
and interpreted in Section 3. Our paper ends with a short
summary.
For a better transparency SI units are used throughout the

paper if not stated otherwise.

2. THEORY

In the presence of an electromagnetic field the Lorentz force
acts on the electron:

F = e E+ v × B( ) (1)

with e the electron charge, E the electric field, B the magnetic
field, v the velocity of the electron, and F the Lorentz force.
The equations of motions for a relativistic electron are the
following:

dp
dt

= e E+ p
meγ

× B
( )

, (2a)

dγ

dt
= 1

mec2
F · v. (2b)

It is important to note that one cannot write any arbitrary
function in place of E and B since the electromagnetic
field has to satisfy the electromagnetic wave equation.

Hence, the most general form of E and B is as follows:

E(t, r) = εE0f ωΘ(t, r)[ ], (3)

B(t, r) = 1
c
n × E(t, r) (4)

with ε the polarization vector, E0, ω, and n the amplitude, an-
gular frequency, and the unit vector of the propagation of the
electromagnetic field and f an arbitrary, smooth function, re-
spectively. For a better transparency, we introduced the fol-
lowing notation:

Θ(t, r) := t − n · r
c
. (5)

Note that the components of the electromagnetic field (E and
B) depend only on Θ.
If we also want to take into account the presence of a

medium with an index of refraction nm< 1, we need to gen-
eralize the definition of Θ(t, r) in the following way:

Θ(t, r, nm) := t − nmn · r
c
. (6)

Since the index of refraction of plasmas is less than unity the
generalized definition of Θ naturally describes the situation
in which an electron propagates in a plasma. The refraction
index of the plasma depends only on the plasma frequency:

nm =
��������
1− ω2

p

ω2
L

√
(7)

with

ω2
p =

nee2

ε0me
(8)

with ne the electron density in the plasma, ε0 the permittivity
of vacuum, and me the electron mass.
Now we shortly summarize the effective theory of electron

acceleration in plasmas. Depending on the plasma density we
determine ωp and nm. We treat the electromagnetic field, de-
fined with Eqs. (3) and (4) as a function of Θ(t, r, nm) and
solve the relativistic equations of motion (2) numerically.
The special case nm= 1 describes the electron acceleration
with electromagnetic waves – with lasers, for instance.
Worthy of note that Varró and Kocsis (1992) showed that
the relativistic equations of motion can be integrated exactly
with nm= 1 for a circularly polarized, linearly chirped elec-
tromagnetic plane wave. Sohbatzadeh et al. (2006) showed
analytic solution for linear polarization. In both the cases,
the solutions can be expressed with the Fresnel integrals;
see Abramowitz and Stegun (1972).
In the present work, we investigate the acceleration of a

single electron with a chirped electromagnetic plane wave
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with linear polarization, sine-square-shaped temporal enve-
lope (nm= 1):

f Θ(t, r, nm)[ ]

=
sin2

πΘ(t, r, nm)
T

[ ]
× sin ωΘ(t, r, nm) + σΘ2(t, r, nm) + f

[ ]
, if t ∈ 0, T[ ]

0, otherwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(9)

with T the pulse duration, σ the chirp parameter, and f the
carrier–envelope phase. The electric field itself is polarized
in the x-direction and propagates in the y-direction, that is,
ε= ex, n= ey. A series of plane wave pulses is given with
a sum of single-plane waves:∑N

l=0

f Θ(t, r, nm) − lT[ ], (10)

which has to be substituted into (3). As we mentioned,
in case of plasma-based acceleration nm< 1 has to be
applied.
For a more realistic description, instead of sine-square

envelope we used a Gaussian pulse shape. In this case, the
formulation for the most general form of the electromagnetic
field (3)–(4) cannot be applied conveniently. Hence, we give
the x, y, and z components explicitly for an x-polarized
Gaussian pulse that propagates in the z-direction. Accord-
ing to the works by Sohbatzadeh and Aku (2011), Sohbat-
zadeh et al. (2006), the components of such an electric
field are:

Ex =E0
W0

W(z) exp − r2

W2(z)
[ ]

exp −Θ2(t, r, nm)
T2

[ ]

× cos
kr2

2R(z) −Φ(z) + ωΘ(t, r, nm) + σΘ2(t, r, nm) + f

[ ]
,

(11a)

Ey = 0, (11b)

Ez =− x

R(z)Ex

+E0
2x

kW2(z) ·
W0

W(z) ·
W0

W2(z)exp − r2

W2(z)
[ ]

exp −Θ2(t,r,nm)
T2

[ ]

× sin
kr2

2R(z) −Φ(z)+ωΘ(t,r,nm)+ σΘ2(t,r,nm)+f

[ ]
(11c)

and the magnetic field is given by

Bx = 0, (12a)

By = 1
c
Ex, (12b)

Bz = y

R(z)
1
c
Ex + E0

c

2y
kW2(z) ·

W0

W(z) ·
W0

W2(z) exp − r2

W2(z)
[ ]

× exp −Θ2(t)
T2

[ ]
sin

kr2

2R(z) −Φ(z) + ωΘ(t) + σΘ2(t) + f

[ ]
(12c)

with W(z) = [1+ (z/zR)2]1/2 the beam waist, R(z)= z[1+
(zR/z)

2] the radius of curvature, Φ(z)= tan−1(z/zR) the
Guoy phase, W0 =

�������
λzR/π

√
the half of the focused spot

size, zR the Rayleigh length, f the carrier–envelope phase,
λ the wavelength of the laser and T the pulse duration.

3. RESULTS

First we introduce the results obtained from the electron ac-
celeration in a chirped electromagnetic plane wave. In this
case the electromagnetic field is given by Eqs (3), (4), and
(9). We investigated the dependence of the electron energy
gain on the parameters, that is, the initial momentum of the
electron, the chirp parameter, the carrier–envelope phase
and the field strength of the electromagnetic fields. After
that we optimized the parameters in order to get the maximal
gain. The numerical solution of Eq. (2) have been obtained
using Wolfram Mathematica [Copyright 1988–2012 Wol-
fram Research, Inc.]. The tolerance was set to 10−5 both
for the relative and absolute errors. Complete technical de-
tails can be found in the Master’s Thesis written by Pocsai
(2014).

The energy gain is defined as follows:

ΔE := mec
2 γ(t = T) − γ(t = 0)[ ]

, (13)

which is the difference of the final and the initial kinetic
energy. Without chirp we did not experience any energy
gain. The energy of the electron varied periodically in time
with the T period. By positive chirp the energy gain was neg-
ligibly small, hence we only took negative values for the
chirp parameter. The significant gain via negative chirp can
be explained graphically in two different ways: The down-
chirp can be interpreted as a down-conversion. Due to the
conservation of energy, the decrement of the laser frequency
results in an increment in the electron energy. From an other
point of view, it can be seen that any kind of chirp causes a
significant effect if the chirped pulse contains only a few op-
tical cycles. It can also be seen that the oscillations of the
field strength at the front of the pulse are approximately the
same of the order of magnitude, but this difference increases
in time. At the end of the pulse, the amplitude of the last os-
cillation is significantly smaller than that of the last but one.
That is, the sharp, rising edge in the field strength cannot be
compensated. Cheng and Xu (1999) discussed this phenom-
enon in detail.

It is important to note that for acceleration in an electro-
magnetic plane wave the energy gain of the electron does
not depend on the initial position, it depends only on the
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initial momentum and the parameters. Without the loss of
generality the choice pz≡ 0 can be made. Because of sim-
plicity we chose the electron to be started from the origin.
The following three figures show the optimization of the

initial momentum and the plane wave parameters. Their ini-
tial values were p0= (0, 0, 0), λ= 800 nm, T= 35 fs, σ=
−0.03886 fs−2, and I= 1017 W cm−2. Figure 1 shows the
electric field which is responsible for the optimal accel-
eration. Figure 2 shows that for maximal acceleration
the electron must not propagate in parallel with the plane
wave ΔE has got a maximum of approximately 550 keV by
p0 = (−1570 keV/c, 450 keV/c, 0). That is, the ideal injec-
tion angle equals to α= 164°, related to the positive
x-direction. Applying this initial momentum on the electron
we sought the optimal values for the carrier–envelope
phase and the pulse duration. The optimal values for these
parameters are f= 4.21 rad and T= 75 fs, respectively.
This further optimisation resulted in a growth by an order
of magnitude in the energy gain. The maximal gain by
these parameters is ΔE= 5600 keV. This is shown in
Figure 3. Applying these optimal parameters we optimized
the chirp parameter and the intensity of the plane wave.
The maximum of the energy gain grew again by an order
of magnitude: Its maximal value is approximately ΔE=
58 MeV by σ=−0.03698 fs−2 and I= 1021 W cm−2 and
if the other parameters take their optimal values as given
above. As a short summary we can say that by properly
chosen parameters a single electron is able to gain as much
as 58 MeV energy from a single plane wave pulse (Fig. 4).
We also investigated the effective theory of the electron ac-

celeration in underdense plasmas. As mentioned earlier, we
needed to perform the same analysis by nm< 1. We took
np= 1015 cm−3 which is a typical value for the plasma den-
sity in the CERN AWAKE experiment as indicated by Xia
et al. (2011). The index of refraction by this density is
nm= 0.9999997 which means that the nm< 1 case can be
quite well approximated with the nm= 1 case. Our calcula-
tions showed that the energy gain values for these two
cases differ less than a per mill from each other.

Finally, we analyzed the interaction of a single electron
with a short, chirped Gaussian laser pulse. This latter
model provides a more realistic description of the accelera-
tion process. Lax et al. (1975) and Davis (1979) proved
that Gaussian pulses are solutions of Maxwell’s equations.
Wang et al. (1999) also provided a proof and investigated
the dynamics of the acceleration process. From a practical
point of view, it is known that the state-of-the-art laser sys-
tems emit a series of Gaussian laser pulses.

Fig. 1. The x-component of the chirped electric field. λ= 800 nm, T=
35 fs, I= 1017 W cm−2, σ=−0.03886 fs−2, f= 0. The optimal initial mo-
mentum is p0 = (−1570 keV/c, 450 keV/c, 0); α= 164° is the ideal injec-
tion angle, related to the positive x-direction. Note the sharp falling and
rising edges (highlighted in purple and green, respectively): They are
mainly responsible for the acceleration.

Fig. 2. The dependence of the energy gain on the initial momentum. λ=
800 nm, T= 35 fs, I= 1017 W cm−2, σ=−0.03886 fs−2, f= 0. The optimal
initial momentum is p0 = (−1570 keV/c, 450 keV/c, 0). Note that the maxi-
mal energy gain is obtained if the initial direction of the electron is 164° rel-
ative to the positive x-direction (see also Fig. 1).

Fig. 3. The dependence of the energy gain on the carrier–envelope phase and
the pulse duration. The parameters are p0 = (−1570 keV/c, 450 keV/c, 0),
λ= 800 nm, I= 1017 W cm−2, and σ=−0.03886 fs−2. The optimal
values of the carrier–envelope phase and the pulse duration are f=
4.21 rad and T= 75 fs, respectively. The oscillations in the positive
T-direction can be understood as appearing of new optical cycles in the
pulse. The local maxima belong to the corresponding sharp rising and falling
edges (see also Fig. 1).
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In the effect of the chirp parameter there is a small differ-
ence from the case of an electromagnetic plane wave: By a
Gaussian pulse we also experienced some gain by zero
chirp. However, this gain was negligibly small. This state-
ment is also valid for positive chirp values, hence here we
also took only negative values for σ. There is a major differ-
ence in the role of the initial position: Since a Gaussian pulse
has also got a spatial envelope that causes the laser intensity
to decrease rapidly radially we had to place the electron
on-axis, far enough for the electron to not to feel the electric
field of the laser pulse. We also had to set the initial momen-
tum parallel with the direction of the propagation of the laser
pulse so that the electron is able to interact with the pulse as
for much time as possible. This means that the initial momen-
tum is parametrized as p0= p0ez with p0≡ |p0|.

We analyzed the gain as a function of the initial momen-
tum, the beam waist, and the pulse duration. Initially we
took the following parameters: λ= 800 nm, T= 35 fs, I=
1021 W cm−2, and W0 as some integer multiple of λ. These
are typical values for Ti: Sapphire lasers. Mostly we chose
W0:= 100λ because larger focused spot size means less spa-
tial – and temporal – beam divergence.

First we investigated the energy gain as a function of the
initial momentum. Our calculations showed that by suffi-
ciently wide focused spot size an electron is able to gain as
much as 200 MeV energy from a simple pulse. This is
shown in Figures 5 and 6. The energy gain can be increased
by shortening the pulse. The dependence of the gain on the
pulse duration is presented in Figure 7. The maximal value
of the energy gain from a single pulse by the optimal param-
eters p0= 1533 keV c−1, W0= 100λ, T= 31 fs, and I=
1021 W cm−2 is approximately ΔE= 275 MeV. The result
presented in this paper agrees quite well with other theoreti-
cal calculations. Without completeness, see Sohbatzadeh
et al. (2006) and Sohbatzadeh & Aku (2011).

4. SUMMARY

In the present paper, we studied the electron acceleration with
electromagnetic plane waves and Gaussian laser pulses. An

Fig. 4. The dependence of the energy gain on the chirp parameter and the
laser intensity. The parameters are p0 = (−1570 keV/c, 450 keV/c, 0), λ=
800 nm, T= 75 fs, and f= 4.21. The optimal values of the chirp parameter
and the laser intensity are σ=−0.03698 fs−2 and I= 1021 W cm−2, respec-
tively. The oscillations parallel to the horizontal axis arise due the decrement
of the chirp parameter. The larger the absolute value of the chirp parameter,
the less the number of optical cycles in a single pulse. The local maxima
belong to the corresponding sharp rising and falling edges (see also Fig. 1).

Fig. 5. The energy gain as a function of the initial momentum. T= 35 fs,
W0= 100λ, I= 1021 W cm−2, and σ=−0.0194 fs−2.

Fig. 6. The energy gain as a function of the beam waist. p0= 1533 keV c−1,
T= 35 fs, I= 1021 W cm−2, and σ=−0.0194 fs−2.

Fig. 7. The energy gain as a function of the pulse duration. p0=
1533 keV c−1, W0= 100λ, I= 1021 W cm−2, and σ=−0.0194 fs−2.
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effective theory has also been presented for describing the
electron acceleration in underdense plasmas. The key idea
was the introduction of an effective refraction index for the
plasma, which can be incorporated into the phase of the
laser pulse. Our results have been obtained by numerically
solving the relativistic equations of motion. Our calculations
showed that in this simple model the acceleration in plasmas
can be quite well approximated with the vacuum model, that
is, with the nm= 1 case.
We performed calculations for the following laser param-

eters: λ= 800 nm wavelength, T= 30 fs pulse duration, I=
1021 W cm−2 intensity, and W0= 100λ beam waist (see
Fig. 7). These parameters correspond to an average power
of 320 TW and a total pulse energy of Etot= 9.6 J. The initial
injection energy of the electron was 1.5 MeV and gained ap-
proximately 275 MeV energy from a single pulse on an
LIA≈ 5 mm interaction length. This determines the accelera-
tion gradient which is Eacc= 58 GV m−1.
We can easily compare these results with the PIC simula-

tions and experimental data obtained by Kneip et al. (2009).
They applied a driving laser with λ= 800 nm wavelength,
T= 55 fs pulse duration, I= 1019 W cm−2 intensity, and
W0= 10 mm beam waist on a plasma with plasma density
of ne= 5.5×1018 cm−3. The parameters mentioned above
correspond to an average power of P= 180 TW and total
pulse energy of Etot= 10 J. For the interaction lengths of
LIA= 5 mm and LIA= 10 mm, the final energies of the elec-
trons were Efinal= 420 MeV and Efinal= 800 MeV, respec-
tively. The calculated accelerating gradient was Eacc=
80 GV m−1.
Of course, our single-particle effective model cannot take

into account precisely the non-linear plasma effects and ad-
ditional collective phenomena. Still, it is worthy to mention
that this simple phenomenological model compares quite
reasonably with the sophisticated PIC simulations and exper-
imental data. Our results agree with that obtained by Kneip
et al. (2009) within a factor of 2 both for the accelerating gra-
dient and the maximal energy gain.
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