Macroeconomic Dynamics, 24, 2020, 1881–1903. Printed in the United States of America. doi:10.1017/S1365100519000038

TRANSMISSION OF MONETARY POLICY SHOCKS: DO INPUT-OUTPUT INTERACTIONS MATTER?

AARTI SINGH AND STEFANO TORNIELLI DI CRESTVOLANT University of Sydney

We examine whether input–output interactions among industries impact the transmission of monetary policy shocks through the economy. Using vector autoregressive (VAR) methods we find evidence of heterogeneity in the output response to a monetary policy shock in both finished goods industries and intermediate goods industries. While output responses in finished goods industries can be related to heterogeneity in industry characteristics, this relationship is not so obvious for intermediate goods industries. For the intermediate goods industries in our sample, we find new evidence of demand-spillover effects that impact the transmission of monetary policy via input–output linkages.

Keywords: Monetary Policy Transmission, Input-Output, VAR, Intermediate Goods

1. INTRODUCTION

Do input–output linkages that feature prominently in the production chains of the modern economy also impact the transmission of monetary policy?¹ The idea that input–output connections play an important role in business cycle dynamics dates back to von Hayek (1931). According to him, an expansionary monetary policy affects the allocation of factors of production among different stages of production, with the ones further away from consumers (upstream industries in the production chain) experiencing the strongest growth. These distortions along the production chain are ultimately corrected (more strongly for upstream industries) when monetary expansion is reversed. More recently, in examining the transmission effect of demand and supply shocks via input–output linkages, Acemoglu et al. (2015) find that demand shocks propagate upstream while supply shocks propagate downstream. The objective of this paper is to isolate the contribution of input–output interactions in the transmission of monetary policy shocks through the economy using standard vector autoregressive (VAR) methods and disaggregated data.²

While there are many empirical studies that use disaggregated data to document the response of prices to a monetary policy shock, only a few of these studies

Address correspondence to: Aarti Singh, Level 5, Social Sciences Building, A02, The University of Sydney, NSW 2006, Australia. e-mail: aarti.singh@sydney.edu.au. Phone: +61 (0) 2 9351 3324. Fax: +61 (0) 2 9351 4341.

examine the response of output. Ganley and Salmon (1997) analyze the response of output for 24 UK sectors to a monetary policy shock. They classify industries based on their exposure to construction, consumer expenditure or other industrial spending, firm size and concentration and find some evidence for a credit or balance sheet effect of the monetary shock. Dedola and Lippi (2005) conduct a comparable analysis across industries in five OECD countries: France, Germany, Italy, the UK, and the US. They find that the cross-country difference in industry-level responses is small compared to the differences across industries. They too focus on industry characteristics such as product durability, firm size, leverage, and working capital measures. They find evidence for both the traditional demand channel and the cost channel of monetary policy transmission.³ Documenting the heterogeneous response of prices to a monetary policy shock and examining the role of input–output interlinkages, Clark (1999) finds that prices at the early stages of production (upstream industries, with less-processed output) are more flexible than the prices for finished goods.⁴

In this paper, we examine the response of both prices and output, though we focus primarily on the response of output, to a monetary policy shock using VAR methods. We use price and output data from 35 US industries for the period 1985–2007.⁵ These industries represented about 53.4 percent of US manufacturing output in 2007. Consistent with the existing literature, we find that for our sample of industries prices in finished good industries and industries producing more processed goods are more rigid than those in upstream industries, producing primarily intermediate goods. We also find that the examination of price responses alone is not sufficient to infer the response of output across our sample of industries.

Examining the differences in cross-industry output responses and relating them to industry characteristics that proxy for the channels of monetary transmission, we find that both the traditional demand channel (identified through goods' durability) and the cost channel (operating through financing requirements as proxied by working capital commitments) operate more clearly in the sub-sample of finished goods industries. Also, for these finished goods industries, more flexible prices are associated with a more muted response in output, consistent with the predictions of standard models of monetary policy with sticky prices, at least in terms of the sign of our estimated coefficient.

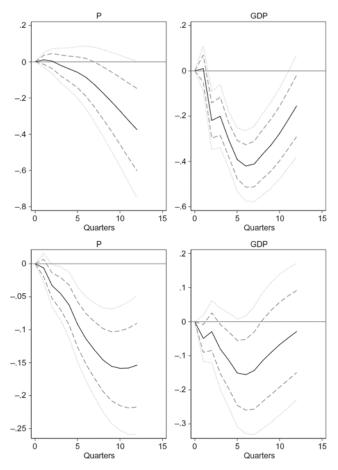
It is then natural to ask why intermediate goods industries appear to behave differently. Could it be that, while finished goods industries are directly exposed to final demand, intermediate goods industries are also exposed to demandspillover effects based on input–output linkages? Using our sample, we construct three production chains and find new evidence of positive co-movement in the output responses of industries along their respective production chains; changes in output of processed finished goods following the shock are accompanied by similar movements in the output of their upstream industries. Using a simple correlation analysis, we also confirm that the output response to a monetary policy shock in seemingly heterogeneous intermediate goods industries (based

Variable name	Data source
Real GDP (GDP)	FRED
GDP chain-type price index (P)	FRED
GDP implicit price deflator (Def)	FRED
Capacity utilization (TCU)	FRED
Effective federal funds rate (FFR)	FRED
Non-borrowed reserves of depository institutions (NBR)	FRED
Total reserves of depository institutions (TR)	FRED
Industrial production for industry i (IP_i)	Board of Governors
Industry producer price index for industry $i(PP_i)$	BLS

TABLE 1. Data overview

on firm characteristics and price response) is related to the output response of their downstream industries: an upstream effect.

The rest of the paper is organized as follows. Section 2 describes the data and methodology. In Section 3, we discuss the results. Section 4 concludes the paper.


2. METHODOLOGY

In this section, we first determine the baseline specification of the macroeconomy which then serves as the macroblock in our augmented industry-level VAR specification. We also report the estimated price responses to a monetary policy shock across our sample of industries, which is not the main focus of the paper, for easy comparison with related literature.

2.1. Baseline Model for the Macroeconomy

Following Christiano et al. (1996), transmission of monetary policy shocks in the aggregate economy is typically examined via a four-variable system in real Gross domestic product (GDP), a measure of prices (e.g., the GDP price deflator, GDP chain-type price index), the effective federal funds rate, and a measure of monetary aggregates which is the ratio of non-borrowed reserves to total reserves. However, it has been noted that since this basic VAR system often ignores key variables that influence a policymaker's reaction function such as expectations of future inflation and output gap, the misspecification can impact the correct identification of the monetary policy shock.⁶ Following Giordani (2004), we include a measure of capacity utilization (TCU), as a proxy for the output gap in our baseline specification where the variables are ordered as [*GDP TCU P FFR NBR/TR*]'. Table 1 provides details about the sources of the data used in the paper. We also use the input–output data from the US Bureau of Economic Analysis (BEA).⁷

We estimate the VARs in levels; data are quarterly and seasonally adjusted; and all variables, excluding the effective federal funds rate and TCU, are in logs.

Note: The figure plots the response of the price level and real GDP to a one standard deviation increase in the effective federal funds rate in the baseline specification. The vertical axis measures the percent change. The one standard deviation confidence interval is given by the dashed lines, while the 90 percent confidence interval is given by the dotted line. The sample period for the top and bottom panels is 1967:Q1-1992:Q4 and 1985:Q1-2007:Q4, respectively. The VAR is ordered as [*GDP TCU Def FFR NBR/TR*]'. The other variables of the macro block are plotted in the Supplementary Appendix.

FIGURE 1. Price and output response in the baseline specification.

Figure 1 plots the response of the price level and output to a monetary policy shock estimated over two different sample periods, 1967–1992 and 1985–2007. Both prices and output fall in response to a monetary policy tightening shock. However, in the latter sample the overall magnitude of the price and output response is approximately 50 percent of that of the earlier period. This result is consistent with the findings of the Great Moderation literature [e.g., Kim and Nelson (1999) and McConnell and Perez-Quiros (1998)].

2.2. VAR Model for Industry-Level Analysis

We now augment the baseline model for the aggregate economy with industrylevel variables. The variables in the aggregate economy block are

[GDP TCU P FFR NBR/TR]', while the industry block variables are $[IP_i PP_i]'$.⁸ For consistent identification of the monetary policy shock and to compare responses across industries, we assume that the industry variables do not impact the estimation of the macroblock and impose coefficient restrictions such that the response of the macroblock is unchanged even when we add the industry-level variables. In particular, following Davis and Haltiwanger (2001) and Barth and Ramey (2001), consider the following system of equations for industry *i*, suppressing the industry-specific subscript for simplicity:

$$Y_{t} = C + \sum_{j=1}^{p} A_{j}' Y_{t-j} + \epsilon_{t},$$
(1)

where

$$Y'_{t} = [GDP_{t} TCU_{t} P_{t} FFR_{t} NBR/TR_{t} IP_{i,t} PP_{i,t}]',$$
(2)

and

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

were *C* is a vector of constants, A_{11} is a 5×5 matrix, A_{12} is 5×2 but all its elements are zero, A_{21} is 2×5, and A_{22} is 2×2. The *A* matrix restrictions ensure that the coefficients of the aggregate block are the same across all vector autoregressions, while the industry-specific coefficients differ. As is standard in the recursive VAR setting, we identify innovations to monetary policy using a Choleski decomposition, as disturbances to the federal funds rate. We select four lags based on the likelihood ratio test. The sample period is 1985:Q1–2007:Q4.

Table 2 lists the industries that are included in our analysis, their North American Industry Clasification System (NAICS) codes, and their share of total US manufacturing output.⁹ Overall these 35 industries constituted a 53.4 percent share of total US manufacturing output. Throughout the paper, we classify these industries along a continuum between finished goods producing industries and intermediate goods producing industries. Finished good industries are industries whose output is mostly either consumed (i.e., domestic consumption) or invested (i.e., residential and nonresidential investment in equipment and structures). The intermediate goods industries are industries are industries whose output is primarily employed as a production input by other industries. Table 3 reports the share of each industry's output among alternative uses as a percentage of total output, which is the sum of intermediate goods output as a share of intermediate and finished goods production and the industries in this table are ordered based on this column; we use this measure for the purposes of our analysis.

Industry	NAICS code	Share of US manufacturing		
Chemicals	325	13.8		
Plastics	326	3.9		
Primary metal	331	5.0		
Fab. metal	332	6.4		
Sugar	3113	0.5		
Fruit and veg.	3114	1.1		
Dairy	3115	1.6		
Beverage	3121	1.8		
Fibers	3131	0.1		
Basic chemicals	3251	4.7		
Resins	3252	2.1		
Agric. chemicals	3253	0.6		
Pharmaceuticals	3254	3.4		
Cleaning products	3256	1.6		
Ind. machinery	3332	0.7		
Power equipment	3336	0.8		
Comm. equipment	3342	1.1		
Semiconductors	3344	2.3		
Appliances	3352	0.4		
Aerospace	3364	3.2		
Rolling stock	3365	0.2		
Ships	3366	0.5		
Furniture	3371	0.9		
Carpets	31, 411	0.3		
Pulp	32, 211	0.1		
Paper	32, 212	0.9		
Paperboard	32, 213	0.5		
Pap. containers	32, 221	0.9		
Paint	32, 551	0.4		
Tires	32,621	0.3		
Ceramics	32,711	0.2		
Cement	32, 731	0.2		
Constr. machinery	33, 312	0.6		
Automobile	33,611	4.7		
Mobile homes	321,991	0.5		

TABLE 2. Industry overview

Note: The table reports (in percent) the share of each industry's output in total US manufacturing output (NAICS codes 31-33).

2.3. Price Response and Related Literature

Although the focus of this paper is to understand differences in output responses to a policy shock, as reported in Section 3, we also report the response of industry producer prices for two main reasons. First, this enables us to establish that using our VAR specification and methodology, we obtain cross-industry price responses

Industry	Intermediate	Finish	ed goods	Government	Net exports	Other
	goods	(i)	(ii)		*	
Automobile	0	145	100	0	-44	0
Appliances	25	142	85	3	-72	3
Carpets	17	94	85	0	-11	0
Beverage	19	95	83	0	-16	1
Constr. machinery	17	74	82	8	4	-2
Ind. machinery	21	74	78	1	3	1
Ships	15	46	75	29	7	3
Fruit and veg.	30	77	72	0	- 6	0
Rolling stock	28	68	71	8	- 4	0
Cleaning products	30	67	69	0	2	0
Furniture	46	98	68	0	-47	0
Pharmaceuticals	45	93	67	0	-40	1
Sugar	39	73	65	0	-11	-1
Comm. equipment	61	95	61	29	-83	-2
Dairy	51	48	49	0	1	1
Tires	82	58	42	0	-41	1
Mobile homes	71	42	37	0	-12	0
Chemicals	74	32	30	0	- 7	0
Aerospace	38	16	30	12	29	5
Paper	77	27	26	0	- 4	0
Power equipment	83	22	21	2	- 7	1
Ceramics	134	27	17	0	-62	0
Plastics	94	13	12	0	- 7	0
Agric. chemicals	103	11	10	0	-14	1
Fab. metal	100	7	7	1	- 8	0
Fibers	93	2	2	0	5	-1
Basic chemicals	96	2	2	0	1	0
Paint	95	1	2	0	4	0
Pap. containers	98	1	1	0	1	0
Semiconductors	84	0	1	0	14	1
Resins	86	0	0	0	14	0
Pulp	97	0	0	0	3	1
Paperboard	111	0	0	0	-12	0
Cement	115	0	0	0	-16	1
Primary metal	121	0	0	0	-22	0

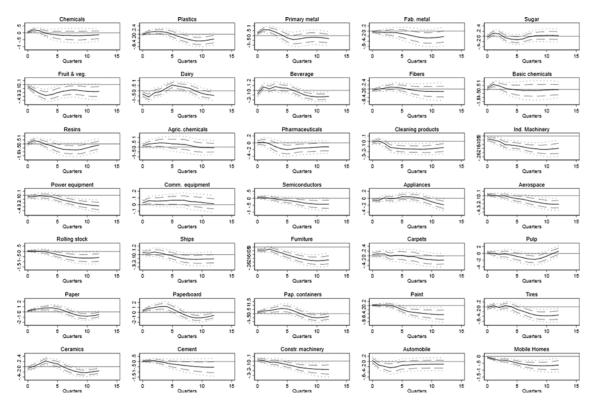
TABLE 3. Industry output by use (percent of total)

Note: The table reports industry output by use as a percent of the total output: intermediate goods output (column 2), finished goods output (column 3), government, net exports and other (columns 5-7). Note that in constructing the finished goods output (column 3) we exclude the last 3 columns. Column (ii) reports finished goods as a percent of the sum of intermediate and finished goods output (column i) and industries are ordered based on this column.

that are consistent with the existing literature. Second, in the following section we examine whether there is any relationship between the price response of an industry to a monetary policy shock (as a proxy for price rigidity) and its output response to the same shock.

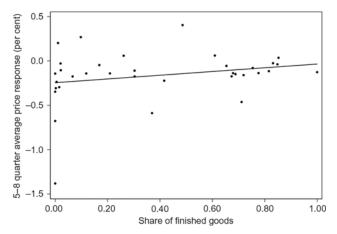
1888 AARTI SINGH AND STEFANO TORNIELLI DI CRESTVOLANT

Figure 2 plots the impulse response functions of each industry's producer price index to a monetary policy shock. The figure clearly illustrates that there is heterogeneity in the price response of the industries in our sample.¹⁰ Moreover, consistent with the previous literature, in all industries except communication equipment, prices fall in response to a contractionary monetary policy shock.¹¹ Also, 12 quarters after the shock, prices remain lower in approximately 90 percent of our sample. This is similar to the response observed for the aggregate price level in Figure 1.¹² Comparing industries, we see that industries displaying smaller maximum price responses include a number of consumer goods producing industries (e.g., beverages, sugar, cleaning products, and household goods) as well as industries with complex production processes (e.g., ships, communication equipment, machinery, aerospace products, and motor vehicles). Less-processed industrial goods and materials (e.g., pulp, paper, resins, rolling stock, and cement), on the other hand, display a relatively stronger price response to the monetary policy shock.


In Figure 3, we plot each industry's average price response between quarters 5 and 8 (1–2 years) following the policy shock along the vertical axis against the share of finished goods output in each industry's total output. Therefore, industries close to a value of zero on the horizontal axis primarily produce intermediate goods (e.g., primary metals, resins, and pulp), while industries whose final output is almost exclusively a finished good will be close to 1 (e.g., appliances and automobiles). We see that the magnitude of the price response to a monetary policy shock falls as the share of finished goods increases in total industry output, which is a rough proxy for a higher level of processing. Therefore, we find that the stages of processing matter for the magnitude of price responses; whether the final output is primarily a finished or an intermediate good is a key contributor to observed differences in the response of prices across industries to a monetary policy shock.¹³ Using a recursive VAR, Clark (1999) also finds that prices at the higher stages of production (crude or intermediate goods industries producing less-processed output) respond more strongly than finished goods prices.

3. RESULTS

In this section, we first report cross-industry heterogeneity in output response to a monetary policy shock. We then examine whether there is any relationship between an industry's output response to a monetary policy shock, its price response to the same shock, industry characteristics, and inter-industry linkages.

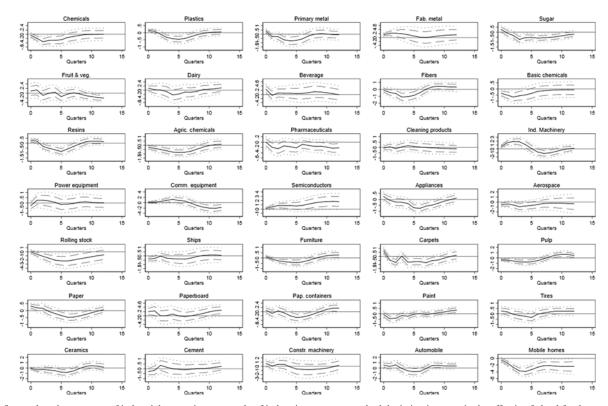

3.1. Response of Output

While the literature has carefully documented the response of prices across various industries to a monetary policy shock, the response of output has been examined less often.¹⁴ We report the estimated response of industrial output [*IPi*] for our sample in Figure 4 and Table 4.

Note: The figure plots the price response of the industries in our sample to a one standard deviation increase in the effective federal funds rate. The vertical axis measures percent changes. The one-standard error bands are given by the dashed lines, while the 90 percent confidence bands are given by the dotted lines.

FIGURE 2. Price response to a monetary policy shock.

Note: The figure plots the 5–8 quarter average price response to the monetary policy shock for each industry in the sample (vertical axis, in percent) against the share of industry output classified as finished goods (horizontal axis), column (ii) in Table 3. The Spearman rank correlation between the two variables is 0.35, and it is significantly different from zero at the 5 percent confidence level.


FIGURE 3. Price response and the stage of production.

Like industry-level prices, output also falls after monetary policy is tightened and there is again heterogeneity in cross-industry responses (see Figure 4). However, 12 quarters after the shock, output in about two-thirds of industries has recovered. Comparing with the overall response of prices this suggests that the divergence of long-run effects of a monetary policy shock on real and nominal variables documented for aggregate data [see, e.g., Christiano et al. (1996)] is also seen at a more disaggregated level, consistent with other studies using industrylevel data such as Dedola and Lippi (2005) and Barth and Ramey (2001). From Figure 4 and Table 4, we can see that many of the industries displaying a strong output response can be classified within the heavy manufacturing industries group (e.g., rolling stock, machinery production, aerospace, and chemicals); conversely, food-related goods and household consumables are among those industries that show very little response to the shock (fabricated metals represent somewhat of an exception to this pattern). To understand this heterogeneity in output responses, we relate the output response of industries in our sample to their price response and a range of industry characteristics in the following subsection.¹⁵

3.2. Price Rigidity, Industry Characteristics and Output Response

Can we infer the response of output in our sample of industries based on crossindustry differences in price response to a monetary policy shock and industry characteristics? We examine this here.

Using maximum output response to a monetary policy shock in each industry, we first examine whether industries with more flexible prices also exhibit a

Note: The figure plots the response of industrial output in our sample of industries to a one standard deviation increase in the effective federal funds rate. The vertical axis measures percent change. The one-standard error bands are given by the dashed lines, while the 90 percent confidence bands are given by the dotted lines.

FIGURE 4. Output response to a monetary policy shock.

1892 AARTI SINGH AND STEFANO TORNIELLI DI CRESTVOLANT

	Price	Output	
Mobile homes	-0.69***	-3.89***	
Rolling stock	-0.64*	-2.23**	
Comm. equipment	0.01	-2.11*	
Ind. machinery	-0.16^{***}	-1.12	
Fibers	-0.12	-1.10**	
Aerospace	-0.21**	-0.94	
Agric. chemicals	-0.06	-0.85^{***}	
Resins	-0.78	-0.84^{***}	
Ceramics	-0.22**	-0.82	
Constr. machinery	-0.18*	-0.79	
Primary metal	-0.41	-0.78*	
Carpets	-0.18	-0.77**	
Pulp	-1.76*	-0.77*	
Appliances	-0.18*	-0.74^{***}	
Sugar	-0.13	-0.73**	
Automobile	-0.24	-0.69	
Basic chemicals	-0.12	-0.67**	
Paper	-0.82*	-0.47**	
Paint	-0.44*	-0.46*	
Plastics	-0.32*	-0.45^{**}	
Furniture	-0.18^{***}	-0.44*	
Ships	-0.12	-0.38	
Chemicals	-0.19	-0.35***	
Tires	-0.37**	-0.35	
Cement	-0.55	-0.28	
Pap. containers	-0.51	-0.27*	
Power equipment	-0.28^{***}	-0.26	
Pharmaceuticals	-0.20	-0.24	
Dairy	-0.62**	-0.23	
Fruit and veg.	-0.27***	-0.20**	
Cleaning products	-0.15*	-0.14	
Beverage	-0.14^{**}	-0.04	
Paperboard	-1.12**	-0.04	
Fab. metal	-0.27	0.00	
Semiconductors	-0.43	0.15	
Aggregate	-0.16***	-0.16	

TABLE 4. Maximum response by industry (in percent)

Note: The table reports the response in industry prices and output following a one-standard deviation shock to the effective federal funds rate. As the policy shock is a negative shock, "maximum" responses displayed are intended to be the lowest points in Figures 2 and 4. The industries in the table are ordered based on the strength of their maximum output response to the monetary policy shock. Superscripts *, **, and *** indicate rejection of the null hypothesis of zero at the 10, 5, and 1 percent level, respectively.

	Full sample	Finished goods	Intermediate goods
Price rigidity	-0.07	-0.16	0.04
	(0.71)	(0.58)	(0.85)
Firm size	0.04	0.04	-0.01
	(0.81)	(0.89)	(0.98)
Inventory size	-0.31	-0.45	-0.20
	(0.07)	(0.11)	(0.39)
Nondurable goods	-0.47%	-0.35%	-0.53%
-	(0.00)	(0.04)	(0.00)
Durable goods	-0.96%	-1.06%	-0.85%
	(0.00)	(0.00)	(0.10)

TABLE 5. Response of output

Note: The top panel reports the Spearman rank correlation of the maximum output responses with price rigidity, firm size and inventory size measures for the full sample, finished and intermediate goods industry. The bottom panel reports the average of the maximum response (in percent) for nondurable and durable goods industries. The *p*-values are reported in parenthesis.

weaker output response to a monetary policy shock. Focusing on the full sample of industries, the first row in Table 5 reports the Spearman rank correlation, which is small and negative, between the maximum output response for each industry and the average price response over 5–8 quarters after the initial shock. The negative correlation suggests that following a contractionary monetary policy shock, sectors that experience a large drop in prices exhibit a smaller output response. But since this correlation is small and not significant, we cannot infer output responses to a monetary policy shock in our sample of 35 industries based on price responses alone.¹⁶

We also examine how industry characteristics such as average firm size, short-term financing needs, and the nature of output produced—durable versus nondurable—influence the cross-industry output response. Following Ganley and Salmon (1997), we construct a measure of firm size based on average value added by dividing the total value added for each industry by the number of companies in the industry using data from the 2007 US Census. It is generally believed that industries with larger firms, on average, will display a smaller output response to the monetary policy shock.¹⁷ For our full sample of industries, we only find a weak positive relationship (see the second row in Table 5).

An industry's financing needs and its exposure to short-term debt have also been considered in the literature [e.g., Barth and Ramey (2001) and Dedola and Lippi (2005)] as a possible cost-channel factor that impacts how different industries respond to a policy shock. We proxy for an industry's short-term financing needs with a measure of inventory levels where the total value of end-of-year inventories is divided by the total value added for each industry using 2007 US Census data. The Spearman rank correlation between the maximum output response for each industry and our measure of financing needs is -0.31.

Therefore, output in industries that hold a larger stock of inventories responds more strongly to a monetary policy shock. This is consistent with previous empirical findings, which typically identify this effect through broader measures of working capital.¹⁸

Finally, on the demand side, according to Mishkin (1996) a lower nominal interest rate reduces borrowing costs, thus stimulating both business investment and the purchase of consumer durables. Purchases of nondurable goods are expected to be less interest-sensitive.¹⁹ The bottom panel in Table 5 reports the average maximum output responses for industries producing nondurable and durable goods. The NAICS classification of manufactured goods' durability is used to allocate industries between the two groups. As expected, on average, the output response in industries producing durable goods is larger relative to industries producing nondurable goods.

Overall, for our full sample of industries we find that the cross-industry output responses to a policy shock can be related to both: the cost channel operating through financing requirements as proxied by working capital commitments; and a traditional demand channel, identified through goods' durability.

Our main objective, however, is to understand whether input–output linkages between industries influence the transmission channels discussed above. For this purpose we split our sample of 35 industries in two groups: finished and intermediate goods producers (see last two columns of Table 5). 21 industries whose 'finished goods share,' as reported in the fourth column of Table 3, is lower than 50 percent are classified as intermediate goods producers and the remaining 14 as finished goods industries.

Interestingly, when considering finished goods industries alone, the correlation between the maximum output response in these industries and price rigidity and industry characteristics generally becomes stronger or remains unchanged, even though like in the full sample the *p*-values with respect to price rigidity are still very high. In particular, the average output response for durable goods within this group is -1.06 percent, significantly larger than for nondurable goods at -0.35 percent.²⁰

On the other hand, the relationship between output response, price rigidity, and industry characteristics becomes less clear for the intermediate goods industries group. In particular, the sign is incorrect with respect to price rigidity and firm size when considering intermediate goods industries and the relationship with respect to inventory size becomes weaker. In addition, for intermediate goods industries, the output response of durable goods industries is not statistically different from the response estimated for nondurable goods. The interest rate sensitivity of durable goods demand appears weakened when only considering intermediate goods, while it remains clear for finished goods. In the following subsection, we explore more closely the output response of intermediate goods industries in light of their input–output connections with the finished goods sector, as a possible explanation for their seemingly weaker relationship with traditional monetary transmission channels.

	Full sample	Finished goods	Intermediate goods
		8-quarter respon	nse
Price rigidity	-0.26	-0.09	-0.28
	(0.14)	(0.76)	(0.21)
Firm size	0.05	0.17	-0.10
	(0.77)	(0.55)	(0.65)
Inventory size	-0.20	-0.57	0.03
	(0.25)	(0.04)	(0.90)
Nondurable goods	-0.09%	-0.19%	-0.04%
	(0.12)	(0.15)	(0.49)
Durable goods	-0.34%	-0.57%	-0.11%
	(0.13)	(0.05)	(0.75)
	5-	-8-quarter average	response
Price rigidity	-0.09	0.17	-0.13
	(0.62)	(0.57)	(0.58)
Firm size	0.06	0.16	-0.06
	(0.72)	(0.60)	(0.81)
Inventory size	-0.25	-0.42	-0.22
-	(0.14)	(0.13)	(0.33)
Nondurable goods	-0.23%	-0.22%	-0.24%
-	(0.00)	(0.15)	(0.00)
Durable goods	-0.48%	-0.60%	-0.37%
-	(0.04)	(0.03)	(0.34)

TABLE 6. Alternative measures of output response

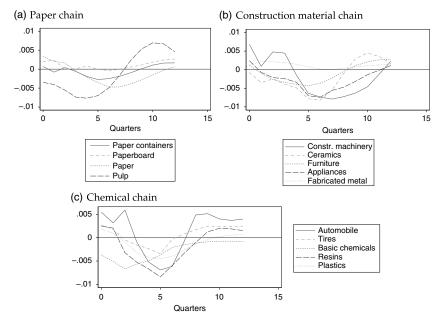
Note: The top panel reports the Spearman rank correlation of the 8-quarter output response with price rigidity, firm size and inventory size measures for the finished and intermediate goods industry. It also reports the average of the 8-quarter response (in percent) for nondurable and durable goods industries. The bottom panel reports the same statistics using the 5–8 quarter average output response. The *p*-values are reported in parenthesis.

So far in Table 5, we have only used maximum responses of output to a monetary policy shock for our sample of industries when considering the relationship between output response and price rigidity and industry characteristics. This measure has the advantage of isolating each industry's peak (most negative) response to the shock and, as shown in Table 4, a majority of the observations used is either significant or otherwise very close to zero. In Table 6, we examine whether our results are robust to the use of alternative measures of output response to the monetary policy shock. Following Dedola and Lippi (2005), we use two alternative measures: the output response 8 quarters following the policy shock; and an average of output responses between 5 and 8 quarters. Qualitatively, our main findings remain unchanged under most scenarios. The relationship between price rigidity and finished goods industry output, however, has a positive sign when we use the average 5–8 quarters output response.

3.3. Input-Output Linkages and Output Response

In this subsection, we first provide qualitative evidence on industry interlinkages by constructing three production chains. We then use our full sample of industries to examine whether the demand spillovers from downstream industries impact their suppliers, the upstream effect, motivated by the analysis in Acemoglu et al. (2015). They find that demand shocks propagate upstream, with suppliers of industries that are directly affected by the shock impacted more than their downstream customers.

3.3.1. Examples of input–output chains. Splitting our sample of industries based on the primary use of their final output, as in Table 3, only provides us with a broad initial classification. To get a better understanding of how industries are interconnected, we now construct three production chains and observe how industry output responds along these three chains: paper, construction material, and chemicals. In each chain, we have either grouped industries with material input–output linkages (e.g., paper chain), or industries with common downstream markets (e.g., construction material and chemical chains). The industries included in the three chains account for approximately one-third of US manufacturing production in 2007. Each entry in Table 7 reports the percentage of the intermediate output of the corresponding row industry purchased by the corresponding column industry. For example, in the chemical chain, an entry of 19 in the first row means that 19 percent of the intermediate output of the basic chemicals industry is purchased by the resin industry.²¹


The impulse response of output along the paper production chain provides initial evidence of co-movement (Figure 5(a)) based on input–output linkages.²² In response to the contractionary monetary policy shock, the output of the paperboard containers industry (facing a less-volatile demand for its final output from a varied group of industries, including food) presents a relatively muted response. In turn, the output of the paperboard industry, of which 41 percent is used as an intermediate good by the paperboard container industry, mimics the output response of the latter. The paper industry which supplies only 26 percent of its output to the paperboard containers industry and is therefore less reliant on this industry's demand for its output, reacts more strongly to the monetary shock. Finally, further upstream, the pulp industry, which supplies 57 percent of its output to the paper industry, experiences an even greater fall in output, highlighting the role of demand-driven co-movements.

We also see evidence of industry-interlinkages in Figure 5(b) and 5(c) where industries face common downstream markets and therefore have similar demand exposures. Figure 5(b) plots the output response of industries that are exposed to the construction industry. We find that industries selling around a quarter or

TABLE 7. Production chains

				Paper c	hain					
	Pulp	Paper	Paperboard	Pap. containers	Chemicals	Plastics	Food/bev	Constr.	Gov.	
Pulp	6	57	3	7	5	_	_	_	_	
Paper	_	_	_	26	1	3	_	1	11	
Paperboard	_	_	_	41	1	1	1	2	_	
Pap. containers	-	2	1	1	10	6	12	2	1	
				Construction m	aterial chain					
	Cement and concrete	Primary metal	Fab. metal	Constr. machinery	Carpets	Mobile homes	Motor vehic.	Other Transp.	Constr.	Gov.
Ceramics	2	11	1	_	_	_	1	_	55	1
Cement	73	_	_	_	_	_	_	_	14	_
Primary metal	_	25	25	1	_	_	12	3	1	_
Fab. metal	1	2	12	1	_	_	10	3	23	2
Constr. machinery	_	_	_	7	_	_	_	1	44	_
Appliances	_	_	_	_	_	3	8	_	62	_
Furniture	_	_	_	_	_	5	2	_	50	_
Fibers	_	_	_	_	35	_	3	_	_	1
Carpets	_	_	_	_	6	2	51	16	23	_
Mobile homes	-	2	1	_	_	3	2	_	28	13
				Chemical	chain					
	Basic chemicals	Resins	Paint	Plastics	Tires	Fab. metal	Motor vehic.	Constr.	Gov.	
Basic chemicals	39	19	2	4	1	_	_	_	4	
Resins	_	7	3	53	2	1	3	_	_	
Paint	_	_	1	_	_	16	12	18	4	
Plastics	1	1	_	8	1	1	10	14	5	
Tires	_	_	_	4	4	_	30	11	9	

Note: The table reports the percentage share of row industry intermediate output purchased by each column industry. Calculations are based on the 2007 US input-output table (Source: BEA).

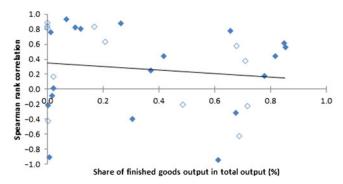

Note: The figure plots the response of industrial output to a one-standard deviation increase in the effective federal funds rate in the three production chains. The vertical axis measures changes in log values.

FIGURE 5. Output response in production chains.

more of their intermediate goods output into construction co-move; output is slightly lower and broadly unchanged for the first three-four quarters following the shock, and then declines more strongly prior to recovering gradually after the sixth quarter.²³ Similarly, in the chemical chain in Figure 5(c), the output response of most industries closely follows the dynamics of automobile manufacturing: an initially muted response followed by a significant drop until the fifth quarter and finally a *v*-shaped recovery after the fifth quarter. This is possibly because approximately 10–30 percent of the final output in paint, plastics and tires is supplied to the motor vehicle manufacturing industry. Table 7 also outlines further direct links among chemical manufacturers contributing to observed co-movement.²⁴

Overall, these three production chains provide visual evidence of co-movement in the output responses of industries with clear input–output linkages.

3.3.2. Full sample analysis. Here we examine whether the demand spillovers from input to output linkages seen in the three production chains are also present in our full sample of industries. To isolate the impact of output responses to a monetary policy shock in downstream industries on their upstream suppliers we compute, for each industry *i* in the sample, the Spearman rank correlation between $\Delta IP_{i,t}$ and $\Delta Down_{i,t-1}$, where $\Delta IP_{i,t}$ is the estimated output impulse response in

Note: For each industry *i* the figure plots Spearman rank correlation between ΔIP_t and $\Delta Down_{t-1}$ along the vertical axis and the share of finished goods in total output along the horizontal axis. The total number of industries is 31.

FIGURE 6. Demand-spillover effects.

industry *i* to a time 0 monetary policy shock, expressed as deviation from the steady state and $Down_{i,t-1}$ is defined as follows:

$$Down_{i,t} = \sum_{j=1}^{34} \alpha_{ij} \Delta IP_{j,t}, \qquad i \neq j.$$
(3)

Note that α_{ij} is the share of industry *i*'s intermediate output sold to industry *j* based on the 2007 input–output table. Therefore, the output response of each downstream industry is weighted by its relevance to the intermediate demand faced by industry *i*.²⁵

In Figure 6, we plot along the vertical axis the Spearman rank correlation between each industry's own output response and that of its downstream industries, against the share of finished goods in each industry's total output. As before, industries close to a value of zero on the horizontal axis primarily produce intermediate goods, while industries whose final output is almost exclusively a finished good will be close to 1.

Our conjecture is that this spillover demand channel should be more important for intermediate goods industries than for finished goods; we therefore expect the Spearman rank correlation for the former to be positive and larger relative to the latter. As expected, the slope of the fitted line in Figure 6 is negative at -0.24, although with a *p*-value of 0.47.²⁶ Note, also, that the average of the Spearman rank correlation coefficients for the intermediate goods industries in our sample is 0.37 (*p*-value of 0.01), while for finished goods the average correlation is smaller at 0.12 and not statistically significant (*p*-value of 0.52). Furthermore, most of the intermediate goods industries for which the correlation coefficient is statistically significant display large and positive spillovers from their downstream industries (see the top left corner of Figure 6).²⁷ For finished goods, the significant coefficients are more dispersed.

1900 AARTI SINGH AND STEFANO TORNIELLI DI CRESTVOLANT

Both the visual intuition from the example production chains and our correlation analysis suggest that relationships in the input–output table also matter for the transmission of monetary policy shocks. In particular, we find that for our sample of intermediate goods industries, the transmission of monetary policy shocks is affected by demand-spillover effects via input–output linkages which are not captured by traditional analysis based on industry characteristics (Table 5).

4. CONCLUSION

We examine cross-industry differences in output responses to a monetary policy shock using standard econometric techniques from the empirical literature. We find evidence of strong heterogeneity in the response of finished goods industries and intermediate goods industries to a monetary policy shock. As expected from theory, for industries producing finished goods, industry characteristics are closely related to the industry's output response. However, for intermediate goods industries the price response and industry characteristics play a relatively less important role. In our analysis of 35 industries, we find that it is input–output linkages that play an important role in these intermediate goods industries. In particular, output responses in downstream industries seem to impact the production levels of their suppliers. Therefore, our analysis suggests that underlying output responses in seemingly heterogeneous intermediate goods industries to a monetary policy shock there is a complementary demand channel, observed through output co-movement along our three sample production chains and in Figure 6.

In recent years, these input-output connections have been introduced in multisector Dynamic Stochastic General Equilibrium (DSGE) models to evaluate the design of monetary policy rules.²⁸ Motivated by the empirical results in Clark (1999), Huang and Liu (2005) build a two-sector DSGE model with a vertical input-output structure, with the intermediate goods sector selling its output as an input for the production of finished goods; they find that a policy rule in which both final goods and intermediate goods' inflation are targeted performs better that the traditional rule, where only final goods inflation is targeted. This is because, in these models, the relative price distortion between sectors generated by the inputoutput connections has a direct impact on sectors' real marginal costs. Using a similar model, Strum (2009) also finds that dual-price-level targeting (targeting both finished and intermediate goods' pricing) yields the best welfare outcomes. Our empirical analysis shows that a key distinction between the output response of finished goods and intermediate goods industries is that the latter face demandspillover effects. What still remains to be examined in a DSGE setting is whether these spillover effects are quantitatively significant and should the policy also respond to the output gap in the intermediate goods sector in its policy rule.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/10. 1017/S1365100519000038.

NOTES

1. We thank two anonymous referees, Arpita Chatterjee, Yunjong Eo, David Kim, James Morley, Edward Nelson, and Benjamin Wong for useful comments on an earlier draft. We also thank Todd Clark and Zheng Liu for their feedback on this project. The usual disclaimers apply.

2. The two channels generally studied in this literature are the demand channel and the cost channel of monetary transmission (see Mishkin 1996 for an overview).

3. In a related study, Shea (1993) examines the short-run responses of price and quantity to exogenous demand shocks for disaggregated U.S. manufacturing industries using information on input–output linkages. These linkages are used to identify industries whose fluctuations serve as exogenous demand shocks for other industries.

4. More recently, DSGE models have incorporated input–output interactions to explain the persistence in aggregate output and inflation [e.g. Huang and Liu (2001)], co-movement in output responses between sticky-price and flexible-price sectors [e.g. Bouakez et al. (2009)], and the observed difference in the speed of sectoral price responses following a shock [e.g. Carvalho and Lee (2011)], among others.

5. We start the sample in 1985 because the producer price data is not publicly available for most of the industries in our sample before 1985, and we end the sample in 2007 in order to focus our analysis on the effects of conventional monetary policy.

6. This model mispecification has often been cited as the main reason for the "price puzzle," where the price level measure responds by increasing over a number of quarters following a contractionary monetary policy shock. There are other studies, however, that argue that such a price increase is consistent with the cost channel of monetary policy transmission.

7. We use the 2007 Input–Output accounts data, in particular Use tables after redefinitions, valued at producers prices, released by the BEA on November 13, 2014.

8. The monthly data on TCU, FFR, NBR, TR, PP_i was converted into a quarterly frequency and the non seasonally adjusted data such as the TR and PP_i was adjusted using the X11 procedure.

9. Output for industry 32711 is proxied using industry code 3271, and output for industry 321991 using "all other wood product manufacturing," because of a lack of disaggregated data for these two industries in the Use Tables.

10. Bouakez et al. (2014) also find cross-sector heterogeneity with respect to the response of inflation and output to a monetary policy shock; for inflation, this is primarily because of differences in sectoral price rigidity but, for output response it is also due to differences in whether the sector produces capital goods. Our results in Section 3 are complementary to Bouakez et al. (2014) to the extent that we also isolate other channels that impact the response of output to a monetary policy shock.

11. The response of communication equipment manufacturing prices has potentially been impacted by "digital-revolution" trends over the sample period, and these trends are not accounted for in our analysis.

12. Note, however, that for some industries the price puzzle still persists even though the aggregate price level falls in response to a negative monetary policy shock in the macroblock as seen in Figure 1. To address this issue, one could potentially include a measure of TCU at the industry level but the disadvantage of such an approach would be that the estimate of the monetary policy shock would differ across industries making cross-industry comparisons difficult.

13. In the literature there are broadly two ways of thinking of production chains: Basu's (1995) "roundabout" production model versus Blanchard's (1983) "inline" or "chain" production model. Using our sample of industries, we also examine whether industries with a higher ratio of intermediate inputs to total industry output present more muted price responses (as measured by the average price response over 5–8 quarters), as implied by Basu's roundabout production model. The Spearman rank correlation coefficient between the two variables is 0.02, and is not significantly different from zero. This result suggests that, even though the data have both inline and roundabout features, our sample of industries appears to be more consistent with the inline production process of Blanchard (1983) than the roundabout production process of Basu (1995), as also noted in Clark (1999).

14. A few exceptions are Dedola and Lippi (2005), Barth and Ramey (2001), and Ganley and Salmon (1997).

1902 AARTI SINGH AND STEFANO TORNIELLI DI CRESTVOLANT

15. We also examine whether there is a significant relationship between output response and the share of finished goods in an industry's output given our findings in Figure 3. However, the correlation between maximum output response and the share of finished goods is small, at -0.09, and with a *p*-value of 0.59. This suggests that the significant degree of heterogeneity in output responses across industries is not correlated with an industry's share of finished goods output in its total output.

16. The results in Tables 5 and 6 are qualitatively similar if we compute this correlation using 4-quarter or 6-quarter price response measures.

17. Firm size can be used as a proxy for an industry's ability to withstand credit shocks where larger firms are likely to be less impacted by credit market imperfections (see Gertler and Gilchrist 1994 for more details).

18. Barth and Ramey (2001) use both gross (inventories plus trade receivables) and net (minus trade payables) working capital measures to study the short-term transmission of monetary policy shocks via the cost channel. Dedola and Lippi (2005) construct a measure of working capital as the difference between current liabilities and current assets, divided by total liabilities: they find stronger output responses in industries with higher short-term finance requirements as proxied by this measure.

19. According to Erceg and Levin (2006), durable goods are typically more responsive to an interest rate shock because demand for durables is a demand for stock and changes in stock demand imply much larger fluctuations in the flow of newly produced durable goods, and therefore industry output. Our findings in Table 5 are consistent with the responses these authors obtain from their two-sector VAR.

20. The null hypothesis that these two averages are the same is rejected at the 95 percent confidence level.

21. The rows in Table 7 do not sum to 100 because the table does not include all uses of the intermediate output of each industry; it only includes those that are in our sample.

22. Note that in these impulse response functions, industrial output responds to the policy shock at date zero, as the FFR precedes the industry variables in the ordering of the VAR specification; while this is required for the identification of the shock, the contemporaneous responses do not necessarily have a practical interpretation.

23. This response is visible for both intermediate and finished goods industries exposed to construction. The finished good industries (e.g., appliances and construction machinery) are included in the figure to approximate the behavior of the construction sector, which is not directly included in our VARs due to lack of data. Lagged demand from the pipeline of construction activity in the periods immediately following the shock could potentially be delaying the initial response.

24. The smoother decline and recovery of plastics manufacturing output could be due to its exposure also to the construction industry, to which it sells 14 percent of intermediate output. Output of the tires industry, which displays a more moderate maximum response, is also exposed to more stable demand from government and final consumers (Table 3). Basic chemical manufacturing, with a broader client base, displays a stronger initial drop in production levels, followed by a slower recovery pattern.

25. This analysis excludes the chemicals industry (NAICS 325) in order to avoid duplications with the sub-industries included, e.g., basic chemicals, resins, etc. It also excludes all instances of within-industry output usage, i.e., where i = j in Eq. 3. In addition, in our dataset there are three industries (NAICS 33611, 3366, and 3121) that do not have any downstream industries that use their output as an intermediate good. For these industries, the Spearman rank correlation could not be computed.

26. Also note that if we add a durable goods dummy, the slope of the fitted line in Figure 6 is still -0.22 with a *p*-value of 0.52.

27. Primary metal and semiconductors are an exception where the correlation is large and negative, even though these are primarily intermediate goods industries.

28. Another strand of the DSGE literature introduces these input–output interactions with the objective of resolving the co-movement puzzle between the durable and nondurable sector (see, e.g., Bouakez et al. 2011).

REFERENCES

- Acemoglu, D., U. Akcigit and W. Kerr (2015) Networks and the macroeconomy: An empirical exploration. NBER Macroeconomics Annual 30, 273–335.
- Barth, M. J. and V. A. Ramey (2001) The cost channel of monetary transmission. NBER Macroeconomics Annual 16, 199–256.
- Basu, S. (1995) Intermediate goods and business cycles: implications for productivity and welfare. *American Economic Review* 85, 512–531.
- Blanchard, O. J. (1983) "Price asynchronization and price level inertia," in R. Dornbusch and M. H. Simonsen, eds., Infiation, Debt, and Indexation. Cambridge, MA: MIT Press.
- Bouakez, H., E. Cardia and F. J. Ruge-Murcia (2009) The transmission of monetary policy in a multisector economy. *International Economic Review* 50, 1243–1266.
- Bouakez, H., E. Cardia and F. J. Ruge-Murcia (2011) Durable goods, inter-sectoral linkages and monetary policy. *Journal of Economic Dynamics and Control* 35(5), 730–745.
- Bouakez, H., E. Cardia and F. J. Ruge-Murcia (2014) Sectoral price rigidity and aggregate dynamics. *Europoean Economic Review* 65, 1–22.
- Carvalho, C. and J. W. Lee (2011) Sectoral price facts in a sticky-price model. FRB of New York Staff Report, No. 495.
- Christiano, L. J., M. Eichenbaum and C. Evans (1996) The effects of monetary policy shocks: evidence from the flow of funds. *The Review of Economics and Statistics* 78, 16–34.
- Clark, T. E. (1999) The responses of prices at different stages of production to monetary policy shocks. *The Review of Economics and Statistics* 81, 420–433.
- Davis, S. and J. Haltiwanger (2001) Sectoral job creation and destruction responses to oil price changes. *Journal of Monetary Economics* 48, 465–512.
- Dedola, L. and F. Lippi (2005) The monetary transmission mechanism: Evidence from the industries of five OECD countries. *European Economic Review* 49, 1543–1569.
- Erceg, C. and A. Levin (2006) Optimal monetary policy with durable consumption goods. *Journal of Monetary Economics* 53, 1341–1359.
- Ganley, J. and C. Salmon (1997) The industrial impact of monetary policy shocks: some stylised facts. Bank of England Working Paper Series, No. 68.
- Gertler, M. and S. Gilchrist (1994) Monetary policy, business cycles, and the behavior of small manufacturing firms. *The Quarterly Journal of Economics* 109, 309–340.
- Giordani, P. (2004) An alternative explanation of the price puzzle. *Journal of Monetary Economics* 51, 1271–1296.
- Huang, K. X. and Z. Liu (2001) Production chains and general equilibrium aggregate dynamics. *Journal of Monetary Economics* 48, 437–462.
- Huang, K. X. and Z. Liu (2005) Inflation targeting: What inflation rate to target? *Journal of Monetary Economics* 52, 1435–1462.
- Kim, C. J. and C. R. Nelson (1999) Has the US economy become more stable? A Bayesian approach based on a Markov-switching model of the business cycle. *The Review of Economics and Statistics* 81, 608–616.
- McConnell, M. M. and G. Perez-Quiros (1998) Output fluctuations in the United States: What has changed since the early 1980s? *FRB of New York Staff Report*, 41.
- Mishkin, F. S. (1996) The channels of monetary transmission: lessons for monetary policy. *Banque De France Digest* 27, 33–44.
- Petrella, I. and E. Santoro (2011) Input–output interactions and optimal monetary policy. *Journal of Economic Dynamics and Control* 35, 1817–1830.
- Shea, J. (1993) Do supply curves slope up? The Quarterly Journal of Economics 108, 1–32.
- Strum, B. E. (2009) Monetary policy in a forward-looking input–output economy. *Journal of Money, Credit and Banking* 41, 619–650.
- von Hayek, F. A. (1931) Prices and Production. London: George Routledge and Sons.