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In this article, we prove the continuity of the horizontal gradient near a C1,Dini

non-characteristic portion of the boundary for solutions to Γ0,Dini perturbations of
horizontal Laplaceans as in (1.1) below, where the scalar term is in scaling critical
Lorentz space L(Q, 1) with Q being the homogeneous dimension of the group. This
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in [4] as well as a subelliptic analogue of the main result in [1] restricted to linear
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1. Introduction

In this article, we consider the following boundary value problem:⎧⎪⎪⎨
⎪⎪⎩

m∑
i,j=1

X�
i (aijXju) =

m∑
i=1

X�
i fi + g in Ω ⊂ G,

u = h on ∂Ω

(1.1)

where A = [aij ] is an m×m real symmetric matrix satisfying the following
ellipticity condition:

λIm � A(p) � λ−1
Im, p ∈ G (1.2)

for some λ > 0. In (1.2), Im stands for m×m identity matrix and G is a Carnot
group of step k (see definition 2.1). The main importance of such Lie groups in
the analysis of the hypoelliptic operators was established in the work of Rothschild
and Stein on the so-called lifting theorem, see [36,38]. The motive of this article
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Borderline gradient estimates at the boundary in Carnot groups 1921

is to obtain the pointwise gradient estimate for weak solutions to (1.1) upto the
non-characteristic portion of the boundary under minimal regularity assumptions
on [aij ], fi, g, h and the boundary ∂Ω.

The fundamental role of such borderline regularity results in the context of elliptic
and parabolic equations is well known. By using the well-established theory of
singular integral in the setting of Heisenberg group, interior Schauder estimates
have been studied by many authors in [11,12,22,31,37,41,42] and the reference
therein. They play an important role in the analysis of nonlinear PDE’s.

In 1981, D. Jerison [24,25] addressed the question of Schauder estimate at the
boundary for the horizontal Laplacian in the Heisenberg group H

n. Jerison divided
his analysis in two parts, according to whether or not the relevant portion of the
boundary contains the so-called characteristic points (see definition 2.7). At such
points, the vector fields that form the relevant differential operator become tan-
gent to the boundary and thus one should expect a sudden loss of differentiability,
somewhat akin to what happens in the classical setting with oblique derivative
problems. In fact, Jerison proved that there exist no Schauder boundary estimates
at characteristic points! He did so by constructing a domain in H

n with real-analytic
boundary that support solutions of the horizontal Laplacian ΔH u = 0 which vanish
near a characteristic boundary point, and which near such point possess no better
regularity than Hölder’s. On the other hand, he established Schauder estimates at
the non-characteristic portion of the boundary.

Very recently in [3], by suitably adapting the Levi’s method of parametrix,
A. Baldi, G. Citti and G. Cupini established Γ2,α type Schauder estimate for non-
divergence form operators upto the non-characteristic portion of a C∞ boundary
in more general Carnot groups. Subsequently in [4], by employing an alternate
approach based on geometric compactness arguments, the authors showed the
validity of Γ1,α boundary Schauder estimate for divergence form operators as in
(1.1) when boundary is C1,α regular and aij , fi ∈ Γ0,α, h ∈ Γ1,α, g ∈ L∞. The com-
pactness argument first of all appears in the seminal work of Caffarelli [9] and
is independent of the method of parametrix. In this article, we consider a simi-
lar framework as in [4] and prove the continuity of the horizontal gradient under
weaker assumptions on the coefficients, domain and the scalar term g belongs to the
scaling critical Lorentz space L(Q, 1), with Q being the homogeneous dimension of
the Carnot group G.

For historical note, E. Stein [39] showed the following limiting case of Sobolev
embedding theorem.

Theorem 1.1. Let L(n, 1) denote the standard Lorentz space, then the following
holds:

∇v ∈ L(n, 1) =⇒ v is continuous.

For the definition of Lorentz space, see definition 2.6. One of the interesting
properties of the Lorentz space is the following:

Ln+ε ⊂ L(n, 1) ⊂ Ln
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1922 Ra. Manna and R. B. Verma

for any ε > 0 with all the inclusions being strict. One can think theorem 1.1 as the
limiting case of Sobolev-Morrey embedding theory which says that

∇v ∈ Ln+ε =⇒ v ∈ C0,ε/n+ε.

Now, by combining theorem 1.1 with the classical Calderon-Zygmund theory, we
get the following interesting result.

Theorem 1.2. Δu ∈ L(n, 1) =⇒ ∇u is continuous.

In 2013, Kuusi and Mingione in [27], made a break through by generalizing
theorem 1.2 for operators modelled after the p-Laplacian operator. Later on it has
been generalised in the setting of more general nonlinear and possibly degener-
ate elliptic and parabolic equations by using complicated and powerful nonlinear
potential theory (see for instance [18,26–30] and the references therein). Recently,
theorem 1.2 has also been extended in the context of fully nonlinear elliptic equa-
tions. For instance, see [16, theorem 1.2] where authors have established the
gradient potential estimate for fully nonlinear elliptic equations. We also refer to
[1] for the boundary analogue of the regularity result in [16] and also to the more
recent work [5] for similar borderline regularity results in the context of normalized
p-Laplacian.

The main idea in order to establish such end point gradient continuity estimates
is to employ the modified Riesz potential defined as follows:

Ĩgq (p,R) =
∫ R

0

(
1

|Ω ∩B(p, τ)|
∫

Ω∩B(p,τ)

|g(x)|qdx
)1/q

dτ, (1.3)

where B(p, τ) is defined as in (2.12) below. In fact, one estimates the L∞ norm
of the gradient as well as a certain moduli of continuity estimate in terms of such
modified Riesz potential. Then the continuity of the gradient follows from the fact
that

Ĩgq (p,R) → 0 as R→ 0 (1.4)

provided g ∈ L(Q, 1) and q < Q, for the details, see [16, theorem 1.3]. We will
follow a similar approach to prove our main result theorem 1.3. α-decreasing (see
definition 2.11) property of the modulus of continuity will play an important role
in our arguments.

Taking these considerations into account, we initiate the study of the regularity
property of the solution of (1.1). In order to state the main theorem, we introduce
a few relevant notations. Given an open set Ω ⊂ G, p0 ∈ ∂Ω and τ > 0, we set

Wτ = Ω ∩B(p0, τ), Sτ = ∂Ω ∩B(p0, τ). (1.5)

Here, Ω ⊂ G is a C1,Dini domain, see definition 2.13 and we also consider the data
in the class Γk,Dini for k ∈ N ∪ {0}, see definition 2.12. We now state our main
theorem.

Theorem 1.3. Let Ω ⊂ G be of class C1,Dini and p0 ∈ ∂Ω be such that for some
τ > 0 we have that the set Sτ consists only of non-characteristic points . Let u ∈
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L 1,2
loc (Wτ ) ∩ C(Wτ ) be a weak solution to (1.1), with aij , fi, g and h satisfying the

following hypothesis:

aij ∈ Γ0,Dini(Wτ ), fi ∈ Γ0,Dini(Wτ ), g ∈ L(Q, 1), h ∈ Γ1,Dini(Wτ ). (1.6)

Furthermore, we also assume that the uniform ellipticity condition as in (1.2) holds.
Then ∇H u is continuous in Wτ/2. In particular, for any p, q ∈ Wτ/2, there exists
an universal constant C0 such that the following estimate holds:

|∇H u(p) −∇H u(q)| � C1W (C0d(p, q)), (1.7)

where C1 = C1(G, λ, [aij ]Γ0,Dini ,Ω) > 0, d(·, ·) is defined by (2.11), ∇H u stands for
the horizontal gradient of u and W is a modulus of continuity given by (3.84) which
depends on the Dini modulus of (f1, f2, · · · , fm), h, ∂Ω and L(Q, 1) character of g.

Our proof consists of five main steps. Though the idea of proof of our main
theorem 1.3 is motivated by the work of Agnid et. al in [4], but due to the lack
of the enough regularity on the data and boundary we obtain abstract modulus of
continuity of the horizontal gradient instead of the Hölder modulus of continuity.
The presence of the abstract modulus of continuity poses additional difficulty in
the proof. For instance, one can see steps 3, 4 and 5 in the proof of theorem 1.3. In
step 3, we prove the existence of Taylor polynomial at non-characteristic portion
of the boundary, which follows from the mathematical induction in combination
with compactness lemma 3.2. In order to apply the compactness lemma, we define
a new rescaled function by (3.44) which contains the modulus of continuity ω. So
in order to satisfy all the assumptions in the compactness lemma, we need many
properties of the modulus of continuity, which are given in step 2 of the proof of
theorem 1.3. Similarly, in the proof of continuity of the horizontal gradient on the
non-characteristic portion of the boundary (see step 4 in the proof of theorem 1.3)
and up to the boundary (see step 5 in the proof of theorem 1.3) we need a suitable
scaling invariant version of the interior estimate, see corollary 3.5. This estimate is
a suitable adaptation of corollary 3.2 in [4] in our setup. In step 5, we patch up the
interior and boundary estimate to get the continuity of the horizontal gradient up
to the boundary. In the process of patching, we crucially use α-decreasing property
of the modulus of continuity.

The article is organized as follows. Section 2 consists of some basic definitions
concerning Carnot groups. We also collect some known regularity results that will
be used in the proof of theorem 1.3. Section 3 is devoted to the proof of our main
result theorem 1.3.

2. Basic definitions and results

Before we proceed with the proof of our main theorem, we need to state some of
the basic definitions concerning Carnot groups, modulus of continuity of functions,
etc., and some of its properties that will be used throughout the article. In the last
part of this section, some known regularity results also have been presented which
will be needed in the proof of theorem 1.3. Most of the definitions related to Carnot
groups, we refer [4] for the details. Let us start by defining Carnot groups.
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Definition 2.1. Given k ∈ N, a Carnot group of step k is a simply-connected real
Lie group (G, ◦) whose Lie algebra g is stratified and k-nilpotent, that is, there
exist vector spaces g1, . . . , gk such that the following holds:

1. g = g1 ⊕ · · · ⊕ gk;

2. [g1, gj ] = gj+1, j = 1, . . . , k − 1, [g1, gk] = {0}.

First, we assume that a scalar product 〈·, ·〉 is given on g for which the
g′js are mutually orthogonal. We let mj = dim gj , j = 1, . . . , k, and denote by
N = m1 + . . .+mk the topological dimension of G. For simplicity in the nota-
tion from here onwards we will write m for m1. Since G is simply-connected, the
exponential mapping exp : g → G is a global analytic diffeomorphism onto, see for
instance [13,40]. We will use this global chart to identify the point p = exp ξ ∈ G

with its logarithmic preimage ξ ∈ g.
Now, we will define the translations and dilations available in Carnot groups.

First, we define the left and right translations in G by an element p′ ∈ G with the
help of the group law ◦ as follows:

Lp′(p) = p′ ◦ p, Rp′(p) = p ◦ p′. (2.1)

Given a function f : G → R, the action of Lp′ and Rp′ on f is defined by:

Lp′f(p) = f(Lp′(p)), Rp′f(p) = f(Rp′(p)), p ∈ G.

In order to define the dilations in a Carnot group G, we first assign the formal
degree j to the j-th layer gj of the Lie algebra. Then a family of non-isotropic
dilations Δλ : g → g is given by

Δλξ = λξ1 + · · · + λkξk, (2.2)

where ξ = ξ1 + · · · + ξk ∈ g, with ξj ∈ gj , j = 1, . . . , k. We then use the exponential
mapping to lift (2.2) to a one-parameter family of dilations {δλ}λ>0 in the group
G. The dilations {δλ}λ>0 in the group G is given by

δλ(p) = exp ◦Δλ ◦ exp−1(p), p ∈ G. (2.3)

The homogeneous dimension of G with respect to the dilations (2.3) is given by

Q =
k∑
j=1

j dim gj .

Let us introduce analytic maps ξj : G → gj , j = 1, . . . , k, by p = exp(ξ1(p) + . . .+
ξk(p)). For p ∈ G, the projection of the logarithmic coordinates of p onto the layer
gj , j = 1, . . . , k, is defined by

xj,s(p) = 〈ξj(p), ej,s〉, s = 1, . . . ,mj , (2.4)

where (x1(p), . . . , xm(p)) = (x1,1(p), . . . , x1,m(p)) are the horizontal coordinates of
p and the sets {ej,1, . . . , ej,mj

}, j = 1, . . . , k, are a fixed orthonormal basis of the
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j-th layer gj of the Lie algebra g. Sometimes, we will omit the dependence in p,
and identify p with its logarithmic coordinates

p ∼= (x1, . . . , xm, x2,1, . . . , x2,m2 , . . . , xk,1, . . . , xk,mk
). (2.5)

In order to simplify the notation, let us set

ξ1 = (x1, . . . , xm), ξ2 = (x2,1, . . . , x2,m2), . . . , ξk = (xk,1, . . . , xk,mk
). (2.6)

Furthermore, we write x = x(p) ∼= ξ1 = (x1, . . . , xm), and y = y(p) the
(N −m)−dimensional vector

y ∼= (ξ2, . . . , ξk) = (x2,1, . . . , x2,m2 , . . . , xk,1, . . . , xk,mk
).

In this case, we will write z = (x, y), see [20]. For every j = 1, . . . , k we also use the
following multi-index notation αj = (αj,1, . . . , αj,mj

) ∈ (N ∪ {0})mj .
In this article, we assume that {e1, . . . , em} is an orthonormal basis of g1. The

family of left-invariant vector fields {X1, . . . , Xm} on G is given by

Xj(p) = dLp(ej), j = 1, . . . ,m, p ∈ G,

where dLp denotes the differential of Lp. Note that, the vector fields {X1, . . . , Xm}
form a basis for the so-called horizontal sub-bundle H of the tangent bundle TG.
Given a point p ∈ G, the fibre of H at p is given by

Hp = dLp(g1). (2.7)

Definition 2.2 Horizontal Laplacean. The horizontal Laplacean associated with
an orthonormal basis {e1, . . . , em} of the horizontal layer g1 is the left-invariant
second-order partial differential operator in G defined by

ΔH = −
m∑
j=1

X�
jXj =

m∑
j=1

X2
j , (2.8)

where {X1, . . . , Xm} are left-invariant vector fields on G and the formal adjoint of
Xj in L2(G) is given by X�

j = −Xj .

2.1. Gauge pseudo-distance

In a Carnot group there exists a left-invariant distance dC(p, p0) associated with
the horizontal subbundle H , see for instance [6,35] and chapter 4 in [21]. A piece-
wise C1 curve α : [0, T ] → G is called horizontal if there exist piecewise continuous
functions bi : [0, T ] → G with

∑m
i=1 |bi| � 1 such that

α′(t) =
m∑
i=1

bi(t)Xi(α(t)).

We define the horizontal length of α as 
H (α) = T and the metric

dC(p, p0) = inf
α∈Γ(p,p0)


H (α), p, p0 ∈ G

where Γ(p, p0) is the collection of all horizontal curves α : [0, T ] → G such that
α(0) = p and α(T ) = p0. The metric dC(p, p0) is called the Carnot-Carathéodory
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distance. By Chow’s theorem [7], any two points can be connected by a horizontal
curve, which makes dC a metric on G.

The Carnot-Carathéodory metric dC(p, p′) is equivalent to a more explicitly
defined pseudo-distance function, called the gauge pseudo-distance, defined as fol-
lows. Let || · || denote the Euclidean distance to the origin in g. For ξ = ξ1 + · · · +
ξk ∈ g, ξj ∈ gj , j = 1, . . . , k, we define

|ξ|g =

⎛
⎝ k∑
j=1

||ξj || 2k!
j

⎞
⎠2k!

, |p|G = | exp−1 p|g p ∈ G. (2.9)

The function p→ |p|G is called the non-isotropic group gauge and satisfies for any
λ > 0

|δλ(p)| = λ|p|, (2.10)

where dilations {δλ}λ>0 are group automorphisms (see [4]) and |p| = |p|G. The
gauge pseudo-distance in G is defined by

d(p, p0) = |p−1 ◦ p0|. (2.11)

Now, we define the metric and the gauge pseudo ball centred at p with radius R

BC(p,R) = {p0 ∈ G | dC(p0, p) < R}, B(p,R) = {p0 ∈ G | d(p0, p) < R}, (2.12)

respectively. When the centre is the group identity e, we will write BC(R) and
B(R) instead of BC(e,R) and B(e,R). Note that if L is Lebesgue measure on g,
then L ◦ exp−1 is a bi-invariant Haar measure on G. Now, we denote |E| =

∫
E
dp

the Haar measure of a set E ⊂ G. Observe that ωC = ωC(G) = |BC(1)| > 0 and
ω = ω(G) = |B(1)| > 0, and hence for every p ∈ G and R > 0,

|BC(p,R)| = ωCR
Q, |B(p,R)| = ωRQ. (2.13)

Lemma 2.3 [35]. For every connected Ω ⊂⊂ G there exist C, ε > 0 such that

CdR(p, p0) � dC(p, p0) � C−1dR(p, p0)ε, (2.14)

where dR(x, y) is the left-invariant Riemannian distance in G and p, p0 ∈ Ω.

2.2. The Folland-Stein Hölder classes

Now, we recall the intrinsic Hölder classes Γκ,α introduced by Folland and Stein
in [19] and especially [20], see also chapter 20 in [8].
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Definition 2.4. Let 0 < α � 1. Given an open set Ω ⊂ G we say that u : Ω → R

belongs to Γ0,α(Ω) if there exists a positive constantM such that for every p, p0 ∈ Ω,

|u(p) − u(p0)| � M d(p, p0)α.

We define the semi-norm

[u]Γ0,α(Ω) = sup
p,p0∈Ω

p�=p0

|u(p) − u(p0)|
d(p, p0)α

. (2.15)

Given κ ∈ N, the spaces Γκ,α(Ω) are defined inductively: we say that u ∈ Γκ,α(Ω)
if Xiu ∈ Γκ−1,α(Ω) for every i = 1, ..,m.

Note that for any λ > 0, [δλu]Γ0,α(δλ−1 (Ω)) = λα[u]Γ0,α(Ω), where dilations {δλ}λ>0

are group automorphisms, see [4] for more details.

Definition 2.5 Sobolev space. For an open set Ω ⊂ G we denote by L 1,p(Ω), where
1 � p � ∞, the Sobolev space {f ∈ Lp(Ω) | Xjf ∈ Lp(Ω), j = 1, . . . ,m} endowed
with its natural norm

‖f‖L 1,p(Ω) = ‖f‖Lp(Ω) +
m∑
j=1

‖Xjf‖Lp(Ω).

The local space L 1,p
loc (Ω) has the usual meaning. We also denote by L 1,p

0 (Ω) =

C∞
0 (Ω)

||·||L1,p(Ω) . Let λ denote the distribution function of f defined on G, then the
non-increasing rearrangement f� is defined for t > 0 by letting

f�(t) = inf{s > 0 : λ(s) � t}.

Definition 2.6 Lorentz spaces [17]. Let Q be strictly positive number such that
Q > 1. The Lorentz space L(Q, 1)(G) is defined as the set of real valued measurable
functions f , defined on G such that:

‖f‖L(Q,1)(G) =
∫ ∞

0

(f�(t) t1/Q)
dt
t
<∞.

Note that, Carnot group G endowed with the Carnot gauge ‖x‖C = dC(x, 0) or
with a smooth gauge x→ |x|g together with the Lebesgue measure L forms a real
variable rearrangement structure. For more details one refer to [34, theorem 3.1],
see also [2].

2.3. The characteristic set

We start with an open set Ω ⊂ G which belongs to a class C1, that is, for every
p0 ∈ ∂Ω there exist a neighbourhood Up0 of p0, and a function ϕp0 ∈ C1(Up0) with
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|∇ϕp0 | � α > 0 in Up0 , such that

Ω ∩ Up0 = {p ∈ Up0 | ϕp0(p) < 0}, ∂Ω ∩ Up0 = {p ∈ Up0 | ϕp0(p) = 0}. (2.16)

At every point p ∈ ∂Ω ∩ Up0 the outer unit normal is given by

ν(p) =
∇ϕp0(p)
|∇ϕp0(p)|

,

where ∇ denotes the Riemannian gradient.

Definition 2.7. Let Ω ⊂ G be an open set of class C1. A point p0 ∈ ∂Ω is called
characteristic if

ν(p0) ⊥ Hp0 , (2.17)

where Hp0 is as in (2.7). The characteristic set Σ = ΣΩ is the collection of all
characteristic points of Ω. A boundary point p0 ∈ ∂Ω \ Σ is called non-characteristic
boundary point. For more details, we refer to [10].

2.4. Modulus of continuity and its properties

Definition 2.8. A function Φ(s) for 0 � s � R0 is called a modulus of continuity
if the following properties are satisfied:

1. Φ(s) → 0 as s→ 0.

2. Φ(s) is positive and increasing as a function of s.

3. Φ is sub-additive, i.e. Φ(s1 + s2) � Φ(s1) + Φ(s2)

4. Φ is continuous.

Let us define the notion of Dini-continuity.

Definition 2.9. Suppose that Ω ⊂ G and f : Ω −→ R is a given function. Then
we define the modulus of continuity of f as follows:

ωf (s) = sup
d(p,p)�s

|f(p) − f(p)|. (2.18)

We say that the function f is Dini-continuous if∫ 1

0

ωf (s)
s

ds <∞. (2.19)

Notice that for a continuous function f, ωf satisfies all properties (1)–(4) mentioned
in definition 2.8. Similarly, for a vector valued function (f1, f2, · · · , fm) : Ω −→ R

m

we define the modulus of continuity as follows:

ωf (s) = sup
d(p,p)�s

|f(p) − f(p)|. (2.20)

So, as above the function (f1, f2, · · · , fm) is called Dini-continuous if (2.19) holds.
From [33, Page 44], we see that any continuous, increasing function Φ(s) on the
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interval [0, R0] which satisfies Φ(0) = 0 is modulus of continuity if it is concave.
From this, we have the following important result proved in [33, theorem 8]:

Theorem 2.10. For each modulus of continuity Ψ(s) on [0, R0], there is a concave
modulus of continuity Ψ̃(s) with the property

Ψ(s) � Ψ̃(s) � 2Ψ(s) for all s ∈ [0, R0]. (2.21)

Definition 2.11. Given α > 0, we say that the modulus of continuity Ψ is α-
decreasing if for any t1, t2 ∈ (0, R0] satisfying t1 � t2, we have

Ψ(t1)
tα1

� Ψ(t2)
tα2

.

Definition 2.12. Given an open set Ω ⊂ G we say that u : Ω → R belongs to
Γ0,Dini(Ω) if there exists a positive constant M such that for every p, p0 ∈ Ω,

|u(p) − u(p0)| � M ωu(d(p, p0)),

where ωu satisfies the Dini-integrability condition in (2.19). Correspondingly, we
define the semi-norm in the following way:

[u]Γ0,Dini(Ω) = sup
p,p0∈Ω

p�=p0

|u(p) − u(p0)|
ωu(d(p, p0))

.

Furthermore, such a space is equipped with the following norm:

‖u‖Γ0,Dini(Ω) = ‖u‖L∞(Ω) + [u]Γ0,Dini(Ω).

Given κ ∈ N, the spaces Γκ,Dini(Ω) are defined inductively: we say that u ∈
Γκ,Dini(Ω) if Xiu ∈ Γκ−1,Dini(Ω) for every i = 1, . . . ,m.

Definition 2.13. We start with an open set Ω ⊂ G which belongs to a class C1,Dini,
that is, after translation, rotation and scaling, we may assume that p0 = e ∈ ∂Ω and
in the logarithmic coordinates Wτ = Ω ∩B(e, τ), τ > 0 is given by

Wτ := {(x, y) ∈ R
N | xm > ψ(x′, y)},

where ψ(0, 0) = 0, ∇x′ψ(0, 0) = 0, x′ = (x1, . . . , xm−1) and ψ ∈ C1,Dini. In partic-
ular, ∇ψ belongs to C0,Dini, where the Banach space C0,Dini(D) is the set of all
bounded and continuous vector valued function f on D ⊂ R

N−1 for which

[f ]ωf ;D := sup
z,z̄∈D,z �=z̄

|f(z) − f(z̄)|
ωf (|z − z̄|) <∞,

where f = (f1, . . . , fm̃) and ωf satisfies the Dini-integrability condition in (2.19).
It is equipped with the norm

‖f‖C0,Dini(D) = ‖f‖C0(D) + [f ]ωf ;D.
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2.5. Some known results

In this subsection, we recall the following smoothness result at the non-
characteristic portion of the boundary, see theorem 3.5 [4].

Theorem 2.14. Let A = [aij ] be a symmetric constant-coefficient matrix. Assume
that Ω is a C∞ domain, and let u ∈ L 1,2

loc (Ω) ∩ C(Ω) be a weak solution of (1.1)
with fi, g ≡ 0. Let p0 ∈ ∂Ω be a non-characteristic point and assume that for some
neighbourhood W = BR(p0, r0) of p0, we have that u ≡ 0 in ∂Ω ∩W . Then there
exists an open neighbourhood V of p0 depending on W and Ω and a positive constant
C� = C�(M,p0) > 0, depending on p0 and M = sup

Ω
|u|, such that

‖u‖C2(Ω∩V ) � C�. (2.22)

Next, we state a Hölder continuity result near a C1,Dini non-characteristic portion
of the boundary that is direct consequence of the results in [14].

Proposition 2.15. Let Ω ⊂ G be a C1,Dini domain such that p0 ∈ ∂Ω is a non-
characteristic point. Suppose u ∈ L 1,2

loc (Ω) ∩ C(Ω) is a weak solution of

{∑m
i,j=1X

�
i (aijXju) =

∑m
i=1X

�
i fi + g,

u = h on ∂Ω,
(2.23)

where A = [aij ] is a symmetric matrix satisfying (1.2), for all p ∈ Ω. Furthermore,
assume that f i ∈ L∞(Ω), g ∈ Lq(Ω), Q < 2q < 2Q and h ∈ Γ0,γ(∂Ω) for some γ >

0. Then, there exist r0, C > 0 and β ∈ (0, 1), depending on Ω, λ, γ and M
def
=

sup
Ω

|u| <∞, such that

sup
p,p′∈Ω∩B(p0,r)

p�=p′

|u(p) − u(p′)|
d(p, p′)β

� C. (2.24)

3. Proof of main result

In this section, we will prove our main result, theorem 1.3. Given a bounded open
set Ω ⊂ G, with p0 ∈ ∂Ω we will use the notations Wτ and Sτ as in (1.5). The
proof of the theorem 1.3 follows in several steps. The first step is to establish the
compactness lemma. In the proof of the compactness lemma we need the following
Caccioppoli type inequality. This type of inequality has different applications in the
PDE’s. So, we are presenting it as an independent result.

Lemma 3.1. Suppose that (1.2) holds. Let u ∈ L 1,2
loc (W1) ∩ C(W1) be a weak solution

to (1.1) in W1 with ‖u‖L∞(W1) � 1. Furthermore, assume that f i ∈ L∞(Ω), g ∈
Lq(Ω), Q < 2q and there is an R > 0 such that B(p, 2R) ⊂ W1, then the following

https://doi.org/10.1017/prm.2020.86 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.86


Borderline gradient estimates at the boundary in Carnot groups 1931

estimate holds:

∫
B(p,R)

|∇H u|2 � C

[
m∑
i=1

‖f i‖L∞(B(p,2R)) + ‖g‖Lq(B(p,2R))

]
, (3.1)

for some universal C(Q,λ).

Proof. Let φ be a smooth cut-off function such that φ ≡ 1 in B(p,R) and vanishes
outside B(p, 2R). Now, by taking η = φ2u as a test function in the weak formulation,
we obtain the following equality:

∫
B(p,2R)

φ2〈A∇H u,∇H u〉 =
∫
B(p,2R)

φ2 〈f,∇H u〉 + 2
∫
B(p,2R)

φu 〈f,∇H φ〉

−
∫
B(p,2R)

gφ2u− 2
∫
B(p,2R)

φu〈A∇H u,∇H φ〉,

where f = (f1, . . . , fm). Now, by applying Cauchy Schwartz inequality and the fact
that ‖u‖L∞(W1) � 1, we obtain

λ

∫
B(p,2R)

φ2|∇H u|2 � C

[∑
i

‖fi‖L∞(B(p,2R))‖φ‖2
L2(B(p,2R))

+
λ

2

∫
B(p,2R)

φ2|∇H u|2 + ‖∇H φ‖L2(B(p,2R))

+ ‖g‖Lq(B(p,2R))‖φ‖2
L2q/(q−1)(B(p,2R))

]
. (3.2)

By subtracting off the second integral in the right hand side of (3.2) from the left
hand side in (3.2), we obtain that the desired conclusion follows by using bounds
on φ and the fact that φ ≡ 1 in B(p,R). �

3.1. Compactness lemma

Now, we are ready to prove the compactness lemma 3.2. This lemma states
that if the coefficient matrix [aij ] in (1.1) is very close to the constant matrix in
certain norm and the other data are sufficiently small then the solutions of (1.1)
can be approximated by a sufficiently smooth functions, in fact by the solutions of
uniformly elliptic equation with constant coefficient.

Lemma 3.2. Suppose that (1.2) holds. Assume that for a given p0 = e ∈ ∂Ω the
set S1 is non-characteristic, and that in the logarithmic coordinates W1 is given
by {(x, y) | xm > ψ(x′, y)}, where ψ ∈ C1,Dini, and x′ = (x1, . . . , xm−1). Let u ∈
L 1,2
loc (W1) ∩ C(W1) be a weak solution to (1.1) in W1 with ‖u‖L∞(W1) � 1. Then,
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for a given ε > 0 there exists δ = δ(ε) > 0 such that if

‖ψ‖C1,Dini � δ, ||aij − a0
ij ||L∞(W1) � δ, ||h||Γ0,α(S1) � δ,

||fi||L∞(W1) � δ, ||g||Lq(W1) � δ, (3.3)

where a0
ij = aij(e) and q as in lemma 3.1, we can find w ∈ C2(W1/2) such that

‖u− w‖L∞(W1/2) � ε,

with

‖w‖C2(W1/2)
� CC�.

Here, the constant C > 0 is a universal constant, whereas C� can be taken as that
in the estimate (2.22) in lemma 2.14, corresponding to p0 = e and M = 1.

Proof. The proof of the lemma follows by the standard contradiction argument as
in the work [9]. Suppose that there exists an ε0 > 0 such that for every ν ∈ N we
can find:

1. a matrix-valued function A
ν = [aνij ] with continuous entries in G and satisfy-

ing (1.2),

2. a domain Ων with W ν
1 = Ων ∩B(1) and S ν

1 = ∂Ων ∩B(1),

3. a solution uν to the problem
m∑

i,j=1

X�
i (a

ν
ijXjuν) =

m∑
i=1

X�
i f

ν
i + gν in W ν

1 , uν = hν on S ν
1 , (3.4)

along with

‖uν‖L∞(W ν
1 ) � 1,

‖ψν‖C1,Dini � 1
ν
, ||aνij − a0

ij ||L∞(W ν
1 ) � 1

ν
, ||hν ||Γ0,α(S ν

1 ) � 1
ν
,

||fνi ||L∞(W ν
1 ) � 1

ν
, ||gν ||Lq(W ν

1 ) � 1
ν
,

(3.5)

but for every w ∈ C2(W ν
1/2) and ‖w‖C2(W ν

1/2)
� CC� we have

‖uν − w‖L∞(W ν
1/2)

� ε0. (3.6)

Note that the sets W ν
1 above are described in the logarithmic coordinates by the

functions ψν ∈ C1,Dini, that is, {(x, y) | xm > ψν(x′, y)}. Now, we will show that
the validity of (3.6) leads to a contradiction. We proceed by observing that the
uniform bounds in (3.5), combined with proposition 2.15, produces constants C, β >
0, depending on λ, α, but not on ν, such that

‖uν‖Γ0,β(W ν
4/5)

� C.

Since uν ’s are defined on varying domains W ν
1 , we need to work with functions

defined on the same domain. To do this, we now use an idea similar to that in
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the proof of [4, lemma 4.1]. Let p̃ = Φν(p) be the C1,Dini local diffeomorphism that
straightens the portion S ν

1 of ∂Ων . More precisely, S ν
1 can be locally expressed in

the logarithmic coordinates as

Φν(x, y) = (x′, xm − ψν(x′, y), y).

Let vν(p̃) = uν ◦ Φ−1
ν (p̃) and we denote by p̃ = (x̃′, x̃m, ỹ) the logarithmic coor-

dinates of p̃. The function vν is now defined for x̃m � 0. Then by the classical
method of extension in terms of reflection, we define the extension of vν to the
region {x̃m < 0} as follows:

Vν(x̃′, x̃m, ỹ) =

⎧⎪⎨
⎪⎩
vν(x̃′, x̃m, ỹ) x̃m � 0,
3∑
i=1

civν

(
x̃′,− x̃m

i
, ỹ

)
x̃m < 0,

(3.7)

where the constants c1, c2 and c3 are determined by the system of equations,
3∑
i=1

ci(−1/i)m = 1, m = 0, 1, 2, (3.8)

see e.g. p. 14 in [32]. We now define the extension Uν of uν by setting Uν = Vν ◦ Φν .
It is clear that the following bound holds,

‖Uν‖Γ0,β(B( 4
5 )) � C ′ ‖uν‖Γ0,β(W ν

4/5)
� C1,

for some C1 > 0. As a consequence, we have the following convergence results.

1. By applying Arzela-Ascoli theorem, we obtain a subsequence, that we
will still denote by {Uν}ν∈N, that converges uniformly to a function U0 ∈
Γ0,β(B(4/5)). Clearly, U0 satisfies

U0(x′, xm, y) =

⎧⎪⎨
⎪⎩
U0(x′, xm, y) xm � 0,
3∑
i=1

ciU0(x′,−xm/i, y) xm < 0,
(3.9)

where the constants c1, c2 and c3 are given by the system (3.8).

2. From (3.5), we see that fν → 0 as ν → ∞.

3. Since by (3.5) we have ||ψν ||Γ0,1(W ν
1 ) � 1

ν for every ν so we get

U0(x′, 0, y) = 0. (3.10)

Now, we will show that U0 ∈ L 1,2
loc (B(4/5) ∩ {xm > 0}) ∩ C(B(4/5) ∩ {xm > 0}).

Moreover U0 is a weak solution to the problem
m∑

i,j=1

a0
ijXiXjU0 = 0 in B(4/5) ∩ {xm > 0}, U0 = 0 on B(4/5) ∩ {xm = 0}.

(3.11)

To see this, let us observe that ‖ψν‖C1,Dini � 1/ν → 0, so for a given p ∈ B(4/5) ∩
{xm > 0}, there exist η > 0 and ν0(p) ∈ N such that for all ν � ν0(p) we have
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B(p, 2η) ⊂ W ν
1 . By the Caccioppoli inequality (see lemma 3.1 with R = η) for the

problem (3.4) combined with the uniform bounds in (3.5), we find that for all
ν � ν0(p) following inequality holds:∫

B(p,η)

|∇H uν |2 � C, (3.12)

for some C(λ, η) > 0 independent of ν. Therefore, {uν}ν∈N has a subsequence, which
we still denote by {uν}ν∈N, such that

uν → w weakly in L 1,2(B(p, η)), and uν → w strongly in L2(B(p, η)).

Since {Uν}ν∈N converges to U0 uniformly, by uniqueness of limits we can assert
that w = U0 in B(p, η). Moreover, using the uniform energy estimate for the u′νs
in (3.12) and (3.5) it follows by standard weak type arguments that U0 is a weak
solution to

m∑
i,j=1

a0
ijXiXjU0 = 0

in B(p, η), and hence a classical solution by Hörmander’s hypoellipticity theorem
in [23]. By the arbitrariness of p ∈ B(4/5) ∩ {xm > 0} and (3.10), we conclude that
(3.11) holds. We can now make use of the estimate from theorem 2.14 to obtain

‖U0‖C2(B(1/2)∩{xm>0}) � C�

for some universal C� > 0. This follows since [a0
ij ] is a constant coefficient matrix,

and the portion B(4/5) ∩ {xm = 0} of the boundary of B(4/5) ∩ {xm > 0} is non-
characteristic and C∞. Now, from the expression of U0 in (3.9) we see that
the second derivatives in xm are continuous across xm = 0, and thus in fact
U0 ∈ C2(B(1/2)), and

‖U0‖C2(W ν
1/2)

� ‖U0‖C2(B(1/2)) � CC�,

where C > 0 is a universal constant. This shows that w = U0 is an admissible
candidate for the estimate (3.6). In particular, we have for ν ∈ N

0 < ε0 � ‖uν − U0‖L∞(W ν
1/2)

,

which is a contradiction for large enough ν’s, since uν → U0 uniformly. This
completes the proof of the lemma. �

Having proved the compactness lemma, we are now ready to prove main
theorem 1.3. Since proof of the theorem is long so we have divided it in many
steps.

Proof of Theorem 1.3. We divide the proof into five steps:

1. Preliminary reductions.

2. Setting modulus of continuity.
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3. Existence of the first-order Taylor polynomial at every p ∈ S1/2.

4. Continuity of the horizontal gradient on S1/2.

5. Patching the interior and boundary estimate (modulus of continuity of the
horizontal gradient upto the boundary).

(1) Preliminary reductions Let us make some observations. (a) First we
consider û = u− h which solves:

m∑
i,j=1

X�
i (aijXj û) =

m∑
i=1

X�
i f̂i + g in Wτ , û = 0 on Sτ , (3.13)

where f̂i = fi −
∑m
j=1 aijXjh, which is again Dini-continuous with the modulus of

continuity depending on the modulus of continuity of A = [aij ], h and fi. More
precisely, for any p, q ∈ Ω we have:

|f̂i(p) − f̂i(q)| � ωfi
(d(p, q)) + ‖A‖L∞(Ω)ω∇H h(d(p, q))

+ ‖∇H h‖L∞(Ω)ωA(d(p, q)).

Therefore, f̂i’s are Dini-continuous functions and hence, without loss of generality,
we can assume that h ≡ 0. (b) In view of the left translation we may assume that
p0 = e. Furthermore, by scaling with respect to the family of dilations {δλ}λ>0

and suitable rotation of the horizontal layer g1, without loss of generality we may
assume that

1. τ = 1.

2. p0 = e.

3. In the logarithmic coordinates, W1 = Ω ∩B(1) can be expressed as{
(x′, xm, y) | xm > ψ(x′, y)

}
(3.14)

with ψ(0, 0) = 0, ∇x′ψ(0, 0) = 0 and ‖ψ‖C1,Dini � 1.

(c) In view of the scaling we may assume that the data are sufficiently small
(satisfying (3.21)), so that we can employ lemma 3.2. Indeed, for every 0 < τ �
1 consider the domain Ωτ = δτ−1(Ω). In the logarithmic coordinates Ωτ can be
expressed as follows:

Ωτ = {(x′, xm, y2, y3, · · · yk) | (τx′, τxm, τ2y2, · · · τkyk) ∈ Ω}. (3.15)

Observe that ∂Ωτ is given by:

xm = ψτ (x′, y) = ψτ (x′, y2, · · · yk) :=
1
τ
ψ(τx′, τ2y2, · · · τkyk). (3.16)

We set

Wτ = Ωτ ∩B(τ−1), Tτ = ∂Ωτ ∩B(τ−1).
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Let us observe that:{∇x′ψτ (x′, y) = ∇x′ψ(τx′, τ2y2, · · · τkyk)
∇yj

ψτ (x′, y) = τ j−1∇yj
ψ(τx′, τ2y2, · · · τkyk), for j = 2 · · · k.

Thus, ∇ψτ (x′, y) → 〈∇x′ψ(0, 0), 0〉 as τ → 0. Therefore, by Taylor’s theorem we get

ψτ (x′, y) → 〈∇x′ψ(0, 0), x′〉 = 0 as τ → 0, (3.17)

consequently,

∂Ωτ ∩B(1) −→ {xm = 0} ∩B(1). (3.18)

It is also easy to see that for any (x′, y), (x̄′, ȳ) ∈ Ωτ ∩B(1), we have:

|∇ψτ (x′, y) −∇ψτ (x̄′, ȳ)|
� (1 + τ + τ2 + · · · + τk−1)ω∇ψ(τ |x′ − x̄′| + · · · + τk|yk − ȳk|) → 0,

(3.19)

as τ → 0. In addition, we also observe that uτ (p) = u(δτp) solves the following
problem:

m∑
i,j=1

X�
i (aij,ρXjuτ ) =

m∑
i=1

X�
i fi,τ + gτ in Wτ , uτ = hτ on Sτ , (3.20)

where

aij,τ (p) = aij(δτp), fi,τ (p) = τfi(δτp), gτ (p) = τ2g(δτp) hτ (p) = h(δτp).

Consequently, we have the following relations:

1. |aij,τ (p) − aij,τ (q)| = |aij(δτp) − aij(δτq)| � ωA(τd(p, q)) → 0 as τ → 0.

2. ‖fi,τ‖L∞(((Wτ ))) � τ‖fi‖L∞(((W1))).

3. |fi,τ (p) − fi,τ (q)| = τ |fi(δτp) − fi,(δτq)| � τωf (τd(p, q)) → 0 as τ → 0.

4. ‖gτ‖Lq(Wτ ) = τ2−Q
q ‖g‖Lq((W1)).

5. ‖∇H hτ‖L∞(Wτ ) � τ‖∇H hτ‖L∞(W1).

6. |∇H hτ (p) −∇H hτ (q)| � τω∇H h(τd(p, q)).

Remark 3.3. In view of (3.19) and the above relations, it is clear that by choosing
τ sufficiently small, say τ0, we can make all the data sufficiently small so that the
compactness lemma is applicable provided we consider uτ , aij,τ , fi,τ gτ , hτ and Ωτ
instead of corresponding terms u, ai,j , fi g, h and Ω. Therefore, without loss of
generality, from here onwards in the proof of this theorem we assume that

‖aij − aij(e)‖L∞(Ω)∩B(1) � δ̃, ‖ψ‖C1,Dini � δ̃, ‖h‖Γ0,α(S1) � δ̃, ‖fi‖L∞(W1) � δ̃

and ‖g‖Lq(W1) � δ̃. (3.21)

where δ̃ is given by (3.55).
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(2) Setting modulus of continuity. Let us first fix a constant α (see also
corollary 3.5) such that 0 < α < 1 and consider the function

ω̃1(σ) = max{ω∇ψ(σ), σα}. (3.22)

After normalization and using theorem 2.10, we can assume that ω̃1 is concave
and ω̃1(1) = 1. With the help of the above function we can define a new function
ω1(σ) = ω̃1(σα). Then this function becomes α-decreasing (see definition 2.11) and
ω1 is still Dini-continuous, see [1] for more details. Now, let us define

ω̃2(σ) = max{σα, ωf (σ)}. (3.23)

Again following the similar argument as above for ω1, without loss of generality we
can assume that ω̃2 concave and α-decreasing. Having defined ω̃2, let us define a
new function

ω2(σ) := max

{
CIIσ

(
1

|Ω ∩B(σ)|
∫

Ω∩B(σ)

|g|q
)1/q

, ω̃2(σ)

}
. (3.24)

Having defined ω1 and ω2, let us define another function as follows:

ω3(σl) :=
1
δ̃

l∑
j=0

ω1(σl−j)ω2(σj), (3.25)

where δ̃ is given by (3.21). Finally, let us set

ω(σl) := max{ω3(σl), σlα}. (3.26)

We will be using some of the properties of the modulus of continuous functions
defined above. So for the sake of completeness we list the required properties and
sketch their proofs here.

Lemma 3.4.

1. We have the following estimate:

∞∑
j=0

ω(σj) � Cb. (3.27)

2. For any fixed positive integer ν ∈ N, the following estimate holds:

σαω(σν) � ω(σν+1). (3.28)

3. ω1 is monotone.

4. 1 � ω(1).

5. It is also clear that

1
δ̃
ωfi

(σ) � ω(σ) and
1
δ̃
ω2(σν) � ω(σν). (3.29)
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6.

σα � ω(σ) (3.30)

7. ω is α-decreasing.

We prove (1), (7) and rest follows from the definition of the respective modulus of
continuity. For details, we refer to lemmas 4.5 and 4.7 in [1].

Proof of (1). In order to estimate the sum in the left-hand side of (3.27), we first
need to estimate the following sum:

∞∑
j=0

ω3(σj) =
1
δ̃

∞∑
j=0

j∑
i=0

ω1(σj−i)ω2(σi)

=
1
δ̃

( ∞∑
j=0

ω1(σj)

)( ∞∑
j=0

ω2(σj)

)
.

(3.31)

Thus, from (3.31), it is clear that, in order to estimate the above sum we need
to estimate

∑∞
j=1 ω1(σj) and

∑∞
j=1 ω2(σj). The sum involving the term ω1 is

finite because of the Dini-continuity of �ψ. More precisely, we have the following
estimate:

∞∑
j=1

ω1(σj) � 1
− log σ

∞∑
j=1

∫ σj−1

σj

ω1(t)
t

dt �
∫ 1

0

ω1(t)
t

dt <∞. (3.32)

Now, let us estimate the sum involving ω2. It is easy to see that there exists a
constant C such that

∞∑
j=1

ω2(σj) � C

∫ 2

0

(
1

|Ω ∩B(τ)|
∫

Ω∩B(τ)

|g(x)|qdx
)1/q

dτ +
∞∑
j=1

ω̃2(σj)

=: C Ĩgq(e, 2) +
∞∑
j=1

σαj +
∞∑
j=1

ωf (σj)

= I + II + III,

(3.33)

where Ĩgq is defined in (1.3). Note that I is finite because g ∈ L(Q, 1) (see
definition 2.6) so making use of the result in [16, equation (3.13)], we get

sup
p

Ĩgq(p, r) � 1
|B(1)|1/Q

∫ |B(r)|

0

[
g∗∗(τ)τ

q
Q

]1/q dτ
τ
. (3.34)

II is finite because it is geometric sum. While III is finite because f is Dini-
continuous as in (3.32) the sum containing ω1 is finite. Thus, by using (3.34) (with
f = g there), (3.33) and (3.32) in (3.31), we find that the sum in (3.31) is finite. �
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Proof of (7). From (3.26), if ω(σν) = σνα, then we get

σαω(σν) = σα(1+ν) � ω(σ1+ν). (3.35)

Now, suppose that ω(σν) = ω3(σν). In this case, let us proceed as follows:

σαω3(σν) =
1
δ̃

ν∑
j=0

σαω1(σν−j)ω2(σj) � 1
δ̃

ν∑
j=0

ω1(σ1+ν−j)ω2(σj)

× (since ω1(·) is α decreasing)

� ω3(σ1+ν) (by definition of ω3) � ω(σ1+ν) by (3.26). (3.36)

�

(3) Existence of the first-order Taylor polynomial at every p ∈ S1/2. The
aim of this section is to establish that u is Γ1(p) for every p ∈ S1/2. More precisely,
we want to establish the estimate (3.76), which will be accomplished in two sub-
steps. In the first sub-step, we show that for any p ∈ S1/2 there exists a sequence
of first-order polynomial approximating u near p. Later on in the next sub-step,
we show that the limiting polynomial will give the affine approximation to the
solution at p. (a) Let p ∈ S1/2 be a non-characteristic point. In view of translation
and rotation without loss of generality, we can assume that p = e ∈ S1/2. Also by
normalizing the solution if necessary, we can assume that ‖u‖L∞(W1) � 1. Denote
the constant CC∗ in the compactness lemma 3.2 by θ and fix σ > 0 such that

0 < σ < (4θ)−(1/1−α). (3.37)

We also let

ε =
σ1+α

2
. (3.38)

Suppose that δ(ε) be the number in the compactness lemma 3.2 corresponding to
ε defined above. Let us take another number δ̃ ∈ (0, δ) which will be fixed later.
In view of the remark 3.3, it is clear that by choosing the scaling parameter τ
sufficiently small we may assume that the smallness condition in (3.21) with such an
δ̃ can be ensured. For any κ ∈ N ∪ {0}, first we denote by Pκ the set of homogeneous
polynomials in G of homogeneous degree less or equal to κ. Now, we use induction
to show that there exists a sequence of polynomials {Lν}ν∈N∪{−1,0} in P1 such that
for every ν ∈ N ∪ {−1, 0} the following holds:

‖u− Lν‖L∞(Ω∩B(σν)) � σνω(σν), (3.39)

‖Lν+1 − Lν‖L∞(B(σν)) � Cσνω(σν), (3.40)

|Lν | � Cbθ (where Cb is from (3.27)), (3.41)

‖Lν ◦ δσν‖Γ0,1(∂Ωσν ∩B(1)) � δσνω(σν), (3.42)

where Ων = δν−1(Ω) is defined in (3.15). We prove the above assertion by math-
ematical induction. Let us set a−1 = a0 = 0 and by definning the corresponding
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polynomials L0 = L−1 = 0, we get:

‖u‖L∞(Ω∩B(1)) � 1 � w(1) by lemma 3.4(4). (3.43)

As we want to establish the continuity of the horizontal gradient at the boundary so
we consider the polynomial Lν of the form Lν(p) = lνxm, where (x′, xm, y) denotes
the logarithmic coordinates of p. Thus, the result follows for ν = −1, 0. Now, assume
that for some fixed ν ∈ N, the polynomials L1, L2, · · ·Lν have been constructed
satisfying (3.39)–(3.42). In order to complete the mathematical induction, we need
to construct Lν+1 such that (3.39)–(3.42) hold for ν + 1. This will be accomplished
by using the compactness lemma 3.2. Let us consider the following rescaled function:

ũ(p) :=
(u− Lν)(δσν (p))

σνω(σν)
, for p ∈ Ω̃ ∩B(1), (3.44)

where Ω̃ = Ωσν . It is easy to observe that ũ satisfies the following problem:⎧⎪⎪⎨
⎪⎪⎩

m∑
i,j=1

X�
i (aijXj ũ) =

m∑
i=1

X�
i

˜̃
fi + ˜̃g in Ω̃ ∩B(1),

ũ = ˜̃Φ on ∂Ω̃ ∩B(1),

where

˜̃
fi =

f̃i −
∑m
j ãijXjL̃ν

ω(σν)
, ˜̃g =

σν g̃

ω(σν)
, ˜̃Φ = − L̃ν

σνω(σν)
, (3.45)

and

ãij(p) = aij(δσνp), f̃i(p) = fi(δσνp), g̃(p) = g(δσνp), L̃ν(p) = Lν(δσνp). (3.46)

Since the result follows for ν, so in view of (3.39), we have

‖ũ‖L∞(Ω̃∩B(1)) � 1. (3.47)

It is also easy to observe the following points: since Lν is a polynomial of degree 1,
so we have

m∑
i,j=1

X�
i Xj(ã0

ijL̃ν) = 0, (3.48)

where a0
ij = aij(e) and ã0

ij = ãij(e) = aij(δσν (e)) = aij(e). Consequently,

X�
i (ãijXjL̃ν) =

m∑
i,j=1

X�
i

(
(ãij − ã0

ij)XjL̃ν
)

(3.49)

and also

X�
i (f̃i − f̃i(e)) = X�

i f̃i, (3.50)
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since X�
i f̃i(e) = 0. Therefore, we find that ũ satisfies the following equation:

⎧⎪⎪⎨
⎪⎪⎩

m∑
i,j=1

X�
i

(
ãijXj ũ

)
=

m∑
i=1

X�
i Fi + ˜̃g in Ω̃ ∩B(1),

ũ = ˜̃Φ on ∂Ω̃ ∩B(1),

where

Fi =
f̃i − f̃i(e) −

∑m
j=1(ãij − ã0

ij)XjL̃ν

ω(σν)
. (3.51)

Now, we show that all the hypotheses in the compactness lemma are satisfied.
Indeed, let us observe that:

ã0
ij = ãij(e) = aij(δσνe) = aij(e). (3.52)

Thus, we have

‖ãij − ã0
ij‖L∞(Ω̃∩B(1)) = ‖aij − a0

ij‖L∞(Ω∩B(σν)) � ωaij
(σν) � ωA(σν). (3.53)

Therefore, in view of remark 3.3 and the discussion in the beginning of this section,
we have

‖ãij − ã0
ij‖L∞(Ω̃∩B(1)) � δ̃.

It follows from (3.42) that

‖ ˜̃Φ‖Γ0,α(∂Ω̃∩B(1)) � δ. (3.54)

For any q ∈ W1, we have:

|Fi(q)| =
|f̃i(q) − f̃e −

∑m
j=1(ãij(q) − ã0

ij)XjL̃ν(q)|
ω(σν)

�
|fi(δσν (q)) − fi(e)| +

∑m
j=1

∣∣(ãij(q) − ã0
ij)XjL̃ν(q)

∣∣
ω(σν)

�
ωfi

(σν) + σν
∣∣(aim(σνq) − aim(e))lν

∣∣
ω(σν)

, where Lν(x) = lνxm.

� ωfi
(σν) + σνωA(σν)|lν |

ω(σν)
� (1 + Cbθ)δ̃,

where Cb and θ are from (3.27) and (3.37). In concluding the last line we have used
(3.29), that is, 1

δ̃
ωfi

(ν) � ω(σν), ωaim
(σν) � ωA(1) � δ̃, σνα � ω(σν) and α < 1.
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So, if we choose

δ̃ <
δ

1 + Cbθ
(3.55)

we get

‖Fi‖L∞(Ω̃∩B(1)) � δ. (3.56)

Since ∂Ω̃ ∩B(1) can be expressed as follows:

xm = ψσν (x′, y2, . . . , yk) =
ψ(σνx′, σ2νy2, . . . , σ

kνyk)
σν

. (3.57)

Let us denote ψσν by ψ̃. Therefore, for any p, p ∈ Ω̃ ∩B(1) with p =
(x′, xm, y2, . . . , yk) and p = (x′, xm, y2, . . . , yk), we have

|∇ψ̃(p) −∇ψ̃(p)| � (1 + τ + τ2 + . . . τk−1)

× ω∇ψ(τ |x′ − x′| + τ2|y2 − y2| + · · · τk|yk − yk|), (3.58)

where τ = σν . Since τ < 1 and ψ(0, 0) = 0 so by remark 3.3, we have

‖ψ̃‖C1,Dini � δ. (3.59)

Now, let us consider

|˜̃g‖Lq(Ω̃∩B(1)) =

(∫
Ω̃∩B(1)

|˜̃g(p)|qdq
)1/q

=
σν

ω(σν)

(∫
Ω̃∩B(1)

|g̃(p)|qdp
)1/q

� σν

ω(σν)

(
1

|Ω ∩B(σν)|
∫

Ω∩B(σν)

|g(p)|qdp
)1/q

� ω2(σν)
CIIω(σν)

� δ̃

CII
in view of (3.29).

Therefore, by the compactness lemma 3.2, there exists a v ∈ C2(B( 1
2 )) such that

‖v‖C2(B( 1
2 )) � θ and

‖ũ− v‖L∞(Ω̃∩B( 1
2 )) � ε. (3.60)

Moreover, since v = 0 on B(4/5) ∩ {xm = 0} so by Taylor’s formula and the fact
that ‖v‖C2(B(1/2)) � θ there exists l ∈ R with |l| � θ such that

‖v − lxm‖L∞(B(σ)) � θσ2 <
σ1+α

4
, (3.61)

where the last inequality follows from the choice of σ in (3.37). From (3.60), (3.61)
and the choice of ε (see (3.38)) along with the triangle inequality we get the following
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inequality:

‖ũ− lxm‖L∞(B(σ)) � σ1+α. (3.62)

Let us denote by L(p) = lxm ∈ P1 so (3.62) implies that

‖ũ− L‖L∞(Ω̃∩B(σ)) = sup
p∈Ω̃∩B(σ)

∣∣∣ (u− Lν)(δσν (p))
σνω(σν)

− L(p)
∣∣∣

=
1

σνω(σν)
‖u− Lν+1‖L∞(Ω∩B(σν+1)),

(3.63)

where

Lν+1(p) := Lν(p) + σνω(σν)L(δσ−ν (p)), for p ∈ Ω ∩B(σν+1). (3.64)

It follows from (3.62) and (3.63) that

‖u− Lν+1‖L∞(Ω∩B(σν+1)) � σν+1σαω(σν) � σν+1ω(σν+1) (by (3.28)). (3.65)

Also, from (3.64),

‖Lν+1 − Lν‖L∞(B(σν)) � Cσνω(σν), (3.66)

where C = ‖L‖L∞(B(1)). Moreover, from the expression of Lν+1 in terms of Lν as in
(3.64) we can infer by induction that in the logarithmic coordinates the polynomials
Lν are of the form

Lν(p) = lνxm, (3.67)

where

|lν | �
ν∑
j=0

θω(σj) � θ
∞∑
j=0

ω(σj) � Cbθ. (3.68)

Therefore, (3.41) follows. In order to prove (3.42), let us consider points p, p ∈ ∂Ω̃ ∩
B(1), where Ω̃ = Ωσ−(ν+1) = δσ−(ν+1)Ω. Let (x, y) and (x, y) denote the logarithmic
coordinates of p and p, respectively. With τ = σν+1, we have

xm =
ψ(τx′, τ2y2, · · · , τkyk)

τ
and xm =

ψ(τx′, τ2y2, · · · τkyk)
τ

. (3.69)

This gives

|Lν+1(δτp) − Lν+1(δτp)| = |lν+1||τxm − τxm|
= |lν+1|

∣∣ψ(τx′, τ2y2 · · · , τkyk) − ψ(τx′, τ2y2 · · · , τkyk)
∣∣

� Cbθ
∣∣ψ(τx′, τ2y2 · · · , τkyk) − ψ(τx′, τ2y2 · · · , τkyk)

∣∣
� Cbθ

∣∣ψ(τx′, τ2y2 · · · , τkyk) − ψ(τx′, τ2y2 · · · , τkyk)
∣∣

+ Cbθ
∣∣ψ(τx′, τ2y2 · · · , τkyk) − ψ(τx′, τ2y2 · · · , τkyk)

∣∣.
(3.70)
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In order to estimate the right-hand side of inequation (3.70), let us observe that
the following holds:

‖∇x′ψ‖L∞(B(s)) � δ̃ω∇ψ(s), (3.71)

because

‖ψ‖C1,Dini � δ̃, ψ(0, 0) = 0 and ∇x′ψ(0, 0) = 0. (3.72)

So, in view of (3.71) and Taylor’s formula, the first term of the rightmost extreme
inequality in (3.70) can be estimated as follows:∣∣ψ(τx′, τ2y2 · · · , τkyk) − ψ(τx′, τ2y2 · · · , τkyk)

∣∣ � δ̃τ |x′ − x′|ω∇ψ(τ)

� C2δ̃τω∇ψ(τ)d(p, p)

� C2δ̃τω(τ)d(p, p)

(3.73)

where, we use |x′ − x′| � C2d(p, p) and ω∇ψ(τ) � ω(τ). Now, by using the mean
value theorem, we can also estimate the second term of the rightmost extreme
inequality in (3.70) as follows:∣∣∣∣ψ(τx′, τ2y2 · · · , τkyk) − ψ(τx′, τ2y2 · · · , τkyk)

∣∣∣∣
� C3δ̃τ

1+αd(p, p) � C3τω(τ)δ̃d(p, p).

(3.74)

The first inequality follows since τ i � τ1+α for any 2 � i. In (3.74), we have used
τα � ω(τ) and τ < 1. Now, let us take C̃ = max{C2, C3} and choose

δ̃ = min

{
δ

2CbC̃θ
,

δ

Cb2m2θ

}
. (3.75)

Therefore, by the above choice of δ̃ and using the inequalities from (3.73), (3.74)
in (3.70), we get (3.42). (3-(b)) Affine approximation of the solution u on
the non-characteristic portion of the boundary. Now, we show that {Lν}
the sequence of polynomial converges to linear function L as ν → ∞. Moreover,
L is an affine approximation of solution to (1.1) on e ∈ ∂Ω. By translation, in a
similar way one can show that at each point of the non-characteristic portion of
the boundary, there is an affine approximation of solution to (1.1). More precisely,
given any non-characteristic point p0 ∈ ∂Ω there exists an affine function Lp0 such
that

|u(p) − Lp0(p)| � Caffd(p, p0)W (d(p, p0)). (3.76)

Moreover, W can be chosen to be α-decreasing in the sense of definition 2.11. Now,
let us try to prove (3.76) for p0 = e ∈ ∂Ω by assuming that all the previous step
holds at e. Let us take an arbitrary p ∈ ∂Ω ∩B(1) and choose an integer ν ∈ N

such that σν+1 � |p| � σν . Let us define L = limν→∞ Lν , where Lν is from above
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step and consider

|u(p) − L(p)| � |u(p) − Lν(p)| + |Lν(p) − L(p)|

� σνω(σν) +
∞∑
j=0

|Lν+j − Lν+j+1|Ω∩B(σν)

� σνω(σν) + Cbσ
ν

∞∑
j=ν

ω(σj).

(3.77)

The last step follows from (3.39) and (3.40). In order to estimate the sum in the
last line of (3.77), let us observe that for any fixed j ∈ N, it follows from (3.26) that

ω(σj) � 1
δ̃

j/2∑
l=0

ω1(σj−l)ω2(σl) +
1
δ̃

j∑
l=j/2

ω1(σj−l)ω2(σl) + σjα. (3.78)

Therefore, we have

∞∑
j=ν

ω(σj) � 1
δ̃

∞∑
j=ν

j/2∑
l=0

ω1(σj−l)ω2(σl) +
1
δ̃

∞∑
j=ν

j∑
l=j/2

ω1(σj−l)ω2(σl) +
∞∑
j=ν

σjα

� C

δ̃

∞∑
j=ν

ω1(σj/2) +
1
δ̃

∞∑
j=ν

j∑
j=l/2

ω1(σj−l)ω2(σl) +
∞∑
j=ν

σjα

= D + E + F.
(3.79)

In the second line we have used
∑∞
j=0 ω2(σj) � C, see (3.33). In order to estimate

D,E and F in (3.79), let us define

W1(ε) := sup
a�0

∫ a+ε1/2

a

ω1(s)
s

ds, W2(ε) := εα/2,

W3(ε) := sup
a�0

∫ a+ε1/2

a

[g∗∗(s)sq/Q]1/q
ds
s

and W4(ε) = sup
a�0

∫ a+ε1/2

a

ω̃2(s)
s

ds.

(3.80)
Estimate for D: We estimate D as follows:

D � C

∫ σν/2

0

ω1(s)
s

ds � CW1(σν) in view of definition of W1. (3.81)

Estimate for F: We use the standard formula for geometric series to get:

F � Cσνα = CW2(σ2ν) � CW2(σν) in view of definition of W2, (3.82)
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where the last inequality follows because σ < 1 and so σ2ν < σν .
Estimate for E: Let us observe

E � C

( ∞∑
j= ν

2

ω2(σj)

)( ∞∑
j=1

ω1(σj)

)
� C

( ∞∑
j=ν/2

ω2(σj)

)
(by (3.32))

=

[
CII

∞∑
j=ν/2

σj

(
1

|Ω ∩B(σj)|
∫

Ω∩B(σj)

|g|q
)1/q

+
∞∑

j=ν/2

ωf (σj)

︸ ︷︷ ︸
I

+
∞∑

j=ν/2

σjα

]

�
[
C̃

∫ σνQ/2

0

[
g∗∗(s)sq/Q

]1/q
ds
s︸ ︷︷ ︸

III

+
∞∑

j=ν/2

ω̃2(σj)

︸ ︷︷ ︸
II

+
∞∑

j=ν/2

σjα

]

� C1W3(σν)︸ ︷︷ ︸
IV

+C2W4(σν) + C3W2(σν), (3.83)

where we have used the fact that σ(Qν/2) � σ(ν/2) in deducing II from I (which
follows since σ < 1 and Q � 2) and ωf (s) � ω̃2(s) in deducing IV from III. From
(3.81)–(3.83) and the choice of |p| ≈ σν , we find that D,E and F → 0 as |p| → 0.
It is also clear from the definition of W2 that it is non-decreasing. Moreover, we
can also assume that each Wi is non-decreasing. Without loss of generality we can
assume that Wj(·), for j = 1 · · · 4, are α-decreasing in the sense of definition 2.11.
Indeed, let us first consider the case W1. From the fact that ω1(·) is a modulus
of continuity and concave, we have that W1(·) satisfies all the properties of the
definition 2.8 and hence is also a modulus of continuity. Using theorem 2.10, without
loss of generality, we can assume W1 is also concave. Now, we can replace W1(s) by
W1(sα), if necessary, we can assume W1(·) is α-decreasing. Since W4(·) is same as
W1 so the assertion for W4 also follows. Now, let us consider the case of W3. From
definition 2.8, it is clear that W3 is a modulus of continuity. Using theorem 2.10,
without loss of generality, we can assume W3(·) is also concave. Now, replacing
W3(s) by W3(sα), if necessary, we can assume that W3(·) is α-decreasing. Without
loss of generality, we will denote the changed Wi with the same notion and assume
that these are α-decreasing. With the above Wi(·) in the hand we define a new
α-decreasing function W (·) as follows:

W (s) := W1(s) +W2(s) +W3(s) +W4(s), (3.84)

which is again α-decreasing. So, in view of |p| ≈ σν , (3.79), (3.81)–(3.83) along with
(3.77), we have

|u(p) − L(p)| � CσνW (σν) = C|p|W (|p|), (3.85)

and this completes the proof of this step.
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3.2. Interior estimate

In the next two steps, we prove the continuity of the horizontal gradient on
the non-characteristic portion of the boundary and up to the boundary, respec-
tively. In the proof of these results we need a scale-invariant interior estimate, see
corollary 3.5. This estimate is a suitable adaptation of [4, corollary 3.2] to our set
up. Since the proof follows on the same line as of the boundary case, therefore, we
just sketch the proof instead of giving the complete details.

Corollary 3.5. Given 0 < τ � 1, let u ∈ L 1,2
loc (B(τ)) ∩ C(B(τ)) be a weak solu-

tion to

m∑
i,j=1

X�
i (aijXju) =

m∑
i=1

X�
i fi + g in B(τ), (3.86)

where f = (f1, . . . , fm) ∈ Γ0,Dini(B(τ)), aij ∈ Γ0,Dini(B(τ)), aij satisfies (1.2) and
g ∈ Lq(B(τ)) with 2q > Q. Then, u ∈ Γ1(B(τ/2)). Moreover, we have the following
estimates:

|∇H u(e)| �
C‖u‖L∞(B(τ))

τ

(
1 +W (τ)

)
, (3.87)

and

|∇H u(p) −∇H u(e)| � C‖u‖L∞(B(τ))

(
W (|p|) +

|p|α
τ1+α

)
, (3.88)

p ∈ B(τ/2), where C = C(G, λ, [aij ]Γ0,Dini ,Ω) > 0 and W (·) is a given by (3.84).

Proof. Given a function u let us define a new function v(p) = u(δτ (p)) for p ∈ B(1).
It is clear that v satisfies the following equation:

m∑
i,j=1

X�
i (aij,τXjv) =

m∑
i=1

X�
i fi,τ + gτ in B(1), (3.89)

where fi,τ (p) = τfi(δτ (p)) and gτ (p) = τ2g(δτ (p)). Without loss of generality, we
can assume that ‖v‖L∞(B(1)) � 1, since otherwise we consider the function v(p) =
u(δτ (p))/‖u‖L∞(B(τ)). In order to prove (3.87), it is sufficient to prove that there
exists a sequence of polynomials {Lν} of the form Lν(p) = aν + 〈bν , x〉, where
(x, y2, · · · , yk) denote the logarithmic coordinate of p, such that

‖v − Lν‖L∞(B(σν)) � σνω(σν) and |bν | � C,

|aν+1 − aν | � Cσνω(σν), |bν+1 − bν | � Cω(σν).
(3.90)

As in the proof of step (3), the above inequalities (3.90) follow by the induction argu-
ment. Here, we skip the details. Hence, using the estimates from before (adapted
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to the interior case), one sees that

|∇H v(e)| � C(1 +W (τ)). (3.91)

Therefore, scaling back to u we get

|∇H u(e)| �
C‖u‖L∞(B(τ))

τ

(
1 +W (τ)

)
. (3.92)

Analogously, we also get

|∇H v(p) −∇H v(e)| � C
(
τW (τ |p|) + |p|α), (3.93)

for all p ∈ B(1/2). Re-scaling the inequality (3.93) back to u, we get the following
inequality:

|∇H u(δτ (p)) −∇H u(e)| � C
‖u‖L∞(B(τ))

τ

(
τW (τ |p|) + |p|α),

that is,

|∇H u(δτ (p)) −∇H u(e)| � C‖u‖L∞(B(τ))

(
W (τ |p|) +

|p|α
τ

)
.

Now, putting back q = δτp we get

|∇H u(q) −∇H u(e)| � C‖u‖L∞(B(τ))

(
W (|q|) +

|q|α
τ1+α

)
,

which completes the proof of the corollary. �

Having finished the interior estimate, let us now move to the next step.
Step-(4) Continuity of the horizontal gradient on S1/2. In step (3), we have
shown that for any p ∈ S1/2, there is a Taylor polynomial Lp of u at p. In this step,
our objective is to show that for any (non-characteristic) points p1, p2 ∈ S1/2, the
following estimate holds:

|∇H Lp1 −∇H Lp2 | � C (W (d(p1, p2))), (3.94)

for some universal C, where W (.) is a modulus function defined by (3.84).

Proof of (3.94). Let t = d(p1, p2). We consider a ‘non-tangential’ point p3 ∈ W1 at
a (pseudo) distance from p1 comparable to t, i.e. let p3 be such that

d(p3, p1) ∼ t, d(p3, ∂Ω) ∼ t, (3.95)

where we have assumed d(p, ∂Ω) = inf
p′∈∂Ω

d(p, p′). Since S1 is a non-characteristic

C1,Dini portion of ∂Ω, therefore, it is possible to find such a point p3. Arguing as in
the proof of [15, theorem 7.6], at any scale t one can find a non-tangential pseudo-
ball from inside centred at p3. In fact, there exists a universal a > 0 sufficiently
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small (which can be seen to depend on the Lipschitz character of ∂Ω near the
non-characteristic portion S1) such that for some c0 universal one has

d(p, ∂Ω) � c0t for all p ∈ B(p3, at).

This allow us to apply step (3) above and conclude that there exists a universal
C > 0 such that for all p ∈ B(p3, at), we have:

|u(p) − Lp1(p)| � C tW (t), |u(p) − Lp2(p)| � CtW (t). (3.96)

Now, for 
 = 1, 2 we note that v� = u− Lp�
solves

m∑
i,j=1

X�
i (aijXjv�) =

m∑
i=1

X�
i F

�
i + g, (3.97)

where we have let

F �i
def
= fi −

m∑
j=1

aijXjLp�
.

Since fi and aij are Dini-continuous, therefore, without loss of generality we can
assume that F �i , are Dini-continuous. Also, from (3.96) we see that v� satisfies

||v�||L∞(B(p3,at)) � CtW (t), 
 = 1, 2. (3.98)

With (3.98) in hand, we can now use the interior estimate (3.87) in corollary 3.5 in
the pseudo-ball B(p3, at) to obtain the following estimate for 
 = 1, 2

|∇H v(p3)| = |∇H u(p3) −∇H Lp�
(p3)| � C

t
||u− Lp�

||L∞(B(p3,t))(1 +W (t))

� CW (t), (3.99)

by (3.96). From (3.99) and the triangle inequality, we obtain that the following
estimate holds:

|∇H Lp1 −∇H Lp2 | � CW (t) � C (W (d(p1, p2))),

where we have used t ∼ d(p1, p2), which is the desired estimate (3.94). �

Step-(5) Patching the interior and boundary estimate: In this step, we
prove that the horizontal gradient of a weak solution to (1.1) is Γ1 up to the
boundary. First, we observe that there is an ε > 0 sufficiently small such that for
any p ∈ Wε, there exists p0 ∈ S1/2 such that

d(p, p0) = d(p, ∂Ω). (3.100)

To finish the proof of theorem 1.3, we will show that for all p, p� ∈ Wε we have:

|∇H u(p) −∇H u(p�)| � C� (W (d(p, p�))) , (3.101)

for some universal constant C� > 0. Let p, p� ∈ Wε be the two given points. Let
p0, p

�
0 be the corresponding points in S1/2 for which (3.100) holds. Let us write
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δ(p) = d(p, ∂Ω) for p ∈ Ω. Without loss of generality we may assume that

δ(p) = min{δ(p), δ(p�)}. (3.102)

By step (3), there exists a first-order polynomial Lp0 such that for every q ∈ W1 we
have

|u(q) − Lp0(q)| � C2d(p0, q)W (d(p0, q)), (3.103)

where p0 is as in (3.100). Now, there are two possibilities:

(a) d(p, p�) � δ(p)/2;

(b) d(p, p�) > δ(p)/2.

(a) In view of (3.102), it is clear that B(p, δ(p)) ⊂ Ω. Now, let us consider the
function v := u− Lp0 , where p0 ∈ S1/2 is the point corresponding to p discussed
above and Lp0 is the polynomial from step-(3). Again it is easy to see that v
satisfies an equation of the type (3.97) in B(p, δ(p)) ⊂ Ω. Now, we can apply
corollary 3.5 (interior estimate) along with (3.103) to get the following estimate:

||v||L∞(B(p,δ(p)) � C̃2δ(p)W (δ(p)), (3.104)

for some C̃2 > 0. Since p� ∈ B(p, δ(p)/2), so by using the interior estimate (3.88)
(corollary 3.5) and (3.104), we find that for some C̃ depending also on C̃2 the
following estimates hold:

|∇H v(p) −∇H v(p�)| = |∇H u(p) −∇H u(p�)| (3.105)

� C

(
W (d(p, p�)) [||u− Lp0 ||L∞(B(p,δ(p)))] +

|d(p, p�)|α
δ(p)1+α

[||u− Lp0 ||L∞(B(p,δ(p)))]
)

� C

(
W (d(p, p�)) [δ(p)W (δ(p))] +

|d(p, p�)|α
δ(p)α

[W (δ(p))]
)
.

Now, α-decreasing property of W (·) implies

|d(p, p�)|α
δ(p)α

[W (δ(p))] � W (d(p, p�)). (3.106)

With the help of (3.106), (3.105) can be rewritten as follows:

|∇H u(p) −∇H u(p�)| � C(W (d(p, p�))),

which gives (3.101). (b) In this case, we have d(p, p�) > δ(p)/2 and from (3.100)
we get

d(p, p0) = d(p, ∂Ω) = δ(p) < 2d(p, p�). (3.107)

Let us recall the following pseudo-triangle inequality for d

d(p, p′) � C0(d(p, p′′) + d(p′′, p′)), (3.108)
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for all p, p′, p′′ ∈ G, and a universal C0 > 0. From (3.107) and (3.108), we get

d(p�, p0) � C0(d(p�, p) + d(p, p0)) � C0(d(p�, p) + 2d(p�, p)) = 3C0d(p, p�).
(3.109)

Since, we also have d(p�, p0) � d(p�, ∂Ω) = δ(p�), therefore, in view of (3.109), we
get

δ(p�) � 3C0d(p, p�). (3.110)

So by combining (3.108)–(3.110) we finally obtain

d(p0, p
�
0) � C0(d(p0, p

�) + d(p�, p�0)) = C0(d(p0, p
�) + δ(p�)) � 6C2

0d(p, p
�).
(3.111)

Let b be the universal constant in the existence of a non-tangential (pseudo)-ball
in the previous step-(4). Therefore, from step (3), we have the following estimates:

||u− Lp0 ||L∞(B(p,bδ(p)) � K̃0δ(p)W (δ(p)),

||u− Lp	
0
||L∞(B(p,bδ(p	)) � K̃0δ(p�)W (δ(p�)). (3.112)

Let us define v = u− Lp0 , and observe that v satisfies an equation of the type
(3.97). Therefore, arguing as in (3.96)–(3.99) and using the former estimate (3.112)
in B(p, bδ(p)) along with the interior estimate in corollary 3.5, we obtain that for
some universal constant C > 0, we have

|∇H u(p) −∇H Lp0 | = |∇H v(p)| � CW (δ(p)) � CW (d(p, p�)), (3.113)

where in the last inequality we have used δ(p) � 2d(p, p�). Arguing as before (3.113),
we obtain

|∇H u(p�) −∇H Lp	
0
| � CW (δ(p�)) � CW (d(p, p�)) (3.114)

by (3.110). Now, from (3.94) and (3.111) we have

|∇H Lp0 −∇H Lp	
0
| � CW (d(p0, p

�
0)) � CW (d(p, p�)). (3.115)

Applying the triangle inequality along with the estimates (3.113)–(3.115), we get

|∇H u(p) −∇H u(p�)| � C� (W (d(p, p�))) .

This completes the proof of theorem 1.3. �
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(ed. A. Belläıche and J.J.Risler). Progr. Math., vol. 144, pp. 1–78 (Basel: Birkhuser, 1996).
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