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Abstract We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a
product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups.
As an application we prove Olsson’s conjecture for all blocks with bicyclic defect groups.
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1. Introduction

Fusion systems occur in many areas of mathematics; for example, group theory, repre-
sentation theory and topology. This makes it interesting to classify fusion systems on
a given family of finite p-groups. In particular, it is of general interest to find so-called
exotic fusion systems, i.e. fusion systems that do not occur among finite groups (see,
for example, [24]). On the other hand, it is often useful to know which p-groups admit
only nilpotent (sometimes called trivial) fusion systems, i.e. fusion systems coming from
p-groups. One family of p-groups that comes quickly to mind is the class of metacyclic
p-groups. Here, for odd primes p it is known by the work of Stancu [30] that every fusion
system is controlled. This means that one can classify these fusion systems by looking at
p′-subgroups of the outer automorphism group and their action. In particular, only non-
exotic fusion systems occur. The fusion systems on metacyclic 2-groups were determined
in [28]. In this case the 2-groups of maximal class play an important role.

In order to generalize these results we consider p-groups P , which can be written in
the form P = 〈x〉〈y〉 for some x, y ∈ P . We call these groups bicyclic. For odd primes
p, Huppert showed [13] that the class of bicyclic groups coincides with the class of
metacyclic groups (see also [14, Satz III.11.5]). He also pointed out that this is not true
for p = 2. A prominent counterexample is the wreath product C4 � C2. So the aim of this
paper is to classify fusion systems on the wider class of bicyclic 2-groups.

Apart from Huppert’s work, there are many other contributions to the theory of bicyclic
2-groups (see, for example, [4,15–17]). One of these early results is the following: let P
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be a non-metacyclic, bicyclic 2-group. Then the commutator subgroup P ′ is abelian of
rank at most 2 and P/P ′ contains a cyclic maximal subgroup. Moreover, if P/P ′ has
exponent at least 8, then P ′ also contains a cyclic maximal subgroup.

Recently, Janko [18] presented all bicyclic 2-groups in terms of generators and rela-
tions using an equivalent property (see Theorem 3.1). However, the classification of the
bicyclic 2-groups is not complete, since in Janko’s presentation it is not clear if some
of the parameters give isomorphic groups. Even more recent results that deal with an
application to bipartite graphs can be found in [7].

If not explicitly stated otherwise, all groups in this paper are finite and all fusion sys-
tems are saturated. In the second section we prove some general results about fusion sys-
tems on p-groups that are more or less consequences of Alperin’s fusion theorem. After
that we consider fusion systems on bicyclic 2-groups. Here we obtain the unexpected
result that every fusion system on a bicyclic 2-group P is nilpotent unless P ′ is cyclic.
Conversely, every bicyclic non-metacyclic 2-group with cyclic commutator subgroup pro-
vides a non-nilpotent fusion system. All these groups are cyclic extensions of (possibly
abelian) dihedral or quaternion groups, and their number grows with the square of the
logarithm of their order. Moreover, it turns out that no exotic fusion system shows up
here (after the paper was written, Oliver [23] proved this for a larger class of p-groups).
In fact, we construct these fusion systems as fusion systems of cyclic extension of finite
groups of Lie type. The complete classification is given in Theorem 3.19. As a byproduct,
we also investigate the isomorphism problem of some of the groups in Janko’s paper [18].
At the end, as an application we prove that Olsson’s conjecture of block theory holds for
all blocks with bicyclic defect groups. Other conjectures for blocks with bicyclic defect
groups have been investigated in a separate paper [29].

Most of our notation is standard. A finite p-group P is r-generator if |P : Φ(P )| =
pr, i.e. P is generated by r elements, but not by fewer. Similarly, the p-rank of P is
the maximal rank of an abelian subgroup of P . We denote the members of the lower
central series of a p-group P by Ki(P ); in particular, K2(P ) = P ′. Moreover, Ωi(P ) =
〈x ∈ P : xpi

= 1〉 and �i(P ) := 〈xpi

: x ∈ P 〉 for i � 1. For convenience we write
Ω(P ) := Ω1(P ) and �(P ) := �1(P ). A cyclic group of order n ∈ N is denoted by Cn.
Moreover, we set Ck

n := Cn × · · · × Cn (k factors). In particular, groups of the form C2
n

are called homocyclic. A dihedral (respectively, semi-dihedral, quaternion) group of order
2n is denoted by D2n (respectively, SD2n , Q2n). A group G is minimal non-abelian if G

is non-abelian, but all proper subgroups of G are abelian. We say that a p-group P is
minimal non-abelian of type (r, s) if

P ∼= 〈x, y | xpr

= yps

= [x, y]p = [x, x, y] = [y, x, y] = 1〉, (1.1)

where [x, y] := xyx−1y−1 and [x, y, z] := [x, [y, z]] (see [25]). Moreover, we set xy :=
xyx−1 for elements x and y of a group. A group extension with normal subgroup N is
denoted by N.H. If the extension splits, we write N � H for the semi-direct product.
A central product is denoted by N ∗ H, where it will be always clear which subgroup of
Z(N) is merged with a subgroup of Z(H). For the language of fusion systems we refer
the reader to [5].
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2. General results

We begin with two elementary lemmas about minimal non-abelian groups.

Lemma 2.1. A finite p-group P is minimal non-abelian if and only if P is 2-generator
and |P ′| = p.

Proof. Assume first that P is minimal non-abelian. Choose two non-commuting ele-
ments x, y ∈ P . Then 〈x, y〉 is non-abelian and P = 〈x, y〉 is 2-generator. Every element
x ∈ P lies in a maximal subgroup M � P . Since M is abelian, M ⊆ CP (x). In particular,
all conjugacy classes of P have length at most p. By a result of Knoche (see [14, Auf-
gabe III.24 (b)]), we obtain |P ′| = p.

Next, suppose that P is 2-generator and that |P ′| = p. Then P ′ � Z(P ). For x, y ∈ P

we have [xp, y] = [x, y]p = 1. Hence, Φ(P ) = P ′〈xp : x ∈ P 〉 � Z(P ). For any maximal
subgroup M � P it follows that |M : Z(P )| � |M : Φ(P )| = p. Therefore, M is abelian
and P is minimal non-abelian. �

Lemma 2.2. Let P be a minimal non-abelian group of type (r, s). Then the following
hold:

(i) |P | = pr+s+1,

(ii) Φ(P ) = Z(P ) = 〈x2, y2, [x, y]〉 ∼= Cpr−1 × Cps−1 × Cp,

(iii) P ′ = 〈[x, y]〉 ∼= Cp.

Proof. The proof is straightforward. �

By Alperin’s fusion theorem, the morphisms of a fusion system F on a p-group P are
controlled by the F-essential subgroups of P .

Definition 2.3. A subgroup Q � P is called F-essential if the following properties
hold:

(i) Q is fully F-normalized, i.e. |NP (R)| � |NP (Q)| if R � P and Q are F-isomorphic;

(ii) Q is F-centric, i.e. CP (R) = Z(R) if R � P and Q are F-isomorphic;

(iii) OutF (Q) := AutF (Q)/Inn(Q) contains a strongly p-embedded subgroup H, i.e.
p | |H| < |OutF (Q)| and p � |H ∩ xH| for all x ∈ OutF (Q) \ H.

Notice that in [5] the first property is not required. It should be pointed out that
there are usually very few F-essential subgroups. In many cases there are none. For the
convenience of the reader we state a version of Alperin’s fusion theorem. For this, let E
be a set of representatives for the AutF (P )-conjugacy classes of F-essential subgroups
of P .

Theorem 2.4 (Alperin’s fusion theorem). Let F be a fusion system on a finite
p-group P . Then every isomorphism in F is a composition of finitely many isomorphisms
of the form φ : S → T such that S, T � Q ∈ E ∪{P}, and there exists ψ ∈ AutF (Q) with
ψ|S = φ. Moreover, if Q �= P , we may assume that ψ is a p-element.
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Proof. Apart from the last sentence, this is [5, Theorem 4.51]. Thus, for S ∈ E and φ ∈
AutF (S) we need to show that φ can be written as a composition of isomorphisms in the
stated form. As S < P , also S < NP (S), so by induction on |P : S| we can assume that the
claim is true for any F-automorphism of NP (S). Let K := 〈f ∈ AutF (S) p-element〉 �
AutF (S). Since AutP (S) is a Sylow p-subgroup of AutF (S), the Frattini argument implies
that AutF (S) = KNAutF (S)(AutP (S)). Hence, we can write φ = αβ such that α ∈ K

and β ∈ NAutF (S)(AutP (S)). With the notation of [5] we have Nβ = NP (S). Then β can
be extended to a morphism β′ on NP (S). Since S < NP (S), induction shows that β′ is
a composition of isomorphisms of the stated form and so are β = β′

|S and β−1. Thus,
after replacing φ by φ ◦ β−1, we may assume that φ ∈ K. Then it is obvious that φ is a
composition of isomorphisms as desired. �

We deduce some necessary conditions for a subgroup Q � P to be F-essential. Since
Q is F-centric, we have CP (Q) ⊆ Q. Since OutF (Q) contains a strongly p-embedded
subgroup, OutF (Q) is not a p-group and not a p′-group. Moreover, NP (Q)/Q is iso-
morphic to a Sylow p-subgroup of OutF (Q). This shows that Q < P . We also have
Op(AutF (Q)) = Inn(Q). Consider the canonical homomorphism

F : AutF (Q) → AutF (Q/Φ(Q)).

It is well known that KerF is a p-group. On the other hand, Inn(Q) acts trivially on the
abelian group Q/Φ(Q). This gives Ker F = Inn(Q) and OutF (Q) ∼= AutF (Q/Φ(Q)).

Lemma 2.5. Let F be a fusion system on a finite p-group P , and let Q � P be
F-essential. If |Q| � p2 or if Q is non-abelian of order p3, then P has maximal class.

Proof. This follows from [2, Propositions 1.8 and 10.17]. �

Now we turn to 2-groups.

Lemma 2.6. Let F be a fusion system on a finite 2-group P . If Q � P is an F-essential
r-generator subgroup with r � 3, then OutF (Q) ∼= S3 and |NP (Q) : Q| = 2.

Proof. By the remark above, we have OutF (Q) � GL(r, 2). Hence, we may assume
that Q is 3-generator. Then OutF (Q) � GL(3, 2). A computer calculation (which, of
course, can be carried out by hand as well) shows that S3 is the only subgroup of GL(3, 2)
(up to isomorphism) with a strongly 2-embedded subgroup. �

Proposition 2.7. Let F be a fusion system on a finite 2-group P . If Q � P is an
F-essential 2-generator subgroup, then one of the following holds:

(i) Q ∼= C2
2 and P ∈ {D2n , SD2n} for some n � 3,

(ii) Q ∼= Q8 and P ∈ {Q2n , SD2n} for some n � 3,

(iii) Q ∼= C2
2r and P ∼= C2r � C2 for some r � 2,

(iv) Q/Φ(Q′) K3(Q) is minimal non-abelian of type (r, r) for some r � 2.
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Proof. By Lemma 2.6, we have |NP (Q) : Q| = 2. If Q is metacyclic, then we have
Q ∼= Q8 or Q ∼= C2

2r for some r ∈ N by [22, Lemma 1]. Then for |Q| � 8 the result follows
from Lemma 2.5. Thus, assume that Q ∼= C2

2r for some r � 2. Here we argue along the
lines of [6, Lemma 2.4]. Let g ∈ NP (Q) \ Q. Since g acts non-trivially on Q/Φ(Q), we
may assume that gx = y and gy = x for Q = 〈x, y〉. We can write g2 = (xy)i for some
i ∈ Z, because g centralizes g2. Then an easy calculation shows that gx−i has order 2.
Hence, NP (Q) ∼= C2r � C2. Since Q is the only abelian maximal subgroup in NP (Q), we
also have Q � NP (NP (Q)), and NP (Q) = P follows.

Now consider the case in which Q is non-metacyclic. Then Q is also non-abelian. By [14,
Hilfssatz III.1.11 (c)] we know that Q′/K3(Q) is cyclic. In particular, Q′/Φ(Q′) K3(Q)
has order 2. By Lemma 2.1, Q̄ := Q/K3(Q)Φ(Q′) is minimal non-abelian. The case
Q̄ ∼= Q8 is impossible, because Q does not have maximal class (Taussky’s theorem;
see [14, Satz III.11.9]). Let α be an automorphism of Q of order 3. Since α acts non-
trivially on Q̄, [27, Lemma 2.2] implies that Q̄ is of type (r, r) for some r � 2. �

The fusion systems in the first three parts of Proposition 2.7 are determined in [6]
(see also Theorem 3.19). Notice that we have not proved that case (iv) actually occurs.
However, calculations with GAP [8] show that there are at least small examples, and it
is reasonable that many examples exist for arbitrary r � 2. However, we have no example
of case (iv) where Q � P .

Lemma 2.8. Let F be a fusion system on a finite 2-group P . If Q � P is an F-essential
3-generator subgroup, then NP (Q)/Φ(Q) ∼= D8 × C2 or NP (Q)/Φ(Q) is minimal non-
abelian of type (2, 1).

Proof. By Lemma 2.6, we have |NP (Q) : Q| = 2. Since NP (Q) acts non-trivially on
Q/Φ(Q), we conclude that NP (Q)/Φ(Q) is non-abelian. One can check that there are
only two non-abelian groups of order 16 with an elementary abelian subgroup of order 8.
The claim follows. �

3. Bicyclic 2-groups

Janko gave the following characterization of bicyclic 2-groups (see [18] or alternatively [3,
§ 87]). Notice that in [18] Janko defines commutators differently than we do.

Theorem 3.1 (Janko [18]). A non-metacyclic 2-group P is bicyclic if and only if P

is 2-generator and contains exactly one non-metacyclic maximal subgroup.

Using this, Janko classified all bicyclic 2-groups in terms of generators and relations.
However, it is not clear if different parameters in his paper give non-isomorphic groups.
In particular, the number of isomorphism types of bicyclic 2-groups is unknown.

As a corollary of Theorem 3.1, we obtain the structure of the automorphism group of
a bicyclic 2-group.

Proposition 3.2. Let P be a bicyclic 2-group such that Aut(P ) is not a 2-group.
Then P is homocyclic or a quaternion group of order 8. In particular, P is metacyclic.

https://doi.org/10.1017/S0013091515000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000334


994 B. Sambale

Proof. By [22, Lemma 1], we may assume that P is non-metacyclic. Since P is
2-generator, every non-trivial automorphism of odd order permutes the maximal sub-
groups of P transitively. By Theorem 3.1, such an automorphism cannot exist. �

As another corollary of Theorem 3.1 we see that every subgroup of a bicyclic 2-group
contains a metacyclic maximal subgroup. Since quotients of bicyclic groups are also
bicyclic, it follows that every section of a bicyclic 2-group is r-generator with r � 3.
This will be used in the following without any explicit comment. Since here and in the
following the arguments are very specific (i.e. not of general interest), we will sometimes
apply computer calculations in order to handle small cases.

Proposition 3.3. Let F be a fusion system on a bicyclic non-metacyclic 2-group P .
Suppose that P contains an F-essential 2-generator subgroup Q. Then Q ∼= C2

2m and
P ∼= C2m � C2 for some m � 2. Moreover, F = FP (C2

2m � S3) or F = FP (PSL(3, q)) for
some q ≡ 1 (mod 4).

Proof. By Proposition 2.7, it suffices for the first claim to show that Q is metacyclic,
since minimal non-abelian groups of type (m, m) for m � 2 are non-metacyclic (see [18,
Proposition 2.8]). Let M � P be a metacyclic maximal subgroup of P . We may assume
that Q � M . Then M ∩Q is a maximal subgroup of Q. Since Q admits an automorphism
of order 3, the maximal subgroups of Q are isomorphic. Now the first claim follows
from [18, Proposition 2.2]. The fusion systems on C2m �C2 are given by [6, Theorem 5.3].
Two of them have C2

2m as essential subgroup. �

It can be seen that the group C2m �C2 is in fact bicyclic. Observe that [6, Theorem 5.3]
provides another non-nilpotent fusion system on C2m � C2. For the rest of this paper
we consider the case in which the bicyclic non-metacyclic 2-group P has no F-essential
2-generator subgroup.

Definition 3.4. Two fusion systems F and F ′ on a finite p-group P are isomorphic
if there is an automorphism γ ∈ Aut(P ) such that

HomF ′(γ(S), γ(T )) = γ(HomF (S, T )) := {γ ◦ φ ◦ γ−1 : φ ∈ HomF (S, T )}

for all subgroups S, T � P .

Observe that if γ is an inner automorphism of P , then HomF (γ(S), γ(T )) =
γ(HomF (S, T )) for all S, T � P . In the following we consider fusion systems only up
to isomorphism.

Proposition 3.5. Let F be a non-nilpotent fusion system on a bicyclic 2-group P .
Suppose that P contains an elementary abelian normal subgroup of order 8. Then P is
minimal non-abelian of type (n, 1) for some n � 2 and C2n−1 ×C2

2 is the only F-essential
subgroup of P . Moreover, F = FP (A4 � C2n), where C2n acts as a transposition in
Aut(A4) ∼= S4 (thus, A4 � C2n is unique up to isomorphism).
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Proof. By hypothesis, P is non-metacyclic. Suppose first that |P ′| = 2. Then P is
minimal non-abelian of type (n, 1) for some n � 2 by [18, Theorem 4.1]. We show that
P contains exactly one F-essential subgroup Q. Since P is minimal non-abelian, every
self-centralizing subgroup is maximal. Moreover, Q is 3-generator by Proposition 3.3.
Hence, Q = 〈x2, y, z〉 ∼= C2n−1 ×C2

2 is the unique non-metacyclic maximal subgroup of P

(notation from (1.1)). We prove that F is unique up to isomorphism. By Alperin’s fusion
theorem and Proposition 3.2 it suffices to describe the action of AutF (Q) on Q. First of
all P = NP (Q) acts on only two 4-subgroups 〈y, z〉 and 〈x2n−1

y, z〉 of Q non-trivially.
Let α ∈ AutF (Q) of order 3. Then α is unique up to conjugation in Aut(Q) since 〈α〉 ∈
Syl3(Aut(Q)) and Aut(Q) is not 3-nilpotent. Hence, α acts on only one 4-subgroup R of
Q. Let β ∈ P/Q � AutF (Q). Then (αβ)(R) = (βα−1)(R) = β(R) = R since AutF (Q) ∼=
S3 by Lemma 2.6. Thus, AutF (Q) acts (non-trivially) on 〈y, z〉 or on 〈x2n−1

y, z〉. It can be
easily seen that the elements x and x2n−1

y satisfy the same relations as x and y. Hence,
after replacing y by x2n−1

y if necessary, we may assume that AutF (Q) acts on 〈y, z〉. Since
CQ(α) ∼= C2n−1 , we see that x2y /∈ CQ(α) or x2yz /∈ CQ(α). But then x2y, x2yz /∈ CQ(α),
because β(x2y) = x2yz. Hence, CQ(α) = CQ(AutF (Q)) ∈ {〈x2〉, 〈x2z〉}. However, xy

and y fulfil the same relations as x and y. Hence, after replacing x by xy if necessary,
we have CQ(AutF (Q)) = 〈x2〉. This determines the action of AutF (Q) on Q completely.
In particular, F is uniquely determined up to isomorphism. The group G = A4 � C2n as
described in the proposition has a minimal non-abelian Sylow 2-subgroup of type (n, 1).
Since A4 is not 2-nilpotent, FP (G) is not nilpotent. It follows that F = FP (G).

Now suppose that |P ′| > 2. Then [18, Theorem 4.2] describes the structure of
P . We use the notation of this theorem. Let Q < P be F-essential. By Proposi-
tion 3.3, Q is 3-generator. In particular, Q is contained in the unique non-metacyclic
maximal subgroup M := E〈a2〉 of P . Since 〈a4, u〉 = Z(M) < Q, it follows that
Q ∈ {〈a4, u, v〉, 〈a4, a2v, u〉, M}. In the first two cases we have P ′ = 〈u, z〉 ⊆ Q � P ,
which contradicts Lemma 2.6. Hence, Q = M . Every automorphism of M of order 3 acts
non-trivially on M/Φ(M), and thus freely on M/Z(M) ∼= C2

2. However, the subgroups
L � M such that Z(M) < L < M are non-isomorphic, which is a contradiction. �

It remains to deal with the case in which P does not contain an elementary abelian
normal subgroup of order 8. In particular, [18, Theorem 4.3] applies.

Lemma 3.6. Let F be a fusion system on a bicyclic 2-group P . If Q � P is F-essential
and 3-generator, then one of the following holds:

(i) Q � P and P/Φ(Q) is minimal non-abelian of type (2, 1),

(ii) Q � P and P/Φ(Q) ∼= D8 × C2.

Proof. By Lemma 2.8, we always have that NP (Q)/Φ(Q) is minimal non-abelian of
type (2, 1) or isomorphic to D8 × C2. In the NP (Q) = P case only the first possibility
can apply, since P is 2-generator. Now assume that Q � P and NP (Q)/Φ(Q) is minimal
non-abelian of type (2, 1). Take g ∈ NP (NP (Q)) \ NP (Q) such that g2 ∈ NP (Q). Then
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Q1 := gQ �= Q and Q1 ∩ Q is 〈g〉-invariant. Moreover, Φ(Q) ⊆ Φ(NP (Q)) ⊆ Q1 and

|Φ(Q) : Φ(Q) ∩ Φ(Q1)| = |Φ(Q1) : Φ(Q) ∩ Φ(Q1)|
= |Φ(Q1)Φ(Q) : Φ(Q)|
= |Φ(Q1/Φ(Q))|
= 2,

since Q1/Φ(Q) (�= Q/Φ(Q)) is abelian of rank 2. Hence, NP (Q)/Φ(Q)∩Φ(Q1) is a group
of order 32 and 2-generator with two distinct normal subgroups of order 2 such that
their quotients are isomorphic to the minimal non-abelian group of type (2, 1). It follows
that NP (Q)/Φ(Q) ∩ Φ(Q1) is the minimal non-abelian group of type (2, 2) (this can be
checked by computer). However, then all maximal subgroups of NP (Q)/Φ(Q)∩Φ(Q1) are
3-generator, which contradicts Theorem 3.1. Thus, we have proved that NP (Q)/Φ(Q) ∼=
D8 × C2. �

We are in a position to determine all F-essential 3-generator subgroups on a bicyclic
2-group. The following is a key result for the rest of the paper.

Proposition 3.7. Let F be a fusion system on a bicyclic 2-group P . If Q � P is
F-essential and 3-generator, then one of the following holds:

(i) Q ∼= C2m × C2
2 for some m � 1,

(ii) Q ∼= C2m × Q8 for some m � 1,

(iii) Q ∼= C2m ∗ Q8 for some m � 2.

Proof. If P contains an elementary abelian normal subgroup of order 8, then the
conclusion holds by Proposition 3.5. Hence, we will assume that there is no such normal
subgroup. Let α ∈ OutF (Q) be of order 3 (see Lemma 2.6). Since |Aut(Q)| is not divisible
by 9, we can regard α as an element of Aut(Q) by choosing a suitable preimage. We
apply [31, Theorem B] to the group Q (observe that the rank in [31] is the p-rank in
our setting). Let C := CQ(α). Suppose first that C has 2-rank 3, i.e. m(C) = 3 with the
notation of [31]. Since [Q, α] is generated by at most three elements, only the first part
of [31, Theorem B] can occur. In particular, Q ∼= Q8 ∗ C. However, this implies that Q

contains an r-generator subgroup with r � 4, which is a contradiction.
Now assume that m(C) = 2. Then [31, Theorem A] gives Q ∼= Q8 ∗ C. Let Z �

Z(Q8×C) = Φ(Q8)×Z(C) such that Q ∼= (Q8×C)/Z. Then |Z| = 2 and C is r-generator
with r � 2, since Q is 3-generator. Moreover, it follows that Ω(Z(C)) � Φ(C) (otherwise
Z � Φ(Q8)×Φ(C) = Φ(Q8 ×C)). By Burnside’s basis theorem, C ∼= C2 ×C2m is abelian
and Q ∼= Q8 × C2m for some m � 1.

Finally, suppose that m(C) � 1, i.e. C is cyclic or quaternion. By Theorem 3.1, Φ(P )
is metacyclic. Since Φ(Q) ⊆ Φ(P ) (see [14, Satz III.3.14]), Φ(Q) is also metacyclic.
According to the action of α on Φ(Q), one of the following holds (see Proposition 3.2):
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(a) Φ(Q) � C � Q,

(b) Φ(Q) ∼= Q8,

(c) Φ(Q) ∩ C = 1 and Φ(Q) ∼= C2
2n for some n � 1.

We handle these cases separately. First assume case (a). By [20, 8.2.2 (a)], we have
|Q : C| = 4 and α acts freely on Q/C. On the other hand, α acts trivially on Q/CQ(C) by
[20, 8.1.2 (b)]. This shows that Q = C CQ(C). If C is quaternion, then Q = Q2n ∗ CQ(C).
In particular, CQ(C) is r-generator with r � 2. Thus, a similar argument as above yields
Q ∼= Q2n × C2m . However, this is impossible here, because α would act trivially on
Q/Φ(Q) by the definition of C. Hence, C is cyclic and central of index 4 in Q. Since
Q is 3-generator, the exponents of C and Q coincide. If Q is abelian, we must have
Q ∼= C2m × C2

2 for some m � 1. Now assume that Q is non-abelian. Write C = 〈a〉 and
choose b, c ∈ Q such that Q/C = 〈bC, cC〉. Since 〈b〉C is abelian and non-cyclic, we may
assume that b2 = 1. Similarly, c2 = 1. Since Q is non-abelian, cb �= b. Let |C| = 2m,
where m � 2. Then a ∈ Z(Q) implies that cb = a2m−1

b. Thus, Q is uniquely determined
as

Q = 〈a, b, c | a2m

= b2 = c2 = [a, b] = [a, c] = 1, cb = a2m−1
b〉.

Since the group Q8 ∗ C2m ∼= D8 ∗ C2m has the same properties, we obtain Q ∼= Q8 ∗ C2m .
Next we will show that case (b) cannot occur for any finite group Q. On the one hand

we have Q/CQ(Φ(Q)) � Aut(Q8) ∼= S4. On the other hand,

C2
2

∼= Φ(Q) CQ(Φ(Q))/CQ(Φ(Q)) � Φ(Q/CQ(Φ(Q))),

which is a contradiction.
It remains to deal with case (c). Again we will derive a contradiction. By [31,

Theorem D], C �= 1 (U64 is 4-generator). The action of α on Q/Φ(Q) shows that
|P : CΦ(Q)| � 4. Now Φ(Q) ∩ C = 1 implies that |C| = 2. There exists an α-invariant
maximal subgroup N � Q. Thus, N ∩C ⊆ N ∩CΦ(Q)∩C = Φ(Q)∩C = 1. In particular,
we can apply [31, Theorem D], which gives N ∼= C2

2n+1 . Hence, Q ∼= N �C = C2
2n+1 �C2

(here � can also mean ×). Choose x, y ∈ N such that α(x) = y and α(y) = x−1y−1. Let
C = 〈c〉. Since Q is 3-generator, c acts trivially on N/Φ(N). Hence, we find integers i, j

such that zx = xiyj and i ≡ 1 (mod 2) and j ≡ 0 (mod 2). Then cy = α(zx) = x−jyi−j .
In particular, the isomorphism type of Q only depends on i, j. Since c2 = 1, we obtain
i2 −j2 ≡ 1 (mod 2n+1) and j(2i−j) ≡ 0 (mod 2n+1). We will show that j ≡ 0 (mod 2n).
This is true for n = 1. Thus, assume that n � 2. Then 1 − j2 ≡ i2 − j2 ≡ 1 (mod 8).
Therefore, j ≡ 0 (mod 4). Now j(2i − j) ≡ 0 (mod 2n+1) implies that j ≡ 0 (mod 2n).
In particular, i2 ≡ i2 − j2 ≡ 1 (mod 2n+1). Hence, we have two possibilities for j and at
most four possibilities for i. This gives at most eight isomorphism types for Q. Now we
split the proof into cases in which Q � P and Q � P .

Suppose that Q � P . Then |P : Q| = 2 by Lemma 2.6. Moreover, Ω(Q) � P . Since
P does not contain an elementary abelian normal subgroup of order 8, it follows that Q

contains more than seven involutions. With the notation above, let xrysc be an involution
such that xrys /∈ Ω(N). Then 1 = xryscxrysc = xr+ir−jsys+jr+(i−j)s and r(1+ i)− js ≡
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s(1 + i) + jr − js ≡ 0 (mod 2n+1). In the n = 1 case we have |P | = 64. Here it can be
shown by computation that P does not exist. Hence, suppose that n � 2 in the following.
Suppose furthermore that i ≡ 1 (mod 2n). Then we obtain 2r ≡ 2s ≡ 0 (mod 2n). Since
xrys /∈ Ω(N) we may assume that r ≡ ±2n−1 (mod 2n+1) (the s ≡ ±2n−1 (mod 2n+1)
case is similar). However, this leads to the contradiction 0 ≡ r(1+i)−js ≡ 2n (mod 2n+1).
This shows that i ≡ −1 (mod 2n). In particular, xi−1yi = cxx−1 = [c, x] ∈ Q′ and
x−jyi−j−1 = [c, y] ∈ Q′. This shows that C2

2n
∼= Q′ = Φ(Q). By Lemma 3.6, P/Φ(Q) is

minimal non-abelian of type (2, 1). Since Q′ ⊆ P ′, we conclude that P/P ′ ∼= C4×C2. Then
P is described in [18, Theorem 4.11]. In particular, Φ(P ) is abelian. Choose g ∈ P \ Q.
Then g acts non-trivially on N/Φ(Q), because α does as well. This shows that N � P

and C2
2

∼= N/Φ(Q) �= Z(P/Φ(Q)) = Φ(P/Φ(Q)). Hence, P/N is cyclic and Φ(P ) �= N .
Therefore, Q contains two abelian maximal subgroups and N ∩ Φ(P ) ⊆ Z(Q). Now a
result of Knoche (see [14, Aufgabe III.7.24]) gives the contradiction |Q′| = 2.

Now assume that Q � P . We will derive the contradiction that NP (Q) does not contain
a metacyclic maximal subgroup. By Lemma 3.6, NP (Q)/Φ(Q) ∼= D8 × C2. Choose g ∈
NP (Q) \ Q. Then g acts non-trivially on N/Φ(N), because α does as well. In particular,
N � NP (Q). This implies that

g2Φ(Q) ∈ �(NP (Q)/Φ(Q)) = (NP (Q)/Φ(Q))′ ⊆ N/Φ(Q)

and g2 ∈ N . As above, we may choose x, y ∈ N such that gx = y and gy = x. Since
g centralizes g2, we can write g2 = (xy)i for some i ∈ Z. Then gx−i has order 2.
Hence, we may assume that g2 = 1 and 〈N, g〉 ∼= C2n+1 � C2. In the n = 1 case we
have |NP (Q)| = 64. Here one can show by computation that NP (Q) does not exist.
Hence, n � 2. Let M be a metacyclic maximal subgroup of NP (Q). Since 〈Φ(Q), g〉 ∼=
C2n � C2 is not metacyclic, we conclude that g /∈ M . Let C = 〈c〉. Then 〈Φ(Q), c〉 is
3-generator. In particular, c /∈ M . This leaves two possibilities for M . It is easy to see
that 〈N, gc〉 ∼= C2n+1 � C2. Thus, M = 〈Φ(Q), xc, gc〉. Assume that (gc)2 ∈ Φ(Q). Then
it is easy to see that 〈Φ(Q), gc〉 ∼= C2n � C2 is not metacyclic. This contradiction shows
that (gc)2 ≡ xy (mod Φ(Q)). Moreover, c(gc)2c = (cg)2 = (gc)−2. Since N = 〈gc, α(gc)〉,
c acts by inversion on N . In particular, (xc)2 = 1. Hence, 〈Ω(Q), xc〉 ⊆ M is elementary
abelian of order 8, which is a contradiction. �

Let Q be one of the groups in Proposition 3.7. Then it can be seen that there is an
automorphism α ∈ Aut(Q) of order 3. Since the kernel of the canonical map Aut(Q) →
Aut(Q/Φ(Q)) ∼= GL(3, 2) is a 2-group, we have 〈α〉 ∈ Syl3(Aut(Q)). If α is not conjugate
to α−1 in Aut(Q), then Burnside’s transfer theorem implies that Aut(Q) is 3-nilpotent.
But then OutF (Q) ∼= S3 would also be 3-nilpotent, which is not the case. Hence, α is
unique up to conjugation in Aut(Q). In particular, the isomorphism type of CQ(α) is
uniquely determined.

Proposition 3.8. Let F be a fusion system on a bicyclic 2-group P . If Q � P is
F-essential and 3-generator, then one of the following holds.
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(i) P is minimal non-abelian of type (n, 1) for some n � 2.

(ii) P ∼= Q8 � C2n for some n � 2. Here C2n acts as a transposition in Aut(Q8) ∼= S4.

(iii) P ∼= Q8.C2n for some n � 2.

In particular, P ′ is cyclic.

Proof. We use Proposition 3.7. If Q is abelian, then C3
2

∼= Ω(Q) � P . By Propo-
sition 3.5, P is minimal non-abelian of type (n, 1) for some n � 2. Now assume that
Q ∼= Q8 × C2n−1 for some n � 2. We write Q = 〈x, y, z〉 such that 〈x, y〉 ∼= Q8 and
〈z〉 ∼= C2n−1 . Moreover, choose g ∈ P \ Q. Let α ∈ OutF (Q) as usual. Then α acts
non-trivially on Q/Z(Q) ∼= C2

2 and so does g. Hence, we may assume that gx = y. Since
g2 ∈ Q, it follows that gy = g2

x ∈ {x, x−1}. By replacing g with gx if necessary, we
may assume that gy = x. Hence, g2 ∈ Z(Q). By Lemma 3.6, P/Φ(Q) is minimal non-
abelian of type (2, 1). In particular, Q/Φ(Q) = Ω(P/Φ(Q)). This gives g2 /∈ Φ(Q) and
g2 ∈ z〈x2, z2〉. Since g(x2) = x2, we obtain gz = z. After replacing g with gzi for a
suitable integer i, it turns out that g2 ∈ {z, zx2}. In the latter case we replace z by x2z

and obtain g2 = z. Hence, P = Q8 � C2n as stated. Moreover, g acts on 〈x, y〉 as an
involution in Aut(Q8) ∼= S4. Since an involution that is a square in Aut(Q8) cannot act
non-trivially on Q8/Φ(Q8), g must correspond to a transposition in S4. This describes P

up to isomorphism. Since P = 〈gx〉〈g〉, P is bicyclic. In particular, P ′ ⊆ 〈x, y〉 is abelian
and thus cyclic.

Finally, suppose that Q = Q8 ∗ C2n for some n � 2. We use the same notation as
before. In particular, x2 = z2n−1

. The same arguments as above give g2 = z and

P = 〈x, y, g | x4 = 1, x2 = y2 = g2n

, yx = x−1, gx = y, gy = x〉 ∼= Q8.C2n .

Then P = 〈gx〉〈g〉 is bicyclic and P ′ cyclic. �

We will construct the groups and fusion systems in the previous proposition system-
atically in our main theorem, Theorem 3.19.

Let F be a fusion system on a 2-group P . Following [5, Definition 4.26], every subgroup
Q � Z(P ) gives rise to another fusion system CF (Q) on P .

Definition 3.9. The largest subgroup Q � Z(P ) such that CF (Q) = F is called the
centre Z(F) of F . Accordingly, we say that F is centre free if Z(F) = 1.

The following result is useful to reduce the search for essential subgroups. Notice that
the centre-free fusion systems on metacyclic 2-groups are determined in [6].

Proposition 3.10. Let F be a centre-free fusion system on a bicyclic non-metacyclic
2-group P . Then there exists an abelian F-essential subgroup Q � P isomorphic to C2

2m

or to C2m × C2
2 for some m � 1.

Proof. By way of contradiction assume that all F-essential subgroups are isomorphic
to C2m ×Q8 or to C2m ∗ Q8 (use Propositions 3.3 and 3.7). Let z ∈ Z(P ) be an involution.
Since Z(F) = 1, Alperin’s fusion theorem in connection with Theorem 3.1 implies that
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there exists an F-essential subgroup Q � P such that z ∈ Z(Q). Moreover, there is an
automorphism α ∈ Aut(Q) such that α(z) �= z. Of course, α restricts to an automorphism
of Z(Q). In the Q ∼= C2m ∗ Q8 case this is not possible, since Z(Q) is cyclic. Now assume
that Q ∼= C2m × Q8. Observe that we can assume that α has order 3, because the
automorphisms in AutP (Q) fix z anyway. But then α acts trivially on Q′ and on Ω(Q)/Q′,
and thus also on Ω(Q) � z, which is a contradiction. �

3.1. The P ′ non-cyclic case

The aim of this section is to prove that there are only nilpotent fusion systems provided
that P ′ is non-cyclic. We do this using a case-by-case analysis corresponding to the
theorems in [18]. By Proposition 3.8, we may assume that there are no normal F-essential
subgroups.

Let F be a non-nilpotent fusion system on the bicyclic 2-group P . Assume for the
moment that P ′ ∼= C2

2. Then P does not contain an elementary abelian subgroup of
order 8 by Proposition 3.5. Hence, [18, Theorem 4.6] shows that P is unique of order 32.
In this case we can prove with a computer that there are no candidates for F-essential
subgroups. Hence, we may assume that Φ(P ′) �= 1 in the following.

We introduce some notation from [18, Theorem 4.3] that will be used for the rest of
the paper:

Φ(P ) = P ′〈a2〉 = 〈a2〉〈v〉, M = E〈a2〉 = 〈x〉〈a2〉〈v〉.

Here, M is the unique non-metacyclic maximal subgroup of P .

Proposition 3.11. Let P be a bicyclic 2-group such that P ′ is non-cyclic and P/Φ(P ′)
contains no elementary abelian normal subgroup of order 8. Then every fusion system
on P is nilpotent.

Proof. The Φ(P ′) = 1 case was already handled, so we may assume that Φ(P ′) �= 1.
In particular, [18, Theorem 4.7] applies. Let F be a non-nilpotent fusion system on
P . Assume first that there exists an F-essential subgroup Q ∈ {C2m × C2

2, C2m ∗ Q8 ∼=
C2m ∗ D8} (the letter m is not used in [18, Theorem 4.7]). Theorem 4.7 of [18] also shows
that Φ(P ) is metacyclic and abelian. Since Q contains more than three involutions, there
is an involution β ∈ M \ Φ(P ). Hence, we can write β = xa2ivj for some i, j ∈ Z. Now,
using [18, Theorem 4.7, case (a)] we derive the following contradiction:

β2 = xa2ivjxa2ivj = xa2ixa2i = x2(av)2ia2i = x2a2iuizξia2i = uz(η+ξ)i �= 1.

Similarly, in case (b) we obtain

β2 = xa2ivjxa2ivj = xa2ixzja2i = x2(av)2izja2i = x2a2iuiv2n−2izξizja2i

= x2v2n−2izηiv2n−2izξizj

= uzi(1+η+ξ)+j

�= 1.
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Next assume that there is an F-essential subgroup C2m × Q8 ∼= Q � P for some
m � 1. Suppose that m � 3 for the moment. Since Q ⊆ M , it is easy to see that
M \ Φ(P ) contains an element of order at least 8. However, we have seen above that
this is impossible. Hence, m � 2. By Proposition 3.8, Q is not normal in P . Since
Q < NM (Q) � NP (Q), we have NP (Q) � M = NP (Q)Φ(P ). A computer calculation
shows that NP (Q) ∼= Q16 × C2m . Thus, NP (Q) ∩ Φ(P ) ∼= C8 × C2m , because Φ(P ) is
abelian. Hence, there exist β = xa2i

yj ∈ NP (Q)\Φ(P ) ⊆ M\Φ(P ) and δ ∈ NP (Q)∩Φ(P )
such that β2 = δ4. As above, we always have β2 ∈ u〈z〉. However, in both case (a) and case
(b) we have δ4 ∈ �2(Φ(P )) ∩ Ω(Φ(P )) = 〈a8〉〈v2n−1〉 = 〈z〉, which is a contradiction. �

If P ′ is cyclic, P/Φ(P ′) is minimal non-abelian, and thus contains an elementary
abelian normal subgroup of order 8. Hence, it remains to deal with the case in which
P/Φ(P ′) has a normal subgroup isomorphic to C3

2.
Our next goal is to show that P ′ requires a cyclic maximal subgroup in order to admit

a non-nilpotent fusion system.

Proposition 3.12. Let P be a bicyclic 2-group such that P ′ ∼= C2r × C2r+s for some
r � 2 and s ∈ {1, 2}. Then every fusion system on P is nilpotent.

Proof. We apply [18, Theorems 4.11 and 4.12] simultaneously. As usual, assume first
that P contains an F-essential subgroup Q ∼= C2m × C2

2 for some m � 1 (m is not used
in the statement of [18, Theorem 4.11]). Then Q ∩ Φ(P ) ∼= C2m × C2, since Φ(P ) is
abelian and metacyclic. We choose β := xa2ivj ∈ Q \ Φ(P ). In the m � 2 case, β fixes
an element of order 4 in Q ∩ Φ(P ). Since Φ(P ) is abelian, all elements of Φ(P ) of order
4 are contained in

Ω2(Φ(P )) =

{
〈b2r−2

, v2r−1〉 if Theorem 4.11 applies,

〈b2r−1
, v2r−1〉 if Theorem 4.12 applies.

However, the relations in [18, Theorem 4.11 and 4.12] show that x, and thus β, acts by
inversion on Ω2(Φ(P )). Hence, m = 1. Then NP (Q)∩Φ(P ) ∼= C4 ×C2 by Lemma 3.6. In
particular, there exists an element ρ ∈ Ω2(Φ(P ))\(NP (Q)∩Φ(P )). Then ρβ = βρ−2 ∈ Q.
Since Q = 〈β〉(Q ∩ Φ(P )), we derive the contradiction ρ ∈ NP (Q).

Next suppose that Q ∼= C2m × Q8 for some m � 1. Here we can repeat the argument
word for word. Finally, the case Q ∼= C2m ∗ Q8 cannot occur, since Z(P ) is non-cyclic. �

The next lemma is useful in a more general context.

Lemma 3.13. Let P be a metacyclic 2-group which does not have maximal class.
Then every homocyclic subgroup of P is given by Ωi(P ) for some i � 0.

Proof. Let C2
2k

∼= Q � P with k ∈ N. We argue by induction on k. By [2, Exer-
cise 1.85], C2

2
∼= Ω(P ). Hence, we may assume that k � 2. By induction it suf-

fices to show that P/Ω(P ) does not have maximal class. Let us assume the contrary.
Since P/Ω(P ) contains more than one involution, P/Ω(P ) is a dihedral group or a
semi-dihedral group. Let 〈x〉 � P such that P/〈x〉 is cyclic. Then 〈x〉Ω(P )/Ω(P ) and
(P/Ω(P ))/(〈x〉Ω(P )/Ω(P )) ∼= P/〈x〉Ω(P ) are also cyclic. This yields |P/〈x〉Ω(P )| = 2
and |P/〈x〉| = 4. Since P/Ω(P ) is a dihedral group or a semi-dihedral group, there exists
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an element y ∈ P such that the following hold:

(i) P/Ω(P ) = 〈xΩ(P ), yΩ(P )〉,

(ii) y2 ∈ Ω(P ),

(iii) yx ≡ x−1 (mod Ω(P )) or yx ≡ x−1+2n−2
(mod Ω(P )) with |P/Ω(P )| = 2n and

without loss of generality, n � 4.

Since P = 〈x, y〉Ω(P ) ⊆ 〈x, y〉Φ(P ) = 〈x, y〉, we have shown that P is the semi-direct
product of 〈x〉 with 〈y〉. Moreover,

yx ∈ {x−1, x−1+2n−1
, x−1+2n−2

, x−1−2n−2}.

Since Q∩ 〈x〉 and Q/Q∩ 〈x〉 ∼= Q〈x〉/〈x〉 are cyclic, we obtain k = 2 and x2n−2 ∈ Q. But
then Q cannot be abelian, since n � 4, which is a contradiction. �

Note that, in general, for a metacyclic 2-group P that does not have maximal class
it can happen that P/Ω(P ) has maximal class (e.g. P ∼= C8 � C4, where C4 acts by
inversion on C8).

Proposition 3.14. Let P be a bicyclic 2-group such that P ′ ∼= C2
2r for some r � 2.

Then every fusion system on P is nilpotent.

Proof. We apply [18, Theorem 4.9]. The general argument is quite similar to Propo-
sition 3.12, but we need more details. Assume first that Q ∼= C2m × C2

2 for some m � 1
is F-essential in P (m is not used in the statement of [18, Theorem 4.9]). Since Φ(P )
is 2-generator, we obtain Q ∩ Φ(P ) ∼= C2m × C2. We choose β := xa2ivj ∈ Q \ Φ(P ).
Suppose first that m � 2. Then β fixes an element δ ∈ Q ∩ Φ(P ) of order 4. Now Φ(P )
is a metacyclic group with Ω(Φ(P )) ∼= C2

2 and C2
4

∼= Ω2(P ′) � Φ(P ). So Lemma 3.13
implies that Ω2(Φ(P )) = 〈v2r−2

, b2r−2〉 ∼= C2
4. In the r = 2 case we have |P | = 27, and

the claim follows by computational verification. Thus, we may assume that r � 3. Then
x−1v2r−2

x = v−2r−2
. Moreover, Ω2(Φ(P )) ⊆ �(Φ(P )) = Φ(Φ(P )) ⊆ Z(Φ(P )), since Φ(P )

is abelian or minimal non-abelian depending on η. This shows that β acts by inversion
on Ω2(Φ(P )), and thus cannot fix δ. It follows that m = 1. Then |NP (Q)∩Φ(P )| � 8. In
particular, there exists an element ρ ∈ Ω2(Φ(P ))\(NP (Q)∩Φ(P )). Then ρβ = βρ−2 ∈ Q.
Since Q = 〈β〉(Q ∩ Φ(P )), we derive the contradiction ρ ∈ NP (Q).

Now assume that Q ∼= C2m × Q8 for some m � 1. We choose again β := xa2ivj ∈
Q \ Φ(P ). If Φ(P ) contains a subgroup isomorphic to Q8, then Ω2(Φ(P )) cannot be
abelian. So, in the m = 1 case we have NP (Q) ∩ Φ(P ) ∼= C8 × C2. Then the argument
above reveals a contradiction (using r � 3). Now let m � 2. We write Q = 〈q1〉×〈q2, q3〉,
where 〈q1〉 ∼= C2m and 〈q2, q3〉 ∼= Q8. In the q1 /∈ Φ(P ) case we can choose β = q1.
In any case, it follows that β fixes an element of order 4 in Q ∩ Φ(P ). This leads to a
contradiction as above.

Finally, suppose that Q ∼= C2m ∗ Q8 ∼= C2m ∗ D8 for some m � 2. Here we can choose
β ∈ Q \ Φ(P ) as an involution. Then there is always an element of order 4 in Q ∩ Φ(P )
that is fixed by β. The contradiction follows as before. �
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Proposition 3.15. Let P be a bicyclic 2-group such that P ′ ∼= C2r ×C2r+s+1 for some
r, s � 2. Then every fusion system on P is nilpotent.

Proof. Here [18, Theorem 4.13] applies. The proof is a combination of the proofs
of Propositions 3.12 and 3.14. In fact, for Theorem 4.13 (a) we can copy the proof
of Proposition 3.12. Similarly, the arguments of Proposition 3.14 remain correct for
case (b). Here observe that there is no need to discuss the r = 2 case separately, since
x−1v2r+s−1

x = v−2r+s−1
. �

Now it suffices to consider the case in which P ′ contains a cyclic maximal subgroup. If
P ′ is non-cyclic, [18, Theorem 4.8] applies. This case is more complicated, since |P/P ′|
is not bounded anymore.

Proposition 3.16. Let P be a bicyclic 2-group such that P ′ ∼= C2n × C2 for some
n � 2, and P/Φ(P ′) has a normal elementary abelian subgroup of order 8. Then every
fusion system on P is nilpotent.

Proof. There are two possibilities for P according to if Z(P ) is cyclic or not. We
handle them separately.

Case 1 (Z(P ) non-cyclic). Then a2m

= uzη. Moreover,

a−2va2 = a−1vuv2+4sa = a−1uv3+4sa = u(uv3+4s)3+4s = v(3+4s)2 ∈ v〈v8〉. (3.1)

Using this we see that 〈a2m−1
, v2n−2〉 ∼= C2

4. Thus, Lemma 3.13 implies that Ω2(Φ(P )) =
〈a2m−1

, v2n−2〉. As usual we assume that there is an F-essential subgroup Q ∼= C2t × C2
2

for some t � 1. Then Q ∩ Φ(P ) ∼= C2t × C2, since Φ(P ) is 2-generator. For t = 1 we
obtain Q ∩ Φ(P ) = Ω(Φ(P )) ⊆ Z(P ). Write P̄ := P/Ω(Φ(P )), Q̄ := Q/Ω(Φ(P )) and
so on. Then CP̄ (Q̄) ⊆ NP (Q). So, by [14, Satz III.14.23], P̄ has maximal class. Hence,
P ′ = Φ(P ) and m = 1, which is a contradiction. Thus, we may assume that t � 2.
Then as usual we can find an element δ ∈ Q ∩ Φ(P ) of order 4 that is fixed by some
involution β ∈ Q\Φ(P ). We write δ = a2m−1d1v2n−2d2 and β = xvja2i. Assume first that
2 | d1. Then 2 � d2. Since a2m

v2n−2 ∈ Z(Φ(P )), it follows that δ = βδ = xδ = δ−1. This
contradiction shows that 2 � d1. After replacing δ with its inverse if necessary, we can
assume that d1 = 1. Now we consider β. We have

1 = β2 = (xvja2i)2 ≡ x2v2ja4i ≡ a4i (mod P ′).

Since

2n+m = |Φ(P )| =
|〈a2〉| |P ′|
|〈a2〉 ∩ P ′| =

2n+m+1

|〈a2〉 ∩ P ′| ,

we get 2m−2 | i. In the i = 2m−2 case we obtain the contradiction

〈z〉 � x2 = xvj−2n−2d2xvj−2n−2d2 = (βδ−1)2 = δ2 ∈ u〈z〉.

Hence, 2m−1 | i. So, after multiplying β by δ2 if necessary, we may assume that i = 0,
i.e. β = xvj . Then 1 = xvjxvj = x2. Conjugation with a−1 gives β = a−1xvja =
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xv−1a−1vja = xujv(3+4s)j−1. Since u ∈ Q, we may assume that β = xv2j . After we
conjugate Q with vj , we even obtain β = x. Since x(a2vi)x−1 = a2uv4(1+s)−i, no element
of the form a2vi is fixed by x. On the other hand,

x(a4vi)x−1 = (a2uv4(1+s))2v−i = a4v4(1+s)(3+4s)2+4(1+s)−i.

This shows that there is an i such that a4vi =: λ is fixed by x. Assume that there is
another element λ1 := a4vj that is also fixed by x. Then λ−1λ1 = vj−i ∈ 〈z〉. This holds
in a similar way for elements containing higher powers of a. In particular, u = a2m

zη ∈
〈λ, z〉. Recall that Φ(P ) = 〈v〉�〈a2〉. This shows that CΦ(P )(x) = 〈λ〉×〈z〉 ∼= C2m−1 ×C2.
Since Q∩Φ(P ) ⊆ CΦ(P )(x) and Q = (Q∩Φ(P ))〈x〉, we deduce that CΦ(P )(x) ⊆ CP (Q) ⊆
Q. Moreover, Q ∩ Φ(P ) = CΦ(P )(x) and t = m − 1. Therefore, Q = 〈λ, x, z〉. The
calculation above shows that there is an element μ := a2vj such that μx = ux ∈ Q. Now
μ2 ∈ CΦ(P )(x) implies that CΦ(P )(x) = 〈μ2, z〉 and μ ∈ NP (Q) = Q〈v2n−2〉, which is a
contradiction.

Now assume that Q ∼= C2t × Q8 for some t � 1. Since Φ(P ) does not contain a
subgroup isomorphic to Q8, we see that Ω(Φ(P )) ⊆ Q. First assume that t = 1. Then we
look again at the quotients P̄ := P/Ω(Φ(P )) and Q̄ := Q/Ω(Φ(P )) ∼= C2

2. Since NP (Q)
acts non-trivially on Q̄, we obtain CP̄ (Q̄) ⊆ Q̄. In particular, [2, Proposition 1.8] implies
that P̄ has maximal class. This leads to a contradiction, as in the first part of the proof.
Thus, we may assume that t � 2 from now on. Then Ω2(Φ(P )) ⊆ Q. Since Q contains
more elements of order 4 than Φ(P ), we can choose β ∈ Q \ Φ(P ) of order 4. Write
β = xa2ivj . Then β2 ∈ Ω(Φ(P )) ⊆ P ′. So the same discussion as above shows that we
can assume that β = x. In particular, |〈x〉| = 4. Since CΦ(P )(x) is abelian, λ centralizes
(CQ(x) ∩ Φ(P ))〈x〉〈v2n−2〉 = CQ(x)〈v2n−2〉 = Q. This shows that λ ∈ Q and t = m − 1
again. More precisely we have Q = 〈λ〉× 〈v2n−2

, x〉. Equation (3.1) shows that v2n−3
still

lies in the centre of Φ(P ). It follows easily that NP (Q) = Q〈v2n−3〉. However, as above
we also have that μ ∈ NP (Q), which is a contradiction.

Finally, the Q ∼= C2t ∗ Q8 case cannot occur, since Z(P ) is non-cyclic.

Case 2 (Z(P ) cyclic). Here we have a2m

= uv2n−2
zη, n � m + 2 � 4 and 1 + s �≡ 0

(mod 2n−3). Again we begin with Q ∼= C2t ×C2
2 for some t � 1. By [18, Theorem 4.3 (b)]

we still have 〈u, z〉 = Ω(Z(Φ(P ))). Since Φ(P ) does not have maximal class, 〈u, z〉 =
Ω(Φ(P )) also holds. In particular, Ω(Φ(P )) ⊆ Q. In the t = 1 case we see that P/Ω(Φ(P ))
has maximal class, which leads to a contradiction as before. Thus, t � 2. Since u ∈
Z(Φ(P )), (3.1) is still true. Hence, Ω2(Φ(P )) = 〈a2m−1

v2n−3
, v2n−2〉 ∼= C2

4. We choose an
involution β = xvja2i ∈ Q \ Φ(P ). Then, as usual, v2n−2 ∈ NP (Q) \ Q. Since a2m ∈
〈u〉 × 〈v2n−2〉, we find an element δ = a2m−1

vd1 ∈ Q ∩ Ω2(Φ(P )) of order 4 fixed by
β. Now exactly the same argument as in Case 1 shows that β = x after changing the
representative of β and the conjugation of Q if necessary. Similarly, we obtain λ :=
a4vj ∈ CΦ(P )(x). Moreover, u = a2m

v−2n−2
zη ∈ {λ2m−2

, λ2m−2
z}. Therefore, CΦ(P )(x) =

〈λ〉 × 〈z〉 ∼= C2m−1 × C2. The contradiction follows as before.
Now assume that Q ∼= C2t × Q8 or Q ∼= C2t+1 ∗ Q8 for some t � 1. Proposi-

tion 3.10 shows that F = CF (〈z〉). Theorem 5.60 in [5] implies that Q̄ := Q/〈z〉 is
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an F/〈z〉-essential subgroup of P̄ := P/〈z〉. Now P̄ is bicyclic and has commutator
subgroup isomorphic to C2n−1 × C2. Hence, the result follows by induction on t. �

Combining these propositions we deduce one of the main results of this paper.

Theorem 3.17. Every fusion system on a bicyclic 2-group P is nilpotent unless P ′ is
cyclic.

It seems that there is no general reason for Theorem 3.17. For example, there are non-
nilpotent fusion systems on 2-generator 2-groups with non-cyclic commutator subgroup.

For the convenience of the reader we state a consequence for finite groups.

Corollary 3.18. Let G be a finite group with bicyclic Sylow 2-subgroup P . If P ′ is
non-cyclic, then P has a normal complement in G.

3.2. The P ′ cyclic case

In this section we consider the remaining case, where the bicyclic 2-group P has cyclic
commutator subgroup. Here [18, Theorem 4.4] plays an important role. The following
theorem classifies all fusion systems on bicyclic 2-groups together with some more infor-
mation.

Theorem 3.19. Let F be a fusion system on a bicyclic 2-group P . Then one of the
following holds.

(1) F is nilpotent, i.e. F = FP (P ).

(2) P ∼= C2
2n and F = FP (P � C3) for some n � 1.

(3) P ∼= D2n for some n � 3, and F = FP (PGL(2, 52n−3
)) or F = FP (PSL(2, 52n−2

)).
Moreover, F possesses one (in the first case) or two (in the second case) essential
subgroups isomorphic to C2

2 up to conjugation.

(4) P ∼= Q8 and F = FP (SL(2, 3)) is controlled, i.e. there are no F-essential subgroups.

(5) P ∼= Q2n for some n � 4, and F = FP (SL(2, 52n−4
).C2) or F = FP (SL(2, 52n−3

)).
Moreover, F possesses one (in the first case) or two (in the second case) essential
subgroups isomorphic to Q8 up to conjugation.

(6) P ∼= SD2n for some n � 4, and F = FP (PSL(2, 52n−3
) � C2), F = FP (GL(2, q)) or

F = FP (PSL(3, q)), where in the last two cases q is a suitable prime power such that
q ≡ 3 (mod 4). Moreover, in the first (respectively, second) case, C2

2 (respectively,
Q8) is the only F-essential subgroup up to conjugation, and in the last case both
are F-essential and these are the only ones up to conjugation.

(7) P ∼= C2n � C2 for some n � 2 and F = FP (C2
2n � S3), F = FP (GL(2, q)) or

F = FP (PSL(3, q)), where in the last two cases q ≡ 1 (mod 4). Moreover, in the
first (respectively, second) case C2

2n (respectively, C2n ∗ Q8) is the only F-essential
subgroup up to conjugation, and in the last case both are F-essential and these are
the only ones up to conjugation.
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(8) P ∼= C2
2 � C2n is minimal non-abelian of type (n, 1) for some n � 2 and F =

FP (A4 � C2n). Moreover, C2n−1 × C2
2 is the only F-essential subgroup of P .

(9) P ∼= 〈v, x, a | v2n

= x2 = 1, xv = v−1, a2m

= v2n−1
, av = v−1+2n−m+1

, ax = vx〉 ∼=
D2n+1 .C2m for n > m > 1 and F = FP (PSL(2, 52n−1

).C2m). Moreover, C2m−1 ×C2
2

is the only F-essential subgroup up to conjugation.

(10) P ∼= 〈v, x, a | v2n

= x2 = a2m

= 1, xv = v−1, av = v−1+2i

, ax = vx〉 ∼=
D2n+1 � C2m for max(2, n − m + 2) � i � n and n, m � 2. Moreover, F =
FP (PSL(2, 52n−1

) � C2m) and C2m−1 × C2
2 is the only F-essential subgroup up

to conjugation. In the i = n case there are two possibilities for F , which differ by
Z(F) ∈ {〈a2〉, 〈a2v2n−1〉}.

(11) P ∼= 〈v, x, a | v2n

= 1, x2 = a2m

= v2n−1
, xv = v−1, av = v−1+2n−m+1

, ax = vx〉 ∼=
Q2n+1 .C2m for n > m > 1 and F = FP (SL(2, 52n−2

).C2m). Moreover, C2m−1 × Q8

is the only F-essential subgroup up to conjugation.

(12) P ∼= 〈v, x, a | v2n

= a2m

= 1, x2 = v2n−1
, xv = v−1, av = v−1+2i

, ax =
vx〉 ∼= Q2n+1 � C2m for max(2, n − m + 2) � i � n and n, m � 2. Moreover,
F = FP (SL(2, 52n−2

) � C2m) and C2m−1 × Q8 is the only F-essential subgroup up
to conjugation.

(13) P ∼= 〈v, x, a | v2n

= a2m

= 1, x2 = v2n−1
, xv = v−1, av = v−1+2n−m+1

, ax =
vx〉 ∼= Q2n+1 � C2m for n > m > 1 and F = FP (SL(2, 52n−2

) � C2m). Moreover,
C2m ∗ Q8 is the only F-essential subgroup up to conjugation.

(14) P ∼= 〈v, x, a | v2n

= 1, x2 = a2m

= v2n−1
, xv = v−1, av = v−1+2i

, ax = vx〉 ∼=
Q2n+1 .C2m for max(2, n−m+2) � i � n and n, m � 2. In the m = n case we have
i �= n. Moreover, F = FP (SL(2, 52n−2

).C2m) and C2m ∗ Q8 is the only F-essential
subgroup up to conjugation.

In particular, F is non-exotic. Conversely, for every group described in these cases there
exists a fusion system with the given properties. Moreover, different parameters give
non-isomorphic groups.

Proof. Assume that F is non-nilpotent. By Theorem 3.17, P ′ is cyclic. The P ∼= Q8

case is easy. For the other metacyclic cases and the P ∼= C2n �C2 case we refer the reader
to [6, Theorem 5.3]. Here we add a few additional details. An induction on i � 2 shows
that 52i−2 ≡ 1 + 2i (mod 2i+1). This implies that the Sylow 2-subgroups of SL(2, 52n−3

),
PSL(2, 52n−2

) and so on have the right order. For the groups SD2n and C2n � C2 it is
a priori not clear if for every n an odd prime power q can be found. However, this can
be shown using Dirichlet’s prime number theorem (cf. [32, Theorem 6.2]). Hence, for a
given n all these fusion systems can be constructed.

Using Proposition 3.3 we can assume that every F-essential subgroup is 3-generator.
Finally, by Proposition 3.5 it remains to consider |P ′| > 2. Hence, let P be as in [18,
Theorem 4.4]. We adapt our notation slightly as follows. We replace a by a−1 in order to
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write av instead of va. Then we have ax = vx. After replacing v by a suitable power, we
may assume that i is a 2-power (accordingly, we need to change x to vηx for a suitable
number η). Then we can also replace i by 2 + log i. This gives

P ∼= 〈v, x, a | v2n

= 1, x2, a2m ∈ 〈v2n−1〉, xv = v−1, av = v−1+2i

, ax = vx〉. (3.2)

Since [18, Theorem 4.4] also states that v and a2m−1
commute, we obtain i ∈ {max(n −

m + 1, 2), . . . , n}. We set z := v2n−1
as in [18]. Moreover, let λ := v−2i−1

a2. Then

xλx−1 = v2i−1
(v−1a)2 = v−2i−1

a2 = λ

and λ ∈ CΦ(P )(x). Assume also that vja2 ∈ CΦ(P )(x). We then obtain vja2 ∈ {λ, λz}.
Hence, CΦ(P )(x) ∈ {〈λ〉, 〈λ〉×〈z〉}. It should be pointed out that it was not shown in [18]
that these presentations really give groups of order 2n+m+1 (although some evidence by
way of computational results is stated). However, we assume in the first part of the proof
that these groups with the ‘right’ order exist. Later we construct F as a fusion of a finite
group and it will be clear that P shows up as a Sylow 2-subgroup of order 2n+m+1. Now
we distinguish between the three different types of essential subgroups.

Case 1 (Q ∼= C2t × C2
2 is F-essential in P for some t � 1). As usual, Q �

M = E〈a2〉. Since Q ∩ E is abelian and Q/Q ∩ E ∼= QE/E � P/E is cyclic, it follows
that E is dihedral and Q∩E ∼= C2

2. After conjugation of Q we may assume that Q∩E ∈
{〈z, x〉, 〈z, vx〉}. Further conjugation with a gives Q ∩ E = 〈z, x〉. Since CQ(x) ∩ Φ(P ) is
non-cyclic, it follows that CΦ(P )(x) = 〈λ〉 × 〈z〉 ∼= C2m−1 × C2. As usual we obtain Q =
〈λ, z, x〉 and t = m−1. Moreover, a2va−2 ≡ v (mod 〈v8〉). Hence, NP (Q) = 〈λ, v2n−2

, x〉.
We prove that Q is the only F-essential subgroup of P up to conjugation. If there

is an F-essential 2-generator subgroup, then Proposition 3.3 implies that P is a wreath
product. However, by the proof of Theorem 5.3 in [6], all the other F-essential subgroups
are of type C2r ∗ Q8. Hence, this case cannot occur. Thus, by construction it is clear
that Q is the only abelian F-essential subgroup up to conjugation. Now assume that
Q1 ∼= C2s × Q8 is also F-essential. Since Q1 has three involutions, Q1 ∩ E is cyclic or
isomorphic to C2

2. In either case Q/Q ∩ Q ∼= QE/E � P/E cannot be cyclic, which
is a contradiction. Suppose now that Q1 ∼= C2s ∗ Q8 ∼= C2s ∗ D8 for some s � 2. Then
Q1 ∩ E cannot be cyclic, since Q1 is 3-generator. Suppose that Q1 ∩ E ∼= C2

2. Then
Ω(Z(Q1)) ⊆ Q1 ∩E and exp Q1/Q1 ∩E � 2s−1. On the other hand, |Q1/Q1 ∩E| = 2s. In
particular, Q1/Q1 ∩E ∼= Q1E/E � P/E cannot be cyclic. It follows that Q1 ∩E must be
a (non-abelian) dihedral group. Hence, 2s−1|Q1 ∩ E| = |(Q1 ∩ E) Z(Q1)| � |Q1| = 2s+2

and Q1∩E ∼= D8. After conjugation of Q1 we have Q1∩E = 〈v2n−2
, x〉. Let λ1 ∈ Z(Q1)\E

be an element of order 2s such that λ2s−1

1 = z. Since x ∈ Q1, we have λ2
1 ∈ CΦ(P )(x) =

〈λ〉 × 〈z〉. This implies that s = 2 and λ1 /∈ Φ(P ). Since Q1 = (Q1 ∩ Φ(P ))〈x〉, we obtain
λ1x ∈ CΦ(P )(x). But this contradicts z = λ2

1 = (λ1x)2. Hence, we have proved that Q is
in fact the only F-essential subgroup of P up to conjugation.

Now we try to pin down the structure of P more precisely. We show by induction on
j � 0 that λ2j

= v2i+j−1νa2j+1
for an odd number ν. This is clear for j = 0. For arbitrary
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j � 1 we have

λ2j

= λ2j−1
λ2j−1

= v2i+j−2νa2j

v2i+j−2νa2j

= v2i+j−2ν(−1+2i)2
j
+2i+j−2νa2j+1

= v2i+j−2ν((−1+2i)2
j
+1)a2j+1

,

and the claim follows. In particular, we obtain

1 = λ2m−1
= v2i+m−2νa2m

. (3.3)

We distinguish between whether P splits or not.

Case 1 (a) (a2m

= z). Here, (3.3) shows that i = n − m + 1. Then n > m > 1,
and the isomorphism type of P is completely determined by m and n. We show next
that F is uniquely determined. For this we need to describe the action of AutF (Q) in
order to apply Alperin’s fusion theorem. As in the proof of Proposition 3.5, AutF (Q)
acts on 〈x, z〉 or on 〈xλ2m−2

, z〉 non-trivially (recall that NP (Q) ∼= D8 × C2m−1). Set
x̃ := xλ2m−2

and ã := av2n−2
. Then, as above, x̃ = xv±2n−2

a2m−1
. Hence, x̃2 = 1

and x̃v = v−1. Moreover, ã2 = a2, and thus ã2m

= z. Finally, ãv = av and ãx̃ =a

(xzv±2n−2
a2m−1

) = vxzv∓2n−2
a2m−1

= vx̃. Hence, v, x̃ and ã satisfy the same relations
as v, x and a. Obviously, P = 〈v, x̃, ã〉. Therefore, we may replace x by x̃ and a by ã. After
doing this if necessary, we see that AutF (Q) acts non-trivially on 〈x, z〉 (observe that
Q remains fixed under this transformation). As usual, it follows that CQ(AutF (Q)) ∈
{〈λ〉, 〈λz〉} (cf. the proof of Proposition 3.5). Define ã := a1+2m−1

and ṽ := v1+2n−1
= vz.

Then ã2 = a2z, ã2m

= z, ṽ2n

= 1, xṽ = ṽ−1 and ãṽ = ṽ−1+2n−m+1
. Now we show by

induction on j � 1 that a2j

xa−2j

= v2n−m+jνx for an odd integer ν. For j = 1 we have
a2xa−2 = a(vx) = v2n−m+1

x. For arbitrary j � 1 induction gives

a2j+1
xa−2j+1

= a2j

(a2j

xa−2j

)a−2j

= a2j

(v2n−m+jνx)a−2j

= v2n−m+jν((−1+2n−m+1)2
j
+1)x,

and the claim follows. In particular, a2m−1
xa−2m−1

= zvx and ãx = ṽx. Obviously, P =
〈ṽ, ã, x〉. Hence, we may replace v, a by ṽ, ã if necessary. Under this transformation Q and
〈x, z〉 remain fixed as sets and λ goes to λz. So, we may assume that CQ(AutF (Q)) = 〈λ〉.
Then the action on AutF (Q) on Q is completely described. In particular, F is uniquely
determined.

It remains to prove that P and F really exist. Let q := 52n−1
. It is not hard to

verify that H := PSL(2, q) has Sylow 2-subgroup E ∼= D2n+1 . More precisely, E can be
generated by the matrices

v :=

(
ω 0
0 ω−1

)
, x :=

(
0 1

−1 0

)
,

where ω ∈ F×
q has order 2n+1. Moreover, we regard these matrices modulo Z(SL(2, q)) =

〈−12〉. Now consider the matrix a1 := ( 0 ω
−1 0 ) ∈ GL(2, q)/Z(SL(2, q)). Then a1 acts
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on H and a calculation shows that a1v = v−1 and a1x = vx. Let γ1 be the Frobenius
automorphism of Fq with respect to F5, i.e. γ1(τ) = τ5 for τ ∈ Fq. As usual we may
regard γ1 as an automorphism of H. Let γ := γ2n−m−1

1 so that |〈γ〉| = 2m. Recall that
(Z/2n+1Z)× = 〈5 + 2n+1Z〉 × 〈−1 + 2n+1Z〉 ∼= C2n−1 × C2. It is easy to show that
〈52n−m−1

+2n+1Z〉 and 〈1−2n−m+1 +2n+1Z〉 are subgroups of (Z/2n+1Z)× of order 2m.
Since

52n−m−1 ≡ 1 − 2n−m+1 (mod 8),

it follows that
〈52n−m−1

+ 2n+1Z〉 = 〈1 − 2n−m+1 + 2n+1Z〉.

In particular, we can find an odd integer ν such that 52n−m−1ν ≡ 1−2n−m+1 (mod 2n+1).
Now we set

a := a1γ
ν .

Since γ1 fixes x, we obtain av = v−1+2n−m+1
and ax = vx. It remains to show that a2m

=
v2n−1

=: z. Here we identify elements of H with the corresponding inner automorphisms
in Inn(H) ∼= H. For an element u ∈ H we have

a2(u) = (a1γ
νa1γ

ν)(u) = (a1γ
ν(a1))γ2ν(u)(a1γ

ν(a1))−1 =

((
ω 0

0 ω52n−m−1ν

)
γ2ν

)
(u).

After multiplying the matrix in the last equation by ( ω 0
0 ω )h ∈ Z(GL(2, q)) for h :=

−(52n−m−1ν + 1)/2, we obtain

a2(u) =

((
ω2n−m

0
0 ω−2n−m

)
γ2ν

)
(u),

since (1 − 52n−m−1ν)/2 ≡ 2n−m (mod 2n). Using induction and the same argument we
obtain

a2j

=

(
ωhj 0
0 ω−hj

)
γ2jν ,

where 2n−m+j−1 | hj and 2n−m+j � hj for j � 1. In particular, a2m

= z as claimed.
Now [10, Theorem 15.3.1] shows that the following non-split extension exists:

G := H〈a〉 ∼= PSL(2, 52n−1
).C2m .

Moreover, the construction shows that G has Sylow 2-subgroup P . Since H is non-abelian
simple, FP (G) is non-nilpotent. Hence, F = FP (G).

Case 1 (b) (a2m

= 1). Here P ∼= D2n+1 �C2m . Moreover, by (3.3) we have n−m+2 �
i. As in Case 1 (a) we may assume that AutF (Q) acts on 〈x, z〉 using the following
automorphism of P if necessary:

v �→ v, x �→ xλ2m−2
, a �→ av2n−2

.
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Now assume that i < n (and thus m, n � 3). Here we consider the map

v �→ v1+2n−1
= vz =: ṽ, x �→ x, a �→ a1+2n−i

=: ã.

It can be seen that ṽ, x and ã generate P and satisfy the same relations as v, x and a.
Moreover, as above, we have λ2n−i

= za2n−i+1
. This shows that

λ �→ ṽ−2i−1
ã2 = v−2i−1

a2+2n−i+1
= λ1+2n−i

z = (λz)1+2n−i

.

Hence, we obtain CQ(AutF (Q)) = 〈λ〉 after applying this automorphism if necessary.
This determines F completely, and we will construct F later.

We continue by looking at the case in which i = n. Here we show that λ = za2 is not
a square in P . Assume the contrary, i.e. za2 = (vjxkal)2 for some j, k, l ∈ Z. Of course
l must be odd. In the k = 0 case we obtain the contradiction (vjal)2 = a2l. Thus, k =
1. Then [v, xal] = 1 and (vjxal)2 = v2j(xaxa−1)a2l = v2j−1a2l. Again a contradiction.
Hence, λ is in fact a non-square. However, λz = a2 is a square and so is every power.
As a consequence, it turns out that the two possibilities CQ(AutF (Q)) = Z(F) = 〈λ〉 or
CQ(AutF (Q)) = Z(F) = 〈a2〉 give in fact non-isomorphic fusion systems (in the sense of
Definition 3.4). We denote the latter possibility by F ′, i.e. Z(F ′) = 〈a2〉.

Now, for every i ∈ {max(2, n − m + 2), . . . , n} we construct P and F . After that we
explain how to obtain F ′ for i = n. This works similarly to Case 1 (a). Let q, H, v, x, a1

and γ1 be as there. It is easy to see that 〈1−2i +2n+1Z〉 has order 2n+1−i as a subgroup
of (Z/2n+1Z)×. Set γ := γ2i−2

1 . Then γ2m

= 1, since m + i − 2 � n. Again we can find
an odd integer ν such that 52i−2

ν ≡ 1 − 2i (mod 2n+1). Setting a := a1γ
ν ∈ Aut(H) we

obtain av = v−1+2i

and ax = vx. It remains to prove a2m

= 1. As above we obtain

a2 =

(
ω2i−1

0
0 ω−2i−1

)
γ2ν .

This leads to a2m

= 1. Now we can define G := H � 〈a〉 (notice that the action of 〈a〉
on H is usually not faithful). It is easy to see in fact that P ∈ Syl2(G) and FP (G) is
non-nilpotent. Hence, for i < n we obtain F = FP (G) immediately. Now assume that
i = n. Since ω2n

= −1 ∈ Fq, we can choose ω such that ω2n−1
= 2 ∈ F5 ⊆ Fq. Define

α :=

(
3 1
2 1

)
∈ H.

A calculation shows that α has order 3 and acts on 〈x, z〉 non-trivially. Moreover, γ2ν = 1
and a2 is the inner automorphism induced by z. In particular, a2 does not fix α. We can
view α as an element of AutFP (G)(Q). Then CQ(AutFP (G)(Q)) = 〈λ〉 = Z(F) is generated
by a non-square in P . This shows again that F = FP (G). It remains to construct F ′.
Observe that γ acts trivially on 〈v, x〉, since 52n−2 ≡ 1 (mod 2n). Hence, we can replace
the automorphism a by a1 = ( 0 ω

−1 0 ) without changing the isomorphism type of P . Again
we define G := H � 〈a1〉. Then it turns out that a2

1 = ( ω 0
0 ω ) ∈ Z(GL(2, q)). In particular,

a2
1 is fixed by the element α ∈ AutFP (G)(Q) above. So here Z(F) = 〈a2

1〉 is generated by
a square in P . Thus, we obtain F ′ = FP (G).
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Case 2 (Q ∼= C2t × Q8 is F-essential in P for some t � 1). We have seen
above that E cannot be dihedral. Hence, E is (generalized) quaternion, i.e. x2 = z. Now,
|Q : Z(Q)| = 4 implies that Q ∩ E ∼= Q8. After conjugation of Q we may assume that
Q ∩ E = 〈v2n−2

, x〉. Proposition 3.10 implies that z ∈ Z(F). In particular, Q/〈z〉 ∼=
C2t × C2

2 is an F/〈z〉-essential subgroup of P/〈z〉 (see [5, Theorem 5.60]). So by the first
part of the proof and Proposition 3.5 (for n = 2) we obtain t = m − 1, and Q is the only
F-essential subgroup up to conjugation. Since CQ(x) ∩ Φ(P ) is still non-cyclic, we have
CΦ(P )(x) = 〈λ〉×〈z〉 ∼= C2m−1 ×C2, as in Case 1. Moreover, a2 fixes v2n−2

, and it follows
that Q = 〈v2n−2

, x, λ〉.
Here we can handle the uniqueness of F uniformly without discussing the split and

non-split cases separately. Since Inn(Q) ∼= C2
2, AutF (Q) is a group of order 24 that is gen-

erated by NP (Q)/Z(Q) and an automorphism α ∈ AutF (Q) of order 3. Hence, in order to
describe the action of AutF (Q) on Q (up to automorphisms from Aut(P )), it suffices to
know how α acts on Q. First of all, α acts on only one subgroup Q8 ∼= R � Q. It is not hard
to see that Q′ = 〈z〉 ⊆ R, and thus R � Q. In particular, R is invariant under inner auto-
morphisms of Q. Now let β be an automorphism of Q coming from NP (Q)/Q � OutF (Q).
Then βα ≡ α−1β (mod Inn(Q)). In particular, β(R) = α−1(β(R)) = R. Looking at the
action of NP (Q), we see that R ∈ {〈v2n−2

, x〉, 〈v2n−2
, xλ2m−2〉}. Again, the automorphism

v �→ v, x �→ xλ2m−2
, a �→ av2n−2

leads to R = 〈v2n−2
, x〉. The action of α on R is not quite unique. However, after inverting

α if necessary, we have α(x) ∈ {v2n−2
, v−2n−2}. If we conjugate α with the inner auto-

morphism induced by x if necessary, we end up with α(x) = v2n−2
. Since α has order 3,

it follows that α(v2n−2
) = xv2n−2

. So we know precisely how α acts on R. Since α is
unique up to conjugation in Aut(Q), we have CQ(α) = Z(Q) = 〈λ, z〉. Hence, the action
of AutF (Q) on Q is uniquely determined. By Alperin’s fusion theorem, F is unique up
to isomorphism. For the construction of F we split up the proof again.

Case 2 (a) (a2m

= z). Again, n > m > 1 and i = n − m + 1 by (3.3). So the
isomorphism type of P is determined by m and n. We construct P and F in a similar
manner as above. For this, set q := 52n−2

and H := SL(2, q). Then a Sylow 2-subgroup
H is given by E := 〈v, x〉 ∼= Q2n+1 , where v and x are defined similarly to in Case 1 (a).
The only difference is that ω ∈ F×

q now has order 2n and the matrices are not considered
modulo Z(SL(2, q)) anymore. Also, the element a1 as above still satisfies a1v = v−1 and
a1x = vx. Now we can repeat the calculations in Case 1 (a) word for word. Doing so, we
obtain G := H〈a〉 ∼= SL(2, q).C2m and F = FP (G).

Case 2 (b) (a2m

= 1). Here (3.3) gives max(n + m + 2, 2) � i � n. For every i in
this interval we can again construct P and F in the same manner as before. We omit the
details.

Case 3 (Q ∼= C2t ∗ Q8 is F-essential in P for some t � 2). Again the arguments
above reveals that E is a quaternion group and x2 = z. Moreover, Q∩E = 〈v2n−2

, x〉 ∼= Q8

after conjugation if necessary. Going over to P/〈z〉, it follows that t = m. Assume that
n = m = i and a2m

= z for a moment. Then (ax)2 = vza2 and F1 := 〈v, ax〉 ∼= C2
2n is
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maximal in P . Since P/Φ(F1) is non-abelian, we obtain P ∼= C2n � C2 (cf. the proof of
Proposition 2.7). Thus, in the case in which n = m and a2m

= z we assume that i < n in
the following. We will see later that other parameters cannot lead to a wreath product.
After excluding this special case, it follows as before that Q is the only F-essential
subgroup up to conjugation. Since CQ(x) contains an element of order 2m, we have
CΦ(P )(x) = 〈λ〉. Hence, we have to replace (3.3) by

z = λ2m−1
= v2m+i−2νa2m

,

where ν is an odd number. Moreover, Q = 〈v2n−2
, x, λ〉. If a2m

= z, then max(n − m +
2, 2) � i � n. On the other hand, if a2m

= 1, then n > m > 1 and i = n − m + 1. Hence,
these cases complement exactly Case 2.

The uniqueness of F is a bit easier than for the other types of essential subgroups.
Again AutF (Q) has order 24 and is generated by NP (Q)/Z(Q) and an automorphism
α ∈ AutF (Q) of order 3. It suffices to describe the action of α on Q up to automorphisms
from Aut(P ). By considering Q/Q′ ∼= C2m−1 ×C2

2 we see that R := 〈v2n−2
, x〉 is the only

subgroup of Q isomorphic to Q8. In particular, α must act on R. Here we can also describe
the action precisely by changing α slightly. Moreover, CQ(α) = Z(Q) = 〈λ〉, since α is
unique up to conjugation in Aut(Q). This shows that F is uniquely determined up to
isomorphism. Now we distinguish the split and non-split case in order to construct P

and F .

Case 3 (a) (a2m

= 1). At first glance one might think that the construction in Case 2
should not work here. However, it does. We denote q, H and so on as in Case 2 (a). Then
a2m

is the inner automorphism on H induced by z. But since z ∈ Z(H), a2m

is in fact
the trivial automorphism. Hence, we can construct the semi-direct product G = H � 〈a〉,
which does the job.

Case 3 (b) (a2m

= z). Here we do the opposite to Case 3 (a). With the notation
of Case 3 (a), a is an automorphism of H such that a2m

= 1 and a fixes z ∈ Z(H).
Using [10, Theorem 15.3.1] we can build a non-split extension G := H〈a〉 such that
a2m

= z. This group fulfils our conditions.
Finally, we show that different parameters in all these group presentations give non-

isomorphic groups. Obviously, the metacyclic groups are pairwise non-isomorphic and
not isomorphic to non-metacyclic groups. Hence, it suffices to look at the groups coming
from [18, Theorem 4.4]. So let P be as in (3.2) together with additional dependence
between x2 and the choice of i as in the statement of our theorem (this restriction is
important). Assume that P is isomorphic to a similar group P1, where we attach an index
1 to all elements and parameters of P1. Then we have 2n+m+1 = |P | = |P1| = 2n1+m1+1

and 2n = |P ′| = |P ′
1| = 2n1 . This already shows that n = n1 and m = m1. As proved

above, P admits a non-nilpotent fusion system with essential subgroup C2m−1 × C2
2 if

and only if x2 = 1. Hence, x2 = 1 if and only if x2
1 = 1. Now we show that i = i1.

For this we consider Φ(P ) = 〈v, a2〉. Since Φ(P ) is metacyclic, it follows that Φ(P )′ =
〈[v, a2]〉 = 〈v2i+1〉 ∼= C2η , where η := max(n − i − 1, 0). Since i, i1 � n, we may assume
that i, i1 ∈ {n − 1, n}. In the i = n case the subgroup C := 〈v, ax〉 is abelian. By [18,
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Theorem 4.3 (f)], C is a metacyclic maximal subgroup of P . However, in the i = n − 1
case it is easy to see that the two metacyclic maximal subgroups 〈v, a〉 and 〈v, ax〉 of P

are both non-abelian. This gives i = i1. It remains to show that a2m

= 1 ⇐⇒ a2m1

1 = 1.
For this we may assume that x2 = z and x2

1 = z1. In the i = n − m + 1 (and n > m > 1)
case we have a2m

= 1 if and only if P provides a fusion system with essential subgroup
C2m ∗ Q8. A similar equivalence holds for max(n − m + 2, 2) � i � n (even in the case in
which n = m = i). This completes the proof. �

We present an example to shed more light on the alternative in part (10) of The-
orem 3.19. Let us consider the smallest case, n = m = i = 2. The group N :=
A6 ∼= PSL(2, 32) has Sylow 2-subgroup D8. Let H := 〈h〉 ∼= C4. It is well known
that Aut(N)/N ∼= C2

2, and the three subgroups of Aut(N) of index 2 are isomorphic
to S6, PGL(2, 9) and the Mathieu group M10 of degree 10. We choose two homomor-
phisms φj : H → Aut(N) for j = 1, 2 such that φ1(h) ∈ PGL(2, 9) \ N is an involu-
tion and φ2(h) ∈ M10 \N has order 4 (we do not define φj precisely). Then it turns
out that the groups Gj := N �φj H for j = 1, 2 have Sylow 2-subgroup P as in
part (10). Moreover, one can show that F1 := FP (G1) �= FP (G2) =: F2. More pre-
cisely, Z(F1) = Z(G1) = 〈φ1(h)2〉 is generated by a square in P and Z(F2) is not. The
indices of Gj in the ‘small group library’ are [1440,4592] and [1440,4595], respectively.
It should be clarified that this phenomenon is not connected to the special behaviour of
A6, since it occurs for all n with PSL(2, 52n−1

).
As another comment, we observe that the 2-groups in parts (11)–(14) have 2-rank 2.

Hence, these are new examples in the classification of all fusion systems on 2-groups of
2-rank 2, which was started in [6]. It is natural to ask what happens if we interchange
the restrictions on i in case (9) and case (10) in Theorem 3.19. We will see in the next
theorem that this does not result in new groups.

Theorem 3.20. Let P be a bicyclic non-metacyclic 2-group. Then P admits a non-
nilpotent fusion system if and only if P ′ is cyclic.

Proof. By Theorem 3.17 it suffices to prove only one direction. Let us assume that
P ′ is cyclic. Since P is non-metacyclic, it follows that P ′ �= 1. In the |P ′| = 2 case, [18,
Theorem 4.1] implies that P is minimal non-abelian of type (n, 1) for some n � 2. We
have already shown that there is a non-nilpotent fusion system on this group. Thus,
we may assume that |P ′| > 2. Then we are again in [18, Theorem 4.4]. After adapting
notation, P is given as in (3.2). In the x2 = z case there is always a non-nilpotent fusion
system on P , by Theorem 3.19. Hence, let x2 = 1. Then it remains to deal with two
different pairs of parameters.

Case 1 (a2m

= 1 and i = n − m + 1 � 2). Set x̃ := xa2m−1
. Then

x̃2 = xa2m−1
xa2m−1

= (v−1a)2
m−1

a2m−1
= v2i+m−2νa2m

= z

for an odd integer ν. Moreover, x̃v = v−1, ax̃ = vxa2m−1
= vx̃. This shows that P is

isomorphic to a group with parameters x2 = z, a2m

= 1 and i = n − m + 1 � 2. In
particular, Theorem 3.19 provides a non-nilpotent fusion system on P .
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Table 1. Number of non-nilpotent fusion systems.

N 1 2 3 � 4 even � 5 odd

f(N) 0 1 2 3
4N2 − 3N + 5 (3N2 + 1)/4 − 3N + 3

g(N) 0 1 3 3
4N2 − 2N + 5 (3N2 + 1)/4 − 2N + 5

Case 2 (a2m

= z and max(2, n − m+2) � i � n). Again, let x̃ := xa2m−1
. Then

x̃2 = v2i+m−2νa2m

= z.

Hence, P is isomorphic to a group with parameters x2 = a2m

= z and max(2, n−m+2) �
i � n. The claim follows as before. �

Now we count how many interesting fusion systems we have found.

Proposition 3.21. Let f(N) be the number of isomorphism classes of bicyclic
2-groups of order 2N that admit a non-nilpotent fusion system. Moreover, let g(N) be
the number of non-nilpotent fusion systems on all bicyclic 2-groups of order 2N . Then
the results of Table 1 hold.

Proof. Without loss of generality, N � 4. We have to distinguish between the cases
in which N is even and those in which N is odd. Assume first that N is even. Then we
obtain the following five groups: C2

2N/2 , D2N , Q2N , SD2N and the minimal non-abelian
group of type (N −2, 1). From case (9) of Theorem 3.19 we obtain exactly 1

2N −2 groups.
In case (10) the number of groups is

N−3∑
n=2

(n − max(2, 2n − N + 3) + 1) =
N/2−1∑

n=2

(n − 1) +
N−3∑

n=N/2

(N − n − 2)

= 2
N/2−2∑

n=1

n

= ( 1
2N − 2)( 1

2N − 1)

= 1
4N2 − 3

2N + 2.

The other cases are similar (observe that the wreath product cannot occur, since N is
even). All together we obtain

5 + 3( 1
2N − 2) + 3( 1

4N2 − 3
2N + 2) = 3

4N2 − 3N + 5

bicyclic 2-groups of order 2N with non-nilpotent fusion system.
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Now, if N is odd, we have the following four examples: D2N , Q2N , SD2N and the
minimal non-abelian group of type (N − 2, 1). From case (9) of Theorem 3.19 we obtain
exactly (N − 5)/2 groups. In case (10) the number of groups is

N−3∑
n=2

(n − max(2, 2n − N + 3) + 1) =
(N−1)/2∑

n=2

(n − 1) +
N−3∑

n=(N+1)/2

(N − n − 2)

= 2
(N−5)/2∑

n=1

n +
N − 3

2

=
(N − 5)(N − 3)

4
+

N − 3
2

=
N2 − 6N + 9

4
.

Adding the numbers from the other cases (this time including the wreath product), we
obtain

4 + 3
N2 − 4N − 1

4
=

3N2 + 1
4

− 3N + 3.

In order to obtain g(N) from f(N) we have to add one fusion system on D2N , one on
Q2N and two on SD2N . If N is odd, we get two more fusion systems on the wreath
product. For all N � 5 we have to add N − 4 fusion systems coming from part (10) in
Theorem 3.19. �

4. Applications

We present an application to finite simple groups. For this we introduce a general lemma.

Lemma 4.1. Let G be a perfect group and let 1 �= P ∈ Sylp(G) such that NG(P ) =
P CG(P ). Then there are at least two conjugacy classes of FP (G)-essential subgroups
in P .

Proof. Let F := FP (G). If there is no F-essential subgroup, then F is nilpotent and
G is p-nilpotent, since OutF (P ) = NG(P )/P CG(P ) = 1. Then G′ � P ′ Op′(G) < G,
because P �= 1, which is a contradiction. Now suppose that there is exactly one F-essential
subgroup Q � P up to conjugation. Then Q lies in a maximal subgroup M < P .
Moreover, P ′ ⊆ Φ(P ) ⊆ M . Now the focal subgroup theorem (see [9, Theorem 7.3.4])
gives the following contradiction:

P = P ∩ G = P ∩ G′ = 〈x−1α(x) : x ∈ P, α a morphism in F〉 ⊆ P ′Q ⊆ M.

�

We remark that the number of conjugacy classes of essential subgroups is sometimes
called the essential rank of the fusion system (see, for example, [11]).
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Theorem 4.2. Let G be a simple group with bicyclic Sylow 2-subgroup. Then G is
one of the following groups: C2, PSL(i, q), PSU(3, q), A7 or M11 for i ∈ {2, 3} and q odd.

Proof. By the Alperin–Brauer–Gorenstein theorem [1] on simple groups of 2-rank 2,
we may assume that G has 2-rank 3 (observe that a Sylow 2-subgroup of PSU(3, 4) is not
bicyclic, since it is 4-generator). Let P ∈ Syl2(G) and let F := FP (G). By Theorem 3.19,
there is only one F-essential subgroup Q in P up to conjugation. But this contradicts
Lemma 4.1. �

Now we consider fusion systems coming from block theory. Let B be a p-block of a
finite group G. We denote the number of irreducible ordinary characters of B by k(B)
and the number of irreducible Brauer characters of B by l(B). Moreover, let k0(B) be
the number of irreducible characters of height 0, i.e. the p-part of the degree of these
characters is as small as possible. Let D be a defect group of B. Then for every element
u ∈ D we have a subsection (u, bu), where bu is a Brauer correspondent of B in CG(u).

Theorem 4.3. Olsson’s conjecture holds for all blocks of finite groups with bicyclic
defect groups.

Proof. Let B be a p-block of a finite group with bicyclic defect group D. Since all
bicyclic p-groups for an odd prime are metacyclic, we may assume that p = 2. If D is
metacyclic, minimal non-abelian or a wreath product, then Olsson’s conjecture holds by
the results in [19,27,28]. Let F be the fusion system of B. Without loss of generality,
F is non-nilpotent. Hence, we may assume that D is given by

D ∼= 〈v, x, a | v2n

= 1, x2, a2m ∈ 〈v2n−1〉, xv = v−1, av = v−1+2i

, ax = vx〉,

where max(2, n−m+1) � i � n as in Theorem 3.19. Moreover, there is only one conjugacy
class of F-essential subgroups of D. We use [12, Proposition 2.5 (i)]. For this let us
consider the subsection (a, ba). Since 〈a, v〉 is a metacyclic maximal subgroup of P , a does
not lie in any F-essential subgroup of P . In particular, 〈a〉 is fully F-centralized. Thus,
[21, Theorem 2.4 (ii)] implies that ba has defect group CD(a). Obviously, C〈v〉(a) = 〈z〉.
Now let vjx ∈ CD(a) for some j ∈ Z. Then vjx = a(vjx) = v1−j+2ijx and v2j = v1+2ij ,
a contradiction. This shows that CD(a) = 〈a, z〉. Now, by [12, Proposition 2.5 (i)] we
obtain k0(B) � |CD(a)| = 2m+1 = |D : D′|, i.e. Olsson’s conjecture holds. �

Using [26, Theorem 3.4], it is not hard to see that Brauer’s k(B)-conjecture also holds
if for the fusion system of B one of the cases (1)–(10) in Theorem 3.19 occurs.
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