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Abstract

Qualitative reasoning can generate ambiguous behaviors due to the lack of quantitative information. Despite many different
research results focusing on ambiguities reduction, fundamentally it is impossible to totally remove ambiguities with only
qualitative methods and to guarantee the consistency of results. This prevents the wide use of qualitative reasoning tech-
niques in practical situations, particularly in conceptual design, where qualitative reasoning is considered intrinsically use-
ful. To improve this situation, this paper initially investigates the origin of ambiguities in qualitative reasoning. Then it
proposes a method based on intelligent interventions of the user who is able to detect ambiguities, to prioritize interventions
on these ambiguities, and to reduce ambiguities based on the least commitment strategy. This interaction method breaks
through the limit of qualitative reasoning in practical applications to conceptual design. The method was implemented
as a new feature in a software tool called the Knowledge Intensive Engineering Framework in order to be tested and
used for a printer design.

Keywords: Ambiguity Reduction; Conceptual Design; Qualitative Process Theory; Qualitative Reasoning;
User Intervention

1. INTRODUCTION

Product complexity is increasing because of not only the
number of components present in modern systems but also
the interconnections among these components that make a
system difficult to decompose in a comprehensive manner.
An example of complex systems can be found in the car in-
dustry, where the market requires increasing functionalities
of electrical/electronic systems in order to improve fuel effi-
ciency, safety, and vehicle features (Price, 2000). Further
complexity is due to changes in vehicle configuration, where
configuration chosen by the customer can create possible un-
expected interactions between vehicle systems. Price (2000)
states that “it is a major challenge to assess the safety and re-
liability of such systems as early as possible in the design pro-
cess.” Even though conceptual design is an essential and
complex task, there are few tools that can support this phase.

Qualitative reasoning (De Kleer & Bobrow, 1984; De
Kleer & Brown, 1984; Forbus, 1984a; Kuipers, 1986) is con-
sidered potentially useful in building a computational support

for conceptual design. Other applications of qualitative
reasoning are fault diagnosis, system simulation, process un-
derstanding and monitoring, explanation of numerical simu-
lations, cognitive applications, compositional model-based
diagnosis and state tracking, and decision making under
uncertainty (Price, Travé-Massuyès, et al., 2006). Some of
the reasons why qualitative reasoning has become more pop-
ular over the past 20 years include the following: first, precise
and complete information is not always required; second,
concept solutions do not have to be evaluated with many de-
tails before proceeding to further developments (Sandberg,
2007); and third, building a model of a fairly complex system
in a short time is possible. Furthermore, by using qualitative
equations, it is straightforward to build a parameter network
that provides information about parameter connections and
dependencies among these parameters. Designers can then
inspect the parameter network for taking design decisions.
In industry, the majority of design projects are not really com-
pletely new designs but routine designs (or redesigns) in
which the parameter network of the previous model can be re-
used in architecture. In such a case, a typical design change is
an increase or decrease of one parameter (e.g., the speed must
be 10% faster) that has a natural fit with qualitative reasoning
with a parameter network. Therefore, the parameter network
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helps designers in change management and customization of
existing products. According to Eckert et al. (2004), “Change
is one of the most powerful driving factors of design and pro-
ducts are changed to improve them.”

However, this parameter network is affected by the ambi-
guity problem, which is inherent in qualitative physics. For
instance, ambiguous inferences are generated when many
possible behaviors are predicted without the means to select
a correct or the most likely ones (Cohn, 1989). Practically
speaking, qualitative reasoning often results in a large number
of ambiguous and spurious solutions that designers in indus-
try do not have time to check. Furthermore, qualitative rea-
soning is unable to adapt to later stages of the design when
extra information becomes available to resolve some of these
ambiguities that were present in the design before detailed de-
cisions had been made (Price, Snooke, & Lewis, 2006). As a
consequence, designers consider qualitative reasoning useless.
In addition, industry is reluctant to introduce new tools to
conceptual design if a tool requires too much extra effort.

This paper tackles the problem of ambiguous behaviors by
reducing the number of ambiguous solutions in qualitative
reasoning when applied to conceptual design. In literature,
there are several methods to reduce ambiguities by adding in-
formation to the description of the physical system. These are
reviewed in Section 2 and include heuristics, higher order de-
rivatives, orders of magnitude, quantitative methods, and user
intervention methods. Among these methods, we employ the
user intervention method that asks the user to draw decisions
about the system.

The user intervention method has the advantage of straight-
forwardness. When the user is asked about a value of a qual-
itative parameter, he/she can answer by giving the absolute
qualitative value such as plus, zero, and minus. He/she can
also give relative relations between parameters such as X .

Y and X ( zero. The user can also say unknown. When the
value of one of the parameters to describe a behavior remains
unknown, then the behavior is ambiguous. When a value is
determined, the ambiguity of behavior is reduced. By doing
so, a model of the physical system is further constrained
and will eventually have a unique behavior as a solution.
However, the user may be asked too many questions in order
to cancel all the ambiguities. This paper illustrates a method-
ology based on user intervention, which is able to reduce am-
biguities following the least commitment strategy. This is car-
ried out in a way that the system asks only the most essential
and distinctive questions.

The sections of this paper are organized as follows: Section
2 describes a literature study about qualitative reasoning, the
use of qualitative reasoning in conceptual design, and
methods in qualitative reasoning to reduce ambiguous behav-
iors. Section 3 classifies origins of ambiguities in qualitative
physics. Section 4 introduces a qualitative mathematical rule
able to understand when a system of equations is ambiguous
or unequivocally solved. Section 5 presents a new methodol-
ogy to find and to reduce ambiguities. Section 6 depicts two
case studies to show the searching method in practice. Some

applications of the method are outlined in Section 6.3.
Advantages and limitations of the methodology are discussed
in Section 7, and the main results are concluded in Section 8.

2. LITERATURE STUDY

This section gives an overview of the use of qualitative rea-
soning in conceptual design and creates some background in-
formation for the rest of the paper. Moreover, it describes
methods that are used to reduce ambiguous behaviors during
qualitative reasoning.

2.1. The use of qualitative reasoning in conceptual
design

The use of qualitative models in physical systems provides
evidence of the sufficiency of such models in capturing as-
pects of expert reasoning and learning (Forbus, 2011). In par-
ticular, qualitative reasoning is used when the quantitative
precision of behavioral descriptions is unnecessary but at
the same time the crucial information must be preserved.
For instance, this happens at the conceptual design phase
when the information is only partially available (Barr et al.,
1989). Qualitative reasoning can be crucial in conceptual
design because it helps capturing the commonsense under-
standing of the world that is the foundation of engineering
knowledge (Forbus, 1998).

There are three main theories of qualitative reasoning:
qualitative process theory (QPT), qualitative simulation
(QSIM), and envisioning.

2.1.1. QPT

QPT, which was developed by Ken Forbus, organizes do-
main models around processes (physical phenomena; Forbus,
1981, 1984a, 1984b). Given a physical situation, there are
four operations in QPT:

1. to decide which instances of processes can exist in that
situation,

2. to determine which process instances are active by
examining whether conditions are satisfied,

3. to determine which change can be caused by the active
processes, and

4. to predict behavior over time.

The qualitative mathematical relations among parameters
are represented in QPT by Qþ and Q2 (called qualitative
proportionalities) and Iþ and I2 relations (called direct influ-
ences). The notations Qþ (a,b) and Q2 (a,b) denote a posi-
tive qualitative dependency and a negative qualitative depen-
dency among the parameters a and b, respectively (Forbus,
1984a). The same notations can be written in other
forms such as a ¼ b, which corresponds to Qþ (a,b), and
a ¼ 2b, which corresponds to Q2 (a,b). In addition, QPT
has Iþ and I2 relations, which denote direct positive and
direct negative influences, respectively (Forbus, 1984a).
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The notations Iþ (a,b) and I2 (a,b) means that a is increased
or decreased by b. The same notations can be written in a dif-
ferential form such as

Iþ (a,b), da

dt
¼ þb, (1)

and

I� (a,b), da

dt
¼ �b: (2)

Direct influence can help to figure out how a parameter will
change in time.

2.1.2. QSIM

QSIM was developed by Kuipers to simulate the behavior
of physical systems that are described as a system of qualita-
tive differential equations (Kuipers, 1986, 1994; Kuipers &
Berleant, 1988). It works by taking a set of qualitative func-
tions and an initial state of a device, and it produces a se-
quence of future states, where each parameter constituting a
state has a quantity space. The quantity space consists of a
set of landmarks, which represent values that a parameter
can have. Parameters also have qualitative directions that
indicate whether they increase, decrease, or are steady. A
qualitative state collects all the qualitative values of the
parameters defining a system.

In particular, the algorithm of QSIM starts by defining
names, quantity spaces and relations among parameters, in-
variant parameters, and the state of the system at a starting
time. This starting state is the state where the simulation be-
gins. Therefore, from this initial state, QSIM builds a tree
of qualitative states whose root is the initial state. Every
path from the root to a leaf determines the system’s behavior.

The algorithm determines the successors of each state that
has no successors. These states are stored in a list, and when
the list is empty, the tree ends.

2.1.3. Envision and qualitative physics based
on confluences

Envision is the program based on qualitative reasoning de-
veloped by De Kleer and Brown (De Kleer & Brown, 1984;
Barr et al., 1989). The goal of their study was to simulate
commonsense reasoning about the physical world.

Envision employs qualitative physics based on conflu-
ences (De Kleer & Brown, 1984). Qualitative physics based
on confluences models the generic behavior of individual
components of a device based on the notions of qualitative
differential equations (called confluences) and qualitative
state. The derivative of a parameter is represented qualita-
tively by @, where @x ¼ [dx/dt]. Envision constructs the state
diagram, indicating the behavior of a physical system by solv-
ing a set of simultaneous differential equations (Bobrow,
1985). The inference mechanism consists in performing an
integration of the set of differential equations describing the

device based on a certain number of rules: the causality
rule, the limit rule, the equality change rule, the epsilon order-
ing rule, the contradiction avoidance rule, the continuity rule,
the mean value rule, and the feedback rule. Therefore, the de-
vice states are determined by considering every possible com-
ponent state. Then constrains are applied to the states. If there
are no solutions for a certain state, this is ruled out from the
list of possible states and indicated as opposing. If there are
multiple solutions, each interpretation corresponds to an epi-
sode. A subsequent episode can follow an episode, and there
can be many possible transitions for an episode. Therefore,
states and state transitions determine the episode diagram
(Bobrow, 1985).

2.2. Methods to reduce ambiguous behaviors

This section revisits various methods that can reduce the
number of ambiguities, which are intrinsic to qualitative rea-
soning. These methods are heuristics, higher order deriva-
tives, orders of magnitude, quantitative methods, and user
intervention methods.

De Kleer and Bobrow (1984) and D’Ambrosio (1989) use
heuristics to reduce the amount of ambiguities. De Kleer
(1979) states that there are situations where some parameters
can remain unassigned and that these situations can be solved
only by using heuristics. Therefore, new rules are assigned to
the systems in order to solve them. D’Ambrosio (1987) uses
“belief functions certainty representations” to capture partial
or uncertain observational data and to estimate the state of
likelihood, “linguistic descriptions of influence sensitivities”
that use annotations to reduce undesirability during influence
resolution (D’Ambrosio, 1989), and “linguistic characteriza-
tion of parameter values and ordering relationship” to permit
capturing of partial and uncertain observational data, and en-
abling estimates of the effects of adjustments to continuous
control parameters (D’Ambrosio, 1989).

Raiman (1986) and Mavrovouniotis and Stephanopoulos
(1989) used orders of magnitude formalism and orders of
magnitude reasoning to reduce the amount of ambiguities.
This approach employs additional primitive relations besides
the ones normally used in qualitative physics (minus, zero,
and plus) in order to improve the resolution of the qualitative
results. First, the method increases the order of magnitude of
the qualitative knowledge even when it is unnecessary. This
can lead to reasoning out too many behaviors of the system.
Second, it does not guarantee all the ambiguities to be solved,
and in this case more knowledge to solve the system of equa-
tions is anyway needed. Third, the magnitude of different pa-
rameters cannot be comparable to each other and, therefore,
can give erroneous results.

The use of higher order derivatives in qualitative reasoning
is investigated in De Kleer and Bobrow (1984). Along the
same line, Morgan (1987) uses a vector of qualitative values
and their derivatives in order to differentiate and to integrate
within qualitative algebra. However, higher order derivatives
may just increase the opportunity for ambiguity and hence the
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complexity of simulation because more variables are present.
Thus, higher order derivatives are considered only when
needed (when the first-order derivative is zero; Kuipers &
Chiu, 1987; Cohn, 1989).

Kuipers and Berleant (1998) allowed two kinds of quanti-
tative knowledge to be included in QSIM reasoning through
user intervention, that is, numerical borders of the landmarks
ranges and limits on the monotonically increasing or decreas-
ing relationship among parameters. This information is prop-
agated through the equations and can improve qualitative
knowledge in the system and reduce the ambiguous behav-
iors. Contrary to the approach used in this paper, Kuipers
and Berleant aim first to introduce new knowledge and then
to check whether ambiguous behaviors are cancelled. How-
ever, the quantitative knowledge introduced does not always
resolve ambiguous solutions, unfortunately.

Another relevant work is the one by Adler (2009). The
multimodal interactive dialogue system program dynamically
generates a dialogue that asks questions to resolve uncertain-
ties or ambiguities. The physics simulator of this program
takes the current state of the world and tries to predict the
next state. When the next state cannot be determined unam-
biguously, the system creates a set of information requests
that are eventually turned into questions. Our system is also
based on similar interventions, however. Besides finding
the questions, it also keeps memory of the answers using re-
lations among parameters. This avoids not only the repeating
of the same questions but also the asking of similar questions.

Several other quantitative methods, including probabilistic
(Pearl, 1988) and fuzzy approaches (Shen & Leitch, 1992),
have been suggested to alleviate the problems of qualitative
reasoning methods.

In this paper, a user intervention method is used to intro-
duce more knowledge in the system in order to eliminate to-
tally or partially ambiguous behaviors. Only the knowledge
that can resolve ambiguities is considered by the system.
This allows it to go straight to the problem and to avoid
time-consuming knowledge insertion that does not solve the
ambiguous system. However, intervention methods have var-
ious limitations. First, there is a risk of too many questions to
ask. Second, the most straightforward intervention methods
do not ask the most distinctive questions to efficiently elimi-
nate ambiguities but rather present all possible questions to
the user without any prioritization. Third, user assumptions
can contradict each other, because user intervention methods
do not consider any dependencies among pieces of knowl-
edge. For instance, when two pieces of knowledge depend
on each other (e.g., if [X ] ¼ plus, then [–X ] ¼ minus), it is
possible to determine one using another. However, a straight-
forward user intervention method may end up with two inde-
pendent assumptions from two independent questions that are
essentially identical. A problematic situation may appear
when these two assumptions contradict each other, because
the user is not consistent in the answer. This may create further
troubles such as the same question being asked many times or
even an infinite number of times in the worst-case scenario.

This paper deals with all of these problems of user inter-
vention methods. The problem of asking too many questions
is solved by using dependencies among pieces of knowledge
that reduce the number of asked questions. Consequently, the
problem of possible contradictions among assumptions is
partially solved. Furthermore, the problem of prioritization
of distinctive questions is solved by using a tree parameter
structure as explained in Section 5. This tree structure priori-
tizes ambiguities by the time of their appearance, so that am-
biguities can be resolved as efficiently as possible with fewer
questions.

3. ORIGIN OF AMBIGUITIES IN QUALITATIVE
PHYSICS

To reason qualitatively about the physical world means to in-
fer about incomplete or less precise information. Conse-
quently, results are also incomplete or less precise, and this
leads to ambiguous behaviors as explained in Section 1. Ori-
gins of ambiguities are explained in this section.

3.1. Ambiguities in qualitative calculus

Qualitative calculus is used in many implementations of qual-
itative reasoning and qualitative physics. A parameter in qual-
itative calculus can assume four possible values: plus, zero,
minus (as described in Section 2.1), and unknown. The result
of qualitative calculus gives an interval of values or a land-
mark instead of real numbers (Barr et al., 1989). Table 1,
Table 2, and Table 3 indicate results of using qualitative
operators. Addition (Table 1) and subtraction (Table 2) of
qualitative values can lead to unknown values of parameters.
For instance, when a positive value adds to a negative value, it
is not possible qualitatively to establish the predominant ef-
fect. Multiplication (Table 3) of qualitative parameters does
not generate unknown values from known values. Unknown
values are given by imprecise information about the magni-
tude of parameters and they generate ambiguous behaviors.

When a qualitative parameter assumes the value unknown,
the behavior of the physical system is ambiguous and the
number of possible states of the physical system increases.
Moreover, increasing the number of unknown parameters in-
creases exponentially the number of possible system states.
For instance, if the system consists of two parameters (P1

and P2), where the value of P1 is unknown and P2 has value
minus, the number of system states is three, as indicated in
Table 4. When there are two unknown parameters, the

Table 1. Addition of qualitative values [x] and [y]

[x] + [y] Plus Zero Minus
Plus Plus Plus Undetermined
Zero Plus Zero Minus
Minus Undetermined Minus Minus
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number of system states is nine (see Table 5). Behavior is a set
of qualitative states that the system goes through over time
(Kuipers, 1994).

3.2. Ambiguities due to nonmonotonic equations

According to De Kleer and Brown (1984), “The lawful be-
havior of a component can be expressed as a set of qualitative
equations.” In the case of monotonic equations, the qualita-
tive behavior of a component is represented by one qualitative
equation that represents the linear approximation of the func-
tion as described in Figure 1a.

The qualitative description of a nonmonotonic equation
consists of a set of qualitative equations as described in
Figure 1b. Each of these qualitative equations corresponds
to one context of a physical system and describes a monotonic
part of the quantitative equation. The nonmonotonic function
in Figure 1b is described by two qualitative equations: @X ¼
@Y and @X ¼ 2@Y. One qualitative equation or the other ap-
plies to specific contexts of a physical system. A context can
change depending on the space where a component is located
or on the time when a component is considered. When the

context is unknown, the behavior of the component can be
ambiguous.

For instance, the vertical speed of a pendulum is described
by the nonmonotonic quantitative equation

dy

dt
¼ r

du

dt
cos u

(derivative of its position y ¼ r sin u). The length of the
pendulum is supposed to be constant (r ¼ const), and cos u,
which depends on the semicircle where the pendulum is loca-
ted, can take the qualitative values plus, zero, or minus. This
means that the equation is not monotonically increasing or
decreasing. In order to be transformed into a monotonically in-
creasing or decreasing equation, the equation needs to be lin-
earized first. The result of the linearization consists of two
qualitative equations where the derivative of a parameter is
symbolized with @ (Section 2.1.3). Each of the equations is
valid for one semicircle: @y ¼ þ@u (right semicircle) and
@y ¼ 2@u (left semicircle). Figure 2 illustrates this example.
In other words, the vertical behavior of the pendulum depends
on its position in one of the semicircles (right or left),
and, therefore, it is ambiguous. By deciding the context (left
or right semicircle) of the pendulum, the ambiguity is
removed.

3.3. Opposing phenomena

Opposing phenomena are phenomena that act on the same
component in opposite directions. For instance, a body is
warmed up by a heater while cooled down by a radiator. Be-
cause the phenomena warming up and cooling down are ap-
plied at the same time on the same body (see Figure 3), it is
not possible to qualitatively understand if the body tempera-
ture (T ) actually increases, decreases, or remains steady. The
same happens when acceleration and deceleration are applied
at the same time to a body (Figure 3). In this case, the value
and the derivative of the velocity (V ) will be qualitatively un-
known. Making a decision about opposing phenomena is de-
ciding the magnitude of the phenomena. This results in one
parameter’s value.

The case of opposing phenomena leads again to the case
described mathematically in Section 3.2, where it has to be
decided which of the two or more equations holds. The op-
posing phenomena cases and nonmonotonic cases are differ-
ent conceptually. In the opposing phenomena, a phenomenon
does not exclude the occurrence of the other phenomena,
whereas nonmonotonic cases exclude other contexts.

Table 2. Subtraction of qualitative values [x] and [y]

[x] 2 [y] Plus Zero Minus
Plus Undetermined Minus Minus
Zero Plus Zero Minus
Minus Plus Plus Undetermined

Table 3. Multiplication of qualitative values [x]
and [y]

[x]× [y] Plus Zero Minus
Plus Plus Zero Minus
Zero Zero Zero Zero
Minus Minus Zero Plus

Table 4. States of a system with two
parameters, where one of the parameters (P1)
is ambiguous

State 1 State 2 State 3

P1 Plus Zero Minus
P2 Minus Minus Minus

Table 5. States of a system with two ambiguous parameters (P1 and P2)

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9

P1 Plus Zero Minus Plus Zero Minus Plus Zero Minus
P2 Minus Minus Minus Zero Zero Zero Plus Plus Plus
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3.4. Ambiguities due to the increment or decrement
of a parameter

Perhaps 80% to 90% of actual cases are not new designs
but routine designs or redesigns that begin with an old de-
sign and try to modify limited parts of the design. For ex-
ample, the next machine should be 5% smaller (lighter),
10% faster, and 15% cheaper, but in architecture, so-called
working principles could remain the same, meaning gov-
erning physical equations are the same as the old ones.
In such a design, the designer needs to understand the ef-
fect of the new design performance specifications on de-
sign parameters. For instance, in order for the output speed
to be 10% faster, some components should weigh 10% less
or the motor power should be 10% stronger. Such incre-
ments and decrements can easily be derived from the anal-
ysis of the governing physical equations using qualitative
reasoning.

An increment or decrement of the value of a parameter is
symbolized in this paper by D, which is conceptually differ-
ent from a derivative of a parameter in time symbolized by @
(see Section 2.1.3). An increment does not include informa-
tion on how a value has changed over time but is about design
change.

The following example illustrates how increment (or de-
crement) D can be useful during design. Newton’s second

law of motion is

[f ] ¼ [m][a]: (3)

In conventional physics, Eq. (3) should be interpreted that
when force f decreases, mass m does not decrease, and instead
acceleration a of this mass decreases. However, in design, for
example, it is perfectly acceptable to reason out that mass has
to be lighter, if acceleration should not change but force given
from outside has to be smaller. This means one can discuss
design changes using D.

However, introducing D can also lead to ambiguous values
that need to be resolved, just like other types of ambiguities.

4. RULES TO DETECT AMBIGUITIES
IN QUALITATIVE EQUATION

This section discusses solving qualitative equations by find-
ing qualitative values of parameters that satisfy the equations.
Value propagation is used to determine the parameter values
in the system of equations that represent the constraints to be
satisfied. In quantitative equations, given the values of all the
parameters in the equation but one, it is possible to uniquely
determine the value of the unknown parameter by substituting
the known values in the equation. In qualitative equations,
this might not be the case.

Consider a qualitative set of equations in the form de-
scribed in Eq. (4), where [x] denotes qualitative value of pa-
rameter x as described in Section 2.1.

Fig. 1. (a) A monotonically increasing function in its quantitative and qualitative representation and (b) a nonmonotonically decreasing function
in its quantitative and qualitative representation. [A color version of this figure can be viewed online at http://www.journals.cambridge.org/aie]

Fig. 2. Behaviors of a pendulum. Each semicircle corresponds to a different
behavior and therefore to a different qualitative equation (@y ¼ þ@u
and @y ¼ 2@u). [A color version of this figure can be viewed online at
http://www.journals.cambridge.org/aie]

Fig. 3. Example of opposing phenomena acting on a body. T, temperature; V,
velocity. [A color version of this figure can be viewed online at http://www.
journals.cambridge.org/aie]
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[a] ¼ [b]þ [c], (4)

[b] ¼ plus, (5)

[c] ¼ minus: (6)

The unknown value of Eq. (4) lies on the left-hand side of
the equation. From Eqs. (4), (5), and (6), we obtain

[a] ¼ plusþ minus: (7)

According to Table 1, the value of [a] is unknown and
therefore ambiguous.

In order to detect if a value is ambiguous or unequivocally
determined, Forbus (1984a) states that if opposite influences
act on a single parameter, then the net influence on the pa-
rameter is unknown. Therefore, when the influences acting
on a parameter are not sufficient to unequivocally determine
its value, the parameter is ambiguous. When the influences
acting on a parameter are sufficient to unequivocally deter-
mine its value, the parameter is not ambiguous. D’Ambrosio
(1989) visualized this statement by making use of the
“conflicting triangle” and the “feedback loop” as shown in
Figure 4.

The conflicting triangle works as follows. An arrow indi-
cates a relation between two parameters. The direction of
the arrow indicates that a parameter affects the other (arrow
coming out from the vertex) or that a parameter is affected
by another parameter (arrow coming in to the vertex). Then
there is an indication about the type of influence (direct or in-
direct). When a vertex is influenced (arrows coming in) by
two opposite influences (direct and indirect), the triangle is
conflicting and an ambiguity is generated. For instance, the
left part of Figure 4 indicates a conflicting triangle because
vertex B has two arrows coming in with opposite signs.
This ambiguity makes the other parameters of the triangle
ambiguous, too.

A feedback loop indicates the relation between two param-
eters. In this case, it is enough to have different signs affecting
the two parameters to generate an ambiguity without the infor-
mation about arrows coming in or out. The feedback loop of
Figure 4 shows different influences acting on parameter A
(and C); this means that A and C are both unknown.

5. METHODOLOGY TO SEARCH AND TO
RESOLVE AMBIGUOUS BEHAVIORS

This section proposes a methodology to search and to resolve
ambiguous behaviors of qualitative reasoning represented by
a parameter network. By detecting and then resolving a finite
number of ambiguities, it is possible to know unequivocally
the direction of change of parameters, such as increasing, de-
creasing, or steady. In this paper, the symbols �, �, ¼, and ?
denote a parameter that increases, decreases, is steady, or is
unknown, respectively.

5.1. Steps for the user

The starting point of the system is a parameter network (see
Figure 5) that the QPT-based reasoning engine of the Knowl-
edge Intensive Engineering Framework (KIEF; see Section
5.4) automatically creates. This network indicates how design
parameters are related to each other. The designer would like
to increase the speed to meet the new specifications. In this
way, he/she selects a parameter and increases (or decreases)
the value of a parameter (initial parameter) by pushing the in-
creasing (or decreasing) button (not shown in Figure 5). This
creates a domino effect on related parameters that in turn in-
crease, decrease, or become unknown. At this point, there can
be many unknown parameters. The system analyzes the chain
of parameters and picks up the nearest unknown parameter to
the initially changed one. By repeating this process for all the
unknown parameters, a sequence of questions to the user is
generated.

The system asks the designer to determine the value of an un-
known parameter, the designer gives an answer, and the answer
is propagated through the parameter tree. Through this propaga-
tion, other ambiguities can be automatically solved. The algo-
rithm gradually reduces ambiguities through interactions be-
tween the system and the user by relying on qualitative
relations among parameters. The process of searching ambigu-
ities and performing interventions is automatically repeated in
the parameter tree until all unknown parameters are determined.

5.2. Building the parameter tree

A parameter tree is an ordered tree that consists of four ele-
ments: a set of vertices, a root, a set of directed edges, and

Fig. 4. D’Ambrosio representation of a conflicting triangle and a feedback loop for detecting ambiguous parameters. [A color version of
this figure can be viewed online at http://www.journals.cambridge.org/aie]
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an order of the edges out of each vertex. One of the differ-
ences between a parameter tree and a parameter network is
that a parameter tree has a starting point and an ending point
that are not present in the network. Therefore, a parameter tree
helps better than the parameter network in detecting the root
of ambiguities and in searching and taking decisions. The pa-
rameter network is used in a second phase to synthesize and
better visualize the results of searching and the decisions
taken in the tree. The parameter tree described in this paper
is built in the same way as the parameter tree used in QSIM
(see Section 2.1.2)

In order to explain how a parameter tree is built, we refer
to the tree in Figure 6. The tree, which is made of roots and
branches, presents relations among parameters for the pulley
mechanism shown in Figure 7. The set of qualitative equa-
tions describing the mechanism in Figure 6 is the following:
second law of Newton for rotation:

[T p1] ¼ [I p1][v̇p1], (8)

transmission of motion from rotational to linear:

[ v̇p1 ] ¼ [ab], (9)

transmission of motion from linear to rotational:

[ab] ¼ [ v̇p2 ], (10)

relation between torque and voltage of the motor:

[T p1] ¼ [Vm], (11)

in which Tp1, Ip1, v̇p1, and rp1 are the respective torque,
moment of inertia, radius, and angular acceleration of pulley
1; ab and nb are acceleration and linear velocity of a belt; v̇p2

is the angular acceleration of pulley 2; and Vm is voltage of a

Fig. 5. A Knowledge Intensive Engineering Framework screenshot of a parameter network. White rectangles indicate parameters that
increase the value, black rectangles are parameters that decrease the value, dark gray rectangles are ambiguous parameters, and light
gray rectangles are constant parameters. [A color version of this figure can be viewed online at http://www.journals.cambridge.org/aie]
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motor. The angular acceleration of pulley1 (v̇p1) is chosen as
the root of the tree and increased or decreased (Dv̇p1 ¼ plus
or Dv̇p1 ¼ minus). This increase (or decrease) is a “design
change” in which the designer decides to use faster (or
slower) rotational acceleration of the pulley. The first and sec-
ond qualitative equations [(8) and (9)] establish the depen-
dencies of v̇p1 and generate the second root level (Tp1, ab,
and Ip1).

A branch of the tree will not be any more expanded when
there appears again a parameter that appeared somewhere in
the path from the branch to the root. Note that there are
duplications of parameters in this process of converting a pa-
rameter network to a parameter tree. The qualitative equations
above derive qualitative influences (positive or negative)
among parameters. For instance, Eq. (8) derives that Tp1 is
qualitatively influenced (Qþ) by Ip1 and v̇p1, and that Ip1 is
inverse-qualitatively influenced (Q2) by v̇p1. These qualita-
tive rules are represented by the conflict triangle in Figure 8.
Because opposite influences act on both I and v̇, the influ-

ence on these parameters is unknown and it is possible to
forecast that ambiguities will be generated.

5.3. Method for search in the parameter tree

There are three well-known methods to search: the breadth-
first search, the depth-first search, and the hybrid of the
breadth-first and depth-first methods, which is called interac-
tive deepening (D’Ambrosio, 1989; Forbus & De Kleer,
1993). In order to find ambiguities, we use the interactive-
deepening method shown in Figure 9. Beginning with the
root node, an unknown parameter is searched with the
breadth-first algorithm. Once such an unknown parameter
is found, the search switches to the depth-first algorithm to
look for unknown parameters beneath the unknown pa-
rameter found in the breadth-first search.

The method first generates parameter nodes that are di-
rectly connected to the root parameter through qualitative pro-
portionalities or direct influences (Qþ and Q 2 , Iþ and I2).
These directly connected parameters are checked first. If any
of those parameters is ambiguous, this ambiguity will be
resolved. Then the system moves along the causal paths pro-
vided by the qualitative proportionalities and checks new pos-
sible ambiguities. This is done because pinning down an ear-
lier ambiguity might lead to all the downstream ambiguities
being resolved.

The algorithm is explained in detail as follows. First, an as-
sumption1 is made by assigning a starting value to a parameter
(e.g., D increasing as a design choice made by the designer),
and this assumption generates a parameter tree. The variable
K is a counter that is used to distinguish different branches in
the parameter tree (see Figure 9). Then the directly influenced
parameters (parameters that have a qualitative relation with the
initial parameter) are distributed into the lists of increasing and
decreasing nodes (these lists are not yet “believed,”2 and they

Fig. 8. Conflict triangle for the equation T ¼ I _v. Qþ and Q2 respectively
denote positive qualitative dependency and negative qualitative dependency
among the parameters T, I, and _v p1. [A color version of this figure can be
viewed online at http://www.journals.cambridge.org/aie]

Fig. 6. A graphical representation of a parameter tree with its roots and
branches. [A color version of this figure can be viewed online at http://www.
journals.cambridge.org/aie]

Fig. 7. A schematic representation of a driven pulley mechanism. [A color
version of this figure can be viewed online at http://www.journals.cambridge.
org/aie]

1 Any design decision is considered as assumption and included in an
assumption list. “An assumption is a node which the problem solver has cho-
sen to believe whether or not it has any supporting justification” (Forbus &
De Kleer, 1993). Assumptions cannot be changed unless they are retracted.
Furthermore, any value, which is generated in the branch of the tree, will
be believed when the dead end of the branch is reached and all the ambigu-
ities in the branch are solved.

2 We call nodes believed when they are deducted by the problem solver
and when they are not going to change anymore in the tree (their value
will be valid further in all the tree branches).
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Fig. 9. Algorithm for searching and reducing the amount of ambiguities in a parameter tree. [A color version of this figure can be viewed
online at http://www.journals.cambridge.org/aie]
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are updated any time new information is added to the system).
When influenced parameters are absent, it means that the tree
has been checked totally, and increasing and decreasing nodes
become believed. The lists of believed parameters increasing
and decreasing are the output of the algorithm. When the influ-
enced parameters do not include ambiguities (no parameter be-
longs to both increasing and decreasing lists), the breadth-first
search continues until an ambiguity is found.

When one or more ambiguities are detected (one or more
parameters belong to both increasing and decreasing lists),
the methods shown in Section 4 (conflict triangle and feed-
back loop) are used to detect if the ambiguity can be resolved
with the available knowledge (automatically) or if more as-
sumptions need to be made (manually). When ambiguities
cannot be automatically solved with the available knowledge,
additional information on one ambiguity value has to be
made and, therefore, user intervention is needed. Providing
additional information one per time can reduce the number
of decisions to take by avoiding resolving ambiguities that
are already implicitly resolved.

When the decision is taken, the search algorithm leaves the
root of the tree and enters in the branch of the tree (k¼ kþ 1)
related to the selected parameter. The branch is explored with
a breadth-first search until the dead end is reached. Whenever
another ambiguity is generated inside the branch, it has to be
resolved before leaving the branch. Ambiguities can be found
not only inside the branch itself but also by comparison of the
branch with the part of the root that has already been ex-
plored. At the dead end of the branch, the method starts again
with the breadth-first search at the root of the tree (k¼ k 21).

Output of the ambiguities method is a list of believed pa-
rameters. Ambiguities are no longer present and the designer
can check consequences of his/her choice in terms of direc-
tion of change of parameters.

5.4. Using KIEF as user interface

One of the driving forces of qualitative reasoning has been to
develop software that works as an “artificial engineer”
(Forbus, 2011). KIEF is a design framework aiming at ac-
complishing this goal. KIEF is equipped with an inference
engine based on QPT (Yoshioka, 2000; Yoshioka et al.,
2004), ontological knowledge bases of concepts, and a meta-
model mechanism to integrate knowledge and models in dif-
ferent domains (modelers; Yoshioka et al., 2004). A meta-
model stored in the metamodel mechanism is a conceptual
network composed of concepts needed to describe a device
model. Using these concepts, the metamodel mechanism is
able to pass on the knowledge of a device model in one domain
to another. Consequently, the metamodel in KIEF integrates
knowledge in different disciplines and infers about the whole
product. These functionalities are useful to create a common
language among different disciplines and to have a total view
of the product that can be an ontological mental model.

Among KIEF functionalities, there is a qualitative pa-
rameter analyzer (Figure 5), which presents a parameter

network to provide a total view of the product. The method
to resolve ambiguities has been implemented in the qualita-
tive parameter analyzer of KIEF that is able to automatically
generate a parameter network from qualitative equations. The
top of the screen in Figure 5 shows causal relationships
among physical phenomena and links between parameters
and physical phenomena. The lower window of the screen
shows the parameter network extracted from the causal rela-
tionships.

Now the new product will be a modified version of the old
product, so the first step for the designer is to increase or to
decrease the value of a parameter by clicking one of the action
buttons at the bottom of the screen (INCREASE and
DECREASE). In Figure 5, parameters in dark gray rectangles
are found ambiguous; those in white rectangles are increasing
parameters; and light gray rectangles are steady parameters
(parameters that decrease are not represented in the figure).
Through the menu in the screen, the “ambiguity solver” can
get started to automatically search for ambiguities. The
“choose value” selection allows manual changes of more
than one parameter value at a time.

6. CASE STUDIES

This section illustrates two case studies to explain how the
method works. The first case study discusses ambiguities ow-
ing to qualitative equations (Section 4), while the second case
study explains the case of ambiguities owing to opposing
phenomena (Section 3.3).

6.1. Case of ambiguities owing to qualitative equations

This section discusses the pulley mechanism case in Figure 6.
The parameter tree with its value (increase or decrease) is
shown in Figure 10. The tree is divided in levels, and the first
root node is v̇p1, which increases (Dv̇¼ þ). Showing levels
helps to illustrate how the breadth-first search proceeds. The
dark “leaves” in the tree indicate assumptions, which repre-
sent design changes the designer specified manually.

Table 6 shows parameter values at different node levels,
distributing between increasing, decreasing, and ambiguous.
At the third level, two ambiguities are generated: Tp1 is de-
creasing at level 3, while the same Tp1 is increasing at level
2; Ip1 is increasing at level 3, while the same Ip1 is decreasing
at level 2. Here, Tp1 and Ip1 belong to the same qualitative
equation (DT p1 � DI p1 ¼ D v̇p1) and they are both unknown;
therefore, at least one more assumption is needed to deter-
mine their value. For instance, suppose the designer makes
the assumption that Ip1 decreases. Thus, the algorithm tem-
porary leaves out the tree in Figure 10 and instead looks at
the tree in Figure 11, which considers the directly influencing
parameters starting from Ip1 only. This new tree is a branch of
the tree in Figure 10, and from this point a depth-first search
begins. The new assumption Ip1 decreases (D Ip1 ¼ minus) is
automatically included in the list of decreasing believed nodes.
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Now Tp1 still belongs to the list of ambiguities and its para-
metric relationships need to be checked to understand if this
ambiguity can be resolved without user intervention (Section
4). The equation concerned here is

DT p1 ¼ Dv̇p1þDI p1: (12)

In Eq. (12), DIp1 ¼minus and Dv̇p1 ¼ plus, so DTp1 is am-
biguous.3 Therefore, another assumption needs to be made on
Tp1. The algorithm temporary switches from the tree in Fig-
ure 11 to the one in Figure 12, where Tp1 is the starting
node. Now assume Tp1 decreases (DTp1 ¼ minus). Because
no ambiguities are found before reaching the dead end of
the tree in Figure 12, all the nodes that belong to this tree
are added to the lists of believed nodes. We can also assume
Tp1 increases (DTp1 ¼ plus), because we arrive at the same
conclusion. The value of Vm is automatically included in
the list of decreasing believed nodes, without adding any as-
sumption. Next the algorithm switches back from the tree in
Figure 12 to the one in Figure 11. Because this tree does not
add any new node in the lists of believed nodes, the algorithm
steps further back to the tree in Figure 10. This process is re-
peated until the dead end of the tree. That means that all the

nodes that are not already in the believed nodes will be added
to these lists.

Table 7 shows the list of believed nodes generated by the
system based on assumptions found also in Table 7. The sys-
tem has reasoned out that when the angular acceleration of
the pulley increases and the torque applied to the pulley de-
creases, acceleration of the belt and the acceleration of the
other pulley need to increase, and the voltage of the motor
and the moment of inertia of the pulley need to decrease.

Even though this example represents the worst-case sce-
nario, the method was still able to automatically resolve one
of the ambiguous values (Vm) of Figure 10 out of four ambi-
guities. In this case, three questions solved four ambiguities.
When Ip1 increases, Tp1 and Vm unequivocally increase with-
out adding any further assumption. In this case, one question
solves three ambiguities.

Assigning a constant value to an ambiguity means neglect-
ing relations that the ambiguous parameter has with other
parameters. For instance, if Ip1 is constant, Eq. (12) can be
simplified to the equation DT p1 ¼ Dv̇p1. The parameter
tree resulting from this simplification is the one in Figure 13,
in which no ambiguities appear.

6.2. Case of opposing phenomena

This section shows the case of opposing phenomena acting
on a body (Figure 3). The phenomena “warming up” and
“cooling down” act on the temperature of the body in oppo-
site directions, and the qualitative rules that applies to this
case are

[Tbody] ¼ �[Airflowcooler], (13)

Fig. 10. Parameter tree (k ¼ 1) generated from the equation T ¼ Iv_ by
making the assumption v_ p1 increasing. The symbols �, �, ¼, and ? denote
a parameter that increases, decreases, is steady, or is ambiguous, respectively.
[A color version of this figure can be viewed online at http://www.journals.
cambridge.org/aie]

Fig. 11. A parameter tree (k¼ 2) generated from the assumption Ip1 decreas-
ing. The symbols �, �,¼, and ? denote a parameter that increases, decreases,
is steady, or is ambiguous, respectively. [A color version of this figure can be
viewed online at http://www.journals.cambridge.org/aie]

Table 6. Lists of increasing, decreasing, and ambiguous
parameters

Lists 1st Level 2nd Level 3rd Level

� v̇p1 Tp1, ab Ip1, Vm, v̇p2, v̇p1

� Ip1 Tp1

? Ip1, Tp1

3 Different result would have appeared when @Ip1 ¼ plus and @v̇p1 ¼ plus.
The value of Tp1 would have been univocally assigned to positive (@Tp1 ¼
plus). Therefore, the case considered in the paper represents the worst-case
scenario.
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[Tbody] ¼ �[Theater]: (14)

Because increasing airflow (Airflowcooler) decreases the
temperature of the body (Tbody) but increasing Tbody does not
decrease Airflowcooler, the first equation is valid only in one di-
rection. Therefore, the arrow between temperature of the body
and airflow is unidirectional, as shown in Figure 14.4 Based on
the feedback loop (see Section 4), because opposite influences
act on Tbody, ambiguities are generated in the system.

There are two possible assumptions for this case: Airflowcooler

is increasing (Tbody decreases due to the first equation) or
Theater is increasing (Tbody increases due to the second equa-
tion). Therefore, Tbody is ambiguous and a new assumption
has to be added in order to resolve it. For instance, when
Tbody is assumed to decrease, the effect of the cooling airflow
is bigger than the effect of the heater. The new assumption is
then propagated through the system. For instance, when an-
other qualitative equation states that Tbody ¼ Tpulley, Tpulley is
unequivocally determined because it is linked to the new
assumption.

6.3. More applications of the user intervention method

Section 6.1 has shown how a starting value of one parameter
(increasing v̇p1) can generate a set of ambiguities that propa-
gate through the system. In Section 6.2, the ambiguity is gen-
erated by making two assumptions at the same time
(Airflowcooler increases and Theater increases). Therefore, it is
important to be able to make multiple assumptions at the
same time because this can lead to discovering hidden ambi-
guities.

By making multiple assumptions at a time, parameter trees
of the different assumptions can interact with one another as
shown in Figure 15. In the figure, A1, A2, and A3 represent
three different assumptions, while colors signify the parameter
tree these parameters belong to. Each parameter network, cre-
ated by one or more assumptions, is stored in an ordered
collection in the chronological order of the timing when the
assumption was made (see Table 8). Each row of the table rep-
resents a different parameter network and contains informa-
tion about assumptions, increasing nodes, decreasing nodes,

and ambiguous nodes of the respective parameter network.
The numbers in the names of the entities and parameters in
Table 8 are automatically generated by KIEF, and the same
number indicates the same concept.

A parameter can belong to multiple parameter networks at
the same time (e.g., the “temperature56” of a “Pulley 10” be-
longs to both the third and the fourth rows of Table 8), al-
though the value of a parameter can be different from tree
to tree (e.g., the “temperature56” of a “Pulley 10” belongs
to the increasing nodes in the second row and to the decreas-
ing nodes in the third row of Table 8). In order to unequivo-
cally determine the value of a parameter, comparison rules
among trees are necessary, which are represented as follows:

1. Only one assumption can be made for a node.
2. A node that is an assumption cannot change its value

unless the assumption is retracted.
3. A node is ambiguous if and only if it belongs to both

increasing and decreasing node lists and it is not an
assumption.

4. A node increases if it belongs only to the list of increas-
ing nodes or if it is an assumption with value increasing.

5. A node decreases if it belongs only to the list of decreas-
ing nodes or if it is an assumption with value decreasing.

Figure 16 shows the final parameter network displayed in
the user interface of KIEF (see Section 5.4) obtained from
the parameter networks listed in Table 8. White, black, dark
gray, and light gray rectangles indicate parameters that in-

Fig. 13. Parameter tree resulting from the assumption that v_ p1 increasing and
Ip1 is constant. The symbols �, �, ¼, and ? denote a parameter that increases,
decreases, is steady, or is ambiguous, respectively. [A color version of this
figure can be viewed online at http://www.journals.cambridge.org/aie]

Fig. 12. A parameter tree (k¼ 3) generated from the assumption T60 decreas-
ing. The symbols �, �,¼, and ? denote a parameter that increases, decreases,
is steady, or is ambiguous, respectively. [A color version of this figure can be
viewed online at http://www.journals.cambridge.org/aie]

Table 7. Believed nodes and assumption nodes

Believed Nodes Nodes Assumptions Nodes

� v̇p1, ab, v̇p2 � v̇p1

� Tp1, Vm, Ip1 � Tp1, Ip1

4 The rules among parameters are not necessary symmetrical because
change propagation is directional.
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crease the value, decrease the value, are ambiguous, and are
constant parameters, respectively. The interface shows also
the list of assumptions made by the designer.

At this point, all the nodes are in one of the increasing, de-
creasing, or ambiguous lists. Ambiguities can be resolved
anytime by the methods explained in Sections 6.1 and 6.2.
As soon as one or more ambiguities are resolved by making
new assumptions, new comparisons are made in the ordered
collection following the rules above and the parameters are
relocated in an appropriate list (increasing, decreasing, and
ambiguous parameters). The final result as a total parameter
network is shown in Figure 16.

7. DISCUSSION

This work is part of a bigger project that aims at detecting un-
predicted phenomena during product development of com-
plex multidisciplinary systems (Tomiyama et al., 2007). While
designers should be able to predict physical phenomena that
might happen and they do during the development process,
sometimes they are surprised by “unpredicted” (or unex-
pected) phenomena that happen especially because of multi-
disciplinarity (Tomiyama et al., 2007). For example, if a spring
is used in a machine that generates heat, its natural length
changes owing to heat expansion. Because of this, the spring
force can deviate from its expected value. If the designer

does not know of this phenomenon of “virtual softening of a
spring” in the interacting domain between mechanics and
heat transfer, this phenomenon can be an unpredicted phenom-
enon for him. Such phenomena are difficult to detect and dis-
covered only at the end of the product development process in
which a physical prototype is tested. This may lead to modifi-
cations of the conceptual design and cause delays and extra cost
of the product development. Our previous paper (D’Amelio
et al., 2011) reported that qualitative reasoning is useful in con-
ceptual design and particularly in detecting these unpredicted
problems.

As demonstrated through examples in Section 6, KIEF’s
qualitative parameter network analyzer offers an easy way
to analyze consequences of design change(s) on the system.
It also helps to identify which combination of changes can
lead to potential problems in the system and to changes of
specifications.

In addition, unpredicted phenomena affect the parameter
network by introducing parameter relations that were not
recognized before. As a consequence, new relations owing
to unpredicted phenomena can change the expected value
of parameters and can generate ambiguities (i.e., when a
new relation acts in opposite directions on the expected value
of a parameter). Similarly, unpredicted phenomena can be
identified by looking at ambiguities and unexpected values
of parameters. Therefore, recognizing and comprehending in-
fluences and propagation of parameter value changes are ex-
tremely crucial to avoid design failures at an early stage of
product development.

However, our attempts to introduce qualitative reasoning
techniques to conceptual design of complex products in
industry were not successful. On the one hand, designers
recognized advantages and possible potentials of qualitative
reasoning techniques. For instance, designers found the auto-
matic generation of parameter networks useful for the design
of complex products, because it makes easy it to keep track of
all the consequences of multiple design changes. On the other
hand, however, with the early versions of KIEF’s qualitative
parameter network analyzer, designers became skeptical
about the usability of qualitative reasoning results, because
of the following two reasons.

First, too many behaviors are reasoned out by the qualita-
tive engine, and most of those solutions are spurious behav-
iors. The previous paper (D’Amelio et al., 2011) investigated
this problem and proposed two filtering methods to reduce
negligible behaviors, which are based on comparison
between old design and new design. Second, there are ambi-
guities in parameter values that this paper tackled. Conse-
quently, we believe qualitative reasoning has become more
usable at the conceptual design phase with less spurious be-
haviors and devoid of ambiguities.

This paper depicted a small example consisting of six pa-
rameters. For examples with many more parameters, the
user intervention method can be effective, because it can rap-
idly shrink the number of ambiguities with a few user in-
puts. For the design of a highly compact, integrated product

Fig. 14. Conflict triangle for the opposing phenomena “warming up” and
“cooling down.” [A color version of this figure can be viewed online at
http://www.journals.cambridge.org/aie]

Fig. 15. A parameter tree intersection resulting from making three assump-
tions (A1, A2, A3) at the same time. [A color version of this figure can be
viewed online at http://www.journals.cambridge.org/aie]
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(e.g., a mechatronics product), the method is more efficient
than simpler, less integrated products. Because parameters
in highly compact, integrated products have more relations
to each other, the intelligent user intervention method can
use these relations to propagate assumptions through the pa-
rameter network and reduce ambiguities quickly. In the case
of less integrated products, an assumption resolves ambigu-
ities only locally for a module (or a component) and does
not propagate through the entire system. Therefore, the intel-
ligent user intervention method is more efficient for com-
plex integrated systems and less efficient for highly modular
products.

Section 3.1 explained that when a parameter is ambiguous
(undetermined), the behavior of the physical system is ambig-
uous and the number of possible states of the physical system

increases exponentially. The order of possible states of the
system is q(3n), where 3 is the number of possible values
that a parameter can take and n is the number of undetermined
parameters. On the contrary, by resolving ambiguities, the
number of possible system states decreases by q(3m), where
m is the number of resolved undetermined parameters (as-
sumptions). This indicates the efficiency of the method in
terms of computational complexity.

There are some limitations of the intelligent user interven-
tions method this paper reported. First, a limitation is that the
user can be asked questions that cannot be decided during the
conceptual phase, because they need details obtainable only
at a later stage. In this case, the ambiguity remains. However,
least commitment or postponing decision strategies can be
useful to leave freedom to the design. However, it is not rec-

Fig. 16. The Knowledge Intensive Engineering Framework shortcut of a parameter network and a related list of assumptions. White rec-
tangles indicate parameters that increase the value, black rectangles are parameters that decrease the value, dark gray rectangles are ambig-
uous parameters, and light gray rectangles are constant parameters. [A color version of this figure can be viewed online at http://www.
journals.cambridge.org/aie]

Table 8. Collection of assumptions and increasing, decreasing, and ambiguous parameters (nodes)

Assumptions Increasing Nodes Decreasing Nodes Ambiguous Nodes

(Pulley10 AngularAcceleration67)
#increase

(Pulley10 AngularAcceleration67)
(Belt3 Acceleration64)
(Pulley5 AngularAcceleration71)

(Pulley10 Torque60)
(Heater&Motor13 Voltage59)
(Pulley10 MomentOfInertia68)

(Carriage16 Stiffness50)
#decreases

(Carriage16 Deflection53) (Carriage16 Stiffness50)
(Carriage16 Accuracy54)
(Printhead2 Accuracy55)

(#((Heater&Motor13
Temperature58) #increase)

(Pulley10 Temperature56)
(Heater&Motor13 Temperature58)

(Cooler4 AirFlow75) #increase (Cooler4 AirFlow75) Pulley10 Temperature56
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ommended to constraint a design too much during the
conceptual design, because it can limit the creativity of the
design. Therefore, we need a trade-off between the least com-
mitment principle for design freedom and the resolution of
ambiguities to reduce complexity.

Second, resolving one ambiguity does not always guaran-
tee that new ambiguities are not generated. For instance, by
making multiple assumptions at the same time, new ambigu-
ities can be found. In this sense, our system is just semiauto-
matic. However, the objective of this work was not a totally
automatic system. Our system leaves the designer with free-
dom of changing parameter values flexibly depending on
problem constraints.

8. CONCLUSIONS

Qualitative reasoning can generate ambiguous behaviors ow-
ing to the lack of quantitative information. Three sources of
ambiguities in conceptual design are qualitative calculus,
nonmonotonic equations, and opposing phenomena. To de-
tect ambiguities in a system, it is proposed to use the conflict
triangle and the feedback loop representation. To resolve am-
biguities of qualitative reasoning, it is necessary to add
knowledge to the design. However, in literature there is no
qualitative method that can solve ambiguities and completely
guarantee the consistency of the results at the same time.
Therefore, this paper has proposed a new method to search
and to reduce the number of ambiguities by obtaining user in-
puts and using knowledge about parameter networks.

This method consists of the following steps:

1. the system automatically detects an ambiguity using
knowledge about parameter networks,

2. the designer enters a solution to this ambiguity,
3. the system propagates the solution through the parameter

network,
4. the system automatically finds dependent ambiguities,

and
5. the system resolves ambiguities based on the solution

given by the designer in step 2.

The advantage of the presented method is in the search for
ambiguities and in the propagation of the solution, but not in
determining the solution itself. The method is based on an in-
telligent user intervention that obtains knowledge from the
user to the system in order to eliminate totally or partially am-
biguous behaviors with minimum user inputs and that propa-
gate this knowledge through the system. Moreover, this inter-
vention method is able to ask the most essential and
distinctive questions by using prioritization and avoids redun-
dancies in the interventions.

Priority of intervention is given to ambiguous parameters
in the parameter tree that are closer to the assumption
made. This means that the user can act on the immediate ori-
gin of ambiguities and resolve ambiguities effectively before

they propagate through the parameter network and increase
ambiguities.

One distinctive property of the intelligent user intervention
method is that contradicting assumptions are not allowed.
This is because the method considers assumptions that are al-
ways true and, therefore, they cannot change their values un-
less they are retracted. Propagation of assumptions, which is
based on dependencies among pieces of knowledge, is used
to determine the values of parameters in the parameter
network that are ambiguous and to categorize them as in-
creasing, decreasing, and steady. This categorization helps
designers in understanding consequences of design changes
and in detecting undesired values of parameters.

The paper has also illustrated the case of ambiguities owing
to opposing phenomena that corresponds to the case when
more independent interventions are needed at the same time
for one parameter network. This case is important, because
different interventions can interact with each other and influ-
ence each other’s paths. The risk of this case is very high.
Therefore, in contrast to the case when one assumption at a
time is made, the case of multiple assumptions requires addi-
tional rules to maintain consistencies of the results.

In conclusion, the described intelligent user interventions
method has an advantage that it allows decisions based on
any type of knowledge (e.g., heuristics, higher order deriva-
tives, orders of magnitude, and quantitative methods) to
reduce ambiguous information. The intelligent user inter-
ventions method was implemented as an extended feature
of KIEF and resolves the ambiguity problem of qualitative
reasoning. The implemented problem solver makes use of
the truth maintenance system (Yoshioka et al., 2004) to ma-
nipulate assumptions. In particular, we demonstrated how a
few assumptions can significantly reduce the number of am-
biguities by expanding information through the network.
Therefore, the intelligent user interventions method is a
contribution to improve practical usability of qualitative rea-
soning in conceptual design of complex multidisciplinary
systems.
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