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Characteristics of the pressure fluctuations
generated in turbulent boundary layers over

rough surfaces
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Experiments were carried out in high Reynolds number turbulent boundary layers
over rough surfaces of diverse geometries. Roughness configurations varied in element
height, distribution (random versus ordered), shape and spacing. Rough surfaces
comprising of two superposed element geometries were also tested. All flows were
free of transitional effects with Reθ upwards of 40 000 and δ/kg ratios above 73. The
wall-pressure spectrum and turbulent velocity profiles revealed that the roughness
element spacing has the greatest impact on the turbulent structures in the boundary
layer. The high-frequency scaling on shear friction velocity, Uν , (Meyers et al.
J. Fluid Mech., vol. 768, 2015, pp. 261–293) was validated and Uν was shown
to be the viscous contribution to the overall surface drag. An empirical formula
for the pressure drag on roughness elements was developed to reflect the finding
that the pressure drag is a function of only two variables: sparseness ratio (λ) and
roughness Reynolds number (k+g ). Results also suggest that the viscous contribution
to drag approaches a constant non-zero value at high Reynolds numbers, and ‘fully
rough-wall flow’ may occur at higher k+g than previously thought.

Key words: turbulent boundary layers, turbulence theory

1. Introduction
In recent years, much has been uncovered about the nature of the turbulent boundary

layer over rough walls. However, compared to the less-practical hydrodynamically
smooth flow, there are still outstanding questions. The prevailing theory on the
rough-wall turbulent boundary layer pressure spectrum (Φ(ω), where ω is frequency)
is a two-layer model: a slow-rising (ω2) low-frequency region and a rapidly decaying
(ω−5) high-frequency region (Blake 2017). These two regions then overlap in the
slowly decaying (ω−1) mid-frequency. This two-layer model, its expected spectral
slopes and the idea of an ‘overlap’ region, have been adopted from rigorous
investigations into the smooth-wall-pressure spectrum (Blake 1970, 2017; Panton
& Linebarger 1974; Panton et al. 1980; McGrath & Simpson 1987; Choi & Moin
1990; Farabee & Casarella 1991; Gravante et al. 1998; Goody & Simpson 1999;
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883 A3-2 L. A. Joseph and others

Smol’yakov 2000; Goody 2004). Extending this model to rough-wall flows is
considered appropriate because of wall similarity and its associated scale separation.
This concept suggests that, if there is a large enough separation between the scales of
the largest turbulent eddies and the roughness length scales, the outer-layer flow will
be independent of the wall conditions. Sufficient scale separation occurs when the
roughness is small compared to the boundary layer height, δ. The accepted criterion
is δ/kg > 40 (Jimenez 2004), where kg is the geometric roughness element height.
The Reynolds number must also be high, Reθ > 50 000, where θ is the momentum
thickness. At such conditions the influence of roughness on the logarithmic layer is
suggested to be vastly diminished. Proof of scale separation was indirectly given by
Meyers, Forest & Devenport (2015) who were able to reveal a previously undetected
scaling region within the pressure spectrum, because of their large δ/kg and Reθ . Wall
similarity itself is a compelling argument, supported by several researchers (Raupach,
Antonia & Rajagopalan 1991; Flack, Schultz & Shapiro 2005; Schultz & Flack 2007,
2009), because it implies that the outer flow scaling is truly universal at practical
conditions. Flack et al. (2005), using sandpaper and woven mesh rough surfaces to
simulate fouled blades and tubes, found that the differences in rough-wall boundary
layers are confined to y < 5ks (where ks is the equivalent sand grain roughness) in
their mean velocity profiles, Reynolds stresses and velocity triple products. These
experiments were carried out at Reθ ≈ 14 000 and δ/ks > 40. They went on to
suggest that δ/ks is a more appropriate reference for gauging wall similarity than
δ/kg. Nevertheless, there is evidence that the wall-similarity concept needs further
review (Krogstad, Antonia & Browne 1992; Bhaganagara, Coleman & Kim 2007).
The premise that smooth- and rough-wall boundary layers share a general form
inherently assumes that the interstitial flow and turbulent structures produced by the
roughness elements are accounted for in the smooth-wall model. This, even at very
high Reynolds numbers, may be an erroneous assumption. Krogstad et al. (1992)
found that smooth- and rough-wall turbulent boundary layers show deviations over a
significant portion of the layer, not just within the near-wall region. Most recently, the
experiments of Joseph (2017) did not show proof of wall similarity, despite exceeding
both qualifying criteria.

Another generally accepted concept is that all wall-bounded rough-wall flows fall
into one of three categories: hydrodynamically smooth, transitionally rough and fully
rough. These categories arise from the early pipe flow studies of Nikuradse (1950),
which proposed that the roughness Reynolds number, k+g = kgUτ/ν (where Uτ is
the friction velocity and ν is kinematic viscosity), specifies the extent to which the
roughness disrupts the mean flow. Fully rough flows have k+g > 40 (Ligrani & Moffat
1986; Jimenez 2004) and are of most practical interest because it is believed that
viscous effects are negligible in this regime and the roughness elements project into
the log layer. However, some recent works (Mehdi, Klewicki & White 2013; Meyers
et al. 2015) have challenged the community to re-think these assumptions about the
extent of viscous effects at high Reynolds numbers.

These concepts, along with established turbulent boundary layer theory, form the
basis for existing rough-wall-pressure spectrum scalings. While smooth-wall scalings
have been developed somewhat satisfactorily, even yielding promising empirical
functions to predict such spectra (Goody 2004), there has been relatively less success
in scaling rough-wall flows. The recent study of Meyers et al. (2015) achieved
exceptionally high Reynolds numbers and sufficiently large scale separation, allowing
them to see that the two-layer/overlap spectral model is a simplification of the actual
mid-frequency physics. They tested three rough surfaces along with a smooth-wall
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Pressure fluctuations in rough-wall turbulent boundary layers 883 A3-3

‘baseline’ surface. The rough surfaces consisted of ordered and quasi-randomly
distributed hemispheres, and two roughness heights. Because all three rough surfaces
consisted of the same element shape and roughness element-to-element spacing,
they were able to isolate the effect of kg and roughness element distribution on
the pressure spectra. Element-to-element spacing is typically characterised by the
sparseness ratio, λ, which is the ratio of the forward projected area of the elements
(Af ) to their planform area (Aw). Therefore small λ corresponds to widely separated
elements and large λ represents closer element spacing. All the hemispheres of
Meyers et al. had λ = 0.052. The resulting flows had k+g ranging from 91 to 507
and δ/kg from 72 to 212, such that all cases were in the fully rough flow regime.
A distinctive mid-frequency region was uncovered because of the large separation
between roughness scales and the viscous scales. Meyers et al. thus proposed the
triple scaling hypothesis, which states that the rough-wall-pressure spectrum comprises
of three independent scaling regions, as opposed to two regions and an overlap region.
They hypothesised that the mid-frequency region comprises of the roughness scales
and so the previously proposed high-frequency scalings are actually mid-frequency
scalings. Correspondingly, the high-frequency region is governed purely by viscosity
and is independent of the roughness scale, behaving much like the high-frequency
region of the smooth-wall boundary layer. This new understanding led to a proposed
universal high-frequency scaling law of Φ(ω)Uν/(τ

2
ν ν) versus ων/U2

ν ; Uν in this
scaling was referred to as the shear friction velocity and was interpreted as the
portion of Uτ which does not include the pressure drag on the roughness elements;
τν is the corresponding shear stress. Meyers et al. showed that this scaling collapsed
the pressure spectra of hemispherical roughness with kg = [3 mm, 1 mm]; randomly
distributed and ordered hemispheres; the sparse 1 mm hemispheres of Varano (2010);
the sand grains of Blake (1970) (dense large, dense small, sparse small); and the sand
grains of Aupperle & Lambert (1970) for all ων/U2

ν & 0.6. However, the Uν scaling
has yet to be systematically validated with roughness of different shapes, or surfaces
comprising of two or more roughness geometries. Scaling roughness of different
element densities also requires a second look because the data sets which varied
this parameter (Blake 1970; Varano 2010) were obtained at relatively low Reynolds
numbers.

Meyers et al. also examined the effectiveness of existing rough-wall-pressure
spectrum scalings using their high Reynolds number data set, which is particularly
useful since theirs is one of the few data sets which meets both criteria for
universal scaling laws. A summary of some of these existing scalings is presented
in table 1. In the low-frequency region the two most well-known scalings are the
classical smooth-wall scaling and the mixed-outer scaling of Blake (1970), both
originally developed for scaling the smooth-wall-pressure spectrum, but because of
the assumption of wall similarity are extended to rough-wall flows. The classical
outer scaling, Φ(ω)Uτ/τ

2
wδ versus ωδ/Uτ , has successfully collapsed smooth-wall

data in numerous studies. It uses the boundary layer thickness, δ, as a length scaling
because the low-frequency eddies are expected to have a size of the order of δ. The
friction velocity, Uτ , is the chosen velocity scale because, based on the defect law,
it is assumed that the wall shear stress, τw, controls the velocity gradient in the
outer portion of the boundary layer. Blake (1970) modified this scaling by using
the displacement height, δ∗, as the scaling length and the edge velocity, Ue, as the
scaling velocity. He suggested that these were more appropriate parameters because
they better reflected the nature of the outer region flow, producing a final scaling of
Φ(ω)Ue/τ

2
wδ
∗ versus ωδ∗/Ue. Meyers et al. (2015) applied these scalings to their data
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Pressure fluctuations in rough-wall turbulent boundary layers 883 A3-5

and the data sets of Blake (1970), Aupperle & Lambert (1970) and Varano (2010) to
show that neither is able to convincingly collapse all of the data, especially at very
low frequencies where they should be most effective. Joseph (2017) later quantified
this lack of collapse more definitely through uncertainty analysis.

According to the triple scaling hypothesis, the previously proposed high-frequency
scalings, which are based on geometric roughness features, are actually mid-frequency
scalings. These mid-frequency scalings were also tested by Meyers et al. and were
found to be even less successful than the low-frequency scalings. The empirical inner
scaling of Aupperle & Lambert (1970), Φ(ω)Uτ/(τ

2
wksCf ) versus ωks/Uτ , showed

only marginal success on data sets other than their own sparsely populated, uniformly
distributed sand particles. In the latter scaling Cf is the non-dimensional skin-friction
coefficient. Blake (1970) proposed a mid-frequency scaling from his experiments
on sparsely packed small roughness, densely packed large roughness and densely
packed small roughness: Φ(ω)Uτ/τ

2
wkg versus ωkg/Uτ . This is very similar to his

proposed low-frequency scaling except that the chosen length scale is kg to account
for the roughness length scales, and Uτ is the velocity scale because he believed
that τw is the only external stress on the boundary layer. The resulting scaling is
the Strouhal number of the roughness elements. Presently, Blake’s inner scaling is
deemed the most successful scaling for the widest range of rough-wall flows (Varano
2010; Forest & Devenport 2011). Varano (2010) later proposed a mid-frequency
scaling based on his experiments with sparse, ordered hemispherical roughness at
20 and 27 m s−1. He suggested that Uτ should be proportional to Ue in the fully
rough regime, which allowed him to substitute Ue into Blake’s inner scaling to
produce Φ(ω)/ρ2U3

e kg versus ωkg/Ue. This scaling was able to successfully collapse
a significant amount of Varano’s data. Meyers et al. also proved that this scaling is at
least as successful as Blake’s inner scaling for roughnesses of different kg, and both
ordered and random element distributions. Mixed-inner–outer scalings, such as those
of De Graaff & Eaton (2000), Forest (2012) and Klewicki (2013), have also been
proposed. These attempt to uncover intermediary scales which characterise statistical
properties of the outer flow. This idea is promising as such velocity and length scales
would represent the largest scales in the outer flow and also account for the effect
of roughness scales on the outer flow. Klewicki (2013), for example, explains that
his inner–outer-layer intermediate length-scale normalisation for smooth walls, δν/Uτ ,
represents an average property of the underlying layer width distribution. Similarly De
Graaff & Eaton (2000) explored a mixed inner–outer velocity scaling for collapsing
the streamwise fluctuating velocity in smooth-wall turbulent boundary layers. Joseph
(2017) explored the effectiveness of these for pressure spectra using hybrid scalings
based on these (see table 1) and found that they were less than ideal. It is also
prudent to point out that even the most successful of these mid-frequency scalings
have not produced the hypothesised −1 slope which is derived from dimensional
analysis of the smooth-wall-pressure spectrum (Blake 1970; Panton & Linebarger
1974). The expectation of a −1 mid-frequency slope assumes the characteristics of
both the high- and low-frequency regions are shared in an ‘overlap’ mid-frequency
region. With the assumption of wall similarity one might expect this −1 overlap
region to also be apparent in rough-wall flows. However, most studies have not
produced this mid-frequency slope. In fact, even a number of studies of smooth-wall
boundary layers show a constant-slope mid-frequency region with slope between −0.7
and −0.8 (Blake 1970; McGrath & Simpson 1987; Goody & Simpson 1999). This
calls into question the fundamental premise of an overlap region. To date, the −1
slope has only been observed in simulations (Lee, Blake & Farabee 2005) and the
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experimental work of Klewicki, Priyadarshana & Metzger (2008) on transitionally
rough atmospheric boundary layers.

Scaling rough-wall boundary layers of diverse geometries is an important step
toward scaling realistic rough-wall flows. However, the specific effect of different
geometric parameters on the pressure spectrum is not clear, which complicates the
process of scaling the spectrum. Roughness element height is thought to influence
the medium and very small-scale turbulent structures (Blake 1970). This is supported
by Meyers et al. (2015), who found the slope of the mid-frequency region changes
depending on the roughness height. The arrangement of roughness elements (ordered,
quasi-random, straight, staggered) is reported as having minimal impact on the
pressure spectrum, particularly outside the near-wall region (Waigh & Kind 1998;
George & Simpson 2000; Meyers et al. 2015). Roughness element shape is probably
the most widely researched geometric roughness parameter. Common shapes are
hemispheres (Tomkins 2001; Bennington 2004; Hopkins 2010; Varano 2010; Forest
& Devenport 2011; Rusche & Simpson 2012; Meyers et al. 2015), circular cylinders
(Raupach, Thom & Edwards 1980; Raupach 1981; George & Simpson 2000; Tomkins
2001; Stewart 2005; Rusche & Simpson 2012; Yang & Wang 2013; Zhang et al.
2015), cubes (Bennington 2004; Yang & Wang 2010, 2011; Rusche & Simpson 2012;
Yang & Wang 2013) and sand grain/grit paper (Dvorak 1969; Aupperle & Lambert
1970; Blake 1970; Grass 1971; Balachandar & Blakely 2004; Smith 2008; Hopkins
2010). Less common shapes include spheres (Dvorak 1969; Ligrani & Moffat 1986),
pebbles (Grass 1971), Gaussian spikes (Fontaine & Deutsch 1996; Bennington 2004;
Stewart 2005), wire meshes (Dvorak 1969; Antonia & Krogstad 2001; Balachandar
& Blakely 2004; Flack et al. 2005), pyramids (Schultz & Flack 2009) and cones
(Bennington 2004). The consensus on roughness element shape is that geometric
peaks and sharp edges affect the flow physics most. Stewart (2005) found that
cylindrical elements produced more well-defined, high peaks in the turbulent stresses
than did Gaussian spikes, most likely because the cylinder edges produce a larger pair
of counter-rotating vortices than the Gaussian spike. Rusche & Simpson (2012) also
found that elements with smooth edges (like hemispheres) create gradual slopes in
the turbulence data while elements with sharp edges (like cubes and cylinders) create
sharp changes in the turbulence. Elements with sharp edges also tend to produce the
highest levels of turbulent kinetic energy near the downstream height of the element
(Bennington 2004) and significantly affect the vortex shedding (Tomkins 2001). The
large eddy simulations of Yang & Wang (2011, 2013) found that sharp frontal edges
(cubes and cylinders) induce flow separation at the front edges, causing more intense
vortical structures at the sides, while the back of the element is shielded. Furthermore,
the wake of hemispheres is more confined than that of cylinders, most likely because
the flow over cylinders tends to separate earlier than hemispheres.

Element-to-element spacing is another important geometric parameter. λ comes
from the log-law intercept correlations of Dvorak (1969) which were later modified
by Simpson (1973) into the single variable, generalised functions of λ shown in (1.1)
and (1.2).

f (λ)= 12.24 ln λ−1
− 17.35, λ−1 < 5 (1.1)

f (λ)=−2.85 ln λ−1
+ 5.95, λ−1 > 5. (1.2)

Equations (1.1) and (1.2) capture the physical correlation that form drag (represented
by f (λ)) is approximately proportional to the roughness element frontal area.
Thus, as λ increases, so does the drag, until it peaks at approximately λ = 1/7.
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Pressure fluctuations in rough-wall turbulent boundary layers 883 A3-7

Thereafter elements are so close together that adjacent elements start sheltering each
other and form a ‘pseudo-wall’ (Raupach et al. 1991). This allows the flow to ‘skim’
over the top of roughness elements, which in turn decreases the element drag. Blake
(1970) observed that the large-scale structures were most affected by λ. Hopkins
(2010) studied hemispherical roughness with spacings of 2.38 mm and 2.75 mm
(kg= 1 mm), and three sandpaper roughnesses with grit values of 40 (kg≈ 0.86 mm),
100 (kg≈0.26 mm) and 150 (kg≈0.20 mm). He found that the close-packed nature of
dense roughness results in a large region of separated low-momentum fluid between
the wall and up to approximately 70 % of the element height, which is fundamentally
different from the results for sparse roughness (George & Simpson 2000; Stewart
2005; Varano 2010). He also showed that the wall-pressure spectra of his dense
roughness were not collapsed using the inner scaling of either Blake (1970) or
Varano (2010), despite the fact that Blake’s inner scaling was sufficient for scaling
his own sparse and dense roughnesses.

The preceding review of the current body of literature indicates that there are
still significant gaps in the community knowledge on rough-wall turbulent boundary
layer flows. The two-layer spectral model is disputed; there is little consensus on the
fundamental understanding of the inner region and some well-accepted rough-wall
concepts are contradicted by data. The triple scaling hypothesis of Meyers et al.
(2015) and their high-frequency scaling appears promising in terms of shedding
light on the inner-layer workings of the rough-wall boundary layer. However, this
high-frequency scaling requires objective validation on a more diverse data set.
Moreover, the shear friction velocity parameter and its implications on the inner-wall
physics are not well understood. In the low- and mid-frequency spectral regions
there are no fully satisfactory scalings to date. This stems from a lack of general
understanding into the effects of specific roughness geometry on the outer layer.

The present study seeks to fill some of these gaps through high Reynolds
number experiments over roughness of diverse configurations. The geometries
are systematically selected to form a comprehensive data set, along with the
data of Meyers et al. (2015), which vary kg, λ, element shape and which also
superpose roughness elements of two shapes and two roughness heights. Hot-wire
and microphone measurements provide turbulent velocity and fluctuating pressure
data. The experimental conditions ensure that the two criteria for universal scaling
laws are met. These data reveal the relationship between roughness geometry and
spectral shape/levels. The most influential geometric parameters and their spectral
regions of greatest impact are highlighted. Furthermore, the high-frequency scaling
of Meyers et al. (2015) is proven to be quite general in that it effectively scaled the
complete, high Reynolds number, diverse geometry data set. We therefore explore the
physical interpretation of the shear friction velocity in depth, and its relationship to
drag.

2. Apparatus and instrumentation
2.1. Wind tunnel

Experiments were carried out the in Virginia Tech Stability Wind Tunnel, a
closed-circuit low-speed facility with removable test sections. This facility has
close to uniform free-stream flow and turbulence levels in the empty test section
of 0.024 % at 30 m s−1 and 0.031 % at 57 m s−1 (see Devenport et al. (2013) for
facility details). The data were collected in the semi-anechoic configuration, which
comprises three Kevlar walls that contain the flow while permitting the passage of
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Acoustic grade
foam wedges

Acoustic grade
foam wedges

Port anechoic
chamber

Kevlar� side wall

Upstream trip
Contraction fairing

Downstream/primary trip

Starboard anechoic
chamber

Lexan panels
of test surface

Primary measurement 
locationContraction

Contraction

(6.5 m < x < 7.0 m)
0.1 m

1.73 m

7.32 m

Location of
original test
section wall

Flow

0.91 m 1.19 m

x y

FIGURE 1. Semi-anechoic configuration of Virginia Tech’s Stability Wind Tunnel.

sound so as to produce a quiet testing environment. The fourth wall is a modular
test surface on which high Reynolds number boundary layers are grown. Two 19 mm
high, 90◦ aluminium angles were used to initiate the turbulent boundary layer at 1.2
m and 2.1 m upstream of the test surface leading edge. Before testing all gaps and
transitions in the modular test surface were carefully bridged and sealed to ensure
smooth transitions. The experimental arrangement was replicated from the work of
Meyers et al. (2015) and is further detailed by Joseph (2017). The test section, with
coordinate system, is presented in figure 1.

2.2. Rough surfaces
In addition to a smooth wall, a total of five roughness fetches were fabricated and
tested. The fabrication process was adopted from Forest (2012) and Meyers (2014),
and is fully described in those articles. A representative test surface is shown in
figure 2. Using the rough surfaces investigated by Meyers et al. (2015) (figure 3) as
baseline cases, five additional surfaces (figure 4) were designed to create a diverse
but logical set of roughness fetches. The specifications of all roughness fetches are
given in table 2. Geometric parameter definitions are: d – diameter at the base of
the roughness element; s – element centre-to-centre spacing; Af – frontal projected
area; Aw – element planform area (s2); Ve – geometric volume of a single element;
ε∗ – constant upward displacement height of the mean streamlines (Varano 2010).
Figure 5 illustrates these parameters schematically.

The intermediately spaced and densely spaced roughness surfaces were designed to
be more closely packed versions of the sparse 3 mm hemispheres of Meyers et al.
(2015). Table 2 shows that kg, element shape, element orientation and frontal projected
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x
y

z

Fl
ow

FIGURE 2. Full-scale roughness fetch (3 mm cylinders shown as representative case)
installed in the Virginia Tech Stability Wind Tunnel (view from upstream looking
downstream).

3 mm radius

3 mm radius

16.5 mm

16.5 mm

5.5 mm

5.5 mm

1 mm radius

(a)

(b) (c)

FIGURE 3. Roughness fetches of Meyers et al. (2015) included in the present data set.
(a) Sparse, ordered, 3 mm hemispheres; (b) sparse, quasi-random, 3 mm hemispheres;
(c) sparse, ordered, 1 mm hemispheres.

area are consistent for these three surfaces; s values were deliberately selected to
produce λ on either side of the peak of the Dvorak–Simpson function (equations (1.1)
and (1.2)). Together, these three surfaces can reveal the effects of increased roughness
element density on the pressure field. To investigate the effect of roughness element
shape, a surface of cylindrical elements was designed with the same kg, s, λ, Af

and orientation as the sparse, ordered hemispheres. Lastly, surfaces were designed to
explore the effect of superposing roughness elements of two single-element surfaces,
which were independently tested, onto a single surface. The first superposed surface is
a combination of the kg= 1 mm hemispheres and the kg= 3 mm hemispheres, and is
referred to as the multi-height surface. It has the same element shape as its component
surfaces, and twice their λ. Note that s, Af and Aw for this surface are taken to be
that of the 3 mm elements because, as will be shown in § 3, the influence of 3 mm
hemispheres overshadows that of 1 mm hemispheres. In the same way, the 3 mm
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3 mm radius

4.71 mm diameter
3 mm height

4.71 mm diameter
3 mm height

3 mm radius

3 mm radius

3 mm radius
1 mm radius

5.5 mm

5.5 mm

6.5 mm

16.5 mm

16.5 mm

16.5 mm

16.5 mm

16.5 mm

16.5 mm

16.5 mm

16.5 mm

6.5 mm

10.4 mm

10.4 mm

(a) (b)

(c) (d)

(e)

FIGURE 4. Geometry of newly designed roughness fetches. (a) Intermediately spaced,
ordered, 3 mm hemispheres; (b) densely spaced, ordered, 3 mm hemispheres; (c) sparse,
ordered, 3 mm cylinders; (d) multi-height roughness; (e) multi-shape roughness.

Straight orientation Staggered orientation
Flow

s s

s
s/�2s

d d

d

d

kg

kg

45°

Aw Af

Flow

FIGURE 5. Diagram illustrating the important geometric parameters for rough surfaces.

hemispheres were inlaid between the 3 mm cylinders to produce a multi-shape surface.
This surface has the same kg as its component surfaces but twice their λ. The goal of
testing these superposed surfaces is to ascertain how the pressure field changes when
two roughness scales exist.
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25.4 mm 25.4 mm

Single hotwire

Flattened pitot

(a) (b)

FIGURE 6. (a) Two quadwire probes arranged in tandem. (b) Single hot-wire (top) and
flattened Pitot (bottom) probes arranged in tandem.

2.3. Velocity instrumentation

Turbulent velocity fluctuations were measured using two Auspex Corporation model
AVOP-4-100 quadwire probes, each with a measurement volume of 0.5 mm3. The
two quadwire probes are shown in figure 6(a), arranged in tandem to take data
simultaneously using Dantec 90C10 CTA modules. The CTA modules have a flat
frequency response up to 10 kHz, and samples data up to 50 kHz with an accuracy
of 0.03 %. The complete specifications of the CTA module and NI-9239 cDAQ
modules used for data acquisition are detailed by Joseph (2017). Quadwire data were
validated by a Auspex AHWU-100 constant-temperature single hot-wire probe and
a flattened Pitot probe, which are also fully described by Joseph (2017). These two
probes were similarly arranged in tandem to acquire data simultaneously, as shown
in figure 6(b). As was done by Meyers et al., velocity measurements were made
approximately 7.0 m downstream of the primary trip at exponential y increments
between the free stream and 3 mm above the wall. In general velocity measurement
probes were in the middle of a four element array of roughness, except on the
superposed roughness surfaces where data were taken at different locations relative to
each type of roughness (see Joseph 2017, pp. 158–163). For the multi-height surface,
measurements were independently made downstream of a 1 mm and a 3 mm element
while measurements were made downstream of a cylinder and a hemisphere on the
multi-shape surface.

Before testing, the quadwires were calibrated for velocity and probe angle in
a uniform 12.7 mm diameter jet. The calibration method was based on King’s
law and the lookup table method of Wittmer, Devenport & Zsoldos (1998). Velocity
calibrations were also performed at regular intervals during data acquisition, to account
for temperature drifts. Spatial filtering of the velocity fluctuations was not expected
to have been significant despite the smallest probe sensing length (l+ = lUτ/ν) being
approximately 70, which violates the criteria of Ligrani & Bradshaw (1987). However,
this criterion is not applicable here because the error from this source is less than
the measurement uncertainty. The present data were taken above y = 3 mm, which
corresponds to a maximum y+ of 450, so we expect that the Reynolds shear stress
was underestimated by approximately 4 % (extrapolating from the fully developed
pipe flow results of Wittmer et al. (1998)). This error is less than the measurement
uncertainty.
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(a) (b) (c)

FIGURE 7. (a) The B&K 4138-A-015 1
8 in. microphone with factory-provided salt-and-

pepper cap. (b) The B&K 4138-A-015 1
8 in. microphone with 0.5 mm diameter pinhole

cap. (c) The B&K 4182 probe microphone.

2.4. Pressure instrumentation
An Esterline NetScanner Model 98RK (range = ±10 in. WC, resolution = ±0.003,
accuracy = 0.05 %) recorded the signal from twenty four 1

4 mm diameter pressure
taps embedded in the adjacent perpendicular walls along the sides of the test surface.
The pressure taps were located between x= 1.6 and 8.1 m (x= 0 at the downstream
trip) and between y = 0.25 and 0.3 m (y = 0 at the substrate of the test surface)
away from the test surface (see coordinate system in figure 1). The individual
panels of the modular test surface were independently adjusted to create a near
zero-pressure gradient, informed by the mean pressure measurements from these
pressure taps. Adjustments were made until the average pressure gradient was less
than dCp/dx ≈ −0.005 m−1. The free-stream static pressure, velocity and stagnation
pressure were derived from pressure taps embedded in the wind tunnel contraction,
2.51 m upstream of the test section leading edge. A thermocouple in the contraction
measured the ambient temperature.

The pressure fluctuations were measured using seven Bruel & Kjaer (B&K)
4138-A-015 1

8 in. microphones. Pinhole caps were used with these microphones
(shown in figure 7b), to replace the factory-provided salt-and-pepper cap (shown in
figure 7a). This reduced the spatial averaging of the small-scale structures by reducing
the microphone sensing area. A 0.5 mm pinhole (suggested by Devenport et al. 2011)
was proven to be capable of resolving the small-scale structures of interest. Section 3.3
will discuss how the criterion of Gravante et al. (1998) was used to filter frequencies
above the maximum frequency at which these microphones begins to under-resolve
the smallest structures. A B&K Type 3050-A-060 LAN-XI and B&K type 3050-A-060
Pulse Analyser were used for microphone signal acquisition and conditioning, at a
sampling rate of 65 536 Hz for 32 s. The actual microphone sensitivity was obtained
regularly using a B&K type 4228 Pistonphone operating at 250 Hz. Before testing,
each B&K microphone was exposed to a known white noise source (Agilent E1432
digitiser and a University Sound ID60C8 speaker) in an anechoic chamber. An
unaltered factory-provided B&K microphone with salt-and-pepper cap (figure 7a) was
used as a reference microphone. The output of the speaker was then measured by the
reference microphone and the pinhole microphone. Correlating these signals provided
amplitude and phase calibration functions to remove the pinhole resonant peak. This
method is based on the work of Mish (2003).
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0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

6.2 6.4 6.6 6.8 7.0

Flow

7.2
x (m)

z (
m

)

FIGURE 8. Diagram of microphone locations (u) in both streamwise and spanwise
directions and the reference microphone (‘).

Covered
bolts

Streamwise mics

Flow

Spanwise mics

xy

z

FIGURE 9. Microphone mounts (spanwise array and streamwise array) in panel 5,
surrounded by cylindrical rough elements.

The microphones were installed on the test surfaces between 6.3 m < x < 7.1 m,
using 3D printed microphone holders at eight streamwise locations and seven spanwise
(z) locations, as shown in figures 8 and 9. A Bruel & Kjaer (B&K) 4182 probe
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In vicinity of 1 mm hemisphere

Downstream
3 mm hemisphere 2 mm downstream

3 mm cylinder

Downstream
3 mm cylinder

Downstream
3 mm hemisphere

In place of 1 mm
hemisphere

(a) (b)

FIGURE 10. Roughness element-relative microphone locations on (a) multi-height surface
and (b) multi-shape surface.

microphone (figure 7c), with a 0.75 mm sensing area, was used as a reference
microphone to isolate the facility’s background acoustics. This microphone was
installed at x= 7.0 m and z= 0.347 m (z= 0 at the mid-span), sufficiently far away
from the measurement microphones to distinguish the correlated background noise.
On surfaces with single roughness element types, microphone holders were designed
to place the microphones as close as possible to the centre of a square array of
four roughness elements (suggested by Varano & Simpson (2009)). Adjustments of
the test surface may have resulted in small deviations (∼1–3 mm) from this target
location. In the case of the multi-scale surfaces, microphone holders were designed
to obtain unsteady pressure data at various element-relative locations. As depicted in
figure 10(a), on the multi-height surface microphones were placed (i) in place of a 1
mm hemisphere, (ii) downstream of a 3 mm hemisphere and (iii) in the vicinity of
a 1 mm hemisphere (downstream of a 1 mm hemisphere; near 1 mm elements and
equidistant between two 3 mm elements). Similarly, microphones on the multi-shape
surface were placed (i) downstream of a cylinder, (ii) downstream of a hemisphere
and (iii) 2 mm downstream of a cylinder, as shown in figure 10(b). In general, for
each Reynolds number multiple measurements (typically 11) were taken at each
element-relative location presented in figure 10. The exception to this is the location
2 mm downstream of the cylinder where there was only one microphone. Roughness
elements were attached to the surface of the microphone holder to preserve the
respective roughness patterns. At the end of installation, any steps and gaps on the
test surface were faired/filled using clay. Care was also taken to ensure that the
microphones’ faces were perfectly level with substrate of the test surface.

2.5. Summary of data set

The data from the experiments described in the preceding sections are summarised in
table 3. All data meet currently established criteria for wall similarity and fully rough
behaviour: δ/kg > 40 and k+g > 80 (Jimenez 2004). The complete data set is available
from Joseph, Molinaro & Devenport (2019, doi:10.7294/YHSB-T439).
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FIGURE 11. Near-zero-pressure gradient over test surfaces. A smooth wall
at 30 m s−1; smooth wall at 60 m s−1; @ intermediate roughness at
30 m s−1; intermediate roughness at 60 m s−1; B dense roughness at
30 m s−1; dense roughness at 60 m s−1; C cylindrical roughness at
30 m s−1; cylindrical roughness at 60 m s−1; 6 multi-height roughness at
30 m s−1; multi-height roughness at 60 m s−1; D multi-shape roughness at
30 m s−1; multi-shape roughness at 60 m s−1; - - - - bounds of measurement
area.

3. Results and discussion
3.1. Flow over test surfaces

The flows over the most recently tested surfaces were confirmed, by flattened Pitot
measurements, to be closely two-dimensional within 0.15 m of the wall (see Joseph
2017, pp. 106–107). Above y = 0.15 m (but below y = 0.30 m) the flow showed
only small non-uniformities, (δ/Ue)(dU/dz) ≈ 0.022. A near-zero-pressure gradient
was achieved over the test wall, as is presented in figure 11. The dotted lines here
demarcate the measurement region. The pressure distribution over the test surface
varies slightly from configuration to configuration due to minor differences in the
installation of each surface, coupled with small shifts in placement of the test surface
during re-installation (data were taken during two wind tunnel campaigns). The
variations are most pronounced downstream of the measurement region (x > 7 m),
where the wind tunnel superstructure restricted precise positioning of the hard
wall panels. Deviations from a perfect zero-pressure gradient are characterised
in terms of the acceleration parameter K = (ν/U2

e )(dUe/dx). Figure 11 shows
that there is a slight favourable pressure gradient within the measurement region,
7.3 × 10−10 6 K 6 2.63 × 10−9. Outside the measurement region accelerations drop
to as low as K = −6.1× 10−13. This is 4 times lower than the average acceleration
observed over the surfaces tested by Meyers et al. (2015) (sparse 3 mm hemispheres,
sparse 1 mm hemispheres, random 3 mm hemispheres). The pressure gradient over
all surfaces included in the current data set is smaller than most other works. For
reference, the works of Varano (2010) and his colleague Hopkins (2010) reported
maximum accelerations of K ≈ 4.6× 10−9 and K ≈ 2.3× 10−9 respectively. Similarly
De Graaff & Eaton (2000) observed K ≈ 10−8 and as large as 1.1 × 10−7 due to
residual favourable pressure gradients. The flows under study are therefore categorised
as near-equilibrium flows, having small but almost negligible pressure gradients.
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FIGURE 12. Mean streamwise velocity normalised on (a) outer variables and (b) inner
variables.

3.2. Turbulent velocity profiles
Streamwise velocity profiles obtained from the quadwire probe measurements are
presented in figure 12 for each of the surfaces tested, including profiles obtained at
different element-relative locations on the multi-scale rough surfaces. These profiles
are normalised on outer (figure 12a) and inner (figure 12b) variables. In general,
the mean velocity is significantly reduced across the entire profile, indicative of the
increased wall shear stress which accompanies wall roughness. This is shown most
clearly in figure 12(b) through differences in the magnitude of the downward shift of
the velocity profile among the roughness configurations at all y. Figure 12(b) further
reveals variations in the slope of the log–linear region of the profiles from surface
to surface, suggestive of differences in flow dynamics within the inertial sublayer.
According to the rough-wall law of the wall in (3.1), changes in profile slope are
due to variations in the von Kármán constant, κ , among the rough-wall cases.

U
Uτ

=
1
κ

ln
(y+ ε)Uτ

ν
+ B−1U+. (3.1)

In (3.1) the smooth-wall y-intercept is B= 4.9 and ε is the wall-normal ‘displacement
height’ of the mean streamlines by the roughness. For the present data, κ ranges from
0.41 (smooth wall) down to 0.30 (densely and intermediately spaced hemispheres and
the multi-height surface). Variations in κ for rough-wall flows have been observed
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before (Simpson 1970; Tomkins 2001; Leonardi et al. 2003; Varano 2010; Womack,
Schultz & Meneveau 2019). Leonardi et al. (2003) found that κ varied between 0.33
and 0.47 for their Reynolds numbers, while Tomkins (2001) observed rough-wall κ
between 0.31 and 0.36 over his cylinders and hemispheres. Varano (2010) suggested
that κ := f (δ/kg) since the slope of the semi-logarithmic portion may be a ratio
of inner and outer length scales. Leonardi et al. (2003) proposed that κ := f (w/kg),
where w is the distance between trailing edge and leading edge of streamwise-adjacent
elements. Neither these nor any other κ relationships were apparent in the present
data. The variations in κ that are observed in the present data might therefore
suggest that the concept of wall similarity, if valid, is restricted to the very outer,
wake flow of the rough-wall turbulent boundary layer under some conditions. In
contrast, Squire et al. (2016) found κ to be constant for their data which, by the
current criteria, are within the regime of fully rough-wall flows and wall similarity
(2020 6 δ+ 6 29 900). Thus they concluded that κ is constant for turbulent boundary
layers with characteristic wall similarity. A possible explanation for this contradictory
evidence is suggested by Womack et al. (2019), who observed that turbulent boundary
layers over structured rough surfaces tend to have different log-slope mean profiles
(κ < 0.41) while random roughness (such as the sandpaper roughness of Squire et al.
(2016)) shows outer-layer similarity. Figure 13, which plots the normalised Reynolds
normal stresses and which clearly shows the log–linear region of each profile, also
exhibits these slope variations (turbulent velocity fluctuations are denoted by ′ in this
paper). For reference, in figure 13 the dashed line on the u′2/U2

τ profile is the −1.26
slope (in terms of the natural logarithm) postulated by Marusic et al. (2013) while
the dash-dot line on the w′2/U2

τ profile represents 30 % of this slope, as described
by the data of Fernholz & Finley (1996). The slope of the data clearly differs
from these reference slopes. The normalised streamwise velocity variance (u′2/U2

τ ),
which expands over wall units with increasing Reynolds number (in accordance with
Townsend’s attached eddy hypothesis), still shows the variations in log–linear slope.
Normalised Reynolds shear stress, u′v′/U2

τ , presented in figure 14 further shows some
variations in the slope logarithmic region, albeit not as distinctly.

Figure 12 also shows that the mean velocity profiles through the present boundary
layers have a relatively diminished wake region compared to some other measurements
at high Reynolds numbers. This is likely due to the slight favourable streamwise
pressure gradient discussed in § 3.1 (Oweis et al. 2010). Interestingly, the strength of
the wake region appears to vary across rough surfaces as well. The densely packed
roughness, intermediately packed roughness and the cylindrical roughness have the
strongest wake components. The other rough surfaces have similar wake profile to
the smooth wall. The effect of roughness on the boundary layer wake region and
the slope of the logarithmic region suggest that the roughness configuration likely
influences the behaviour of the entire layer.

The boundary layer thickness, δ is derived from the turbulence intensity, u′/Ue,
using the criterion that u′/Ue is 2 % at the edge of the boundary layer (Awasthi 2012).
Here u′ is the turbulent velocity fluctuation in the streamwise direction. The resulting
δ values were consistent with that obtained using the conventional U(δ) ≈ 0.99Ue
definition, where U is the mean boundary layer velocity in the streamwise direction.
The friction velocity, Uτ , was determined using the integral momentum balance
described by Varano (2010). This method is independent of initial guesses and is
based on an integral momentum balance in a zero-pressure gradient, two-dimensional
flow. Under these conditions the turbulent shear stress is approximately equal to the
Cf at the peak of the Reynolds stress values (Varano 2010). Therefore, the −u′v′/U2

τ
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FIGURE 13. Normal Reynolds stress profiles normalised on inner variables measured at
(a) 30 m s−1 and (b) 60 m s−1. See figure 12 for symbol definitions.
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FIGURE 14. Reynolds shear stress, u′v′, normalised on friction velocity, Uτ . See
figure 12 for symbol definitions.

profile will peak at 1. This is true even if the near-wall profile could not be measured.
Figure 14 shows the Reynolds shear stress at 30 m s−1 and 60 m s−1, normalised
on U2

τ and optimised through an iterative process. An uncertainty of ±0.05 m s−1

is estimated for Uτ based on the maximum variation inherent in the −u′v′/U2
τ

profile. Optimised Uτ values from the integral momentum balance were compared
with estimates obtained via the Schlichting fit method, which was first described by
Schlichting (1979) and is the most commonly used in rough-wall research (Aupperle
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& Lambert 1970; Blake 1970; Meyers et al. 2015). In the latter method Uτ and ks
are simultaneously varied until the mean velocity profile fits the rough-wall law of
the wall (3.1), using the roughness defect definition in (3.2) and C= 3.6 (Nikuradse
1950; Schlichting 1979).

1U
Uτ

=
1
κ

ln
ksUτ

ν
−C. (3.2)

The Schlichting fit method alone was used for the smooth wall, since uv data were
not available, but appeared consistent with interpolation/extrapolation of the data of
Meyers et al. (2015). Like Varano (2010), present results showed that the Schlichting
fit method appeared to consistently over-predict Uτ . On average there was a 6 %
difference between the results of the two methods. This is likely because, apart from
variations due to the user-subjective fit, the Schlichting fit method assumes a constant
von Kármán constant for all rough-wall flows. This latter assumption, as discussed
before, is likely not valid.

All other boundary layer parameters are derived from δ, δ∗, θ and Uτ , and are
presented in table 4 for 30 m s−1 and 60 m s−1. These results were confirmed as
consistent with that of the flattened Pitot and the single hot-wire measurements
(see Joseph 2017, pp. 106–107). It should be noted that the parameters for the
multi-shape surface are derived from the measurements made downstream of the
cylinders. Similarly, parameters for the surfaces of superposed heights are estimated
from measurements made downstream the 1 mm elements. Joseph (2017, pp. 158–163)
carried out extensive comparisons of the data at different element-relative locations to
conclude that these locations were representative of the surface turbulence because of
the lower uncertainty. Note that the difference between the Meyers et al. smooth-wall
values and that of Joseph is only significant at 30 m s−1 (according to δ uncertainties
cited by Joseph) and is likely due to the small differences in Ue at which these data
were measured.

Results in table 4 show that, in general, Uτ is an approximately constant multiple
of the free-stream velocity as one would expect (Fernholz & Finley 1996; Sreenivasan
1989). Similarly, δ decreases with increased speed while δ∗ appears to be more or less
independent of Reynolds number. Table 4 also shows that δ/kg is larger than 40 in
all cases, thereby meeting criteria for wall similarity (Raupach et al. 1991; Jimenez
2004). Furthermore, the roughness Reynolds numbers (k+g = kgUτ/ν) are all greater
than 80, which means that all flows would be normally classified as fully rough-
wall flows (Jimenez 2004). From these combined criteria, we would expect universal
scaling behaviour to be apparent for the rough-wall flows examined here. Table 4
also shows that Cf remains fairly constant, and is nearly independent of Reθ for all
surfaces. This is an established characteristic of equilibrium turbulent boundary layers,
further supporting that the current flows are near equilibrium in nature. Interestingly,
the Reynolds shear stress profiles in figure 14 peak at a position well above the
roughness tops, supporting the hypothesis of Mehdi, Klewicki & White (2010) and
Mehdi et al. (2013) that viscous effects are significant from the wall up to (at least)
this point. This idea that viscous effects are not confined to the near-wall region, even
at such high k+g , is in direct contradiction with the fully rough flow definition and wall
similarity (Jimenez 2004).

3.3. Wall-pressure spectra and roughness geometry
Unsteady pressure measurements were taken at multiple spanwise and streamwise
locations, as well as multiple element-relative locations. Signals obtained
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simultaneously from similar element-relative locations (see § 2.4) were averaged
after post-processing to produce a single auto-spectrum. The power spectral density
(PSD) was obtained from the sensitivity-corrected, time-series data using a Hanning
window and 50 % overlap. The PSD was then binned with twelve logarithmically
spaced bins per octave, and the background noise was isolated and subtracted from
the PSD, this typically being significant only below f = 100 Hz. The reference
sound pressure used for dB throughout is 20 µPa. The pressure spectra were further
conditioned by removing the signals at frequencies which (i) have signal to noise
ratio less than 15 dB, (ii) have an associated uncertainty of more than 3 dB or (iii)
corresponded to implied length scales (e.g. those larger than the test section width,
Uc/f > 1.73). This filtering had the most effect below 40 Hz. The frequency limit,
fmax, at which the 0.5 mm pinhole begins to under-resolve the highest frequencies, was
determined from the work of Gravante et al. (1998). Gravante et al. (1998) showed
that d+ < 18 to avoid spectral attenuation (measured spectral levels were within 2
dB of the true levels), where d+ = dUτ/ν and d is the pinhole diameter; d+ values
for present data range from 29.3 (for the smooth wall) to 95.3 (for the multi-shape
roughness). Using the results of Gravante et al. (1998) (d+ ≈ 26.6 for f+ ≈ 0.22), f+

was extrapolated for the present data; fmax was then estimated using the definition
f+ = f ν/U2

τ . The pressure spectra measured over the dense roughness were further
corrected for the variation in the microphone dynamic response with Reynolds number.
This effect was first reported by Meyers et al. (2015), further investigated by Joseph
(2017) and definitively proven by Balantrapu et al. (2018). The two latter works
showed that the shape of the resonant peaks varied with speed while the magnitude
of the peak increased with speed, due to increased shear stresses. The calibration
function was optimised to account for this by multiplying the resonant frequency
by a small factor, which is iteratively adjusted to find the value which produces the
minimum root-mean-square (r.m.s.) of the disturbances close to the resonant peak. The
multiplication factors are then applied to the calibration to optimise it. The process
was quite effective for all data except that of the dense roughness at 60 m s−1 and
70 m s−1. In these two cases the spectra were manually clipped to remove these
non-physical artefacts. Uncertainty analysis is described by Joseph (2017).

Dimensional pressure spectra are presented in figure 15. Qualitatively, all flows
produce spectra of the expected form, consistent with an initial, slow rise to a
shallow peak at low frequencies, followed by a relatively constant-slope decrease
at mid-frequencies, followed by a more rapid −5 slope roll-off at the highest
frequencies. In accordance with Meyers et al.’s triple scaling hypothesis, these three
distinct regimes within the spectra will be referred to as the low-frequency region,
the mid-frequency region and the high-frequency region, respectively. In figure 15
some plots show that the background acoustic filtering of the low-frequency content
removed some of the initial positive slope region at the lowest frequencies, leaving
only the shallow, low-frequency maxima. Additionally, the vertical cutoff lines on
some plots demarcate the fmax associated with microphone attenuation. At higher
speeds, fmax is typically above the Nyquist frequency and thus not shown. Figures
hereafter will not include the portion of the spectra above fmax.

3.3.1. Roughness element spacing/density
Figure 16 compares the flow over sparse 3 mm hemispheres (λ = 0.054),

intermediately spaced 3 mm hemispheres (λ = 0.13), densely spaced 3 mm
hemispheres (λ = 0.33) and the smooth wall. The three rough surfaces represent
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41.3 < d+ < 88.9 41.0 < d+ < 94.0 43.5 < d+ < 95.3

FIGURE 15. Dimensional pressure spectra for (a) smooth wall; (b) cylinders;
(c) intermediately spaced rough surface; (d) densely spaced rough surface; (e) multi-height
surface (in place of 1 mm hemisphere); and ( f ) multi-shape surface (behind cylinder)
between 30 and 70 m s−1. Vertical lines on the plot delineate the frequency limits based
on Gravante et al. (1998) criteria. 30 m s−1: A, 40 m s−1: @, 50 m s−1: B, 60 m s−1

C, 70 m s−1:6.

a range of λ values on both sides of the λ = 1
7 drag peak implied by the Dvorak–

Simpson (Dvorak 1969; Simpson 1973) correlations (equations (1.1) and (1.1)).
All other geometric parameters are held constant. The mean streamwise velocity
profiles in figure 16(a) show that the magnitude of the downward shift (1U+) in
the logarithmic region increases with λ up to λ = 0.13 (intermediate hemispheres).
This shift is indicative of the increased wall shear stress and form drag, arising from
the increased element density. Further increasing λ to that of the dense hemispheres
results in a smaller downward shift of 1U+= 11.7 at 30 m s−1 and 14.2 at 60 m s−1

(relative to the intermediately spaced hemispheres). Figure 16(a) further shows that
the slope of the log–linear region of the profiles increase with λ (0.38> κ > 0.31 for
0.052 > λ> 0.33). The strength of the profile wake also appears to increase with λ.

Similarly, in figure 16(b) the magnitude of the pressure fluctuations in the
low-frequency region increases from the sparse to the intermediately spaced
hemispheres, indicative of the increased mixing occurring from the added elements
per area. However further increasing λ to 0.33 (densely spaced hemispheres) reduces
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FIGURE 16. Effect of roughness element density on (a) mean streamwise velocity profiles;
(b) pressure spectra at 30 m s−1 (A) and 60 m s−1 (E). See figure 12 for symbol
definitions for velocity data. For pressure data: smooth wall —— (grey); sparse 3 mm
hemispheres —— (light blue); intermediate 3 mm hemispheres —— (dark blue); dense 3
mm hemispheres ——. Shaded regions around lines are the uncertainty bands.

the spectra by approximately 4 dB. In fact, apart from the smooth wall, the dense
roughness has the smallest pressure levels in this region, being approximately 1 dB
lower than the sparse hemispheres. These observations are consistent with the physical
model implied by the Dvorak–Simpson hypothesis.

In the mid-frequency region the slopes of the four surfaces are quite different,
although the variation is not linearly related to the change in roughness density (or
any other obvious parameter). This is in direct contradiction to the almost constant
−

4
3 slope observed by Meyers et al. (2015) with their high Reynolds number data.

However, their observations were based on data which did not include variations in
roughness element density, as is considered in figure 16. Here the mid-frequency
slope of the intermediate roughness is only slightly higher than that of the sparse
surface (∼1.4 times), while the mid-frequency slope of the dense roughness is almost
twice that of the intermediate roughness. In fact, the spectra of the dense roughness
show a rapid mid-frequency decay over a much smaller frequency span. One can
speculate that this is because eddies are either (i) trapped in the interstitial flow
within the cavity between elements or (ii) displaced above the roughness height by
the pseudo-wall. These possible flow mechanisms are illustrated in figure 17(b), at the
microphone location labelled B. Figure 17 proposes possible flow mechanisms for the
sparse 3 mm hemispheres, dense 3 mm hemispheres and the sparse 3 mm cylinders
based on the trends of spectra presented herein, and shows qualitative flow patterns
consistent with the large-eddy simulations of Yang & Wang (2013). In mechanism
(i) described above, a complex separation zone of low-momentum fluid will be
formed as the trapped eddies are weakened through recirculation (as was found by
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Pseudo-wall

¬ = 0.052

¬ = 0.052

¬ = 0.33

A

B

C

(a)

(b)

(c)

FIGURE 17. Two-dimensional side view model of possible flow mechanism over
(a) sparse 3 mm hemispheres; (b) densely spaced 3 mm hemispheres; and (c) sparse 3 mm
cylinders (flow mechanisms of sparse roughness inferred from the large-eddy simulations
of Yang & Wang).

Hopkins (2010) for 1 mm hemispheres with λ = [0.208, 0.277]). In possibility (ii),
the shear layer that is the pseudo-wall filters the transfer of energy to the inner
regions through an evanescent decay process (Joseph et al. 2016). Through these two
processes, the mid-frequency region of high density rough surfaces (λ > 1

7 ) will be
diminished compared to less densely spaced surfaces. Because increases in λ diminish
the amount of energy transferred within the mid-frequency region, the pressure levels
in the high-frequency region indirectly decrease with increasing λ. However, this
relationship is nonlinear, possibly a power function reflecting different levels of
evanescent pressure decay as roughness element density increases. Nevertheless, the
high-frequency regions of the spectra of all three surfaces have an approximately −5
slope.

Surfaces with approximately the same λ (∼0.1) are shown to have similar spectra
in figure 18. In the low-frequency region, the multi-height surface lies below the
others, most likely because its 1 mm elements do not disrupt the boundary layer
as much as 3 mm elements Meyers et al.. Despite having the same −5 slope, the
high-frequency spectra of the multi-shape surface measured behind the cylinder do
not align with the other surfaces, mainly due to the complexity of the mid-frequency
region. With this exception, the mid-frequency regions of all surfaces have a similar
form, despite having different kg and shape. This suggests that λ is a dominant
geometric parameter in the mid-frequency region. Transducer location relative to
the roughness element is also important in the mid-frequency region, evidenced by
the distinct slope differences between the multi-shape spectra measured behind the
cylinder versus that behind the hemisphere. The former show a more rapid roll off
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FIGURE 18. Comparison of pressure spectra on surfaces with λ ≈ 0.1 at 30 m s−1 (A)
and 60 m s−1 (E). Intermediately spaced 3 mm hemispheres —— (blue); multi-height
surface —— (green); multi-shape surface (measured behind cylinders) —— (magenta);
multi-shape surface (measured behind hemispheres) · · · · · ·. Shaded regions around lines
are the uncertainty band.

in the mid-frequency region, reminiscent of that observed for the densely spaced
hemispheres in figure 16(b). We speculate that the wider, more intense wake of the
cylinders (Yang & Wang 2013) displaces the local streamlines further upward than do
the hemispheres, thereby mimicking the flow field of a more densely packed surface.
This is illustrated in figure 17, where the flow mechanisms at C in figure 17(c) are
more similar to the mechanism at B of figure 17(b) than point A of figure 17(a).

3.3.2. Roughness element shape
Figure 19 compares the flow over the sparse 3 mm cylindrical and hemispherical

roughness surfaces at 30 m s−1 and 60 m s−1. The only geometric difference between
these surfaces is the element shape. Overall, differences between the surfaces appear
small, suggesting that roughness element shape is a less important parameter than
the roughness element density. The velocity profiles presented in figure 19(a) show
that the relative downward shift – 1U+ (indicative of the drag on the elements) –
is approximately the same for the cylinders and the hemispheres for each speed at a
given y. The log–linear profile slopes are only slightly different but the wake region
produced by the cylinders is markedly stronger than that of the hemispheres. In fact,
the wake region appears as strong as that of the dense hemispheres of figure 16(a).
The low-frequency portions of the spectra in figure 19(b) are remarkably similar,
considering the uncertainty. There is a slight deviation in the mid-frequency slopes
shown in figure 19(b), with the cylinders having a marginally steeper slope of f−1.6

while hemispheres have f−1.4. This most likely arises from vortical flow induced
by the edges of the cylinders, which create larger pressure fluctuations and more
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FIGURE 19. Effect of roughness element shape on (a) mean streamwise velocity profiles;
(b) pressure spectra at 30 m s−1 (A) and 60 m s−1 (E). See figure 12 for symbol
definitions for velocity data. For pressure data: cylinders —— (red); sparse, 3 mm
hemispheres —— (blue). Shaded regions around lines are the uncertainty band.

turbulent wakes. This effect is magnified by increases in Ue. The small slope changes
then affect the transfer of energy to the high-frequency region where the pressure
levels are lower for the cylinders than for the hemispheres, despite both surfaces
having an approximately −5 slope.

3.3.3. Superposed roughness element heights
In figure 20(b) pressure spectrum comparisons are made among the 1 mm sparse

hemispheres, the 3 mm sparse hemispheres and the surface comprising of these
individual surfaces superposed on each other. These are presented for speeds of
30 m s−1 and 60 m s−1. The most significant observation is that overlaying two
rough surfaces of different kg does not produce a spectrum which is either a simple
or weighted sum of the spectra of the component surfaces. Instead, it appears that
the spectra of the superposed surface matches that of the 3 mm hemispheres for most
frequencies, with only small deviations at mid and high frequencies. The spectrum
of 1 mm hemispheres is noticeably different at all frequencies. This might imply
that the outer regions of the boundary layer do not ‘see’ the 1 mm elements when
the 3 mm elements are present. On the other hand, the mid- and high-frequency
regions the flow are sensitive to the presence of both the 3 mm and 1 mm elements.
In the mid-frequency region the small variation in the slope is most likely due to
the increased λ of the superposed surface (see § 3.3.1). In the high-frequency region
all three surface have a slope of −5, but differ in magnitude. Interestingly, the
difference is comparable to that observed between the sparse and intermediate 3
mm hemispheres (see figure 16b), suggesting these are also due to increased λ. The
velocity profiles in figure 20(a) show that the wake produced by the multi-height
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FIGURE 20. Effect of superposing roughness element heights on (a) mean streamwise
velocity profiles; (b) pressure spectra at 30 m s−1 (A) and 60 m s−1 (E). See figure 12 for
symbol definitions for velocity data. For pressure data: multi-height surface —— (green);
sparse 3 mm hemispheres —— (blue); sparse 1 mm hemispheres —— (purple). Shaded
regions around lines are the uncertainty band.

roughness is stronger than that of its uniform component surfaces, and its log–linear
slope is higher. Both these observations are likely due to the increased λ of the
multi-height surface (see § 3.3.1).

3.3.4. Superposed roughness element shapes and transducer location
Figure 21 presents the flow over the multi-shape surface at two locations, compared

to that of its component surfaces: the sparse 3 mm hemispheres and the 3 mm
cylinders. The two measurement locations on the multi-shape roughness are (i)
downstream of the hemispherical elements and (ii) downstream of the cylinders.
As with the multi-height surface, spectra in figure 21(b) show that the simple
superposition of two rough surfaces of different element shapes does not produce a
spectrum which is the sum, weighted or otherwise, of the spectra from its component
surfaces. Unlike the multi-height surface, the outer flow clearly responds to the
presence of both types of elements on the multi-shape surface. The higher pressure
levels on the multi-shape surface are most certainly due to the increase in λ discussed
in § 3.3.1. The associated increase in drag is evident as a larger downward shift of
the mean velocity profile in figure 21(a) for the multi-shape surface, with this effect
being greater at 60 m s−1. In the high-frequency region there are differences in the
magnitude, despite the slopes of all the spectra being approximately −5, most likely
due to large slope differences in the complex mid-frequency region. Interestingly, the
log–linear slope of the wake of the cylindrical roughness velocity profile is more
similar to that of the multi-shape surface, than to the sparse 3 mm hemispheres.
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FIGURE 21. Effect of superposing roughness element shapes on (a) mean streamwise
velocity profiles; (b) pressure spectra at 30 m s−1 (A) and 60 m s−1 (E). See figure 12
for symbol definitions for velocity data. For pressure data: sparse, 3 mm hemispheres
—— (blue); sparse, 3 mm cylinders —— (red); multi-shape surface, measured behind
hemispheres · · · · · ·; multi-shape surface, measured behind cylinders —— (magenta);
- - - - mid-frequency sub-ranges for multi-shape surface, measured behind cylinders.
Shaded regions around lines are the uncertainty band.

This again suggests that the cylinders likely disrupt the flow more than the
hemispheres, behaving as surfaces of hemispheres with higher λ.

Another interesting observation is that the multi-shape spectra appear to have two
mid-frequency regions, each distinguished by a slight change in spectral slope.
The first region, mid-frequency sub-range I, has slope f−2 for both transducer
locations. The second region, mid-frequency sub-range II, has different slopes
for each transducer location: f−1.5 when measured behind the hemispheres and
f−1.8 when measured behind the cylinders. These slopes were established by
Joseph (2017, pp. 122–127) where spectra were pre-multiplied by f -slope to reveal
the true shapes. The different slopes imply that mid-frequency sub-range I is
independent of transducer location, but mid-frequency sub-range II is sensitive to
it. The difference between mid-frequency sub-range I and the mid-frequency of the
component, uniform surfaces are likely due solely to the increase in λ. Conversely,
mid-frequency sub-range II appears to respond to the increase in λ and the local
turbulent structures which emanate from a specific kind of element. At 30 m s−1

mid-frequency sub-range II extends through 1 × 103 Hz . f & 4 × 103 Hz and at
60 m s−1 2.5 × 103 Hz . f & 9 × 103 Hz. The implied convective scales, lT = Uc/f ,
tell us that mid-frequency sub-range I comprises turbulent structures slightly larger
than kg (100 mm . lT & 25 mm) while mid-frequency sub-range II captures scales
which are close to kg (20 mm. lT & 7 mm) (Uc is the large-scale pressure convection
velocity, inferred for these flows from two-point pressure correlations of Joseph).
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FIGURE 22. Dimensional pressure spectra of (a) multi-height surface and (b) multi-shape
surface at different locations at 30 m s−1 (A) and 60 m s−1 (E). Locations: in place of
a 1 mm hemisphere —— (green); in the vicinity of a 1 mm hemisphere · · · · · · (green);
downstream of a 3 mm hemisphere - - - - (green); downstream of a 3 mm cylinder —
— (magenta); downstream of a 3 mm hemisphere · · · · · · (magenta); 2 mm downstream
of a 3 mm cylinder ; average of spectra measured behind cylinder and hemisphere
- - - - (magenta). Shaded regions around lines are the uncertainty band.

This perhaps explains why mid-frequency sub-range I is independent of transducer
location and the largest deviation between the spectra of the two measurement
locations occurs in sub-range II, which captures eddies ranging in size between kg

and the viscous scales.
The transducer location appears to influence the pressure fluctuations over the

entire frequency range for the multi-shape surface. In figure 21(b) the low-frequency
pressure levels behind the hemispheres on the multi-shape surface are higher than
those behind the cylinders (even accounting for uncertainty). Figure 22 compares
the spectra from different element-relative locations on each of the multi-height
and multi-shape surfaces to further explore this. It shows that the influence of
transducer location is greatest in the mid-frequency region. Figure 22(a) shows that
the mid-frequency spectra around 1 mm elements are significantly different from that
behind the 3 mm element. The spectra measured in place of a 1 mm hemisphere
are essentially the same (within the uncertainty) as that obtained in the vicinity of a
1 mm hemisphere, decaying as f−1.5. The spectra measured downstream of a 3 mm
hemisphere deviates from those in the mid-frequency region, having a steeper slope
of f−2.2. This slope steepening is similar to that observed for the dense hemispheres,
and is possibly because the microphone is in the wake of the 3 mm element, in a
zone of flow separation with strong updraught of fluid (Bennington 2004; George
2005; Stewart 2005; Varano 2010). Such a scenario does not occur downstream of
the 1 mm element perhaps because its smaller kg means its wake does not persist
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as far downstream as that of the 3 mm element. Similarly, figure 22(b) shows that
mid-frequency sub-range II measured near cylinders are different from that measured
near hemispheres, while mid-frequency sub-range I is constant for all locations with
a slope of f−1.8. In mid-frequency sub-range II spectra measured at two positions
downstream the cylinder agree well with a slope of f−2.

3.4. High-frequency scaling on shear friction velocity
When normalised using the conventional friction velocity, Uτ , and the kinematic
viscosity, ν, dimensional analysis requires that smooth-wall boundary layer surface
pressure spectra measured at high frequencies collapse to a single curve, which
asymptotes to a −5 slope (Blake 2017). Meyers et al. (2015) hypothesised that there
exists a modified friction velocity that similarly scales the high-frequency portions
of rough-wall-pressure spectra to this same smooth-wall curve. They named this
the shear friction velocity, Uν , and postulated that this is the scaling velocity for
the dissipation-dominated portion of the pressure spectrum. They further argued that
the shear friction velocity should be the locally smooth-wall friction velocity on the
roughness substrate where the pressure fluctuations are measured. As such, one would
expect the average wall shear stress, excluding the pressure drag on the roughness
elements, to be proportional to the average of the square of the shear friction velocity
over the surface. This relationship is defined by (3.3) in terms of the total friction
velocity (Uτ ), the pressure drag coefficient on the roughness elements normalised on
their forward projected area (CDp) and boundary layer edge velocity, Ue.

U2
τ

U2
e

=
U2
ν

U2
e

+
λCDp

2
. (3.3)

In (3.3), Uν is the portion of the surface-averaged friction velocity excluding the
pressure drag, and is equivalent to the r.m.s. average of the local shear friction
velocity over the surface.

In the present study we have taken care to make explicit the distinction between the
local shear friction velocity, which we will denote as U′ν , determined as the viscous
scaling velocity of the high-frequency portion of the pressure spectrum, and the
surface averaged viscous contribution to the friction velocity Uν . Following Meyers
et al. (2015), Uν should be the r.m.s. average over the surface of the (non-mean
subtracted) U′ν .

3.4.1. Normalisation of pressure spectra on the shear friction velocity
Values of the local shear friction velocity were determined for all the present

rough-wall-pressure spectra by adjusting U′ν in each case to fit their high-frequency
portions to those of the smooth-wall boundary layers. While this was successful in
all cases, such a fit is not inevitable. It requires that the high-frequency portion of
the rough-wall-pressure spectra has a shape that matches the smooth-wall spectrum
in the same frequency range, when normalised on U′ν . In other words, this fit
process is a single parameter adjustment of a two-degree-of-freedom scaling. An
uncertainty of ±0.01 m s−1 is associated with U′ν for the present data set, and
±0.04 m s−1 for the data of Meyers et al. These uncertainty estimates were derived
by comparing the smooth-wall U′ν values (obtained from the fit method) to the Uτ

values, since these should be equal. The success of the U′ν scaling will be evaluated
based on the maximum uncertainty of the scaled high-frequency portion, with a 95 %
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FIGURE 23. High-frequency scaling on shear friction velocity, Uν , applied to entire data
set.

confidence level. This objective method of assessing scaled spectra prevents subjective
interpretations of the success of the proposed scaling. The spectral uncertainty is
obtained from jitter analyses of the pressure spectrum and each scaling variable.
Therefore, the final success criterion is that 95 % of the scaled curves must fall
within the stated uncertainty band.

Figure 23 presents the pressure spectra from all the present flows, including
measurements at multiple element-relative locations, normalised on the local shear
friction velocity (U′ν) at five speeds in the range 20–70 m s−1. At frequencies above
ων/U2

ν = 0.6 all curves converge to a narrow band approximately 3.5 dB wide
with a slope close to the theoretical −5 slope. Small deviations from the −5 slope,
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as seen here, are expected since this ideal value arises from spectral similarity
analysis at infinite Reynolds numbers (Blake 2017). The slight scatter observed at
highest frequencies is most likely due to lingering microphone resolution issues.
The maximum uncertainty of all scaled spectra presented in figure 23 is ±2.2 dB,
which means that if 95 % of the curves exist within a 3.2 dB band, a collapse is
achieved. This uncertainty band does not include the effects of attenuation due to
finite microphone pinhole size, or any uncorrected effects for Reynolds number effects
on the microphone dynamic response (see § 3.3). However, the former effects would
have been less than 2.2 dB and the latter less than 1 dB. Figure 23 shows that all
spectra collapse into a band approximately 3.1 dB wide. Therefore, we can state with
confidence that the U′ν scaling successfully collapses the high-frequency portions of
the current data set. Unsuccessful attempts to scale the high-frequency portions of
the pressure spectrum using a wide variety of scaling variables are not explored here
but are discussed at length by Forest (2012) and Meyers et al. (2015).

An interesting observation in figure 23 is what happens to the mid-frequency
portions of the spectra when they are scaled on U′ν . While the mid-frequency regions
of all curves do not collapse universally into a single narrow band, they collapse for
all speeds for the individual surfaces. In fact, most cases are collapsed well below
ων/U2

ν = 0.1. This further supports that the mid-frequency is a distinct, independent
region and not an ‘overlap’ region which scales with both the high- and low-frequency
regions. Furthermore, the slopes of the collapsed mid-frequency regions appear to
be ordered according to λ and the closeness of the microphone to rough elements.
The slope decreases from the dense roughness ([ων/U2

ν ]
−3) to the smooth-wall cases

([ων/U2
ν ]
−0.8), with all other surfaces falling in between these bounding cases. The

ordering of the mid-frequency spectra is likely due to the upward displacement of
the turbulent eddies and their subsequent filtering through the pseudo-wall discussed
in § 3.3.1. This evanescent decay of pressure fluctuations between their existing
location and the measurement location was appraised at length by Joseph et al.
(2016). Nevertheless, the natural ordering of mid-frequency spectra emphasises our
previous assertion in § 3.3 that roughness geometry governs the mid-frequency region,
although not with a simple linear relationship, and λ appears to be the predominant
geometric parameter there. It is important to point out that none of the mid-frequency
slopes are −1, which is a stipulation for the overlap region hypothesis (Blake 2017).

3.4.2. The shear friction velocity and drag
The collapse in figure 23 is only one product of this analysis. The other, perhaps

more interesting result, is the values of the shear friction velocity and their relationship
to Uτ . Figure 24 shows the ratio U2

ν/U
2
τ plotted as a function of the roughness

Reynolds number, k+g , for all the present flows and those of Meyers et al. (2015).
Note that the values in figure 24 are intended to represent, at least notionally, the
area-averaged Uν representing the surface drag due to viscous shear. That is, these
are either values measured as far away from the roughness elements as possible or
the r.m.s. average of values measured at different element-relative positions for cases
for which such measurements were made.

The data sets plotted in figure 24 show a general decreasing trend of U2
ν/U

2
τ with

k+g . Surfaces with λ6 0.13 appear grouped as a single curve (considering uncertainty),
suggesting that the proportionate viscous drag of these surfaces is approximately the
same at a given k+g , despite the diverse roughness geometries. The dense roughness
is an obvious outlier, forming its own curve with generally lower Uν/Uτ due to the
reduced effective smooth-wall area. For this surface the wall viscosity accounts for
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FIGURE 24. Ratio of area-averaged shear friction velocity, Uν , to Uτ as a function of
roughness Reynolds number, k+g .

less than 50 % of the total drag for all Reynolds numbers. This lends credibility to λ
as an effective parameter for isolating the mechanics of roughness element density.

Figure 24 also shows that the data appear to asymptote with k+g . It is not clear
from the present data whether the asymptote of U2

ν/U
2
τ is zero or some other positive

value, but the latter would be consistent with the arguments of Mehdi et al. (2010,
2013). However, it is evident that there is substantial viscous action on the wall
well beyond Reynolds numbers at which the flow is normally assumed fully rough
(k+g ≈ 80). Looking at the sparse and intermediately spaced rough surfaces in figure 24,
we see that the viscous friction is approximately 50 % of the total somewhere in the
range 1006 k+g 6 150, and 33 % at the upper limit of the measurements here of about
k+g ≈ 650. Viscous effects are weaker for the dense roughness for which the viscous
drag is approximately one third of the total near k+g ≈ 250, gradually decreasing to
approximately 20 % at k+g ≈ 600. If we define ‘fully rough’ behaviour as the regime in
which the skin friction is predominantly due to form drag on the roughness elements
(Simpson 1973), these data show that the Reynolds number at which this occurs is
much larger than previously thought.

Table 5 compares the local (U′ν) and area-averaged (Uν) values of the shear
friction velocity for the two surfaces for which pressure spectra were measured at
different element-relative locations. There is as much as a 15 % difference between
U′ν estimated behind a cylinder versus behind a hemisphere on the multi-shape surface
and U′ν estimated near a 1 mm element versus downstream of a 3 mm element on
the multi-height surface. Furthermore U′ν near specific roughness elements on the
superposed surfaces are not equal to U′ν on a surface comprising only that roughness
element. The level of contribution also varies based on roughness element geometry.
On the multi-shape surface U′ν near the cylinders is smaller than downstream of the
hemisphere, meaning that the hemispheres contribute more to the local dissipation
rate at the measured locations than the cylinders. However, on the multi-height
surface, the 1 mm hemispheres appear to contribute more to the local dissipation
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30 m s−1 40 m s−1 50 m s−1 60 m s−1 70 m s−1

Multi-height surface Uν 0.94 1.19 1.43 1.67 1.88

– in place of 1 mm element
U′ν

0.98 1.24 1.48 1.73 1.94
– in vicinity of 1 mm element 0.98 1.24 1.48 1.73 1.94
– downstream 3 mm element 0.85 1.09 1.34 1.55 1.75

Multi-shape surface Uν 0.97 1.24 1.48 1.71 1.96

– downstream cylinder
U′ν

0.93 1.19 1.41 1.63 1.87
– downstream hemisphere 1.05 1.34 1.61 1.87 2.15
– 2 mm downstream cylinder 0.93 1.19 1.41 1.63 1.87

TABLE 5. List of local (U′ν) and area-averaged (Uν) shear friction velocities.

at the measured locations than the 3 mm hemispheres. Table 5 also suggests that
U′ν behind the hemisphere on the multi-shape surface is approximately 10 % higher
than the other locations on that surface. On the multi-height surface U′ν is highest
close to the 1 mm elements (both locations near 1 mm elements have the same U′ν)
rather than downstream of the 3 mm element. These observations are perhaps because
smaller turbulent scales are produced by the edges of cylinders and the smaller 1
mm elements, and these more rapidly dissipate energy.

Using (3.3), the values of Uν and Uτ represented in figure 24 can be used to
estimate the pressure drag coefficient on the roughness elements (CDp) and its
dependence on k+g . Figure 25 plots these results. Overall, CDp initially increases
at small k+g , then begins to asymptote for all flows. The most interesting feature of
this plot is the clear separation of the data sets into distinct groups based on λ. We
see that the largest CDp is on the sparse surfaces (λ= 0.052), despite this data subset
consisting of roughnesses of different kg (1 mm and 3 mm), element distributions
(random and ordered) and shapes (hemispheres and cylinders). A second grouping
of data has 0.02 < CDp < 0.034. All roughness configurations in this subset have
λ ≈ 0.1 (0.104 for the superposed surfaces and 0.13 for the intermediately spaced
surface). Within this subset there is a further separation of the superposed surfaces,
which have slightly larger λ than the intermediately spaced surface. The superposed
surfaces have approximately the same CDp at each k+g , which is slightly higher
than that of the intermediately spaced surface, despite differing in element shape
and size. The smallest CDp is observed on the densely packed surface, where CDp

remains fairly constant at ∼0.009 for the Reynolds numbers tested (250< k+g < 650).
Another interesting observation in figure 25 is that, as λ increases, CDp is less variant.
Compare, for example, the clear rise of the sparse 3 mm cylinder (so much so that it
is not clear whether it has begun to asymptote or will continue to rise) to the dense
3 mm hemispheres where CDp looks constant for all data points. From this we can
deduce that the pressure drag per element is less dependent on Reynolds number as
λ increases.

The natural sorting of data in figure 25 according to λ highlights the dominant
effect of element spacing on the small-scale structures, compared to other geometric
variables. It also implies that CDp is a function of only kg and λ. An empirical equation
which formulates this latter finding was developed based on the data presented in
figure 25. The formula ensures that CDp varies as λ−n, because pressure drag per
element should decrease as elements are more tightly packed. At the same time, k+g
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FIGURE 25. Average pressure drag coefficient on roughness elements from
experiment (discrete symbols) compared to the results of (3.4) for different λ: ——
λ= 0.052; · · · · · · λ= 0.104; - - - - λ= 0.13; λ= 0.33. See figure 24 for symbol
definitions.

was varied using a power law to ensure CDp initially rises and then asymptotes with
increasing k+g . Also, at infinite Reynolds numbers, the empirical formulation ensures
that the pressure drag for a rough surface will asymptote to a real value based on the
roughness element density. The empirical formula is given in (3.4).

CDp = 0.0035λ−1 (k+g )
5/4

(k+g )5/4 + 250
. (3.4)

The results from the empirical formula, for all λ and k+g , are added to figure 25
as lines. The empirical formula predicts the CDp data well, evidenced by the close
agreement between lines and discrete points in figure 25. Equation (3.4) was further
able to predict CDp for the Gaussian-shaped elements of Bennington (2004). He
estimated CDp = 0.0299 (from a control volume and momentum balance approach)
for a single element at Ue = 27.5 m s−1. Bennington’s fetch of Gaussian elements,
measured at Ue = 27.5 m s−1, had λ = 0.088 and k+g = 217. Using these values in
(3.4) estimates CDp of a single element on this fetch to be 0.0302. This is only 10 %
larger than Bennington’s estimate for the single element. It should be noted that
(3.4) is valid only for roughness fetches with non-zero λ. It is not valid for single
roughness elements which have λ= 0.

4. Conclusions
Experiments have been carried out to measure the turbulence and pressure

fluctuations in a near-equilibrium, high Reynolds number turbulent boundary layer
over smooth and rough walls. These tests were run at Reθ upwards of 40 000 and
over 100 000 at the highest speeds. This corresponds to k+g well over 200 and δ/kg

ratios above 73. The set of rough surfaces tested varied in roughness element height,
shape and density. Rough surfaces consisting of two superposed element geometries
were also tested. These experiments were an extension of the high Reynolds number
work of Meyers et al. (2015). With their sparse hemispheres of different kg (1 mm,
3 mm) and distributions (random and ordered), the current data set forms a diverse
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but logical set of rough surfaces tested under high Reynolds number flow. The data
are publicly available from Joseph et al. (2019, doi:10.7294/YHSB-T439).

Detailed analyses of the turbulent velocity profiles and pressure spectra revealed
that roughness element density impacts the wall-pressure spectrum much more than
other geometric parameters, particularly by changing the slope of the mid-frequency
spectrum. Additionally, the high-frequency scaling of Meyers et al. (2015) appears
universal, with shear friction velocity related to the local dissipation rate. This allowed
us to estimate and predict (through a new empirical formula) the element pressure
drag coefficient which is a function of only λ and kg.

Other noteworthy outcomes include:

(i) The absolute levels of the low-frequency region of the rough-wall-pressure
spectrum appear to be largely uninfluenced by roughness element shape.

(ii) The slope of the mid-frequency region of the pressure spectrum is most affected
by roughness element density. This is in direct contrast to the assertions of
previous researchers, including Meyers et al. (2015), that the mid-frequency is
a relatively well-organised region governed by a single roughness length scale.
Roughness element shape has a small effect on the mid-frequency pressure
spectrum. Transducer location is an important parameter in determining the
slope and shape of the pressure spectrum in the mid-frequency region.

(iii) The high-frequency region of the pressure spectrum appears to be only indirectly
influenced by geometric parameters. The significant changes in energy transfer
in the mid-frequency changes the spectral levels in the high-frequency region,
but the approximate −5 slope is consistent for all test surfaces.

(iv) Superposing 3 mm and 1 mm hemispherical elements onto a single surface
produces a pressure spectrum which is similar to that of a uniform 3 mm
hemispherical surface. The low-frequency region of the flow does not appear
to react to the 1 mm elements, in absolute terms. The mid- and high-frequency
regions of the spectra show slight variations between the uniform 3 mm surface
and the multi-height surface likely because of the increased λ of the latter.

(v) Superposing 3 mm cylinders and 3 mm hemispheres on a single surface
produces a pressure spectrum which is different from the spectrum produced
by its uniform component surfaces. The mid-frequency spectrum of a surface
comprising two superposed roughness element shapes appears to have two
sub-regions. Sub-range I (lower end of the mid-frequency range) comprises
turbulent structures slightly larger than kg and is responsive only to changes
in λ. Sub-range II (upper end of the mid-frequency range) captures turbulent
scales slightly smaller than kg and is sensitive to changes in element shape and
transducer location.

(vi) The Dvorak–Simpson λ= 1
7 threshold holds for roughness of different element

density. Both the pressure spectra and the turbulent velocity profiles show
changes consistent with a drag maximum near λ= 1

7 .
(vii) The shear friction velocity inferred from pressure spectra is a local quantity,

which captures local viscous effects. The r.m.s. average of the local shear
friction velocity over the surface represents the fraction of the drag not due to
pressure.

(viii) The pressure drag on roughness elements inferred from the shear friction
velocity appears to be a function of only two variables: λ and k+g . An empirical
formula was developed which can predict the pressure drag on the elements,
given these two parameters, at least for the present data set.
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(ix) Pressure spectra suggest that the proportion of roughness element drag due to
viscosity decreases only gradually with element Reynolds number. If fully rough
flow is the flow regime in which drag is dominated by pressure forces, then fully
rough-wall flow appears to occur at a higher Reynolds number than previously
thought.
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