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Abstract

Clustering a graph, i.e., assigning its nodes to groups, is an important operation whose best

known application is the discovery of communities in social networks. Graph clustering and

community detection have traditionally focused on graphs without attributes, with the notable

exception of edge weights. However, these models only provide a partial representation

of real social systems, that are thus often described using node attributes, representing

features of the actors, and edge attributes, representing different kinds of relationships among

them. We refer to these models as attributed graphs. Consequently, existing graph clustering

methods have been recently extended to deal with node and edge attributes. This article is a

literature survey on this topic, organizing, and presenting recent research results in a uniform

way, characterizing the main existing clustering methods and highlighting their conceptual

differences. We also cover the important topic of clustering evaluation and identify current

open problems.
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1 Introduction

Graphs represent one of the main models to study human relationships. For example,

structural properties of social systems can be measured by representing individuals

and their relationships as graphs and computing the centrality or prestige of their

nodes (Wasserman & Faust, 1994). Similarly, once a social graph is available, groups

of strongly connected individuals (communities) can be identified using clustering

algorithms. The application of graphs to the study of social systems motivated and

is now a part of a broader discipline called network science, focused on the modeling

and analysis of relationships between generic entities. This discipline provides a set

� The author has been partly supported by the Italian Ministry of Education, Universities, and Research
FIRB grant RBFR107725.
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Fig. 1. A graph (a) provides a simplified representation of a social system which can be easy

to understand but may prevent a deep understanding of its structural and compositional

dimensions (b).

of tools (methodologies, methods, and measures) to improve our understanding of

complex systems, including social and technological environments, transport and

communication networks, and biological systems. The wide applicability of network

science largely relies on the adoption of graph-based models, that thanks to their

generality can be applied to a diverse range of scenarios.

However, researchers in social network analysis (SNA) and social sciences have

long been aware of the potential value in representing additional information on

top of the social graph, and of the potential loss in accuracy when simple nodes

and edges are used to represent complex social interactions. For example, according

to Wasserman & Faust (1994) social networks contain at least three different

dimensions: a structural dimension corresponding to the social graph, e.g., actors

and their relationships, a compositional dimension describing the actors, e.g., their

personal information, and an affiliation dimension indicating group memberships.

The existence of multiple relationship types, e.g., working together, being friends or

exchanging text messages, has also been studied for a long time, as recently reported

by Borgatti et al. (2009). This last aspect has been referred to as multiplexity in the

SNA tradition, and can be related to Goffman’s concept of context, well exemplified

by the metaphor of individuals acting on multiple stages depending on their audience

(Goffman, 1974). As an example, Figure 1(b) highlights how an attributed graph

may lead to a deeper understanding of social interactions if compared to the

corresponding graph without attributes in Figure 1(a).

1.1 Current trends in attributed graph analysis and mining

Attributed graphs have been used for decades to study social environments and it

has been long recognized that the structure of a social network may not be sufficient

to identify its communities (Freeman, 1996; Hric et al., 2014). However, recent years

have witnessed a renewed attention towards these models, partially motivated by the

availability of real data from on-line sources. One interesting aspect of real attributed

graphs is the observed dependency between who the actors are and how they interact,

i.e., between the structural and compositional dimensions. For example, La Fond

& Neville (2010) have observed the coexistence of social influence and homophily.

Social influence states that people who are linked are likely to have similar attributes,

thus node attribute values can be interpreted as a result of interactions with other

nodes. At the same time, homophily implies that people with similar attributes are

likely to build relationships. These two related phenomena have been observed in
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real networks by Kossinets & Watts (2006), and the dependency between attributes

and connectivity has been studied mathematically (Kim & Leskovec, 2012).

With this in mind, researchers have focused on attributed graph generators.

Artificially grown graphs are useful to experiment algorithms and run simulations

when real data are difficult to collect. They are relevant in testing what if scenarios,

providing forecasts on future evolutions, and can be used to design graph sampling

algorithms when the size of original graphs would otherwise make the analysis

impractical (Leskovec et al., 2005).

Prior models, as the well-known preferential attachment mechanism by Barabási

& Albert (1999), have focused on the social structure. Now the challenge is to

generate datasets as close as possible to the real-world social graphs, as done by

Zheleva et al. (2009) where affiliation information is also generated. This model

captures previously studied properties (e.g., power-law distribution for social degree)

but also provides new interesting insights regarding the processes behind group

formation. More recently Gong et al. (2011) have proposed a generative social-

attribute network model based on their empirical observations of Google+ growth.

Here, attributes describe user characteristics like name of attended school and group

membership. Nan et al. (2010) and Magnani & Rossi (2013a) have instead focused

on the generation of graphs with interdependent attributes on the edges.

The idea that attributes and connections are generated in an interdependent way

has led to the development of specialized analysis methods. Several graph mining

tasks have been extended to attributed graphs, like link prediction (Getoor & Diehl,

2005; Rossetti et al., 2011; Gong et al., 2011; Sun et al., 2012) or attribute inference

(Li & Yeung, 2009; Gong et al., 2011; Yang et al., 2011). This survey is dedicated to

one of the most relevant and studied operations on graphs and complex networks:

graph clustering, often referred to as community detection when social graphs are

involved. We believe that this is an important and timely effort to facilitate research

in this still young area, in particular considering that the discussed approaches have

been introduced in different disciplines, often unaware of each other.

1.2 Clustering attributed graphs

Although several surveys on graph clustering have been written (Schaeffer, 2007;

Fortunato, 2010; Aggarwal & Wang, 2010; Coscia et al., 2011), most of the

approaches to cluster attributed graphs are more recent and have not been included

in these works. At the same time, there is a large literature on (multidimensional)

clustering of tabular data (Moise et al., 2009; Han et al., 2011), but existing surveys in

this area have not addressed extensions for graph data. Attributed graph clustering

can be seen as the confluence of these two fields, the former focusing on the structural

and the latter on the compositional aspects. In this article, we focus on recent works

resulting from this promising combination.

The article is organized in three main parts: a review of methods for edge-

attributed graphs, a review of methods for node-attributed graphs, and a section

on practical issues including the evaluation of clusterings and the applicability of

different approaches. We conclude by summarizing the status of the research and dis-

cussing the open problems that are more promising according to our view of the area.

Attributed graph clustering has been independently studied in different disciplines,

https://doi.org/10.1017/nws.2015.9 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.9


Clustering attributed graphs 411

(a) (b)

Fig. 2. Two alternative representations of the different edge types in a multi-graph.

therefore it is important to know how different terms have been used in the literature.

In Table 1, we have indicated and briefly explained the terms used in this article.

2 Clustering edge-attributed graphs

One way to extend a graph model and to provide additional information to the

clustering algorithm is to represent the different kinds of edges among individuals.

As an example, in Figure 1(b) we can see that the relationship between the two

left-most nodes consists of a friendship and a working edge.

Different models have been used to represent this scenario (Minor, 1983; Lazega

& Pattison, 1999; Skvoretz & Agneessens, 2007; Kazienko et al., 2010; Berlingerio

et al., 2011b), sometimes emphasizing the different roles played by individuals with

respect to different networks (Magnani & Rossi, 2011), including different kinds of

nodes (Cai et al., 2005) or providing a more general data model to mathematically

represent a graph with attributes on both nodes and edges (Kivelä et al., 2014). In

Figure 2, we can see two alternative representations of the same data, as a multi-

graph (a) and as a set of interconnected graphs (b). The former, sometimes referred

to as a multiplex network, focuses on a single set of nodes that may have complex

relationships between them:

Definition 1 (Multi-relational edge-attributed graph)

Given a set of nodes N and a set of labels L, an edge-attributed graph is a triple

{G = (V , E, l)}, where V ⊆ N, (V , E) is a multi-graph and l : E → L. Each edge

e ∈ E in the graph has an associated label l(e).

The latter emphasizes how the same node can belong to multiple (social) graphs,

also known as layers:

Definition 2 (Multi-layer edge-attributed graph)

Given a set of nodes N and a set of labels L, an edge-attributed graph is defined

as a set of graphs Gi = (Vi, Ei), where Vi ⊆ N, Ei ⊆ Vi × Vi. Each graph Gi has an

associated unique name li ∈ L.

Although very similar, and in this specific example equivalent, these two repre-

sentations emphasize different aspects of an edge-attributed graph. It is important

to understand that the methods covered in the remaining of this section have been

developed starting from specific models, influencing their features. Researchers using

the first model have mainly focused on the reduction of different edge types to single

edges, while researchers using the second model have looked for clusters spanning

different layers and nodes belonging to multiple clusters depending on the edge

type. With this difference in mind, in the following we will formally represent both

scenarios using the second (more general) model, where a family of graphs possibly
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Table 1. Terminology used in this article and synonyms used in the literature.

Main term Synonyms Meaning

Node Vertex, site, actor Basic component of a graph. As an example, a node may indicate that a

user has an account on the social media site whose social network is

represented by that graph.

Edge Link, arc, tie, connection, bond, relation(ship) A relationship between two nodes, e.g., a following relationship between

two Twitter accounts. When there is an edge between two nodes we say

that they are directly connected.

Graph Network, social network, layer A graph without attributes, neither on nodes nor on edges, with the

exception of an optional numerical weight on edges indicating the

strength of the connection. Edges may be directed or indirected.

Edge-attributed graph Multiplex network, multi-layer graph,

multidimensional network, edge-labeled

multi-graph

Attributes indicate connections of different kinds or inside different graphs.

With this term we do not indicate the presence of weights, in which case

we explicitly talk of weighted graph/edges.

Node-attributed graph Node-labeled graph, graph with feature

vectors

A feature vector is associated with each node and contains information

about it, e.g., age, nationality, language, income.

Attributed graph Attribute graph, social and affiliation network,

relational data, multidimensional network

An edge-attributed graph, or a node-attributed graph, or both.

Layer Aspect, dimension Sometimes all the edges with the same attribute value in an edge-attributed

graph are indicated as a layer, e.g., the Facebook friendship, spacial

proximity, Twitter following, colleague or family layers in an attributed

graph indicating different types of social relationships.

Clustering Community structure Assignment of each node to one or more groups of nodes, called clusters.

Different criteria can be used to determine whether two nodes should

belong to the same cluster.

Partition Non-overlapping clustering A clustering where each node is assigned to exactly one cluster.
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(a) (b) (c)

Fig. 3. An edge-attributed graph, corresponding to a set on interconnected graphs defined

on a common superset of individuals (a). An indirect way to process it is to reduce it to a

single weighted graph, then apply classical clustering algorithms (b). A significantly different

approach is to look at exclusive connections (c).

containing common nodes represent the different kinds of edges. A larger working

example is shown in Figure 3(a).

More general definitions have been provided in the literature, where one node

in one graph can correspond to multiple nodes in another. This includes the case

of online social media, where the same user can open multiple accounts on some

services (Magnani & Rossi, 2011), and the case of non-social networks containing

different kinds of nodes, such as a power grid and a control network, where one node

in a network can be related to multiple nodes in another (Gao et al., 2011). Similarly,

the model introduced by Kivelä et al. (2014) allows the presence of attributes both

on nodes and edges. For the sake of simplicity we focus on the simpler definitions

above, because they are the ones used by almost all works on clustering social

networks to date. Also, notice that we focus on nominal attributes, e.g., work and

friendship: the case where attributes are only numeric, that is, weighted graphs, has

already been treated in depth in existing surveys. However, we will deal with numeric

weights when these are used inside algorithms for nominal attributes.

2.1 Single-layer approaches

A basic approach to deal with edge-attributed graphs is to flatten them: to

reconstruct a single weighted graph so that existing clustering methods can be

indirectly applied. This approach, exemplified in Figure 3(b), is not restricted to

clustering but can be applied to any operation defined on weighted graphs. Weights

can be computed straightforwardly so that an edge between two nodes has a weight

proportional to the number of graphs where the two nodes are directly connected.

Definition 3 (Flattening)

A flattening of an edge-attributed graph ({Gi}) is a weighted graph (Ef, Vf, wf)

where Ef =
⋃
Ei, Vf =

⋃
Vi, and w(u, v) = |{i | (u,v)∈Ei}|

N
(where N is the total number

of graphs).

Berlingerio et al. (2011a) follows this approach. However, the same authors point out

how this solution may discard relevant information, e.g., the fact that some attribute
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values (or graph layers) are more important than others to define a cluster. Tang

et al. (2011) propose a more general framework where the information about the

multiple edge types is considered during one of the four different components of the

community detection process, network flattening being one of them. Nevertheless,

the authors point out that this kind of integration requires that edges of different

types share the same community structure. Therefore, it is not suitable for cases

where the structures significantly vary in different dimensions.

An antithetic approach acknowledging the importance of edge-attributed models

but still not considering clusters that can span several graphs is introduced by

Bonchi et al. (2012). While flattening tends to assign nodes directly connected on

multiple graphs to the same group because they get connected by a strong edge in

the flattened graph, Bonchi et al. (2012) consider a set of nodes as a good cluster if

their relationships are as specific and homogeneous as possible, i.e., they are mainly

connected through the same edge type. An example is presented in Figure 3(c)

where the three nodes marked in black are connected with each other in the middle

layer but only share one single edge on all other layers, representing a good cluster

according to this approach1.

The next sections are devoted to methods aiming at identifying clusters spanning

multiple layers. They are mostly extensions of quality measures traditionally used in

graph clustering, modularity and quasi-cliques being two prominent examples.

2.2 Extension of modularity

Modularity is a measure of how well the nodes in a graph can be separated into

dense and independent components (Newman & Girvan, 2004). Figure 4 shows four

graphs with their nodes assigned into two communities (black and white) and the

modularities resulting from these assignments. In these examples, it clearly appears

how the assignments putting together highly interconnected nodes and separating

groups of nodes with only a few connections between them get a higher value of

modularity. It is worth noticing that modularity is not a method to find communities,

but only a quality function. However, it can be directly optimized or used inside

community detection methods to guide the clustering process.

Although this measure suffers from some well-known pitfalls (Fortunato &

Barthélemy, 2007; Lancichinetti & Fortunato, 2011), it has recently been at the

basis of several graph clustering methods and it has also been extended to deal with

attributed graphs. Let us briefly introduce it2, to later simplify the explanation of its

extension. The modularity is thus expressed as follows:

Q =
1

2m

∑
ij

(
aij − kikj

2m

)
δ(γi, γj), (1)

1 Please notice that this specific example is not compatible with the original model by Bonchi et al.
(2012) where individuals are allowed to be directly connected only on one of the layers. However,
it retains its underlying intuition. While this work was not originally intended to be applied to this
domain, it still presents a worth-mentioning alternative point of view.

2 Please notice that modifications of this formula have been proposed to make it more adaptable
to different datasets. One typical addition is a resolution parameter, that we have omitted from the
following equations because it is orthogonal to our discussion.
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Fig. 4. Modularity of four graph clusterings: nodes in each graph are assigned to two

clusters (black and white); the modularity of each assignment is reported under the graph.

Fig. 5. An edge-attributed graph with three kinds of edges, represented as three

interconnected graphs. Nodes have been assigned to three clusters (black, gray, and white).

where δ(γi, γj) is the Kronecker delta which returns 1 when nodes i and j belong to

the same cluster, 0 otherwise. Therefore, the sum is computed only for those pairs

of nodes that are inside the same cluster. For each of these pairs, the presence of an

edge between them improves the quality of the assignment: aij equals 1 when there

is an edge between i and j, 0 otherwise. As we are dividing everything by m (the

number of edges in the graph), edges between nodes belonging to different clusters

negatively affect modularity because they are not considered in the numerator (as

δ(γi, γj) = 0), but are counted in the denominator (m). Finally, the formula considers

the fact that two nodes with high degree would be more likely to end up in the same

cluster by chance, therefore their contribution is reduced (− kikj
2m

, where ki and kj are

the degrees of i and j).

Now it should be easier to understand the extension of modularity proposed by

Mucha et al. (2010) for edge-attributed graphs. Let us consider Figure 5: here we

have emphasized how the same individual i can be present in multiple graphs at the

same time. For example, i and j are directly connected on graphs r and s, where r

and s represent two different edge types. Notice that in this example we have three

graphs, i.e., three edge types, and that j is assigned to two different clusters in graphs

r (gray) and s, t (white).

Thus, the extended version of the modularity can be expressed as

Qm =
1

2μ

∑
ijsr

[(
aijs − kiskjs

2ms

)
δ(s, r) + cjsrδ(i, j)

]
δ(γi,s, γj,r). (2)
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This extended quality function involves not just all pairs of nodes (i, j) but also

all pairs of graphs (s, r). μ and δ(γi,s, γj,r) correspond respectively to m and δ(γi, γj)

in the modularity formula, where μ also considers the connections between different

graphs: we say that there is a connection between two graphs r and s whenever

they contain a common node j, which increases μ by cjsr . δ(γi,s, γj,r) allows to assign

the same node to different clusters inside different graphs. The sum is now made

of two components. One is only computed when two nodes in the same graph are

considered (because of δ(s, r)), corresponding to modularity. In fact, here aijs = 1

when i and j are directly connected in graph s and kis is the degree of node i in the

same graph. The second component, cjsr , is only computed when we are considering

the same node j inside two different graphs r and s. This term increases the quality

function by cjsr (typically, a constant value ranging from 0 to 1) whenever we assign

the same individual to the same cluster on different graphs.

One practical problem in using this measure is to set the cjsr parameter. Setting it to

0 for all nodes and graphs, clusters are identified on each single graph independently

of each other. If cjsr is high, e.g., 1, it becomes unlikely to assign the same individuals

to different clusters on different graphs. Other practical aspects to consider are the

fact that the part of the formula corresponding to traditional modularity can give

a negative contribution, which is not true for the part taking care of inter-network

relationships, and also the fact that the contribution of inter-network relationships

grows quadratically on the number of networks while the modularity part only

grows linearly. However, while the choice of appropriate parameters deserves more

research, this extended definition of modularity can be directly used to find clusters

by using any modularity-optimization heuristics, as done by Mucha et al. (2010),

or paired with a concept of betweenness to extend the Girvan–Newman algorithm.

The definition of betweenness for edge-attributed graphs follows directly from any

definition of distance involving multiple graphs (Brodka et al., 2011; Magnani et al.,

2013).

Figure 6 shows the values of modularity for four different multi-graphs and three

different settings for the inter-graph parameter cjsr (which is kept constant for all

nodes and graphs). The figure emphasizes the different components of this measure.

On the top we can see two clusterings aligned with both the single-graph and multi-

graph structure. In particular, groups of nodes sharing several edges belong to the

same cluster, and the same nodes on different graphs tend to belong to the same

cluster. However, the top-right example shows that we can assign a node to different

clusters in different graphs.

Modularities computed using different values of cjsr cannot be compared: increas-

ing cjsr also increases the absolute value of modularity. However, we can see how

the increase in the top-right figure is proportionally lower than the one on the left

(from 0.48 to 0.68 and from 0.54 to 0.62, respectively). This is determined by the

nodes assigned to multiple clusters.

The two lower figures show examples of lower modularity, i.e., clusterings not

following the structure of the graphs. The lower-left image has a low overall intra-

graph modularity which can be seen when cjsr = 0, and thus inter-graph connections

are not considered. When we also consider them (cjsr = 0.5 and cjsr = 1) we can

see that modularity is increasing in the lower-left graph much more than in the

lower-right one, where every node belongs to both clusters on different layers.
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Fig. 6. Multi-layer modularity of four graph clusterings: nodes in each graph are assigned to

two clusters (black and gray); the modularity of each assignment is reported under the graph

using three settings: cjsr = 0, cjsr = 0.5, and cjsr = 1.

2.3 Clique-finding methods

Another concept used to discover clusters in graphs is the clique, i.e., a complete

(sub)graph. Although this is one of the basic concepts in graph theory and it is thus

well known, we briefly recall it.

Definition 4 (Clique)

A clique is a set of nodes directly connected to all other nodes in the clique.

Definition 5 (Maximal clique)

A maximal clique is a clique that is not contained in a larger clique.

Figure 7(a) shows an example of a clique. Any three nodes in Figure 7(a) still make

a clique, but not a maximal one because we can add the fourth node and still have

a clique.

A (maximal) clique clearly corresponds to a cluster. However, large cliques are

difficult to find in real data because it is sufficient for one edge not to be present to

break the clique, and in social graphs edges can be missing for many reasons, e.g.,

because of unreported data or just because even in a tight group there can be two

individuals that do not get well together. Therefore, when clustering is applied to

social graphs, it is wiser to look for more relaxed structures called quasi-cliques.

For example, Freeman (1996) studies the cliques gathered from interviews to

a group of individuals and acknowledges that they are not enough for defining

communities.
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(a) (b) (c)

Fig. 7. A clique (a), a quasi-clique (b), and four nodes not making a 0.5-quasi-clique (c).

Definition 6 (Quasi-clique)

A quasi-clique is a set of nodes where each node is directly connected to at least

γ% of the other nodes in the quasi-clique.

Algorithms to discover quasi-cliques take γ as a parameter. Please notice that

similar alternative definitions are possible, e.g., using a strict > or considering the

percentage over all nodes in the quasi-clique—the underlying concept remains the

same. In Figure 7(b), we have illustrated a 0.5-quasi-clique, and in Figure 7(c), we

have four nodes that do not constitute a 0.5-quasi-clique because the white node is

directly connected to only one third of the other nodes.

The problem of finding quasi-cliques in a graph is NP-hard. According to common

beliefs, this implies that no algorithm can exactly solve this problem in a reasonable

amount of time even for small graphs. However, efficient algorithms which do not

guarantee the identification of all quasi-cliques have been proposed.

As previously mentioned, the most common interpretation of clusters in edge-

attributed graphs states that multiple kinds of edges between two individuals

strengthen their relationship. Therefore, Pei et al. (2005) have introduced algorithms

to discover quasi-cliques in all graphs and Wang et al. (2006) and Zhiping & Jianyong

(2006) to identify quasi-cliques in at least a given percentage of graphs (where this

threshold is called support).

While not based on quasi-cliques, the ABACUS algorithm by Berlingerio et al.

(2013) also applies a similar definition, coming from the frequent itemset mining

problem. First, clusters are identified in each graph, then those individuals being in

the same cluster in at least a given percentage of graphs are also included into a

global cluster in the final result.

It is worth noticing that quasi-clique clustering methods were first developed

for generic graph databases without focusing on the application domain of social

graphs. In this specific domain, while we may agree that a cluster spanning all the

graphs represents a strong global cluster, a group of nodes sharing a large number

of edges on a few specific graphs may also identify a cluster of interest. For example,

we might find that a group of individuals goes to the same school and plays in the

same basketball team. This is a strong relationship that should not be negatively

affected by the existence of other relationships where they do not form a group.

However, adding other edge types to the attributed graph (which corresponds to

adding new graphs to the multi-layer graph structure) would reduce their support.

The approach proposed by Boden et al. (2012) starts from this consideration and

looks for sets of nodes that make a cluster in each single graph of any subset of the

graphs in an edge-attributed model. This work also considers the case of weighted

graphs, but this is peculiar to this method and we will not provide additional details

here.

https://doi.org/10.1017/nws.2015.9 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2015.9


Clustering attributed graphs 419

Fig. 8. Emerging clusters: well separated clusters appear when a specific subset of the

graphs is used, but disappear when less or more networks are added.

2.4 Emerging clusters

We conclude this section presenting a hypothesis still unverified in the literature

that in our opinion might lead to the development of new clustering methods. The

hypothesis is that clusters can emerge when a specific combination of graphs is

considered, and disappear when more graphs are added to the model.

In Figure 8, the idea is illustrated on a simple example. The analysis of the

three graphs together (right hand side of the figure) does not reveal any interesting

patterns as there are too many edges in the graph. The same can be observed for

each single graph (on the left). However, choosing two specific layers, some more

evident clusters emerge (center, clusters denoted by black and white nodes). None

of the previously presented approaches seems to be able to find such clusterings,

because they require every cluster to be present in at least one of the single graphs.

This hypothesis would also provide an answer to the difficulty in finding good

clusterings in real social graphs. In fact, although several clustering algorithms

exist, in practice they achieve good results when some more or less well-separated

clusters exist. This is strictly related to the way in which community detection

algorithms have been defined: some try to maximize modularity, favoring well

separated clusters, some use random walk approaches, where the probability that a

walker crosses two clusters is proportional to the number of edges between them,

some exploit measures like betweenness, that is high when few other edges connect

distinct portions of the graph (Fortunato, 2010). However, when we deal with on-

line relationships, clustering becomes extremely hard. According to our hypothesis,

this depends on the fact that a large number of semantically different layers are

considered all-together, determining the co-existence of several overlapping clusters,

and a case of information overload.

In summary, if we consider Figure 8 (right side), we would not expect any

clustering algorithm to find evident clusters. However, in theory clusters may appear

when the multi-layer organization of the edges is unfolded in specific ways, e.g., by

only retaining the two layers in Figure 8 (center). Therefore, the problem shifts from

being purely algorithmic (e.g., how do we find the best cut?) toward aspects like the

choice of the data model, data preprocessing and feature selection.

A preliminary work in this direction that can be seen as a conjunction between

the idea of emerging clusters and the flattening approach is discussed by Rocklin

& Pinar (2011). This work proposes an algorithm to find a vector that weights the

layers to aggregate them such that the clustering of the resulting flattened graph is
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as similar to a given ground-truth clustering as possible (the clustering algorithm

and a similarity measure between weighted single-layer graphs are given for this

problem). The second half of the paper deals with the rich clustering structure that

the multi-typed edges can provide. Generating random aggregates of the graph,

the authors explore the space of possible clusterings and study, e.g., if good graph

clusterings are clustered in this space. The final problem that they tackle is how to

give an efficient representation of this resulting meta-clustering. Their approach is to

reduce each meta-cluster (of clusterings) into a single representative clustering and

select a small number of them to cover the meta-clustering space. In this way, they

provide a set of diverse and non-redundant clusterings as output.

3 Clustering node-attributed graphs

According to the taxonomy presented by Getoor & Diehl (2005), node-attributed

graph clustering aims at detecting groups of nodes sharing common characteristics

considering both their attributes and their position in the graph. Most of the

works addressing this problem are based on partitioning and homophily: nodes

can belong to one and only one group, and nodes in the same group must have

homogeneous values on their attributes. A few other methods, also covered here,

generate overlapping clusters, e.g., by considering different combinations of the

attributes. This last approach is usually known as subspace clustering.

3.1 Data representation

Like in the case of edge attributes, also when attributes on nodes are considered, the

literature abounds with terminologies and models depending on the research field

or the finality of the work, making it difficult to provide a unified view. However,

we can see some main options emerging.

As previously mentioned, Wasserman & Faust (1994) describe multiple dimen-

sions that can be represented in a social network model: a structural dimension

(relationships among actors), a compositional dimension (attributes of the single

actors), and an affiliation dimension (representing group memberships). Affiliation

information often refers to known groups such as clubs or companies, but it can

also represent the cluster memberships discovered through a clustering process.

Two main options to represent such a model are shown in Figure 9. The first

one, Figure 9(a), consists in extending a structural graph with tuples describing node

properties. This can be formally expressed as a triple G = (V , E, F), where each

node v is associated with a set of a attributes (or a feature vector) [f1(v), . . . fa(v)],

storing its compositional dimension. Note here that the affiliation information may

be stored in the same way, by adding attributes dedicated to memberships. The

second option, Figure 9(b), consists in superimposing one or more graphs where

additional nodes represent either specific attribute values or groups. Structurally, this

superimposed graph is bipartite because it connects individuals to groups, without

edges between groups or between users (the latter are stored in the original social

network). More formally, a graph Gp =
(
Vp, Ep

)
is augmented by a bipartite graph

Ga = (Vp ∪ Va, Ea), connecting nodes of Vp to attribute nodes of Va, with no links
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(a) (b)

Fig. 9. (a) Attributes represented as tuples describe node properties. The similarity/distance

between tuples can be integrated into the graph and used during the clustering process.

(b) New nodes representing the additional information are added to the original graph,

resulting in a heterogeneous structure with multiple node types.

Table 2. Some terminology used in the literature to refer to node-attributed graphs.

Term References Option

Social-attribute network (Yin et al., 2010a,b) (b)

Attribute augmented graph (Zhou et al., 2009, 2010) (b)

Attributed graph (Zhou et al., 2009; Cruz et al., 2013; (a)

Cruz & Bothorel, 2013)

Feature-vector graph (Günnemann et al., 2013) (a)

Vertex-labeled graph

between attributes: Ea ⊆ Vp ×Va. This defines an augmented graph G = (V , E) with

E = Ep ∪ Ea and V = Vp ∪ Va.

Several terms have been used in the literature to refer to the options presented

in Figure 9(a) and (b), or even for their intermediate variations. To make access to

the existing literature easier, in Table 2 we report the main terms together with the

references to where they appear and the indication of which modeling option has

been adopted. Our objective here is not to be exhaustive: we aim at capturing the

relationships between different approaches. For example, when Tong et al. (2007)

refer to an attribute graph, they imply that they have previously grouped the nodes

with common attributes, and propose a meta-graph where meta-nodes reflect those

groups and edge weights represent group-to-group similarity. Zheleva et al. (2009)

study social and affiliation networks keeping two distinct graphs and observing the

co-evolution of these two graphs via their common nodes, retrieved from Flickr

groups. In the machine learning field, in the late 1990s and early 2000s, workshops

dedicated to link mining referred to relational data (Neville et al., 2003). In a more

recent data warehousing context, Zhao et al. (2011) introduced an OLAP graph

cube for multidimensional networks.

In summary, there has not been a consensus on the model yet. While different

formats are useful to emphasize different aspects, all models include both structural

and compositional data and one can be derived from another. Therefore, to introduce
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(a) (b)

Fig. 10. A node-attributed graph (a) and an attribute-free representation of the same graph

(b) where attribute similarities are stored in the edge weights (b). Thicker edges indicate a

higher weight, i.e., a stronger connection.

existing methods, we will use a common model consisting of an attributed graph

G = (V , E, F), where nodes are associated with an attribute vector F(v).

3.2 Weight modification according to node attributes

The first class of methods we present is based on the following idea: first the node-

attributed graph is reduced to a single weighted graph, where weights represent

attribute similarity. Then, any clustering algorithm for weighted graphs can be

applied in principle. Different methods use alternative functions to compute node

similarity and to update edge weights when similarities have been computed.

However, in all these approaches the change of weights influences the clustering

algorithm to privilege the creation of groups in which the nodes are not only well

connected but also similar.

As an example, consider Figure 10. Focusing solely on the attributes, nodes

{1, 2, 3, 4, 7} would form a homogeneous cluster, well separated from nodes {5, 6}.
If we only consider the structure of the graph, two clear clusters emerge (nodes

{1, 2, 3} and nodes {4, 5, 6, 7}). These two pieces of information are summarized in

the weighed graph in (b). While the specific final clusters depend on the assigned

weights, we can see the emergence of a cluster made of nodes {1, 2, 3, 4}, presenting

both structural and compositional similarities and otherwise difficult to identify.

Table 3 summarizes the main works adopting this strategy, and the measures

mentioned in the table are reported in the following.

For example, Neville et al. (2003) use the matching coefficient similarity metric

Sij quantifying the number of attribute values (k) the nodes have in common. This

similarity metric is expressed as follows:

Sij =

{∑
k sk (i, j) if eij ∈ E or eji ∈ E

0 otherwise
, (3)

where

sk (i, j) =

{
1 if ki = kj
0 otherwise

.
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Table 3. Variations of the weight modification approach.

Reference Similarity Clustering

(Neville et al., 2003) Matching coefficient Karger’s Min-Cut

MajorClust

Spectral

(Steinhaeuser & Extended matching Assign u and v to the same cluster when the

Chawla, 2008) coefficient weight of (u,v) is above a given threshold

(Cruz et al., 2011b) Self-organizing maps Louvain

(Cruz et al., 2012)

Once the weights have been changed, the graph is clustered using one of the three

methods reported in Table 3: Karger’s Min-Cut (Karger, 1993), MajorClust (Stein &

Niggemann, 1999) or spectral clustering with a normalized cut objective function (Shi

& Malik, 2000). Experimenting with artificial datasets, spectral clustering appears

to be robust to irrelevant attributes and graphs with low linkage.

Steinhaeuser & Chawla (2008) extend the matching coefficient computation to

take both discrete and continuous attributes into account: for discrete attributes,

each common attribute shared by two nodes increments the weight of e (u, v) by 1;

for continuous attributes, the idea is to add the normalized distance between the

attributes. Once the weights have been changed and normalized, all nodes, connected

by an edge whose weight is greater than a threshold t, are assigned to the same

cluster. In this specific work, the quality of the final partition is evaluated using

modularity (Newman & Girvan, 2004).

The approach presented by Cruz et al. (2011b, 2012) deals with the fact that

not all attributes may be relevant to determine the similarity between nodes.

When too many attributes are involved in the computation of traditional distance

functions, e.g., Euclidean distance, we lose the ability to discriminate between

different nodes. In fact, the so-called curse of dimensionality materializes in that

all distances tend to converge to the same value. In addition, some attributes may

need to be combined/transformed to become relevant. Therefore, the authors use

a classical machine learning approach developed by Kohonen (1997) and known

as self-organizing map (SOM)3, to find the latent information worth to establish

the similarity between the nodes. An edge between two nodes from the same

cluster gets its weight strengthened proportionally to a given constant α � 1. The

resulting weighted graph is finally clustered using the Louvain method (Blondel

et al., 2008) and the overall complexity is linear O(n) + O(fn) + O(m), where n is

the number of nodes, f the number of attributes or features and m the number of

edges. Additionally, the authors introduce the notion of point of view : by manually

selecting subsets of attributes, it becomes possible to analyze the social network

from different perspectives.

It is worth noticing that this family of techniques produces new edge weights

according to node attributes. If the original social graph is also weighted,

3 Self-organizing maps have been proposed as a learning approach that is robust to noise and can map
high dimensional data into low dimensionality spaces, e.g., text.
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Table 4. Similarity or distance functions combining structural and compositional dimensions.

Reference Similarity or distance

(Combe et al., 2012) α · dT (i, j) + (1 − α)dS (i, j)

(Villa-Vialaneix et al., 2013) α0K0(i, j) +
∑

d αdKd(c
d
i , c

d
j )

(Dang & Viennet, 2012) α · Gi,j + (1 − α) · simA(i, j)

the two kinds of weights must be combined in some way, e.g., by multiplying

them.

3.3 Linear combination of attributes and structural dimensions

The previous family of methods removes node attributes by storing their information

inside the edges of the graph. Some studies adopt an opposite approach consisting

in the removal of the network: structural information is stored into a similarity (or a

distance) function between nodes. After defining this function, classic distance-based

clustering methods can be applied. As an example, Combe et al. (2012) define a

distance between nodes which is given by

dTS (i, j) = α · dT (i, j) + (1 − α) dS (i, j) , (4)

where dT (i, j) and dS (i, j) are the attribute and structural similarity, respectively,

between nodes i and j and 0 � α � 1 is a weighting factor. The authors leave the

choice of the clustering method open. Another similar distance function by Dang &

Viennet (2012), as listed in Table 4, is used to build a k-nearest neighbor graph in

order to find clusters using the Louvain method (Blondel et al., 2008).

The main feature of these approaches is that nodes which are structurally far from

each other in the social graph can result to be close in case of similar attribute values.

As a consequence, and depending on the distance-based clustering method, clusters

may contain disconnected portions of the graph. Hanisch et al. (2002) experiment

with a similar approach on biological networks and gene expression data. After

the computation of the combined distance, they apply hierarchical clustering and a

statistical measure to define the cutting point of the dendrogram.

While Villa-Vialaneix et al. (2013) share a similar purpose using a weighting

parameter to balance their components, they rely on kernels to map the original

(multi-space) data into an (implicit and unique) Euclidean space where SOMs can

be used. In this case, authors define a multi-kernel similarity function to combine

composition and structure as indicated in Table 4. K0 (i, j) indicates the kernel

measuring structural similarity, cdi is the dth label of node i and αd are weighting

factors.

This approach also exploits the visual potential of SOMs which can be represented

as bi-dimensional grids. In such grids, each cell represents a group of nodes, and

the size of the cells is proportional to the number of observations associated with

it. In this way, the authors are able to represent the size of the communities, the

distribution of topics and the links on the same 2-dimensional representation.

Dang & Viennet (2012) propose an extension of the Louvain method with

a modification of modularity to include the similarity of the attributes in the
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community discovery process. This is given by

Q =
∑
C∈C

∑
i,j∈C

(α · S (i, j) + (1 − α) · simA (i, j)) , (5)

where C indicates the set of graph partitions, S (i, j) represents the strength between

two nodes (computed as in the original definition of modularity), simA (i, j) is a

similarity function based on attributes i and j and can be adapted according to how

the attributes are represented. 0 � α � 1 is a weighting factor.

In general, for parametric methods an important question is how to choose α.

According to the authors of these methods, clusters are stable against small changes

in the parameter. Dang & Viennet (2012) also propose a way to estimate α, and

kernel-based approaches support automated parameter tuning (Villa-Vialaneix et al.,

2013). Depending on application, analysts may also set α to emphasize attribute

homophily or connectivity. However, more case studies and future independent

analyses will be welcome.

3.4 Walk-based approaches

A random walk on a possibly infinite network is a stochastic process where a walker

goes from node to node by choosing a target neighbor at random at each step

(Noh & Rieger, 2004). In the clustering context walk models are used to estimate

vertex distances on attributed graphs. In accordance with this distance, k-means-

like approaches attract close nodes around the predefined k centroids in order to

aggregate the members of the communities.

Zhou et al. (2009) define a random walk process on graphs like the one in

Figure 9(b). The result is that the more attribute values two vertices share, the more

paths via the common attribute nodes exist. In this way, random walks can be used

to measure vertex proximity through both the structural links and the compositional

links.

In the connected k centers method proposed by Ge et al. (2008), the walk strategy

is a simple breadth-first search (BFS) defined for graphs like the one in Figure 9(a),

where the feature vector is also used to determine the next visited node. This method

implements the k-means algorithm using walks to compute distances: first, it picks

k random nodes as cluster centers; second, all the nodes are assigned to one of

the k clusters by traversing the graph using BFS; third the centroids of the clusters

are recalculated. The second and third steps are repeated until there are no further

changes in the clusters’ centroids.

3.5 Methods based on statistical inference

Statistical inference is the process of drawing properties of datasets from a set of

observations in a model and then inferring predictions about a larger population

represented by the sample. In this section, and according to the classification provided

by Fortunato (2010), we focus on two types of methods: the ones using generative

models, as an intermediary step or in a pure manner to mix attributes and links in

a unified model, and the ones using stochastic block models.

Many studies focus on the task of clustering networks of documents. Here,

every document can be seen as a node characterized by a complex attribute
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defined by the words contained in the document. For example, Li et al. (2008)

propose a clustering method to find communities in a large-scale document corpus

exploiting both the document content (the words), and their references/citations.

They use statistical inference as an intermediate step to find hidden topics to

further manipulate the documents. The general principle is to find community cores

and then include their members. The detection of cores identifies the documents

that are frequently co-referenced and may play the role of community seeds.

A second phase merges the initial cores according to their topic similarity in

order to improve the core consistency. The authors use here the well-known text-

mining method called latent Dirichlet allocation (LDA) to find topics. LDA is a

generative topic model so that unobserved or latent topics have probabilities to

generate various observed words. A Bayesian inference finds the best fit of the

model to the observations through likelihood maximization. Finally, the third step

is to affiliate the remaining documents to the clusters. This affiliation propaga-

tion process may lead to misclassified documents and a final step removes false

hits.

LDA is also used by Liu et al. (2009) and Balasubramanyan & Cohen (2011) but

as a central approach and in an extended manner to identify latent groups. The

topic-link LDA model defined by Liu et al. (2009) is a generative model considering

topics, membership of authors and link formation between pairs of documents

exhibiting both topic similarity and community closeness. The inference is designed

to regularize the topic information when inferring the hidden communities and

vice versa. The authors maximize likelihood using an expectation-maximization

algorithm and demonstrate their unified model on three different tasks: topic

modeling, community detection and link prediction in blogs, and CiteSeer datasets.

For the community detection task, we would highlight here an interesting remark.

Their approach offers a meaningful investigation of how content similarity and

community similarity contribute to the formation of links. They are able to reveal

that author membership has a much stronger effect on link formation between blog

posts in political domains than technical papers. They also show that the topic

dimension plays a more important role than the community similarity in blog citing.

Balasubramanyan & Cohen (2011) also address the problem of link modeling and

combine two popular methods: block modeling and LDA.

Xu et al. (2012) propose a community detection model that is transformed into

a statistical inference problem. Authors start by defining a generative Bayesian

model that produces a sample of all the possible combinations of a graph, defined

by its adjacency matrix X, a matrix of features Y, and a vector Z containing the

assignation of each node to one out of k groups, i.e., a partition of the graph. This

model produces a conjoint probability p (X,Y,Z). The idea is thus to find a partition

Z∗ such that Z∗ = argZ max p
(
Z | X,Y

)
.

These techniques are very attractive to mix both attributes and topology into the

same model, but unfortunately the optimization process to estimate the parameters

of the likelihood is often costly. In addition, they do not rely on the definition of

any distance, and the choice of the a priori distributions in the statistical models

requires a non-trivial expertise.
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3.6 Subspace-based methods

Some of the clustering approaches reviewed so far share the belief that a carelessly

usage of all the available attributes may lead to poor clusterings. This is the case, e.g.,

in the work by Villa-Vialaneix et al. (2013). We have already recalled the phenomenon

called curse of dimensionality in Section 3.2: when the number of attributes is large

the difference in the distance between two random pairs of data points (actors, in

this case) tends to zero. This phenomenon motivates the development of clustering

approaches focused on the identification of the discriminative attributes to produce

well separated clusters. This general approach is known as subspace clustering, and

has been also applied to the case of node-attributed graphs. Subspace clustering

methods are designed to select the “best” subsets of dimensions. They search the

projections of the data in different dimensions and identify clusters that are relevant

locally to some of these subspaces.

Subspace clustering is interesting because it may reveal groups that would not

be detected considering the entire set of attributes. However, finding relevant

projections is computationally hard. The final choice of which groups to keep is also

costly and requires an optimization step combining the best size, density, entropy,

dimensionality, and any other relevant quality function (see Section 4.1). Moreover,

as each cluster is relevant in its own subspace, this has the effect of producing

overlapping clusters and requires additional efforts to control the redundancy ratio

between them.

One semi-automated approach to identify relevant subsets of attributes has been

presented by Cruz et al. (2011b), where the authors propose a framework helping

human analysts to manually select their preferred compositional perspective. The

choice of the subset of attributes is given explicitly as an input to an automatic

clustering process.

Differently, Günnemann et al. (2013) propose a completely automated method

to efficiently combine subspace and subgraph clusters. In particular, they use their

former GAMer method to extract an exhaustive list of candidate clusters, but

apply a different final selection of the clusters to be returned to the user. The

GAMer method greedily selects the clusters that locally optimize a quality measure.

Here, they propose a solution based on global optimization, maximizing the sum

of the clusters’ qualities under redundancy constraints. The overall complexity of

this definition of clustering is #P-hard4. Therefore, the authors propose a heuristic

that, for example, produces a clustering of the whole DBLP database5 in about 7

hours with commonly available hardware. They also show that the quality remains

comparable to the greedy solution computed by GAMer in terms of F1 value and

density.

The time complexity of subspace clustering approaches is notoriously high, but

the discovery of dense subgraphs in selected subspaces can be valuable. However, the

high number of required input parameters (minimum cluster size, dimensionality,

4 This is the complexity of some hard counting problems, and implies that an exact solution to this
problem cannot be currently computed in acceptable time.

5 133 097 nodes; 631 384 edges; 2 695 attribute dimensions. Available at: http://dblp.uni-trier.de
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density, redundancy) can have a negative impact on the practical usability of these

methods. Finally, as we will see in Section 4.1, the evaluation of attributed graph

clusters in general is still under study, and maybe more for overlapping ones where

no ground truth exists.

3.7 Other methods

Other works directly extend well known and efficient graph-based methods. Cruz

et al. (2011a) extend the Louvain method (Blondel et al., 2008) introducing a local

minimization of the entropy generated by the attributes between the modularity

optimization and the community aggregation steps. Dang & Viennet (2012) also

extend the Louvain method in a similar way, by optimizing at each iteration the

linear combination of the classical modularity and a new modularity based on the

attributes.

Akoglu et al. (2012) propose a method to identify cohesive groups in attributed

graphs composed of n nodes each described by a feature vector. In this case, the

attributes are binary, i.e., a node either has or not certain attributes. The algorithm

uses the adjacency matrix An×n of the graph and a matrix Fn×f representing the

assignation of features for each vector. The main underlying idea is to find k groups

of nodes using the structural information and l groups using the feature information.

The cost function is based on the encoding of the matrices A and F as well as the

configuration of the clusters, where the encoding uses the approach proposed by

Rissanen (1983).

Barbieri et al. (2013) present an approach using the notion of information cascades,

and in particular the idea that an information cascade is more likely to occur

within a community rather than between communities. Thus, they use a given

set of information cascades to build a probabilistic model named community-

cascade network. To learn the parameters of the model authors use an expectation-

maximization approach, which however has been reported to be computational

expensive.

Ruan et al. (2013) also propose a content- and structure-based community

detection algorithm called CODICIL. The algorithm starts by creating an edge

set with the structure and a graph generated from the similarity of the nodes,

i.e., the final edge set will contain the original structure plus edges derived from

obtaining the top k most similar neighbors for each node. This similarity is

calculated using the cosine distance between the TF-IDF vector from the content

of each node. Then, this new graph is sampled to select certain relevant edges

and, at last, this sampled graph is clustered using a classic graph clustering

technique.

Finally, some approaches focus on the discovery of significant patterns, such as

association rules or regular structures in graphs. Significant examples are the works

by Moser et al. (2009), Silva et al. (2010), Atzmueller & Mitzlaff (2011) and Pool

et al. (2014), focusing on mining descriptive community patterns and allowing the

analysts to understand the structure of frequent subgraphs around topics which may

be useful in scenarios like fraud detection or counter-terrorism. Differently from

graph partitioning methods, frequent patterns can overlap and do not necessarily

cover the entire dataset.
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4 Practical aspects

4.1 Evaluation

Comparing the quality of two clusterings is a fundamental capability. It can be

used to choose among alternative algorithms, inside a single algorithm as a stopping

condition or as a guide to choose the next step in a so-called greedy approach,

making an assignment that maximizes the quality improvement. However, evaluating

clustering algorithms is an open problem, even when graphs without attributes or

even tabular data are involved. This has been clearly discussed in recent surveys

by Schaeffer (2007) and Fortunato (2010) where the identified problems not only

concern the ambiguous and personal definition of good cluster, but also the need for

results that are easier to interpret and use, benchmark datasets and quality functions

to explain why a clustering is regarded as good or not.

While evaluating graph clustering is a hard and open problem even when no

attributes are present, several measures to evaluate graph clusterings have been

proposed, and some have been extensively applied. Therefore, without claiming that

these measures represent the final or only solution to the problem, in this section

we start from them as an existing way of evaluating graph clustering and focus on

what we need to add when we deal with attributed graphs.

The main additional aspect to consider when attributed graphs are involved is

the co-existence of multiple objective functions. Having a description of the data

that includes both structural and compositional aspects, we may have sets of nodes

that are very similar according to their attributes but disconnected from each other.

Similarly, we may have well connected sets of nodes with rather heterogeneous

compositional attributes. Both cases can be considered good clusters depending

on the user requirements and while we would certainly prefer to identify sets of

nodes making a good cluster with respect to all these aspects, we must accept

the co-existence of multiple evaluation functions—or a multi-objective evaluation

function.

In the rest of this section, we introduce relevant evaluation measures for different

aspects involved in defining good attributed graph clusters. In order to demonstrate

their differences, we apply these measures to a toy graph.

4.1.1 Structural measures

Evaluating the quality of a clustering of a simple graph without node or edge

attributes is a complex problem in itself. In this section, we will consider two

different scenarios: evaluation with and without ground truth.

External evaluation measures. When ground truth is available, the problem is reduced

to computing similarity between two clusterings. Since we confront the found

structures to externally provided class information, we call such similarity measures

external evaluation measures. These measures can be divided into two main groups:

based on pair counting and based on information theory. We will briefly discuss

the most typical representatives to give the readers an idea rather than a complete

overview of the methods.
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Cv

Class v1 v2 . . . vr ∑i·
u1 n11 n12 . . .n1r n1·
u2 n21 n22 . . .n2r n2·

Cu
...

...
...

. . .
...

...
um nm1nm2. . .nmr nm·
∑· j n·1 n·2 . . . n·r n

Fig. 11. A contingency matrix representing the agreements nij between two partitions.

Given two partitions Cu = {Cu1, Cu2, . . . , Cum} and Cv = {Cv1, Cv2, . . . , Cvr} of a

set of nodes, the pair-counting-based measures show the proportion of agreement

between both partitions. These measures have two requirements: (1) the partitions

are disjoint, i.e.,
⋂

Ci∈C Ci = ∅, and (2) all elements have the same weight in the

clustering process.

The Rand index (RI) is one of the first approaches for comparing two partitions

(Rand, 1971). It can be considered as an alternative to accuracy because it expresses

the number of pairs of nodes that were placed within the same group in both

partitions divided by the number of all node pairs. This comparison leads to a

similarity function c (Cu,Cv) between partitions that is expressed as

c (Cu,Cv) =

n∑
i<j

γij(
n
2

) , (6)

where

γij =

⎧⎪⎪⎨
⎪⎪⎩

1 if ∃k, k′ : xi, xj ∈ Cuk ∧ xi, xj ∈ Cvk′

1 if ∃k, k′ : xi, xj /∈ Cuk ∧ xi, xj /∈ Cvk′

0 otherwise.

The agreements between partitions Cu and Cv can be summarized using a

contingency matrix as presented in Figure 11. In this matrix, nij is the number

of agreements while ni· is the number of elements of the ith group from the Cu

partition and n·j is the number of elements in the jth group in the Cv partition.

Using a contingency matrix similar to the one presented in Figure 11, Equation

(6) can be re-expressed as

c (Cu,Cv) =

(
n
2

) −
[
1/2

(∑
i

(∑
j nij

)2

+
∑

j

(∑
i nij

)2
)

− ∑ ∑
n2
ij

]
(
n
2

) . (7)

Note that c (Cu,Cv) ∈ [0, 1], i.e., it is 0 when the partitions are dissimilar and

1 when the partitions are identical. Later Hubert & Arabie (1985) introduced the

adjusted Rand index (ARI) which is a version of the RI corrected for chance. The

ARI is given by

ARI (Cu,Cv) =

∑r
i=1

∑s
j=1

(
nij
2

) −
[∑r

i=1

(
ni·
2

) ∑s
j=1

(
n·j
2

)]
/
(
n
2

)
1
2

[∑r
i=1

(
ni·
2

)
+

∑s
j=1

(
n·j
2

)] −
[∑r

i=1

(
ni·
2

) ∑s
j=1

(
n·j
2

)]
/
(
n
2

) , (8)

where ni·, n·j and nij are values taken from the contingency matrix in Figure 11.
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Another common measure is the Jaccard index which is given by the ratio of

the node pairs that were clustered together in both partitions and the node pairs

clustered together in at least one partition (Jaccard, 1901).

The second group of external evaluation measures uses mutual information (MI)

between partitions, i.e., the information both partitions share. These measures are

based on entropy and joint entropy of the partitions. Using the same contingency

matrix presented in Figure 11, the MI index is given by

MI (Cu,Cv) =

m∑
i=1

r∑
j=1

nij

n
log

nij/n

ni·n·j/n2
. (9)

This measure can be normalized by the joint entropy of the partitions ensuring

that the MI lies within the interval [−1, 1] or [0, 1]. Variations of this measure with

different normalizing factors or adjustments with correction for chance are presented

in detail by Danon et al. (2005) and Vinh et al. (2010).

Internal evaluation measures. Without ground truth, determining the quality of a

clustering is based on its intrinsic characteristics. We refer to such measures as inter-

nal evaluation measures. According to Ben-David & Ackerman (2008), “a clustering

quality measure is a function that maps pairs of the form (dataset, clustering) to

some ordered set (say, the set of non-negative real numbers), so that these values

reflect how good or cogent that clustering is.” Some general properties for good

quality measures have been proposed, such as scale invariance, monotonicity and

richness (Ben-David & Ackerman, 2008; van Laarhoven & Marchiori, 2013), but in

practice the problem depends on the purpose of the analysis.

To assess quality, Gaertler (2005) uses two functions, f (C) and g (C), to measure,

respectively, the density and the sparsity of the clustering. These functions are

combined as follows

index (C) =
f (C) + g (C)

N (G)
, (10)

where N (G) is a normalization function for the index defined as max{f + g} over

all clusterings (Brandes et al., 2008). Using the general index defined in Equation

(10), three different quality indices can be derived: coverage, conductance, and

performance.

Coverage γ (C) is a measure of the ratio of the intra-cluster weights to the total

amount of edge weights:

γ (C) =
ω (E (C))

ω (E)
, (11)

where E (C) is the set of intra-cluster edges and ω (·) is the sum of the weights of

a set of edges. According to the general definition in Equation (10), f = ω (E (C))

and g = 0.

Conductance ϕ (G) is a measure based on the observation that if a cluster is well

connected, then a large number of edges have to be removed in order to bisect

it. Thus, conductance ϕ (G) of a graph G is the minimum conductance value over

all cuts of G (Brandes et al., 2008)—that is, the lowest possible value of the total

weight of all edges between the clusters of a partition C. Along with the graph

conductance, two other measures exist: intra-cluster conductance α (C) and inter-

cluster conductance δ (C). Intra-cluster conductance is the minimum conductance
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value over all induced subgraphs G (Ci) while the inter-cluster conductance is the

maximum conductance over all induced cuts
(
Ci, Ci

)
. Thus, given a cut C =

(
C,C

)
,

according to Brandes et al. (2008), the conductances ϕ (C) and ϕ (G) can be defined

as follows:

ϕ (C) =

⎧⎪⎪⎨
⎪⎪⎩

1, C ∈ {∅, V }
0, C /∈ {∅, V } ∧ ω (C) = 0

ω(C)

min(a(C),a(C))
, otherwise

(12)

ϕ (G) = min
C⊆V

ϕ (C) , (13)

where a (C) is the sum of the weight over all edges adjacent to C . It is expressed as

a (C) = 2
∑

e∈E(C)

ω (e) +
∑

f∈E(C,C)

ω (f) .

The intra-cluster conductance of a partition C is defined as

α (C) = min
i∈{1,...,k}

ϕ (G (Ci)) , (14)

while the inter-cluster conductance of a partition C as

δ (C) =

{
1, if C = {V }
1 − maxi∈{1,...,k} ϕ (Ci) , otherwise.

(15)

In order to express the preceding indices in the form of the general framework

from Equation (10), we set g = 0 for intra-cluster conductance, f = 0 for inter-cluster

conductance and N = f + g = 1 for both cases.

Performance defines the quality of a partition based on the “correctness” of the

classification of a node pair. The density function f counts the number of edges

within all clusters while the sparsity function g counts the “nonexistent edges”

between clusters (Gaertler, 2005), that is, the number of not connected pairs of

nodes among all clusters. The definitions are

f (C) =

k∑
i=1

|E (Ci)|

g (C) =

k∑
u,v∈V

[(u, v) /∈ E]Ii,j(u, v),

(16)

where the function I is defined as:

Ii,j (u, v) =

{
1, u ∈ Ci ∧ v ∈ Cj, i 
= j

0, otherwise
(17)

Finally, performance as presented by Brandes et al. (2008) is

perf (C) =
f (C) + g (C)

1
2
n (n − 1)

, (18)

where n is the number of nodes of the graph.

A comparison of clustering algorithms and measures has been provided by

Leskovec et al. (2010), and more details concerning the limitations of these measures

can be found in the works by Gaertler (2005) and Brandes et al. (2008).
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Fig. 12. Two graph partitions (lower graphs) and ground truth (upper graph): the values of

some internal (modularity, coverage) and external evaluation measures (computed according

to the ground truth) are shown. (Color online)

Other candidates for a quality measure are density and modularity (Newman &

Girvan, 2004; Fortunato, 2010), and they can also be directly optimized instead of

just being used as evaluation functions. We will not add additional details about

modularity, that has already been described earlier in the article.

In Figure 12, some sample measures are illustrated on two alternative partitions

of the same graph.

4.1.2 Edge-attributed graph clustering

Only a few works have proposed evaluation measures for multiple graphs. The

measure introduced by Mucha et al. (2010) takes into account both the pairs

of nodes and the pairs of graphs—this approach has already been described in

Section 2.2.

A different approach is given by Boden et al. (2012). In the spirit of subspace

clustering, a set of “interesting” non-redundant clusters is sought. Candidate multi-

dimensional clusters are considered to be all the node sets that are densely connected

in every respective dimension (in all single layers that are contained in the cluster).

From these, the result is selected by maximizing the quality sum
∑

C Q(C) of all

clusters while keeping the set of clusters non-redundant. Redundancy is computed

as an overlap of edges of two clusters. The quality function Q(C) is meant to

be specified by users since it is application-dependent. Nevertheless, the authors

provide a default quality function which multiplies average density of the layers,

size and dimensionality. Additionally, a minimum cluster size is set to 8 nodes and

a minimum of 2 dimensions is required for each cluster. This evaluation measure is

bound to a specific cluster model. Moreover, it is limited to finding multidimensional

clusters that are clustered in all the single layers at the same time (this results from

the condition on the candidate clusters).

The problem of measuring distances between clusterings of graphs with weighted

edges of multiple types is also tackled by Rocklin & Pinar (2011).
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4.1.3 Node-attributed graph clustering

Node-attributed graph clustering approaches like the ones by Zhou et al. (2009),

Cruz et al. (2014) and Dang & Viennet (2012) use a combination of two measures:

density δ for the structural part and entropy H for the attributes. Given a graph

G (V , E) and a partition C = {C1, C2, . . . , Ck} of G, density is defined as:

δ (C) =
1

|E|
∑
Ci∈C

|E (Ci) |, (19)

where E (Ci) is the set of edges that start and finish in the ith community. That is,

density represents the proportion of edges that lie within the communities and a

higher density corresponds to a better clustering.

The term entropy, used in several different contexts to measure the degree of

disorder of a complex system, indicates the heterogeneity of the elements inside a

cluster according to their attribute values. It is given by

H (C) =
1

|V |
∑
Ci∈C

H (Ci) , (20)

where H (Ci) is the entropy of the ith community and is calculated as

H (Ci) = −
r∑

j=1

pij ln pij +
(
1 − pij

)
ln

(
1 − pij

)
,

where r is the number of attributes and pij is the proportion of elements in the

community Ci with the same value on the attribute j. The objective of the clustering

is to reduce the entropy which is equivalent to increasing the homogeneity of the

partition.

Another validation technique is presented by Li et al. (2008). In this work,

documents are classified into ACM’s 17 major computer science categories. This

is a fuzzy classification that allows each document to belong to several categories.

Thus, each document di is assigned to a (17-dimensional) topic vector zi and then

the documents are clustered into K groups. Each group Cj is further assigned to a

topic vector Zj .

The paper defines a measure called PC̄S as

PC̄S =
PCSj

K
, (21)

where K is the number of communities, PCSj is

PCSj =

∑
k:djk∈Cj

η
(
djk

)
nj

,

where nj is the size of the community j and

η
(
djk

)
=

{
1 if zjk = Zj

0 otherwise .

Thus for each cluster Cj , the measure computes the proportion of elements dk ∈ Cj

such that zk = Zj , i.e., how many documents within the community have a topic

vector that is equal to the community’s topic vector.
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In some cases it is possible to define the number and labels of the groups by

hand as presented by Ge et al. (2008) where authors compare the obtained partition

with the expected one by counting the number of elements classified correctly by an

algorithm. This approach is acceptable for small networks but becomes prohibitive

for large networks with high dimensional feature spaces.

When ground truth is available, it is possible to use validation methods such as

RI or MI index. In this line, Combe et al. (2012) define a framework for comparing

the resulting partition with the ground truth. They use a contingency matrix (similar

to the one presented in Figure 11) created from the ground truth and a partition

found by the tested algorithm. Then they calculate the proportion of nodes that

were well grouped according to the ground truth.

Yang et al. (2009) use two validation approaches that are based on ground truth:

the normalized MI, briefly described in Section 4.1.1, and the pairwise F measure

(PWF). The PWF measure is given by the relation between pairwise precision and

recall. This relation is

PWF =
(1 + β2)precision × recall

(β × precision) + recall
, (22)

where β > 0 is a parameter used to favor either precision or recall. It is common to

leave β = 1. To calculate precision and recall, the following expressions are used

precision = |S∩T |
|S |

recall = |S∩T |
|T | ,

where S is the set of node pairs that are assigned to the same community and T is

the set of node pairs that have the same label.

4.1.4 A multi-objective evaluation approach

In the previous sections, we introduced several evaluation measures and we have

seen that, in general, finding a good clustering of an attributed graph requires

optimization of at least two objective functions. Therefore, there will always be

a trade-off between compositional and structural dimensions. For node-attributed

graphs, the objectives are the structural quality of the clusters (intra-cluster vs.

inter-cluster edges) and the intra-cluster homogeneity of the node attributes. For

edge-attributed graphs, the situation is more complicated since it is less obvious

how to define a good clustering. According to Boden et al. (2012), cluster candidates

are well clustered in all of their dimensions, but this assumption could prevent the

discovery of potentially useful clusters.

Another possible evaluation perspective consists in no longer checking if a

clustering is good as a whole, but whether any specific interesting clusters are found.

In general, in order to evaluate a specific cluster in an attributed graph, one can

take into consideration its structural quality, homogeneity of node attributes, size,

dimensionality, and novelty. We can thus see these variables as different dimensions

of a search space where each multidimensional point is a cluster. Good clusters can

be selected based on custom settings of weights of the dimensions, or unweighted

approaches like the Pareto front can be used to find all clusters that are potentially

better than others according to any combination of these basic evaluation functions.
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For structural quality and node homogeneity, any measure from Sections 4.1.1

and 4.1.3 may be selected. To assess novelty, we suggest to use one of the proposed

measures of overlap, such as Jaccard index. The value of the maximum overlap can

be returned as novelty. In this way, emerging clusters of minimal dimensionality are

favored, preventing information overload.

4.2 Applicability

Approaches preprocessing edge- or node-attributed graphs by reducing them to

graphs without attributes normally keep the same asymptotic complexity of the

clustering algorithm used after preprocessing. The exact complexity of the prepro-

cessing phase depends on the data structure and the specific flattening algorithm,

but it is normally achievable in close-to-linear time on the size of the graph. As an

example, edge-attributed flattening as described in Definition 3 and using a tree-

based main memory indexing structure takes O(m logm), where m is the number of

edges, that is, the average number of edges per edge type times the number of edge

types.

As such, while not taking full advantage of the information represented by the

different edge types, these methods can be applied to very large graphs using any of

the existing efficient clustering algorithms reported e.g., by Coscia et al. (2011), they

are simple to implement and (with some variation in the flattening algorithm) can

also be applied to directed and weighted graphs. However, in the case of weighted

edge-attributed graphs, domain knowledge is necessary to decide how to merge

weights on different edge-types. The conceptual problem of merging weights with

different semantics as described by Magnani & Rossi (2013b), e.g., the number of

exchanged messages on an email layer and the duration of friendship on a social

media network, emphasizes the deficiencies of single-layer approaches.

Similarly, for node-attributed graphs where the node attributes are flattened into

edge weights before applying a community detection algorithm, the time complexity

of the preprocessing step depends on the number of attributes and on the method

used to compute how similar the nodes are. In case of matching similarity, for each

edge, the number of common attributes between the end nodes is computed which

takes O (mf), where f is the attribute space size and where in general f � m. In

high dimensional spaces, we expect that each node is described by a sparse vector

and that allows for efficient methods such as growing SOMs. These methods, when

coupled with efficient graph clustering, exhibit a near linear complexity. The other

methods still take advantage of the sparse nature of the graph and thus, having less

than quadratic complexity, are able to address large datasets.

With more integrated methods, such as subspace approaches or the one proposed

by Ruan et al. (2013), the clustering process can reach a high complexity—quadratic

and more. But in general, for linear combination or walk-based methods, the

complexity depends on the algorithm used for clustering the features, e.g., SOM or

k -means among others, and whether the approach is global or local. The resulting

process can still be practically used for reasonably large graphs, and graphs with

hundred thousand nodes have been successfully processed in the reviewed works on

subspace clustering.
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On the other hand, most of the community detection algorithms require the choice

of parameters that control the output of the algorithm, for example the number

of clusters k, the weight to emphasize the connectivity α or weighting variables for

linear combination approaches, the number of iterations, statistical distributions for

model-based methods, redundancy or heuristics in NP-hard subspace approaches;

this sometimes requires major assumptions and domain knowledge about the data,

which reduces their applicability. Only a few methods among the ones reported in

this work are parameter-free, including the ones by Neville et al. (2003), Cruz et al.

(2011a) and Akoglu et al. (2012).

Regarding the directionality of the edges, most of the methods described in

this article rely on the application of existing approaches when the structural

part of the graph must be analyzed, in which case any existing algorithm for

directed graphs can be used. This evidently applies to the single-layer and weight

modification approaches, and is also the case for subspace methods, even if these

last approaches may require some adaptation when specific algorithms have been

hardcoded inside them. Methods based on extended modularity cannot be used

without modifications on directed graphs, because they are based on the original

definition of modularity which assumes undirected edges. However, they can be

extended in the same way as it has been done by Nicosia et al. (2009) for non-

attributed graphs. With respect to node-attributed graphs, approaches based on

linear combination can be straightforwardly used with directed edges as they are

based on the computation of graph distances, that can be obtained on directed

graphs as well. Similarly, walk-based approaches are naturally well suited to directed

graphs.

As a final consideration, the works we have mentioned so far are all based on the

general idea of clustering several dimensions at the same time; e.g., relationships,

affiliation, competencies, socio-demographic features, among others. However, the

information stored respectively in the attributes and in the edges may be uncorrelated

and will not necessarily reinforce the same clusters. In practice, trying to merge

several dimensions may result in failing to find any well separated clusters even when

clusters exist under a single dimension. An alternative approach is to run dedicated

and specialized clustering steps for each dimension (structure, edge attributes, etc.),

and then integrate the resulting partitions a posteriori only if this leads to better

clusters. Cruz & Bothorel (2013) propose to manipulate the partitions with a

contingency matrix where structural groups are in rows and compositional ones are

in columns. The integration of the partitions relies on predefined strategies. Even if

matrix manipulation may not seem user-friendly, this original proposal is interesting

from another perspective: according to their objectives, the analysts can try different

combinations without re-computing the basic partitions and thus potentially save

computational costs.

5 Open problems and discussion

Attributed graph clustering is an active research area, and as such it presents a

number of open problems. In addition, being it an extension and combination of well-

established areas (graph clustering and multidimensional relational clustering), open

problems can be classified into two main categories: (1) those already present when
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single graphs are considered (and the easier to identify) and (2) those specifically

related to the combination of structure and attributes.

An example of the first category pertains to partitioning and overlapping algo-

rithms. While the majority of graph clustering methods partition nodes into disjoint

sets, many authors have pointed out that in real contexts individuals often belong to

multiple communities. Even without considering attributes, this has motivated the

development of several methods, such as the well-known clique percolation method

by Palla et al. (2005), or the ones by Nicosia et al. (2009) and Wang et al. (2011) where

extended versions of modularity are used to evaluate overlapping clusters. In their

recent paper, Xie et al. (2013) review the state-of-the-art in overlapping community

detection algorithms, quality measures, and benchmarks for non-attributed graphs.

They provide a framework to evaluate the performances of both the community-

level and node-level detection, and conclude that this research field is still work in

progress, as more than 70% of the overlaps still remain uncovered. Other problems

include how to measure the significance of overlapping nodes and how to interpret

the resulting communities (Xie et al., 2013). Recently, Yang et al. (2013) have

used node attributed graphs for detecting overlapping communities, stating that the

resulting communities can be interpreted more easily by analyzing the attributes of

the nodes belonging to each community. However, quality and interpretation issues

are still open questions.

In general, like for other kinds of approaches, the presence of attributes introduces

more parameters to be considered and requires the consideration of multiple aspects

at the same time. However, in our opinion, when edge attributes are present, the

dispute between partitioning and overlapping approaches should be reconsidered.

In fact, overlapping is usually determined by participation in different networks:

as an example, the same individual can be in her working team community, in

her family community, in the community of her team mates at the fencing club,

etc. This example suggests that if we can split our social network into a set of

specialized networks (or, saying it in another way, if we can cluster our relationships

into different classes), then we may find that some specialized networks only involve

partitions. However, this consideration should not be understood as a statement

against overlapping methods.

An example of the second category of open problems is the exponential explosion

in the number of attribute value combinations to be considered during the clustering

process. While this is a well-known problem in relational data mining, it is unknown

in the domain of single graph clustering, and it is one of the main aspects reviewed

in this article. In Section 2, we hypothesized that clusters can emerge when a specific

combination of graphs is considered, and disappear when more graphs are added

to the model. In Section 3, we discussed the notions of point of view and subspace

clustering to counteract the fact that considering all the node attributes may lead to

the curse of dimensionality problem. Furthermore, beyond the quantitative selection

of a good subset of original data (which can be stated as a feature selection problem),

scientists will have to take into account qualitative considerations: how to define

the analysis context in order to decide how good a clustering is? How to make this

context understandable to an analyst without domain knowledge and usable by a

domain expert without deep analytical skills? How to conceive efficient techniques

to present multiple results in real-time?
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The main problem related to the existence of multiple points of view which is

peculiar of graphs with edge labels (and more in general multiple interconnected

graphs) is the existence of a large number of views, where every view corresponds

to a specific combination of values on the edges. Despite some promising attempts

to address this problem, inspired by the field of sub-space clustering, in the authors’

opinion this aspect deserves a lot more research to be able to apply clustering algo-

rithms to real on-line social networks. Given the intrinsic computational complexity

of the problem, a possible direction involves the consideration of domain knowledge

to focus the cluster discovery process on promising combinations of dimensions.

Initial work in this direction by Cruz et al. (2013) has defined control facilities to

combine existing precomputed partitions. The objective is to offer tools to compare

different approaches and visualize the results in a way that allows user feedback. The

success of UCINET and—more recently—visual analytics software like Gephi and

NodeXL is a sign that analysts are requesting such easy-to-apply tools. This requires

advances focusing on usability, simplicity, efficiency, and scalability, evaluation

facilities such as comparison of methods, selection of relevant attributes, and/or

modeling. In fact, these research directions are as meaningful in an attributed-graph

context as they are for non-attributed graphs.

Understandably, early works on attributed graph clustering have focused on

finding static communities, which is a preliminary and necessary step to study

their evolution. Here researchers can partially reuse the same approaches used to

find evolving communities on simple graphs, in particular the comparison of nodes

clustered at different timestamps to identify evolutionary steps like create, merge, and

split. However, in the case of attributed graphs the evolution does not only regard

the networks. The existence of multiple interconnected graphs and communities

spanning some of them may also require a revision of the concept of evolutionary

step.

A related problem that has generated a whole research sub-field in the realm of

simple graphs is the study of network creation models. What are the forces leading

to a specific network model exposing a modular structure? Rephrasing this question

in the context of attributed graphs, how can we explain not only how some people

have become densely interconnected, i.e., a cluster, but also why their attributes

follow a specific value distribution and how these connections have developed in the

different graph layers or edge types?

All the aspects mentioned so far highlight different levels of increasing complexity

that we have to face when we consider attributes: the number of views to evaluate,

the number of parameters to consider, e.g., in the evaluation functions, and the

number of configurations of the system, e.g., the additional degrees of freedom in

its evolution. A straightforward conclusion is that in the case of attributed graphs

the applicability of forthcoming results may be strictly dependent on algorithmic

advances, in particular regarding computational models like streaming, distributed,

budget-based, approximate, and incremental approaches enabling big data analysis.
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