# X-ray powder diffraction data for estra-4,9-diene-3,17-dione, C<sub>18</sub>H<sub>22</sub>O<sub>2</sub>

Zhicheng Zha, Ting Tang, Xiaoyan Bian, and Qing Wang (Da)

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

(Received 12 February 2020; accepted 15 July 2020)

X-ray powder diffraction data for estra-4,9-diene-3,17-dione,  $C_{18}H_{22}O_2$ , are reported [a = 9.236(7) Å, b = 10.294(4) Å, c = 15.471(1) Å, unit cell volume V = 1471.11 Å<sup>3</sup>, Z = 4, and space group  $P2_12_12_1$ ]. All measured lines were indexed and are consistent with the  $P2_12_12_1$  space group. No detectable impurities were observed. The single-crystallographic data of the compound are also reported [a = 9.2392(7) Å, b = 10.2793(5) Å, c = 15.4822(7) Å, unit cell volume V = 1470.37(15) Å<sup>3</sup>, Z = 4, and space group  $P2_12_12_1$ ]. Both single-crystal and powder diffraction methods can get the similar structure data. © 2020 International Centre for Diffraction Data. [doi:10.1017/S0885715620000512]

Key words: steroid, pharmaceutical intermediate, X-ray powder diffraction, crystal structure

## I. INTRODUCTION

Steroids display a variety of biological functions in the human organism, such as decreasing inflammatory and immune responses (Zeelen, 1997). Estra-4,9-diene-3,17-dione (Figure 1), a designer steroid, is designed based on the structure of trenbolone (Clarke *et al.*, 2010). This compound shows strong metabolic activation to HuH7 cells (Cooper *et al.*, 2017). The major metabolite of this compound is considered to be an isomer of 17-hydroxy-estra-4,9-dien-3-one. Hydroxylation and reduction followed by hydroxylation are the metabolic pathways (Scarth *et al.*, 2010). So far, the crystal structure of estra-4,9-diene-3,17-dione has not been reported.

#### **II. EXPERIMENTAL**

### A. Sample preparation

Estra-4,9-diene-3,17-dione (Figure 1) was purchased from J&K Scientific (Beijing, People's Republic of China). The melting point and measured density of estra-4,9-diene-3,17-dione are 145–146 °C and 1.197 g cm<sup>-3</sup>, respectively. Crystallization of estra-4,9-diene-3,17-dione at room temperature was successful using methanol as a solvent. The crystals are transparent and have a prismatic structure. A portion of the crystals were dried, smashed, screened through 75  $\mu$ m mesh size, and mounted on a flat zero background plate.

## B. Diffraction data collection and reduction

The X-ray powder diffraction measurement was performed at 298 K using an X'Pert PRO diffractometer (PANalytical Co., Ltd., Netherlands) with a PIXcel 1D detector and CuK $\alpha$  radiation (generator setting: 40 kV and 40 mA). The sample was mounted on a flat zero background plate. The diffraction data were collected over the angular range from 4 to 50° 2 $\theta$  with a step size of 0.01313° 2 $\theta$  and a counting time of 30 ms step<sup>-1</sup>. The software package Material Studio 8.0 (Accelrys Co., Ltd., CA, USA) was used to process the data in the Analytical & Testing Center (Sichuan University, Chengdu, China). The X-ray powder diffraction pattern was pretreated by subtracting the background, smoothing, and stripping off the  $K\alpha_2$  component. Automatic indexing results were obtained by the X-cell method (Neumann, 2003). The indexing results were then refined using Pawley ( $R_{wp} = 10.36\%$ ) (Pawley, 1981), which involves assigning the Miller indices (*hkl*) to each observed peak in the experimental PXRD pattern.

## C. Single-crystal X-ray diffraction

X-ray diffraction data for estra-4,9-diene-3,17-dione were collected on a New Gemini, Dual, Cu at zero, EosS2 diffractometer. The crystal was kept at 293.15 K during data collection. The structure was solved with Olex2 (Dolomanov *et al.*, 2009; Bourhis *et al.*, 2015), using charge flipping, and refined with the SHELXL (Sheldrick, 2015) refinement package using least-squares minimization.

## **III. RESULTS**

Pawley refinement results confirmed that estra-4,9-diene-3,17-dione is orthorhombic with the space group  $P2_12_12_1$  and unit cell parameters: a = 9.236(7) Å, b = 10.294(4) Å, c = 15.471(1) Å, unit cell volume V = 1471.11



Figure 1. Molecular diagram of estra-4,9-diene-3,17-dione.

https://doi.org/10.1017/S0885715620000512 Published online by Cambridge University Press

<sup>&</sup>lt;sup>a)</sup>Author to whom correspondence should be addressed. Electronic mail: qingwang@yzu.edu.cn

| ΓABLE I. | X-ray powder diffraction data for estra-4,9-diene-3,17-dione, C <sub>18</sub> H <sub>22</sub> O <sub>2</sub> . | The <i>d</i> -values were calculated using $CuK\alpha_1$ radiation ( $\lambda = 1.54056$ Å). |
|----------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|----------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|

| $2\theta_{\rm obs}$ (°) | $d_{\rm obs}$ (Å) | I <sub>obs</sub> | l  | k | h | $2\theta_{\rm cal}$ (°) | $d_{\rm cal}$ (Å) | $\Delta 2\theta$ |
|-------------------------|-------------------|------------------|----|---|---|-------------------------|-------------------|------------------|
| 10.3060                 | 8.5763            | 15               | 0  | 1 | 1 | 10.3130                 | 8.5704            | -0.0070          |
| 11.4352                 | 7.7318            | 28               | 0  | 0 | 2 | 11.4296                 | 7.7355            | 0.0056           |
| 12.9058                 | 6.8539            | 8                | 1  | 1 | 0 | 12.8659                 | 6.8750            | 0.0399           |
| 14.0875                 | 6.2815            | 20               | 1  | 1 | 1 | 14.0849                 | 6.2826            | 0.0026           |
| 14.3107                 | 6.1840            | 45               | 0  | 1 | 2 | 14.3104                 | 6.1842            | 0.0003           |
| 17.2125                 | 5.1474            | 39               | 0  | 2 | 0 | 17.2135                 | 5.1471            | -0.0010          |
| 18.1579                 | 4.8815            | 6                | 0  | 2 | 1 | 18.1488                 | 4.8839            | 0.0091           |
| 19.2083                 | 4.6169            | 7                | 2  | 0 | 0 | 19.2016                 | 4.6185            | 0.0067           |
| 19.2346                 | 4.6106            | 7                | 0  | 1 | 3 | 19.2338                 | 4.6108            | 0.0008           |
| 19.7073                 | 4.5011            | 22               | 1  | 0 | 3 | 19.6998                 | 4.5028            | 0.0075           |
| 19.7073                 | 4.5011            | 22M              | 1  | 2 | 0 | 19.7289                 | 4.4962            | -0.0216          |
| 20.0486                 | 4.4252            | 100              | 2  | 0 | 1 | 20.0474                 | 4.4255            | 0.0013           |
| 20.5739                 | 4.3134            | 10               | 1  | 2 | 1 | 20.5538                 | 4.3176            | 0.0200           |
| 20.7183                 | 4.2837            | 5                | 0  | 2 | 2 | 20.7108                 | 4.2852            | 0.0075           |
| 21.0465                 | 4.2176            | 13               | 2  | 1 | 0 | 21.0656                 | 4.2138            | -0.0190          |
| 21.8081                 | 4.0720            | 55               | 2  | 1 | 1 | 21.8422                 | 4.0657            | -0.0341          |
| 22.3596                 | 3.9728            | 27               | 2  | 0 | 2 | 22.4015                 | 3.9655            | -0.0419          |
| 22.8717                 | 3.8850            | 6                | 1  | 2 | 2 | 22.8581                 | 3.8873            | 0.0135           |
| 22.9636                 | 3.8697            | 5                | 0  | 0 | 4 | 22.9750                 | 3.8678            | -0.0114          |
| 24.0271                 | 3.7007            | 7                | 2  | 1 | 2 | 24.0291                 | 3.7004            | -0.0020          |
| 24.4210                 | 3.6419            | 6                | 0  | 2 | 3 | 24.4132                 | 3.6431            | 0.0079           |
| 24.5392                 | 3.6246            | 10               | 0  | 1 | 4 | 24.5667                 | 3.6206            | -0.0275          |
| 24.9331                 | 3.5683            | 6                | 1  | 0 | 4 | 24.9376                 | 3.5676            | -0.0045          |
| 25.8391                 | 3.4452            | 5                | 2  | 0 | 3 | 25.8751                 | 3.4405            | -0.0360          |
| 26.2724                 | 3.3893            | 8                | 1  | 2 | 3 | 26.2749                 | 3.3890            | -0.0025          |
| 26.4168                 | 3.3711            | 5                | 1  | 1 | 4 | 26.4183                 | 3.3709            | -0.0015          |
| 26.5875                 | 3.3499            | 4                | 0  | 3 | 1 | 26.5862                 | 3.3500            | 0.0013           |
| 27.3097                 | 3.2629            | 4                | 2  | 1 | 3 | 27.3085                 | 3.2630            | 0.0012           |
| 28.2945                 | 3.1515            | 4                | 1  | 3 | 1 | 28.3150                 | 3.1493            | -0.0205          |
| 28.4126                 | 3.1387            | 4                | 0  | 3 | 2 | 28.4313                 | 3.1367            | -0.018/          |
| 28.8722                 | 3.0898            | 4                | 0  | 2 | 4 | 28.8502                 | 3.0921            | 0.0220           |
| 29.5418                 | 3.0212            | 9                | 3  | 0 | 1 | 29.5566                 | 3.0198            | -0.0148          |
| 30.0670                 | 2.9696            | 4                | 1  | 5 | 2 | 30.0624                 | 2.9701            | 0.0046           |
| 30.1190                 | 2.9040            | 5                | 0  | 1 | 5 | 30.1335                 | 2.9632            | -0.0140          |
| 30.3034                 | 2.9470            | 4                | 5  | 1 | 0 | 30.2755                 | 2.9499            | 0.0299           |
| 30.4741                 | 2.9309            | 4                | 1  | 2 | 4 | 31.24008                | 2.9322            | 0.0133           |
| 31.2538                 | 2.8012            | 5                | 2  | 1 | 2 | 31.2408                 | 2.8007            | -0.0031          |
| 32 4305                 | 2.8500            | 5                | 23 | 1 | 2 | 32 4567                 | 2.0494            | -0.0158          |
| 33 8617                 | 2.7564            | 5                | 3  | 2 | 0 | 33 8976                 | 2.7505            | -0.0359          |
| 34 5445                 | 2.0430            | 5                | 2  | 2 | 2 | 34 5374                 | 2.0423            | 0.0070           |
| 34 7414                 | 2.5945            | 7                | 0  | 0 | 6 | 34 7628                 | 2.5785            | -0.0213          |
| 34 9121                 | 2.5678            | 4                | 0  | 3 | 4 | 34 9257                 | 2.5769            | -0.0136          |
| 35,0172                 | 2.5604            | 4                | 3  | 1 | 3 | 35.0143                 | 2.5606            | 0.0029           |
| 35.8706                 | 2.5014            | 4                | 0  | 1 | 6 | 35.8726                 | 2.5012            | -0.0019          |
| 35.9625                 | 2.4952            | 4                | 2  | 1 | 5 | 35.9797                 | 2.4940            | -0.0172          |
| 36.9736                 | 2.4292            | 3                | 2  | 3 | 3 | 36.9684                 | 2.4296            | 0.0051           |
| 37.2231                 | 2.4135            | 3                | 1  | 1 | 6 | 37.2110                 | 2.4143            | 0.0121           |
| 38.0765                 | 2.3614            | 4                | 1  | 4 | 2 | 38.0851                 | 2.3609            | -0.0086          |
| 38.2210                 | 2.3528            | 3                | 3  | 2 | 3 | 38.2409                 | 2.3516            | -0.0199          |
| 38.9825                 | 2.3086            | 3                | 4  | 0 | 0 | 38.9705                 | 2.3092            | 0.0120           |
| 39.1795                 | 2.2974            | 3                | 0  | 3 | 5 | 39.1700                 | 2.2979            | 0.0094           |
| 39.4421                 | 2.2827            | 3                | 4  | 0 | 1 | 39.4200                 | 2.2839            | 0.0221           |
| 39.7047                 | 2.2682            | 3                | 3  | 3 | 1 | 39.7279                 | 2.2669            | -0.0232          |
| 40.0198                 | 2.2511            | 6                | 4  | 1 | 0 | 39.9797                 | 2.2532            | 0.0401           |
| 40.0198                 | 2.2511            | 6M               | 2  | 0 | 6 | 40.0140                 | 2.2514            | 0.0058           |
| 40.0723                 | 2.2483            | 4                | 2  | 4 | 0 | 40.0750                 | 2.2481            | -0.0027          |
| 40.3481                 | 2.2335            | 3                | 1  | 4 | 3 | 40.3320                 | 2.2344            | 0.0160           |
| 40.4137                 | 2.2300            | 4                | 1  | 3 | 5 | 40.4151                 | 2.2300            | -0.0014          |
| 40.5319                 | 2.2238            | 3                | 2  | 4 | 1 | 40.5143                 | 2.2247            | 0.0176           |
| 41.6873                 | 2.1648            | 4                | 4  | 1 | 2 | 41.7170                 | 2.1633            | -0.0297          |
| 41.8055                 | 2.1590            | 4                | 2  | 4 | 2 | 41.8090                 | 2.1588            | -0.0035          |
| 42.0025                 | 2.1493            | 3                | 1  | 0 | 7 | 41.9986                 | 2.1495            | 0.0038           |
| 42.1206                 | 2.1435            | 4                | 0  | 4 | 4 | 42.1398                 | 2.1426            | -0.0191          |
| 42.2913                 | 2.1353            | 3                | 3  | 1 | 5 | 42.2955                 | 2.1351            | -0.0041          |
| 42.8691                 | 2.1078            | 3                | 4  | 0 | 3 | 42.8742                 | 2.1076            | -0.0051          |

Continued

TABLE I. Continued

| $2\theta_{\rm obs}$ (°) | $d_{\rm obs}$ (Å) | Iobs | l | k | h | $2\theta_{\rm cal}$ (°) | $d_{\rm cal}({\rm \AA})$ | $\Delta 2\theta$ |
|-------------------------|-------------------|------|---|---|---|-------------------------|--------------------------|------------------|
| 43.3418                 | 2.0859            | 3    | 1 | 4 | 4 | 43.3143                 | 2.0872                   | 0.0275           |
| 43.9720                 | 2.0575            | 4    | 2 | 3 | 5 | 43.9750                 | 2.0573                   | -0.0030          |
| 45.5083                 | 1.9915            | 4    | 1 | 5 | 1 | 45.4776                 | 1.9928                   | 0.0307           |
| 45.8103                 | 1.9791            | 2    | 0 | 4 | 5 | 45.8220                 | 1.9786                   | -0.0117          |
| 45.9809                 | 1.9722            | 3    | 3 | 3 | 4 | 45.9950                 | 1.9716                   | -0.0140          |
| 46.9132                 | 1.9351            | 4    | 0 | 0 | 8 | 46.9448                 | 1.9339                   | -0.0316          |
| 47.5303                 | 1.9114            | 3    | 0 | 5 | 3 | 47.5121                 | 1.9121                   | 0.0182           |
| 47.7929                 | 1.9015            | 2    | 4 | 3 | 1 | 47.7992                 | 1.9013                   | -0.0062          |
| 48.9615                 | 1.8588            | 2    | 2 | 2 | 7 | 48.9555                 | 1.8591                   | 0.0060           |

Å<sup>3</sup>, Z = 4,  $\rho_{cal} = 1.221$  g cm<sup>-3</sup>. The values of  $2\theta_{obs}$ ,  $d_{obs}$ ,  $I_{obs}$ , h, k, l,  $2\theta_{cal}$ ,  $d_{cal}$ ,  $\Delta 2\theta$  are listed in Table I.

The single-crystal experiment was carried out at the temperature of 293.15 K and the structure solution was obtained  $[a=9.2392(7) \text{ Å}, b=10.2793(5) \text{ Å}, c=15.4822(7) \text{ Å}, unit cell volume <math>V=1470.37(15) \text{ Å}^3$ , Z=4,  $\rho_{cal}=1.221 \text{ g cm}^{-3}$  and space group  $P2_12_12_1$ ]. The detailed single-crystal data of estra-4,9-diene-3,17-dione and the experimental data are listed in Table II. The figures were drawn with ORTEP-3 (Oak Ridge Thermal Ellipsoid Plot) and Mercury (Figure 2). Estra-4,9-diene-3,17-dione contains three chiral centers and is arranged in a head-to-tail fashion. The compound is arranged without intramolecular and intermolecular H-bonding, but it has two strong acceptors, namely, C1=O1 and C9=O2.

The comparison of PXRD pattern (Deposited Data) with the simulated pattern is shown in Figure 3. Results showed that both single-crystal and powder diffraction methods can get the similar structure data and the deviations of the unit cell parameters and unit cell volume were between 0.03% and 0.15%.

TABLE II. Crystal and experimental data of estra-4,9-diene-3,17-dione.

| Empirical formula                           | C <sub>18</sub> H <sub>22</sub> O <sub>2</sub>           |
|---------------------------------------------|----------------------------------------------------------|
| Formula weight                              | 270.35                                                   |
| Temperature (K)                             | 293.15                                                   |
| Crystal system                              | Orthorhombic                                             |
| Space group                                 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>            |
| a (Å)                                       | 9.2392(7)                                                |
| b (Å)                                       | 10.2793(5)                                               |
| <i>c</i> (Å)                                | 15.4822(7)                                               |
| α (°)                                       | 90                                                       |
| $\beta$ (°)                                 | 90                                                       |
| γ (°)                                       | 90                                                       |
| Volume (Å <sup>3</sup> )                    | 1470.37(15)                                              |
| Ζ                                           | 4                                                        |
| $\rho_{\rm calc}({\rm g~cm^{-3}})$          | 1.221                                                    |
| $\mu (\mathrm{mm}^{-1})$                    | 0.078                                                    |
| F(000)                                      | 584.0                                                    |
| Radiation                                   | $MoK\alpha \ (\lambda = 0.71073)$                        |
| $2\theta$ range for data collection (°)     | 5.928-52.742                                             |
| Index ranges                                | $-5 \le h \le 11, -12 \le k \le 12, \\ -18 \le l \le 19$ |
| Reflections collected                       | 4449                                                     |
| Independent reflections                     | 2754 $[R_{int} = 0.0129, R_{sigma} = 0.0315]$            |
| Data/restraints/parameters                  | 2754/0/1825                                              |
| Goodness of fit on $F^2$                    | 1.058                                                    |
| Final <i>R</i> indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0585, wR_2 = 0.1371$                            |
| Final <i>R</i> indexes (all data)           | $R_1 = 0.0751, wR_2 = 0.1499$                            |
| Largest diffraction peak/hole (e $Å^{-3}$ ) | 0.27/-0.19                                               |



Figure 2. (a) ORTEP drawing one of the two independent molecules in the asymmetric unit of estra-4,9-diene-3,17-dione with the labeling of non-H atoms. (b) Crystal packing of estra-4,9-diene-3,17-dione.



Figure 3. X-ray powder diffraction pattern of estra-4,9-diene-3,17-dione using  $\text{CuK}\alpha$  radiation (black line) and the simulated pattern of the crystal structure (red line).

### **IV. DEPOSITED DATA**

CIF and/or RAW data files were deposited with ICDD. You may request this data from ICDD at info@icdd.com.

#### ACKNOWLEDGEMENTS

This work was supported by the Scientific Research Staring Foundation of Yangzhou University, Yangzhou Green Yang Gold Phoenix plans, and Jiangsu Shuangchuang Project.

- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., and Puschmann, H. (2015). "The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected," Acta Crystallogr. A 71, 59–75.
- Clarke, A., Scarth, J., Teale, P., Pearcea, C., and Hillyer, L. (2010). "The use of in vitro technologies and high-resolution/accurate-mass LC-MS to screen for metabolites of 'designer' steroids in the equine," Drug Test. Anal. 3, 74–87.

- Cooper, E. R., McGrath, K. C. Y., Li, X., Akram, O., Kasz, R., Kazlauskas, R., McLeod, M. D., Handelsmanc, D. J., and Heatherf, A. K. (2017). "The use of tandem yeast and mammalian cell in vitro androgen bioassays to detect androgens in internet-sourced sport supplements," Drug Test. Anal. 9, 545–552.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., and Puschmann, H. (2009). "OLEX2: a complete structure solution, refinement and analysis program," J. Appl. Crystallogr. 42, 339–341.
- Neumann, M. A. (2003). "X-cell: a novel indexing algorithm for routine tasks and difficult cases," J. Appl. Crystallogr. 36, 356–365.
- Pawley, G. S. (1981). "Unit-cell refinement from powder diffraction scans," J. Appl. Crystallogr. 14(6), 357–361.
- Scarth, J. P., Clarke, A. D., Teale, P., and Pearce, C. M. (2010). "Comparative in vitro metabolism of the 'designer'steroid estra-4, 9-diene-3, 17-dione between the equine, canine and human: Identification of target metabolites for use in sports doping control," Steroids 75, 643–652.
- Sheldrick, G. M. (2015). "SHELXT-Integrated space-group and crystalstructure determination," Acta Crystallogr. A 71, 3–8.
- Zeelen, F. J. (**1997**). "Medicinal chemistry of steroids," Prin. Med. Biol. **8**(97), 427–463.