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The field of disease ecology – the study of the spread
and impact of parasites and pathogens within their
host populations and communities – has a long
history of using mathematical models. Dating back
over 100 years, researchers have used mathematics
to describe the spread of disease-causing agents,
understand the relationship between host density
and transmission and plan control strategies. The
use of mathematical modelling in disease ecology
exploded in the late 1970s and early 1980s through
the work of Anderson and May (Anderson and
May, 1978, 1981, 1992; May and Anderson, 1978),
who developed the fundamental frameworks for
studying microparasite (e.g. viruses, bacteria and
protozoa) and macroparasite (e.g. helminth) dynam-
ics, emphasizing the importance of understanding
features such as the parasite’s basic reproduction
number (R0) and critical community size that form
the basis of disease ecology research to this day.
Since the initial models of disease population dy-
namics, which primarily focused on human diseases,
theoretical disease research has expanded hugely to
encompass livestock and wildlife disease systems,
and also to explore evolutionary questions such as
the evolution of parasite virulence or drug resistance.
More recently there have been efforts to broaden the
field still further, to move beyond the standard ‘one-
host-one-parasite’ paradigm of the original models,
to incorporate many aspects of complexity of
natural systems, including multiple potential host
species and interactions among multiple parasite
species.
Given this rich history in development of funda-

mental theory, the applied aspect of the questions
being asked, and the extensive data collected on
many disease systems (particularly human and live-
stock, but increasingly wildlife), the field of disease
ecology represents one of the richest areas of research
at the interface of pure ecological theory and data.
However, as with any field, there is the danger that
those working in one particular area, or using one

particular technique, will end up communicating
primarily with themselves, resulting in rather
distinct and discrete silos of research, with little
cross-talk between sub-disciplines. This would be
particularly counter-productive in the case of
theory, where increasingly abstract theory could be
developed with little connection to ‘real world’ pro-
cesses. For such an applied topic as disease control
this could lead to theory that is irrelevant, or
unable to be connected to the kind of data available
to empiricists working on natural disease systems.
For these reasons, this Special Issue was put to-
gether with the aims of: (1) presenting a snapshot (al-
though by no means exhaustive) of the current state
of theoretical disease ecology and evolutionary re-
search; (2) assessing how closely connected are the
theoretical and empirical research areas on each
topic; and (3) providing ideas for how those theoret-
ical and empirical research areas can be brought
closer together. To achieve this, each set of authors
were asked to write personal reviews of their relevant
fields, emphasizing existing or potential links
between models and data as appropriate, and outlin-
ing areas for future closer integration of theory and
data. As such, although the authors of these
various papers are primarily theoreticians, the inten-
tion is that these papers should be accessible and
relevant to both theoreticians and empiricists, with
a combined interest of advancing each area of re-
search in the broader field of disease ecology.
Of the 10 papers in this Special Issue, eight were

broadly ecological (de Leo et al. 2016; Garnier
et al. 2016; Magpantay et al. 2016; McCallum,
2016; Norman et al. 2016; Park et al. 2016; Viana
et al. 2016; Wearing et al. 2016) with two focusing
primarily on evolutionary aspects (Cressler et al.
2016; Greischar et al. 2016). These papers covered
a range of topics, from highly conceptual (e.g. de
Leo et al. 2016) to applied work on various specific
systems, covering human diseases (Magpantay
et al. 2016), livestock (Garnier et al. 2016) and wild-
life conservation (McCallum, 2016). McCallum
(2016) reviews the practical application of models to
guide alternative management strategies (e.g. vaccin-
ation or culling) of wildlife diseases for conservation.
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He emphasizes that models can play a valuable role,
both in exploring alternative hypotheses about
the impact of disease, but also in the exploration of
alternative management strategies. In particular,
McCallum (2016) describes how models have
allowed a range of vaccination and culling strategies
to be explored, both in terms of general feasibility,
and for setting thresholds for disease eradication or
suppression. A key point is that typically wildlife
disease systems are highly data-poor, in comparison
to human or livestock systems. Often even broad
estimates of basic demographic rates of the host
(e.g. fecundity and age-specific mortality) are
unknown, and problems of observational error are
considerable (e.g. the correspondence between the
observed prevalence of infection in a sample of
hosts and the true prevalence in the host population
as a whole is often unknown). This lack of informa-
tion makes it essential to rigorously explore model
sensitivity to variations or uncertainty in those para-
meters. Viana et al. (2016) continue this theme,
emphasizing that it is usually impossible to directly
observe the fundamental process of disease
systems: transmission. Therefore, transmission
rates have to be inferred from changes in (for
example) seroprevalence, which may be an unreli-
able indicator of ‘true’ infection status or the
timing of infection. For these reasons Viana et al.
(2016) advocate using a combination of data types
to infer transmission, in particular combining sero-
logical data, which is commonly available, with
finer resolution type-specific genetic data, which is
typically sparser. They show how such data can be
combined within a Bayesian framework to infer the
contributions of different potential host species to
overall transmission, and human infection risk, of
Brucella bacteria, the causative agents of brucellosis.
A key point to emerge is that it is crucial to consider
how uncertainties at each stage of the transmission
process propagate, and to use an analytical frame-
work that handles those uncertainties appropriately;
standard GLMs aimed at identifying sources of
human infection from observed prevalences in
other species performed very poorly, likely due to in-
appropriate handling of uncertainty. Relatedly,
Magpantay et al. (2016) applied recently developed
statistical inference techniques (Ionides et al. 2015;
King et al. 2015) to time series data of pertussis inci-
dence to explore alternative hypotheses relating to
observed occurrences of vaccine failure. By fitting
different stochastic models that corresponded to
different hypothesized mechanisms of vaccine
failure, Magpantay et al. (2016) found strong evi-
dence that vaccinated individuals were just as trans-
missible as unvaccinated individuals, although
susceptibility and symptoms were reduced. This
work shows how the combination of data and alter-
native mathematical models, again within an appro-
priate analytical framework, can reveal; otherwise

hidden patterns within the data, enabling rigorous
evaluation of alternative hypotheses into the under-
lying mechanisms driving those patterns.
Three of the papers specifically explored issues re-

lating to vector-borne parasites (Norman et al. 2016;
Park et al. 2016; Wearing et al. 2016). Such systems
involve many important diseases of both humans
(e.g. malaria, chikungunya and Lyme disease) and
livestock (e.g. bluetongue and louping ill). They
are typically also highly complex, involving the para-
site, the vector and often multiple potential host
species; as such mathematical models are essential
in helping to understand and manage the dynamics
of these systems. Norman et al. (2016) review
models of tick-borne diseases (TBDs), and empha-
sise the distinction between studies that model the
tick dynamics alone, primarily focusing on environ-
mental drivers of those dynamics (e.g. climatic
effects, seasonality, etc.), and those studies that ex-
plicitly model both the tick and the tick-borne
pathogen dynamics. These latter studies have
tended to explore how host community composition,
particularly the complex interplay of pathogen and
tick competent and non-competent hosts, affects
TBD dynamics. These models show that overall
TBD occurrence depends on the combination of
separate tick and pathogen thresholds for persistence
[effectively, both R0,ticks > 1 and R0,pathogen > 1
(Gilbert et al. 2001)]. As such, non-intuitive changes
in pathogen infection risk can occur from changes in
relative or absolute abundance of the different host
species in the community. Wearing et al. (2016) em-
phasize that many models consider just the endemic
phase of diseases, ignoring the initial process of
emergence and expansion into naïve populations.
They show how models may be used to contrast
the emergence, spread and persistence of two mos-
quito-borne viruses of current concern: chikun-
gunya and dengue. Wearing et al. (2016) highlight
that vector-borne pathogen occurrence depends on
a series of requirements: the presence of a suitable
vector, the introduction of the pathogen and the
right ecological conditions for onward local trans-
mission. As in Norman et al. (2016), Wearing et al.
(2016) show how different modelling approaches
have been used to explore the dynamics of these
stages separately. By separating these stages out and
considering, for example, how climatic factors,
human activity and habitat alteration differently
affects each one, the modelling approaches described
byWearing et al. (2016) potentially provide an appro-
priate framework for risk assessment and prediction of
future emergence events. Park et al. (2016) expands
some of these ideas by considering an overlooked
level of complexity; the role of multiple co-occurring
vector species in driving and maintaining parasite
transmission. They highlight that the composition of
vector communities can vary spatially, and emphasize
the importance of the functional diversity of vector
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community, rather than just abundance of the vector
species, in driving transmission dynamics.
Relating to community effects, de Leo et al. (2016)

extend classical one-host-one-parasite models to
incorporate multiple macroparasites (helminths),
and use these to assess the rules of parasite commu-
nity assembly; under what conditions can one
parasite invade and persist in presence of another?
Specifically they argue that bioenergetic scaling
laws provide a ‘quantitative unifying theory of bio-
logical organization’, and assess this by assuming
parasite functional traits (fecundity, developmental
rate, pathogenicity, etc.) scale with parasite body
size. de Leo et al. (2016) show how host body size
constrains the range of viable body sizes, mediated
by a trade-off between the fecundity benefits to para-
sites of large size and the costs, due to the increased
likelihood of host mortality. Garnier et al. (2016)
also explore host–helminth interactions, seeking an
appropriate level of model complexity to describe,
in a data-friendly way, within-host helminth–
immune system interaction dynamics. Many
models of this interaction are either highly detailed,
explicitly describing many components of the
immune response, or very simplified, using highly
phenomenological functions to describe the broad
dynamics of the immune response. Garnier et al.
(2016) use a model of intermediate complexity –
one that is ‘biologically grounded, yet parsimoni-
ous’, that explicitly models both the mean and
variation in worm burden and immune activation.
They show the model provides a good match to
data and, as in Magpantay et al. (2016) and Viana
et al. (2016) the process of model fitting provides
insight into underlying processes (specifically,
dose-dependency in various immune-related para-
meters) that would not be detectable otherwise.
Finally, two of the papers explicitly consider the

application of mathematical models to evolutionary
questions of host–parasite relationships. Greischar
et al. (2016) show how mathematical modelling can
help interpret data and observations of within-host
parasite dynamics, and help refine analytical and
statistical methods of inference. As with many of
the other papers in this Special Issue, they empha-
size how the close integration of mathematical
models and data can allow the testing of alternative
hypotheses, the identification of factors underlying
complex dynamics and aid the development of ap-
propriate experiments to refine our understanding.
They also emphasize the value of models getting
things wrong – predicting things we don’t see –
which tells us we either need to change our under-
standing, or allows exploration of alternative ‘what
if’ scenarios to determine under what conditions
those predictions would be realized. Cressler et al.
(2016) consider the specific issue of the evolution
of parasite virulence, reviewing the state of theory,
and assessing the current level of empirical support

for those predictions. They show that, a few
notable exceptions aside, that there is generally a
poor connection between theory on the evolution
of virulence and currently available data. This they
argue is primarily due to each field focussing on
different aspects: the theory rarely models traits
that are measurable, and empiricists rarely collect
data on traits predicted by theory. For example,
just the definition of ‘virulence’ varies widely both
within and between the empirical and theoretical
fields, hampering connection between them.
Despite the diversity of topics and systems

covered by these papers, there are a number of
clear, recurring points that were consistently raised
by them. In particular, the appropriate level of
model complexity, or the type of model to adopt,
was raised a number of times. As stated by
McCallum (2016), ‘The simpler a model can be
whilst still answering the questions asked of it, the
better’. Models based on ordinary differential equa-
tions (ODEs) are often the default option for many
models, but they certainly can’t answer every ques-
tion, particularly when there are considerable het-
erogeneties present in the system [e.g. spatial or
contact structure, lags in development, host popula-
tion age structure, etc. (Magpantay et al. 2016;
McCallum, 2016; Viana et al. 2016; Wearing et al.
2016)]. These complexities are often ignored by
ODEs, where average rates are assumed, potentially
ignoring important, and informative, sources of
variability. One particular complexity raised by a
number of authors was the need to explicitly con-
sider spatial aspects of disease systems. The spatial
or social connectance between individuals, heteroge-
neities in dispersal/movement rates, different patch
types and differences in community structure
between patches can all alter disease dynamics,
both ecologically (e.g. McCallum, 2016; Norman
et al. 2016; Park et al. 2016; Viana et al. 2016;
Wearing et al. 2016) and evolutionarily (Cressler
et al. 2016). Hence, determining the relevant
spatial scale, and adopting an appropriate modelling
approach (e.g. connected ODEs, metapopulation
models, spatially explicit individual-based models)
are major considerations.
Perhaps the most important recurring point is that

there is a general need for closer integration of theo-
reticians and empiricists. As described in several of
these papers, there are now a number of excellent
analytical methods for bringing empirical data and
mathematical models closer together than has previ-
ously been possible (Magpantay et al. 2016;
McCallum, 2016; Viana et al. 2016). However, to
make the most of these advances it is essential that
both empiricists and theoreticians work closely at
all stages of a project to avoid situations where, for
example, a modeller is brought in at the end of an
empirical study to ‘do some modelling’, or where a
modeller scours the literature for some data to fit
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their model. As such, the ‘model-guided fieldwork
framework’ of Restif et al. (2012) has much to rec-
ommend it, by which modellers and empiricists to-
gether embark on an iterative process of study
design, data collection, model development, and
project refinement to ensure the theory is relevant
and the data collected are interpretable. Clearly the
onus is on both the theoreticians and empiricists,
but also on funding agencies, to enable such truly
integrated interdisciplinary work, and a willingness
to seek and support longer-term projects as needed.
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