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Abstract. The study, being on two-dimensional modelling of low pressure discharges,
suggests an approach to the nonlinear inertia term in the momentum equation of
the positive ions needed to be accounted for in the free-fall regime of the discharge
maintenance. On the basis of conclusions that the inertia term acts in the wall
sheath, where the ions fly perpendicularly to the walls, it is shown that (i) the
parallel − to the walls − velocity component can be neglected, and (ii) the rest of
the convective derivative can be determined by using the energy conservation law
in the collisionless case. In a way, the inertia term acting as a retarding force is
joined to the momentum loss term by introducing effective collision frequencies. The
validity of the procedure is proved in a model of a low pressure argon discharge
by comparison with the exact solutions for the two-dimensional spatial distribution
of the discharge characteristics (ion velocity, electron density and temperature and
DC electric field and its potential). The conclusion is that (i) ignoring the velocity
component that is parallel to the walls does not cause deviation from the exact
solution, and (ii) the approximation of using the energy conservation law in the
collisionless case is good enough.

1. Introduction
As it is known, the importance of the directed motion due to the formation of
well-pronounced wall sheaths in the free-fall regime-sustained discharges requires
accounting for the nonlinear inertia term in the momentum equation of the positive
ions. This breaks the drift–diffusion approximation used in the description of
diffusion-controlled discharges because − with the convective derivative present −
the momentum equation of the positive ions appears as a differential equation.
Although the arising complications, the one-dimensional (1D) discharge modelling
of the free-fall regime-sustained discharges has been successfully developed in the
years by presenting different approaches and results for the behaviour of discharges
in different gasses, with one or more types of positive ions [1–9].

Introducing an effective electric field is considered as a manner for overcoming the
complications due to accounting for the inertia term in the two-dimensional (2D)
discharge modelling [10]. The procedure generalizes earlier studies [11, 12] where an
effective electric field has been used; however, for accounting for the time derivative
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in the momentum equation of the positive ions. In a way, the convective derivative
in the momentum equation of the positive ions is joined to the drift term (drift in
the DC electric field) and the DC electric field is replaced by an effective electric
field. This permits formation of an expression for a drift–diffusion flux (needed for
the continuity equation) by introducing an equation for the effective electric field in
the initial set of equations.

This study suggests another approach to dealing with the nonlinear inertia
term in the 2D modelling of low pressure discharges. Results for the plasma
parameters obtained with exact account for the nonlinear inertia term in the
momentum equation for the positive ions are compared with results obtained in two
consecutive approximations. Ignoring the parallel − to the corresponding wall −
velocity component in the inertia term is the first approximation shown not to cause
deviation from the exact solution. The reason is that the inertia term appears to act
in the wall sheath where the ions fly almost perpendicularly to the corresponding
wall. For determination of the spatial derivative of the velocity in the rest of the
inertia term, the energy conservation law in the collisionless case is used. This is
the second approximation, shown to be good enough. It permits to add the inertia
term to the momentum loss term and to introduce effective collision frequencies.
In a way, the two retarding forces in the momentum equation of positive ions −
the convective derivative and the momentum losses − are considered together. By
introducing effective collision frequencies, expressions for the ion flux components
can be completed in the ordinary form of drift–diffusion fluxes. The validity of the
approach is proved in a model of a low pressure argon discharge.

2. Formulation of the problem
Maintenance in a free-fall regime (low gas pressures) of argon discharges is
considered. For presenting the procedure for dealing with the nonlinear inertia
term in the momentum equation of the ions, i.e. the term that specifies the free-
fall discharge regime, a simple configuration of the discharge vessel is taken: a
rectangular discharge vessel (a parallelepiped) with metal walls. The 2D description
presented provides results for the plasma parameters behaviour in the middle (x–z )-
plane of the vessel. The shape of the radio frequency (RF) power deposition applied
for discharge production is as schematically shown in Fig. 1: homogeneous input
power in the x-direction with a super-Gaussian profile

Pw(z) = Pw0 exp

[
−1

2

(
z

σp

)2m
]

(2.1)

in the z-direction. Here Pw0 is the maximum value at z = 0 and σp scales the
z-variation.

The initial set of equations includes the continuity equations of electrons and ions
(α= e, i),

∂nα

∂t
+ divΓα =

δnα
δt

, (2.2)

the electron energy balance equation

∂(neTe)

∂t
+ divJe = Pw + Pcoll, (2.3)
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Figure 1. Illustration of the z-variation of the power input.

and the Poisson equation

�Φ =
e

ε0
(ne − ni). (2.4)

In (2.2)–(2.4), nα and Γα are the charged particle densities and fluxes, Te and Je are
the electron temperature and the electron energy flux, the latter (Je = Jcond + Jconv)
including both the conductive (Jcond = −χe∇Te) and convective (Jconv = (5/2)TeΓe)
fluxes and Φ is the potential of the electric field (Edc = −∇Φ) in the discharge; e is
the electron charge, ε0 is the vacuum permittivity and χe = (5/2)neDe, with De being
the electron diffusion coefficient, is the thermal conductivity coefficient. The charged
particle production δnα/δt in (2.2) is via direct and step ionization, the latter from
the first four excited states considered as a block and the electron energy losses
in collisions Pcoll in (2.3) accounts for elastic and inelastic collisions, the latter for
atom excitation taken with a total excitation frequency. The data for the elementary
processes are the same as used before [8, 13–15].

The electron flux is a drift–diffusion flux,

Γe = bene∇Φ − De∇ne − DT
e ∇Te, (2.5)

including also the thermal diffusion flux. Here be = e/meνea and De =Te/meνea are,
respectively, the mobility and diffusion coefficients, with me and νea being the
electron mass and the electron-neutral collision frequency, and DT

e =De is the
thermal diffusion coefficient.

The free-fall regime of the discharge maintenance considered requires accounting
for the nonlinear inertia term in the momentum equation of the ions. Thus, the
latter is taken in its complete form

∂vi

∂t
+ (vi.∇)vi = − e

mi
∇Φ − Ti

mini
∇ni − µin

mi
νinvi, (2.6)

including the convective derivative (the second term on the left-hand side), the drift
and diffusion terms (the first two terms on the right-hand side) and the momentum
losses in collisions; µin =mi/2 is the effective mass in elastic ion-neutral collisions
with mi being the ion mass.
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Due to the metal walls of the discharge vessel, the potential of the DC field is
fixed to zero there (Φ |wall = 0). The other boundary conditions are for the fluxes at
the walls: Γe |wall = (1/4)nevthe, with vthe being the thermal velocity of the electrons,
Je |wall = (5/2)TeΓe and Γi⊥ |wall =Γi⊥ |pl.

With the DC field accelerating the ions to the walls and the suppressed role of
diffusion and collisions at low gas pressures, the nonlinear inertia term in (2.6) grows
in importance appearing as the force that limits the ion velocity towards the walls,
especially in the wall sheath because of the fast drop of DC potential there. The
numerical difficulties, which arise related to the nonlinear inertia term, in the 2D
description of discharges with more than one type of positive ions (e.g. hydrogen
discharges with their three types of positive ions) were the motivation for simplified
and reliable procedure for its treatment, as described in the next section.

3. Exact solution and approximations
The results given below are for CW regime maintenance of an argon discharge
at gas pressure, p= 5 mTorr. The value of the gas temperature is Tg = 300 K and
the dimensions of the discharge vessel (Fig. 1) are Lx = 10 cm and Lz = 20 cm. The
parameters in the expression for the input power are m= 2, σp = 4.729 cm and
Pw0 = 104 Wm−3.

First the exact solution of (2.2)–(2.6) is given and then two consecutive approx-
imations are discussed by proving their validity via comparison with the exact
solution.

3.1. Exact solution

The exact solutions of (2.2)–(2.6) with account for the nonlinear inertia term in (2.6)
in its complete form are given in Figs. 2 and 3 by the curves marked by ‘(1)’. These
present the variations of the electron density (Fig. 2(a)) and temperature (Fig. 2(b)),
of the ion velocity (Fig. 2(c)) and of DC potential (Fig. 3(a)) in the transverse (x-)
direction (Fig. 1) of the discharge vessel at a position z = 5 cm as well as the axial
variation of DC potential (Fig. 3(b)) at x= 0.

The results show − typical for the free-fall regime maintenance − the formation
of well-pronounced wall sheath with sharp drop of the DC potential there (Fig. 3)
leading to a strong increase of the ion velocity towards the wall (Fig. 2(c)) and
accompanied by a strong drop of the electron density (Fig. 2(a)). Owing to strong
thermal conductivity effects, the electron temperature stays almost constant across
the discharge (Fig. 2(b)).

Figures 2 and 3 show also the important role of the nonlinear inertia term in the
momentum equation of the positive ions for the formation of the entire discharge
structure. The curves marked by ‘(2)’ there show the solutions of (2.2)–(2.6) without
accounting for the inertia term in (2.6). In fact in this case (2.6) is replaced by
an expression for a drift–diffusion flux of ions of the type of expression (2.5). The
strong deviation of these results from the exact solutions (curves ‘(1)’) demonstrates
the necessity of accounting for the inertia term at low gas pressures. Figure 2(c) also
shows the role of the inertia term as a retarding force that limits the increase of
ion velocity towards the walls. Without accounting for the inertia term, the ion flux
to the walls is overestimated. These overestimated charged particle losses determine,
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Figure 2. Transverse variations − at z = 5 cm − of (a) the electron density, (b) the electron
temperature and (c) the ion velocity. The solid curves marked by (1) give the exact solution,
with complete account for the inertia term, and the solution obtained with account only for
the vx-velocity component in it. The dashed curves marked by (2) present solutions obtained
without accounting for the inertia term. The dot curves marked by (3) show the approximate
solution involving the ion energy conservation law.

as it should be expected, higher electron temperature and DC potential and lower
plasma density (Figs. 2(a), 2(b) and 3).

Regarding the further suggested approximations to the nonlinear inertia term,
Fig. 3 provides important information: the axial and transverse variations of the
potential of the DC electric field inside the plasma volume given by the exact
solution (curves ‘(1)’) are very slight, determining very weak electric field there. This
is confirmed by Fig. 4, which also shows the direction of the electric field. The
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Figure 3. Spatial variation of the potential of the DC electric field in (a) transverse at z = 5 cm,
and (b) axial at x= 0, directions. Curves (1) present both the exact solution, with complete
account for the inertia term, and the solution obtained with account only of (a) vx and (b) vz
velocity component in it. The notation of curves (2) and (3) is the same as in Fig. 2.
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Figure 4. Arrow plot of the DC electric field in the discharge.
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Figure 5. Variation of the transverse component of the ion velocity at z = 5 cm obtained as
an exact solution (solid curve) and after replacing (2.6) by (3.1)–(3.2) (circles).

electric field is strong only in the wall sheath and its orientation there is almost
perpendicular to the walls. This means that the ion velocity increases strongly in the
wall sheath, as shown in Fig. 2(c), and is directed towards the corresponding wall of
the discharge vessel.

3.2. Approximate solution: disregarding of the parallel − to the walls − velocity
component in the inertia term in the ion momentum equation

On the basis of the discussion for the variations of DC potential and for the
orientation of DC electric field in the end of the previous sub-section, results for the
discharge structure obtained by neglecting − in the inertia term − the parallel (to
the corresponding wall) component of the ion velocity are shown here. Thus, (2.6),
written for the x- and z- components of the velocity, is reduced to:

∂vix

∂t
+ vix

∂vix

∂x
= − e

mi

∂Φ

∂x
− Ti

mini

∂ni

∂x
− 1

2
νinvix (3.1)

∂viz

∂t
+ viz

∂viz

∂z
= − e

mi

∂Φ

∂z
− Ti

mini

∂ni

∂z
− 1

2
νinviz . (3.2)

Therefore, from the (v.∇)v-term, viz(∂vix/∂z) and vix(∂viz/∂x) are dropped in (3.1)
and (3.2), respectively.

The results for the discharge structure, stemming from (3.1) and (3.2), are given in
Figs. 2 and 3 by the same curves ‘(1)’, which show the exact solutions obtained with
account for the inertia term in its complete form as given in (2.6). Thus, neglecting
the parallel − to the corresponding wall − component of the ion velocity in the
nonlinear inertia term does not at all affect the accuracy of the solution. This is
also confirmed by Fig. 5, where the exact and approximate solutions for the ion
velocity obtained, based respectively on (2.6) and (3.1)–(3.2), are compared in details.
The conclusion is that replacing (v.∇)v by vix(∂vix/∂x) and viz(∂viz/∂z), respectively,
in the equation for vix- and viz- velocity components could hardly be considered
as an approximation. The very good accuracy of the solutions is not only due to
having vx � vz in (3.1) but the spatial derivatives of the velocities also satisfy the
inequality (∂vix/∂x) � (∂vix/∂z). Concerning (3.2), the corresponding inequalities are
vz � vx and (∂viz/∂z) � (∂viz/∂x).
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3.3. Approximate solution obtained by using the ion energy conservation law in the
collisionless case

The further approximation suggested here provides a possibility for introducing
drift–diffusion fluxes of ions still keeping the important part of the inertia term as
given by the second terms on the left-hand sides of (3.1) and (3.2).

Considering CW regime and combining the rest of the inertia term in (3.1) and
(3.2) with the collisional term therein lead to the following expressions for the ion
flux components

Γix = −beff
ix ni

∂Φ

∂x
− Deff

ix

∂ni

∂x
, (3.3)

Γiz = −beff
iz ni

∂Φ

∂z
− Deff

iz

∂ni

∂z
, (3.4)

where beff
i(x,z) = e/miν

eff
(x,z) and Deff

i(x,z) =Ti/miν
eff
(x,z) are effective mobilities and diffusion

coefficients involving effective collision frequencies via

νeff
x =

∂vix

∂x
+

1

2
νin, (3.5)

νeff
z =

∂viz

∂z
+

1

2
νin. (3.6)

With the velocity components included in νeff
(x,z), effective collision frequencies are

specified for each direction. In a way, the two retarding forces − the collisional
term and the inertia term − are considered together, combined in effective collision
frequencies.

Up to this point, no approximations have been done: Expressions (3.3) and (3.4)
results directly from (3.1) and (3.2). The approximation suggested further concerns
the determination of the rest of the inertia term included in (3.5) and (3.6), i.e. the
first terms on the right-hand sides therein. The stationary form of (3.1) and (3.2)
written without the collisional and diffusion terms results in the energy conservation
law,

1

2
miv

2
i(x,z) = e(Φmax − Φ), (3.7)

where Φmax =Φ(x= 0, z = 0). Thus, the spatial derivatives of the velocity components
present in (3.5) and (3.6) can be expressed as

∂vix

∂x
= −

√
e

2mi

∂Φ
∂x√

Φmax − Φ
, (3.8)

∂viz

∂z
= −

√
e

2mi

∂Φ
∂z√

Φmax − Φ
. (3.9)

In a way, the effective collision frequencies (3.5) and (3.6) and, respectively, the
ion flux components (3.3) and (3.4) needed for the continuity expression (2.2) are
obtained in an explicit form. The results obtained as solutions of (2.2)–(2.5), (3.3)–
(3.6), (3.8) and (3.9) are shown by the curves marked by ‘(3)’ in Figs. 2 and 3.

As Fig. 2 and 3 show, the variation in the transverse direction of the electron
density (Fig. 2(a)) and temperature (Fig. 2(b)) and of the ion velocity (Fig. 2(c)), as
well as the variations of the plasma potential both in the transverse and longitudinal
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directions (Fig. 3) are very close to the corresponding exact solutions (curves
‘(1)’). Thus, expressions (3.8) and (3.9) obtained from the ion energy conservation
law written in the collisionless case appear as a good approximation to the
spatial derivatives of the ion velocity components present in the inertia term and,
respectively, in the effective collision frequencies (3.5) and (3.6). The good accuracy
of the results may be attributed to the fact that the approximation concerns only
the derivative in the inertia term, and not the entire term.

With the effective increase of the collisional frequency caused by the inertia term,
the discharge behaves as a discharge at an effective − higher − gas pressure: the
electron temperature and the potential of the DC field are lower and the plasma
density is higher compared to the case when the inertia term is neglected (curves
‘(2)’ in Figs. 2 and 3).

4. Conclusions
A simplified procedure shown to be with very good accuracy is suggested for dealing
with the nonlinear inertia term in the momentum equation of the positive ions in
the 2D modelling of free-fall regime-sustained discharges. The procedure involves
two consecutive approximations. Neglecting the parallel − with respect to the given
wall − component of the ion velocity is the first approximation shown not to
affect at all the accuracy of the solutions for the discharge structure. The reason is
that the nonlinear inertia term grows in importance in the wall sheaths where the
DC electric field is almost perpendicular to the walls. The second approximation
involves the ion-energy conservation law for the determination of spatial derivative
of the corresponding velocity component in the rest of the inertia term. In a way,
the inertia term is expressed in an explicit form and combined with the collisional
term, resulting in the introduction of effective collision frequencies. This permits
description of the free-fall regime maintenance via the ordinary procedure based on
drift–diffusion fluxes. The validity of the procedure is proved based on a 2D model
of argon discharges.
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[14] Kolev, St., Schlüter, H., Shivarova, A. and Tarnev, Kh. 2006 Plasma Sources Sci. Technol.
15, 744.

[15] Kolev, St., Lishev, St., Shivarova, A., Tarnev, Kh. and Wilhelm, R. 2007 Plasma Phys.
Control. Fusion 49, 1349.

https://doi.org/10.1017/S0022377810000620 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377810000620

