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BOUNDS FOR THE CHI-SQUARE APPROXIMATION OF THE POWER
DIVERGENCE FAMILY OF STATISTICS
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Abstract

It is well known that each statistic in the family of power divergence statistics, across n
trials and r classifications with index parameter λ ∈R (the Pearson, likelihood ratio, and
Freeman–Tukey statistics correspond to λ = 1, 0, −1/2, respectively), is asymptotically
chi-square distributed as the sample size tends to infinity. We obtain explicit bounds on
this distributional approximation, measured using smooth test functions, that hold for a
given finite sample n, and all index parameters (λ > −1) for which such finite-sample
bounds are meaningful. We obtain bounds that are of the optimal order n−1. The depen-
dence of our bounds on the index parameter λ and the cell classification probabilities is
also optimal, and the dependence on the number of cells is also respectable. Our bounds
generalise, complement, and improve on recent results from the literature.
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2020 Mathematics Subject Classification: Primary 60F05
Secondary 62E17

1. Introduction

Consider the setting of a multinomial goodness-of-fit test, with n independent trials in
which each trial leads to a unique classification over r ≥ 2 classes. Let U1, . . . , Ur represent
the observed frequencies arising in each class, and denote the non-zero classification proba-
bilities by p = (p1, . . . , pr). In 1984, Cressie and Read [7] introduced the power divergence
family of statistics for testing the null hypothesis H0: p = p0 against the alternative hypothesis
H1: p = p1. These statistics are given by

Tλ = 2

λ(λ + 1)

r∑
j=1

Uj

[(
Uj

npj

)λ

− 1

]
, (1)

where the index parameter λ ∈R. Here, and throughout the paper, we assume the validity of
the null hypothesis, and, for ease of notation, suppress the subscript in the notation p0. Note
that

∑r
j=1 Uj = n and

∑r
j=1 pj = 1.
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1060 R. E. GAUNT

When λ = 0, −1, the notation in (1) should be understood as a result of passage to the limit,
in which cases we recover the log-likelihood ratio and modified log likelihood ratio statistics,
respectively:

L = 2
r∑

j=1

Uj log

(
Uj

npj

)
, GM2 = 2n

r∑
j=1

pj log

(
npj

Uj

)
. (2)

The cases λ = 1, −1/2 correspond to Pearson’s chi-square statistic [25] and the Freeman–
Tukey statistic [10], given by

χ2 =
r∑

j=1

(Uj − npj)2

npj
, T2 = 4

r∑
j=1

(√
Uj − √

npj
)2. (3)

The power divergence family of statistics can therefore be seen to unify several commonly
used goodness-of-fit tests. The statistic T2/3, often referred to as the Cressie–Read statistic,
was also suggested in [7, 32] as a good alternative to the classical likelihood ratio and Pearson
statistics.

A fundamental result is that, for all λ ∈R, the statistic Tλ converges in distribution to the
χ2

(r−1) distribution as the number of trials n tends to infinity [7, p. 443]. However, in practice
we have a finite sample, and so it is of interest to assess the quality of this distributional approx-
imation for finite n. In the literature, this has been done on the one hand through theoretical
bounds on the rate of convergence, which will be the focus of this paper, and on the other
through simulation studies. The findings of simulation studies from the literature are briefly
reviewed in Remark 4, in which we also discuss how the theoretical bounds obtained in this
paper reflect the findings of these studies.

From the theoretical literature, the quality of the chi-square approximation of the distibution
of the statistic Tλ has been assessed by Edgeworth expansions [3, 4, 11, 29, 31, 37]. In [31],
Edgeworth expansions were used to propose closer approximations to the distribution func-
tion of Tλ that are of the form of the χ2

(r−1) distribution function plus an o(1) correction. The
work of [31] generalised results of [34] that had been given for the Pearson, likelihood ratio,
and Freeman–Tukey statistics (λ = 1, 0, −1/2). However, as noted in [29], it is impossible to
determine a rate of convergence from the expansions given in [31, 34]. Bounds on the rate of
convergence of the distribution of Tλ to its limiting χ2

(r−1) distribution via Edgeworth expan-

sions were obtained in [11, 29]. For r ≥ 4, [37] obtained an O(n−(r−1)/r) bound on the rate of
convergence in the Kolmogorov distance (see also [3] for a refinement of this result) and, for
r = 3, [4] obtained an O(n−3/4+0.065) bound on the rate of convergence in the same metric,
with both bounds holding for all λ ∈R.

Bounds on the rate of convergence have also been given for special cases of the power
divergence family. For the likelihood ratio statistic, [2] recently used Stein’s method to obtain
an explicit O(n−1/2) bound for smooth test functions. It is worth noting that the setting of
[2] was more general than the categorical data setting of this paper. For Pearson’s statistic, it
was shown in [38] using Edgeworth expansions that a bound on the rate of convergence of
Pearson’s statistic in the Kolmogorov distance is O(n−(r−1)/r) for r ≥ 2, which was improved
by [17] to O(n−1) for r ≥ 6. An explicit O(n−1/2) Kolmogorov distance bound was obtained
by Stein’s method in [22]. Recently, [14] used Stein’s method to obtain explicit error bounds
for Pearson’s statistic, measured using smooth test functions. These bounds will be needed in
the following, and are recorded here.
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Power divergence family of statistics 1061

Let Ck
b(R+) denote the class of bounded functions h : R+ →R for which h(k) exists and

derivatives up to kth order are bounded. Let r ≥ 2 and p∗ := min1≤j≤r pj. Suppose np∗ ≥ 1.
Then, the following bounds were obtained in [14]. For h ∈ C5

b(R+),

∣∣E[h(χ2)] − χ2
(r−1)h

∣∣≤ 4

(r + 1)n

( r∑
j=1

1√
pj

)2{
19‖h‖ + 366‖h′‖ + 2016‖h′′‖

+ 5264‖h(3)‖ + 106 965‖h(4)‖ + 302 922‖h(5)‖}, (4)

and, for h ∈ C2
b(R+),

∣∣E[h(χ2)] − χ2
(r−1)h

∣∣≤ 24

(r + 1)
√

n

{
3‖h‖ + 23‖h′‖ + 42‖h′′‖} r∑

j=1

1√
pj

, (5)

where χ2
(r−1)h denotes the expectation E[h(Yr−1)] for Yr−1 ∼ χ2

(r−1). Here and throughout the
paper, we write ‖ · ‖ for the usual supremum norm ‖ · ‖∞ of a real-valued function. The bound
in (4) achieves the optimal O(n−1) rate, although when the constants are large compared to
n the bound in (5) may give the smaller numerical bound. Both bounds (4) and (5) have an
optimal dependence on p∗, since, for a fixed number of classes r, both bounds tend to zero if
and only if np∗ → ∞, which is precisely the condition under which χ2 →d χ2

(r−1) (see [18]).
The bounds (4) and (5) are the first in the literature on Pearson’s statistic to decay to zero if
and only if np∗ → ∞, and in the case of (4) achieve the optimal O(n−1) rate for all r ≥ 2.

In this paper, we generalise the bounds of [14] to the family of power divergence statis-
tics Tλ, λ > −1, the largest subclass of the power divergence family for which finite-sample
bounds can be given when measured using smooth test functions, as in (4) and (5). Indeed, it
can be seen from (1) and (2) that, for λ ≤ −1, we have Tλ = ∞ if any of the observed frequen-
cies U1, . . . , Ur are zero, meaning that the expectation E[h(Tλ)] is undefined. The bounds in
Theorem 2 are of the optimal n−1 order. Specialising to the case λ = 0 of the likelihood ratio
statistic, our O(n−1) bound improves on the O(n−1/2) rate (and has a better dependence on the
other model parameters) of [2] that was given in a more general setting than that of the categor-
ical data considered in this paper. Our results also complement [15] in which Stein’s method is
used to obtain order O(n−1) bounds for the chi-square approximation of Friedman’s statistic.
In Theorem 3, we provide suboptimal O(n−1/2) bounds which may yield smaller numerical
bounds for small sample sizes n.

Like the bounds of [14] for Pearson’s statistic, for all fixed λ > −1 and r ≥ 2, the bounds
of Theorems 2 and 3 enjoy the property of decaying to zero if and only if np∗ → ∞. If r ≥ 2 is
fixed and we allow λ to vary with n, then the bounds of Theorems 2 and 3 tend to zero if and
only if np∗/λ2 → ∞, which is again an optimal condition (see Remark 3). The dependence
of our bounds on r is also respectable. The excellent dependence of the bounds of Theorem 3
on all parameters allows us to prescribe simple conditions under which the chi-square approx-
imation is valid, when the quantities λ, r, and p1, . . . , pr may vary with n; see Remark 3.
As already discussed, some of these conditions are optimal, and in parameter regimes in
which we have not been able to obtain optimal conditions we conjecture what these optimal
conditions are; see Remark 3, again.

It is perhaps not a priori obvious that the O(n−1) rate of our main bounds would hold for all
power divergence statistics with λ > −1. For example, simulation studies have shown that
for small samples n the likelihood ratio statistic (λ = 0) is less accurate at approximating
the limiting χ2

(r−1) distribution than is Pearson’s statistic (λ = 1; see, for example, [5, 20]).
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1062 R. E. GAUNT

Our results show, however, that at least when measured using smooth test functions, the actual
rate of convergence is the same for large n if the number of classes r is fixed. If the number of
classes r is allowed to grow with n, then Pearson’s statistic will converge faster, though (see
Remark 3). It is also important to note that our assumption of smooth test functions is essential
for the purpose of obtaining O(n−1) convergence rates that hold for all r ≥ 2 and all λ > −1.
For example, in the case r = 3, convergence rates in the Kolmogorov metric can be no faster
than O(n−3/4 log log n); see [4, Remark 3].

The rest of the paper is organised as follows. In Section 2 we state our main results.
Theorem 1 provides analogues of the bounds (4) and (5) for Pearson’s statistic that hold for
wider classes of test functions at the expense of a worse dependence on the parameter r. Our
main result, Theorem 2, provides O(n−1) bounds to quantify the chi-square approximation of
the power divergence statistics. Alternative O(n−1/2) bounds are given in Theorem 3, and from
one of these bounds we extract a Kolmogorov distance bound (Corollary 1). We end Section 2
with several remarks discussing the bounds. In Section 3, we present several preliminary lem-
mas that are needed for the proofs of our main results. We prove the main results in Section 4.
In Appendix A we present some basics of Stein’s method for chi-square approximation and
use it to give a short proof of Theorem 1. Finally, in Appendix B we prove a technical lemma
from Section 3.

2. Main results

We first present a theorem which complements the main result of [14] by giving explicit
error bounds for the chi-square approximation of Pearson’s statistic that hold for larger classes
of function than those used by [14]. The proof involves a minor modification of the proof of
the bounds (4) and (5) of [14], and the details are given in Appendix A.

Before stating the theorem, we introduce some notation. We let p∗ := min1≤j≤rpj. Let

Cj,k
b (R+), j ≤ k, denote the class of functions h : R+ →R for which h(k) exists and derivatives

of order j, j + 1, . . . , k are bounded. Note that Ck
b(R+) ⊂ Cj,k

b (R+) for j ≥ 1.

Theorem 1. Let (U1, . . . , Ur) be the multinomial vector of n observed counts, where r ≥ 2,
and suppose that np∗ ≥ 1. Let χ2 be Pearson’s chi-square statistic as defined in (3). Then, for

h ∈ C1,5
b (R+),

∣∣E[h(χ2)] − χ2
(r−1)h

∣∣≤ 1

(r + 1)1/2n

( r∑
j=1

1√
pj

)2{
122‖h′‖ + 1970‖h′′‖

+ 6943‖h(3)‖ + 12 731‖h(4)‖ + 643 710‖h(5)‖
}
, (6)

and, for h ∈ C1,2
b (R+),

∣∣E[h(χ2)] − χ2
(r−1)h

∣∣≤ 1√
(r + 1)n

{
115‖h′‖ + 536‖h′′‖} r∑

j=1

1√
pj

. (7)

Also, for h ∈ C2,5
b (R+),

∣∣E[h(χ2)] − χ2
(r−1)h

∣∣≤ 1

n

( r∑
j=1

1√
pj

)2{
19‖h′′‖ + 206‖h(3)‖

+ 545‖h(4)‖ + 161 348‖h(5)‖}, (8)
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and, for h ∈ C2,2
b (R+),

∣∣E[h(χ2)] − χ2
(r−1)h

∣∣≤ 238‖h′′‖√
n

r∑
j=1

1√
pj

. (9)

The following weak convergence theorem for smooth test functions with a bound of order
n−1 for the χ2

(r−1) approximation of the power divergence statistic Tλ (which holds for all
λ > −1 and r ≥ 2) is the main result of this paper.

Theorem 2. Let (U1, . . . , Ur) represent the multinomial vector of n observed counts, where
r ≥ 2. For λ > −1, let Tλ be the power divergence statistic as defined in (1). Suppose that
np∗ ≥ r. If λ ≥ 3, we also suppose that np∗ ≥ 2(λ − 3)2. Then, for h ∈ C5

b(R+),

∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣≤ 1

n

( r∑
j=1

1

pj

){
4r

r + 1

{
19‖h‖ + 366‖h′‖ + 2016‖h′′‖

+ 5264‖h(3)‖ + 106 965‖h(4)‖ + 302 922‖h(5)‖}
+ |λ − 1|r{2‖h′‖ + 202‖h′′‖ + 819‖h(3)‖ + 100 974‖h(4)‖}
+ 19

9
(λ − 1)2‖h′′‖ + |(λ − 1)(λ − 2)|(12λ + 13)

6(λ + 1)
‖h′‖

}
. (10)

Also, under the weaker assumption that h ∈ C1,5
b (R+),

∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣≤ 1

n

( r∑
j=1

1

pj

){
r√

r + 1

{
122‖h′‖ + 1970‖h′′‖

+ 6943‖h(3)‖ + 12 731‖h(4)‖ + 643 710‖h(5)‖}
+ |λ − 1|r{2‖h′‖ + 202‖h′′‖ + 819‖h(3)‖ + 100 974‖h(4)‖}
+ 19

9
(λ − 1)2‖h′′‖ + |(λ − 1)(λ − 2)|(12λ + 13)

6(λ + 1)
‖h′‖

}
. (11)

If the constants are large compared to n, the next result may give smaller numerical bounds.

Theorem 3. Let λ > −1, r ≥ 2, and np∗ ≥ 2. If λ ≥ 2, we also suppose that np∗ ≥ 2(λ − 2)2.
Then, for h ∈ C2

b(R+),

∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣
≤
(

24

r + 1

{
3‖h‖ + 23‖h′‖ + 42‖h′′‖}+ |λ − 1|(4λ + 7)

λ + 1
‖h′‖

) r∑
j=1

1√
npj

. (12)

Also, under the weaker assumption that h ∈ C1,2
b (R+),

∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣
≤
(

1√
r + 1

{
115‖h′‖ + 536‖h′′‖}+ |λ − 1|(4λ + 7)

λ + 1
‖h′‖

) r∑
j=1

1√
npj

. (13)
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1064 R. E. GAUNT

In the following corollary we deduce a Kolmogorov distance bound from (12) by applying
a basic technique (see [6, p. 48]) for converting smooth test function bounds into Kolmogorov
distance bounds. As this technique is fairly crude, our resulting bound has a suboptimal depen-
dence on n, although it does inherit the desirable property of decaying to zero if and only if
np∗ → ∞, for fixed r and λ. This is the first Kolmogorov distance bound for the chi-square
approximation of the statistic Tλ to enjoy this property.

Corollary 1. Let λ > −1, r ≥ 2. and np∗ ≥ 2. If λ ≥ 2, we additionally suppose that np∗ ≥
2(λ − 2)2. Also, let Yr−1 ∼ χ2

(r−1). Then

sup
z>0

∣∣P(Tλ ≤ z) − P(Yr−1 ≤ z)
∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(np∗)1/10

{
8 +

(
21 + |λ − 1|(4λ + 7)r

52(λ + 1)

)
1

(np∗)1/5
+ 72

(np∗)2/5

}
, r = 2,

1

(np∗)1/6

{
19 +

(
44 + |λ − 1|(4λ + 7)r

25(λ + 1)

)
1

(np∗)1/6
+ 72

(np∗)1/3

}
, r = 3,

1

(r − 3)1/3(np∗)1/6

{
13 +

(
37 + |λ − 1|(4λ + 7)r

30(λ + 1)

)
(r − 3)1/6

(np∗)1/6

+72(r − 3)1/3

(np∗)1/3

}
, r ≥ 4.

Remark 1. (On the proofs and assumptions.) Our proofs of Theorems 2 and 3 involve writing
the power divergence statistic Tλ in the form Tλ = χ2 + R, where R is a ‘small’ remainder term.
By this approach, to obtain our bounds on the quantity of interest

∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣, we

make use of the bounds on
∣∣E[h(χ2)] − χ2

(r−1)h
∣∣ given by (4)–(7). In the case λ = 1, Tλ = χ2,

meaning that R = 0, which explains why our bounds reduce almost exactly to those bounds
when λ = 1, with the only difference being that at the end of our proof of Theorem 2 we use
the inequality

(∑r
j=1 p−1/2

j

)2 ≤ r
∑r

j=1 p−1
j to obtain a compact final bound.

Our approach of decomposing Tλ = χ2 + R means that we inherit large numerical con-
stants from the bounds (4)–(7). However, as was the case in [14], our primary concern is
simple final bounds with good dependence on the parameters n, λ, r, and p1, . . . , pr. In prov-
ing Theorems 2 and 3, we make some crude approximations but take care to ensure they do
not affect the role of the parameters in the final bound.

In order to simplify the calculations and arrive at our desired compact final bounds, we
made some assumptions. We discuss here the assumptions for Theorem 2; similar comments
apply to the assumptions of Theorem 3. The assumption np∗ ≥ r (λ = 1), np∗ ≥ 1 (λ = 1)
is very mild (the bounds in Theorem 2 are uninformative otherwise) and was made for the
purpose of simplifying the calculations and to allow us to obtain a compact final bound (it
allows the bound of Lemma 3 to be given in a compact form). This assumption is also natural,
because we require that np∗/r → ∞ in order for Tλ →d χ2

(r−1) (see Remark 3). The assump-

tion np∗ ≥ 2(λ − 3)2, λ ≥ 3, is also mild (our bound cannot be small unless this condition is
met) and natural because a necessary condition for Tλ →d χ2

(r−1) is that np∗/λ2 → ∞ (see
Remark 3). This assumption is needed to apply Lemma 2 and, again, is useful in allowing a
compact bound to be given.
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Remark 2. (The class of functions and integral probability metrics (IPMs).) The bound (10)
of Theorem 2 is in a sense preferable to the bound (11) because in the case λ = 1 it has a better
dependence on r. However, an advantage of the bound (11) is that it holds for a wider class of
test functions h while having the same dependence on all parameters n, λ, r, and p1, . . . , pr

if λ = 1. We now see how this advantage plays out if the smooth test function bounds are
converted into bounds involving integral probability metrics.

The bounds of Theorems 1–3 can be expressed in terms of convergence deter-
mining IPMs [16, 39] as follows. Let Hq1,q2 = {h ∈ Cq1,q2

b (R+) : ‖h(q1)‖ ≤ 1, ‖h(q1+1)‖ ≤
1, . . . , ‖h(q2−1)‖ ≤ 1, ‖h(q2)‖ ≤ 1}, where h(0) ≡ h. Then we define the IPM between the laws
of real-valued random variables X and Y by dq1,q2 (L(X),L(Y)) = suph∈Hq1,q2

∣∣E[h(X)] −
E[h(Y)]

∣∣. As an example, for Yr−1 ∼ χ2
(r−1), from (11) we obtain the two-sided inequality

∣∣E[Tλ] −E[Yr−1]
∣∣≤ d1,5

(L(Tλ), χ2
(r−1)

)≤ 1

n

( r∑
j=1

1

pj

){
665 476

√
r

+ 101 997|λ − 1|r + 19

9
(λ − 1)2 + |(λ − 1)(λ − 2)|(12λ + 13)

6(λ + 1)

}
, (14)

where the lower bound follows because h(x) = x is in the class H1,5. If r ≥ 2, then E[T1] =
E[χ2] =E[Yr−1], and it was shown in [7, p. 451] (here we have written their formula in a
slightly different form) that, for λ > −1,

∣∣E[Tλ] −E[Yr−1]
∣∣= ∣∣∣∣

r∑
j=1

{
(λ − 1)

npj

[
3λ − 2

12
− λpj

2
+ 3λ + 2

12
p2

j

]}
+ O(n−3/2)

∣∣∣∣. (15)

It should be noted that E[T−1] = ∞, and that the O(n−3/2) term in the asymptotic approxi-
mation for

∣∣E[Tλ] −E[Yr−1]
∣∣ therefore blows up as λ ↓ −1. We also note that comparing the

lower and upper bounds in (14) shows that the upper bound (14) has a good dependence on all
parameters, n, λ, r, and p1, . . . , pr. This is the subject of the next remark.

Remark 3. (The dependence of the bounds on the parameters and conditions for convergence.)
A basic necessary condition for Tλ to converge in distribution to χ2

(r−1) is that E[Tλ] →E[Yr−1]

for Yr−1 ∼ χ2
(r−1). Therefore, we can study the optimality of the bounds of Theorems 2 and 3

on the parameters n, λ, r, and p1, . . . , pr via comparison with the asymptotic approximation
in (15). We observe that the O(n−1) rate of convergence of the upper bounds in Theorem 2
is optimal. Moreover, the dependence on p∗ of the form (np∗)−1 is also the best possible, as
is the dependence on λ of the form λ2/n for large n and λ. The bounds in Theorem 3 are of
the suboptimal order O(n−1/2), but otherwise also have the correct dependence on p∗ and λ,
because they tend to zero if and only if np∗ → ∞ (with fixed r and λ) and n/λ2 → ∞ (with
fixed r and p∗).

Let us now consider the dependence of the bounds of Theorems 2 and 3 on r. To do this,
we consider the case of uniform cell classification probabilities, p1 = · · · = pr = 1/r, and sup-
pose λ = 1 is fixed. Then, for large r,

∣∣E[Tλ] −E[Yr−1]
∣∣→ 0 if and only if n/r2 → ∞, except

when λ = 2/3, in which case
∣∣E[T2/3] −E[Yr−1]

∣∣→ 0 if and only if n/r → ∞. In this case
of uniform cell classification probabilities, the bounds of Theorems 2 and 3 converge to zero,
for fixed λ = 1, if and only if n/r3 → ∞. We consider it most likely that Tλ →d χ2

(r−1) if

n/r2 → ∞, and that our bounds therefore do not have an optimal dependence on r. In the
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1066 R. E. GAUNT

proof of Theorem 2, our bounds for all the remainder terms except R3 decay to zero if and only
if n/r2 → ∞, while our bound for R3 decays to zero if and only if n/r3 → ∞. The bound for
R3 follows from a long calculation involving analysis of the multivariate normal Stein equa-
tion; see Part II of the proof of [14, Theorem 4.2]. It is plausible that a more refined analysis
could lead to a bound for R3 with an improved dependence on r. We consider this to be an
interesting but challenging problem.

If we consider the possibility that, as n → ∞, p∗ may decay to zero, λ = 1, and r may
tend to infinity, we can read off from the upper bounds of Theorem 2 that Tλ →d χ2

(r−1) if

n/(Sλ max{r, λ}) → ∞, where S =∑r
j=1 p−1

j . If we suppose that r/λ → c, where 0 ≤ c < ∞,

then we see that Tλ →d χ2
(r−1) if n/(Sλ2) → ∞. From (15) this can be seen to be an optimal

condition (except perhaps if λ = 2/3). We conjecture that in fact Tλ →d χ2
(r−1) if n/(Sλ2) →

∞, even if r � λ (except perhaps if λ = 2/3).
In stating the above conditions we have been careful to give them in terms of the sum

S rather than p∗, because in the r → ∞ regime it is possible that S � r/p∗. For example,
take p1 = n−1, pj = (n − 1)/(n(r − 1)), j = 2, . . . , r, so that

∑r
j=1 pj = 1. Then S = n + (r −

1)2n/(n − 1) � rn = r/p∗ if r � n. If, however, r/(p∗S) → C, where 1 ≤ C < ∞ (which will
be the case unless there are some exceptionally small cell classification probabilities), then we
can write the conditions in a simple and intuitive form by replacing S by r/p∗. For example,
our conjectured optimal condition for which Tλ →d χ2

(r−1) would read np∗/(rλ2) → ∞.

From (5) we see that, even if r → ∞, T1 = χ2 →d χ2
(r−1) provided np∗ → ∞, which is

a well-established condition for chi-square approximation of Pearson’s statistic to be valid
(see [18]). Thus, in the r → ∞ regime, it can be seen that Pearson’s statistic converges in
distribution faster than any other member of the power divergence family, except perhaps T2/3
for which we are unable to provide a definitive answer in this paper.

Remark 4. (Comparison to results from simulation studies.) Simulation studies assessing the
quality of chi-square approximation of the statistic Tλ can be found in, amongst others, [7, 23,
30, 32, 33]. In this remark we show how some of the findings of these studies are reflected
in our bounds. As is common with small-sample studies for goodness-of-fit tests, most of the
studies assumed that the classification probabilities are uniform (pj = 1/r for all j = 1, . . . , r)
[19, p. 339]. Under this assumption, [30] concluded that, for λ ∈ [1/3, 3/2], the chi-square
approximation of Tλ is accurate for the purpose of hypothesis testing at significance levels
between 0.1 and 0.01, provided r ≤ 6 and n ≥ 10 [that the approximation can be accurate for
sample sizes as small as n = 10 is consistent with the fast O(n−1) rate of convergence of the
bounds of Theorem 2]. However, if |λ| increases, the approximation becomes worse, and this
is magnified as r increases for fixed n [our bounds grow as λ and r increase]. Outside the
equiprobable hypothesis, it is harder to prescribe general rules [19, p. 341], although the accu-
racy of the approximation diminishes [26] [as we move away from the equiprobable hypothesis
the sum

∑r
j=1 p−1

j increases].
Through a combination of simulation studies and theoretical considerations, [7] proposed

the statistic T2/3 as an alternative to the classical likelihood ratio and Pearson statistics. One
of the reasons was because they observed that for the quantities E[Tk

λ] −E[Yk
r−1], k = 1, 2, 3,

for Yr−1 ∼ χ2
(r−1), the second-order correction terms vanish in the limit r → ∞ if and only

if λ = 2/3, 1. Our bounds do converge faster in the case r → ∞ if λ = 1, but not if λ = 2/3,
and we know that for λ ∈ (−1, ∞) \ {2/3, 1} the true convergence rate is indeed slower in this
regime. It would be interesting to provide a definitive answer as to whether the convergence
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rate does speed up in the large-r regime if λ = 2/3. We do, however, note that in our method of
proof there seems to be nothing special about the case λ = 2/3, so a different approach would
be required to provide a positive answer.

3. Preliminary lemmas

We begin by presenting a series of moment bounds for binomial random variables.

Lemma 1. Let S = (U − np)/
√

np, where U ∼ Bin(n, p), for n ≥ 1, 0 < p < 1 such that np ≥ 2.
Then

E[|S|3] ≤ 3, (16)

E[S4] ≤ 4, (17)

E[S6] ≤ 28. (18)

Proof. Using standard formulas for the fourth and sixth central moments of the binomial
distribution (see, for example [36]), we have that

E[S4] = 1

(np)2
· np(1 − p)

[
3(2 − n)p2 + 3(n − 2)p + 1] ≤ 3 + 1

np
≤ 7

2
< 4

and

E[S6] = 1

(np)3
· np(1 − p)

[
5(3n2 − 26n + 24)p4 − 10(3n2 − 26n + 24)p3

+ 5(3n2 − 31n + 30)p2 + 5(5n − 6)p + 1
]≤ 15 + 25

np
+ 1

(np)2
< 28,

where we used that n ≥ 1, 0 < p < 1, and np ≥ 2 to simplify the bounds. Inequality (16) follows
from (17) by Hölder’s inequality: E[|S|3] ≤ (E[S4])3/4 ≤ 43/4 < 3. �

Lemma 2. (T. D. Ahle [1].) Let U ∼ Bin(n, p), where n ≥ 1 and 0 < p < 1. Let k > 0. Then
E[Uk] ≤ exp(k2/(2np)) · (np)k. Suppose now that np ≥ αk2, where α > 0. Then it is immediate
from the previous expression that

E[Uk] ≤ e1/(2α)(np)k. (19)

Remark 5. Bounds of the form E[Uk] ≤ Ck(np)k, where Ck is an explicit constant only
depending on k, in which there are no further restrictions on n and p, are available (see [28]).
However, for our purpose of obtaining bounds with the best possible dependence on all parame-
ters, such a bound is not suitable, as it would lead to a worse dependence on λ in the final bound.
The additional assumption np ≥ αk2 for inequality (19) leads to the assumption np ≥ 2(λ − 3)2,
λ ≥ 3, in Theorem 2 (and a similar assumption in Theorem 3), which is mild and preferable to
a worse dependence of the bounds on λ.

Lemma 3. Let (U1, . . . , Ur) be the multinomial vector of observed counts, as in Theorem 2,
where r ≥ 2. Suppose also that npj ≥ r for all j = 1, . . . , r. For j = 1, . . . , r, let Sj = (Uj −
npj)/

√
npj. Then, for j = k, ∣∣E[S3

j S3
k ]
∣∣≤ 6

r
+ 4

√
pjpk. (20)

https://doi.org/10.1017/jpr.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.7


1068 R. E. GAUNT

Proof. Let Ij(i) be the indicator that trial i results in classification in cell j, and let Ĩj(i) =
Ij(i) − pj be its standardised version. We can then write Sj = (npj)−1/2 ∑n

i=1 Ĩj(i). We note that
˜Ij1 (i1) and ˜Ij2 (i2) are independent for all j1, j2 ∈ {1, . . . , r} if i1 = i2. On using this property

together with the fact that E[Ĩj(i)] = 0 for all i = 1, . . . , n and j = 1, . . . , r, we obtain that, for
j = k,

E[S3
j S3

k ] = 1

n3(pjpk)3/2
E

[(
n∑

i=1

Ĩj(i)

)3( n∑
�=1

Ĩk(�)

)3]

= 1

n3(pjpk)3/2

{
n∑

i1=1

E[Ĩj(i1)3 Ĩk(i1)3] +
n∑

i1=1

n∑
i2 =i1

{
E[Ĩj(i1)3]E[Ĩk(i2)3]

+ 9E[Ĩj(i1)2Ĩk(i1)2]E[Ĩj(i2)Ĩk(i2)] + 3E[Ĩj(i1)3 Ĩk(i1)]E[Ĩk(i2)2]
}

+ 3E[Ĩk(i1)3Ĩj(i1)]E[Ĩj(i2)2]

+
n∑

i1=1

n∑
i2 =i1

n∑
i3 =i1,i2

{
9E[Ĩj(i1)2]E[Ĩj(i2)Ĩk(i2)]E[Ĩk(i3)2]

+ 6E[Ĩj(i1)Ĩk(i1)]E[Ĩj(i2)Ĩk(i2)]E[Ĩj(i3)Ĩk(i3)]
}}

. (21)

We now calculate the expectations in the above expression. We have that E[Ĩj(i2)2] =
Var(Ij(i2)) = pj(1 − pj). Also, by a routine calculation (or using a standard formula for the third
central moment of the Bernoulli distribution), we have that E[Ĩj(i1)3] = pj(1 − pj)(1 − 2pj). For
the more complex expectations involving products of powers of Ĩj(i1) and Ĩk(i1), j = k, we use
the fact that each trial leads to a unique classification. For u, v ∈N,

E[Ĩj(i1)uĨk(i1)v] =E[(Ij(i1) − pj)
u(Ik(i1) − pk)v]

= −pu
j (1 − pk)v

P(Ik(i1) = 1) − pv
k(1 − pj)

u
P(Ij(i1) = 1)

+ pu
j pv

kP(Ij(i1) = Ik(i1) = 0)

= −pu
j (1 − pk)vpk − pv

k(1 − pj)
upj + pu

j pv
k(1 − pj − pk)

= pjpk
[−pu−1

j (1 − pk)v − pv−1
k (1 − pj)

u + (1 − pj − pk)pu−1
j pv−2

k

]
.

In the case u = v = 1, we have the simplification E[Ĩj(i1)Ĩk(i1)] = −pjpk. Substituting these
formulas for the expectations present in (21) now gives us

E[S3
j S3

k ] = 1

n3(pjpk)3/2

[
n · pjpk

[−p2
j (1 − pk)3 − p2

k(1 − pj)
3 + (1 − pj − pk)(pjpk)2]

+ n(n − 1)
{(

pjpk(1 − pj)(1 − pk)(1 − 2pj)(1 − 2pk)
)

+ 9
(

(pjpk)2[pk(1 − pj)
2 + pj(1 − pk)2 + pj + pk − 1

])
+ 3

(
pjp

2
k(1 − pk)(1 − 2pk)

[
1 − pj − pk − p2

j (1 − pk) − (1 − pj)
3])

+ 3
(

p2
j pk(1 − pj)(1 − 2pj)

[
1 − pk − pj − p2

k(1 − pj) − (1 − pk)3])}
+ n(n − 1)(n − 2)

{
9
(
−(pjpk)2(1 − pj)(1 − pk)

)
+ 6

(
−(pjpk)3

)}]
.
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Elementary calculations that make use of the facts that pj, pk ∈ (0, 1) and that 0 ≤ pj + pk ≤ 1
now yield the bound

∣∣E[S3
j S3

k ]
∣∣≤ 1

n3(pjpk)3/2

{
npjpk + n2pjpk + 9n2(pjpk)2 + 3n2pjp

2
k + 3n2p2

j pk

+ 9n3(pjpk)2 + 6n3(pjpk)3
}

= 1

n2√pjpk
+ 1

4n
√

pjpk
+ 9

√
pjpk

n
+ 3p3/2

k

n
√

pj
+ 3p3/2

j

n
√

pk
+ 9

4
√

pjpk + 6(pjpk)3/2

= 1

n · n
√

pjpk
+ 1

4n
√

pjpk
+ 9pjpk

n
√

pjpk
+ 3

√
pjp

3/2
k

npj
+ 3p3/2

j
√

pk

npk
+ 9

4
√

pjpk

+ 6(pjpk) · √pjpk. (22)

In obtaining this bound we did not attempt to optimise numerical constants, although in bound-
ing the second and sixth terms we did take advantage of the simple inequality (1 − pj)(1 −
pk) ≤ 1/4 (maximum at pj = pk = 1/2). The final equality in (22) was given in anticipation of
obtaining our final bound (20) for

∣∣E[S3
j S3

k ]
∣∣. We now bound the terms in (22) using the follow-

ing considerations. By assumption, npj ≥ r for all j = 1, . . . , r, which also implies that n ≥ 4, as

r ≥ 2. Moreover, for j = k, pjpk ≤ 1/4 (maximised for pj = pk = 1/2) and
√

pjp
3/2
k ≤ 3

√
3/16

(maximised at pj = 1/4, pk = 3/4), with the same bound holding for p3/2
j

√
pk by symmetry.

With these considerations, we arrive at the bound

∣∣E[S3
j S3

k ]
∣∣≤ 1

4r
+ 1

4r
+ 9

4r
+ 2 · 3 · 3

√
3

16r
+ 9

4
√

pjpk + 6

4
√

pjpk <
6

r
+ 4

√
pjpk,

where in obtaining the second inequality we rounded the numerical constants up to the nearest
integer. The proof of the lemma is complete. �

The following lemma, which is proved in Appendix B, will be needed in the proof of
Theorem 2. Lemma 5 below will be needed in the proof of Theorem 3. The proof of Lemma 5
is similar to that of Lemma 4 and is given in the Supplementary Information.

Lemma 4. Let a > 0. Then,

(i) For x ≥ 0,

∣∣∣∣2x log

(
x

a

)
− 2(x − a) − (x − a)2

a
+ (x − a)3

3a2

∣∣∣∣≤ 2(x − a)4

3a3
. (23)

(ii) Suppose λ ≥ 3. Then, for x ≥ 0,

∣∣∣∣xλ+1

aλ
− a − (λ + 1)(x − a) − λ(λ + 1)

2a
(x − a)2 − (λ − 1)λ(λ + 1)

6a2
(x − a)3

∣∣∣∣
≤ (λ − 2)(λ − 1)λ(λ + 1)

24

(
1 +

( x

a

)λ−3
)

(x − a)4

a3
. (24)
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(iii) Suppose λ ∈ (−1, 3) \ {0}. Then, for x ≥ 0,

∣∣∣∣xλ+1

aλ
− a − (λ + 1)(x − a) − λ(λ + 1)

2a
(x − a)2 − (λ − 1)λ(λ + 1)

6a2
(x − a)3

∣∣∣∣
≤ |(λ − 2)(λ − 1)λ|

6

(x − a)4

a3
. (25)

Lemma 5. Let a > 0. Then,

(i) For x ≥ 0, ∣∣∣∣2x log

(
x

a

)
− 2(x − a) − (x − a)2

a

∣∣∣∣≤ |x − a|3
a2

. (26)

(ii) Suppose λ ≥ 2. Then, for x ≥ 0,

∣∣∣∣xλ+1

aλ
− a − (λ + 1)(x − a) − λ(λ + 1)

2a
(x − a)2

∣∣∣∣
≤ (λ − 1)λ(λ + 1)

6

(
1 +

( x

a

)λ−2
) |x − a|3

a2
. (27)

(iii) Suppose λ ∈ (−1, 2) \ {0}. Then, for x ≥ 0,

∣∣∣∣xλ+1

aλ
− a − (λ + 1)(x − a) − λ(λ + 1)

2a
(x − a)2

∣∣∣∣≤ |(λ − 1)λ|
2

|x − a|3
a2

. (28)

4. Proofs of main results

In this section we prove all the results stated in Section 2, except for Theorem 1, which
is proved in Appendix A. We begin by introducing some notation and make some basic
observations regarding the power divergence statistic Tλ.

For j = 1, . . . , r, let Sj = (Uj − npj)/
√

npj denote the standardised cell counts, and let S =
(S1, . . . , Sr)�. Observe that

∑r
j=1 Uj = n and

∑r
j=1

√
pjSj = 0, and that Uj ∼ Bin(n, pj), j =

1, . . . , r. With this notation, we may write the power divergence statistic Tλ, Pearson’s statistic
χ2, and the likelihood ratio statistic L as

Tλ = 2

λ(λ + 1)

[ r∑
j=1

npj

(
1 + Sj√

npj

)λ+1

− n

]
, χ2 =

r∑
j=1

S2
j ,

L = T0 = 2
r∑

j=1

(
npj + √

npjSj
)

log

(
1 + Sj√

npj

)
.

Proof of Theorem 2. For our purpose of deriving an order n−1 bound, it will be convenient
to write the power divergence statistic Tλ in the form

Tλ =
r∑

j=1

S2
j + λ − 1

3

r∑
j=1

S3
j√

npj
+ Rλ(S),
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where, for λ ∈ (−1, ∞) \ {0},

Rλ(S) = 2

λ(λ + 1)

r∑
j=1

[
npj

(
1 + Sj√

npj

)λ+1

− npj − (λ + 1)
√

npjSj − λ(λ + 1)

2
S2

j

− (λ − 1)λ(λ + 1)

6
√

npj
S3

j

]
,

and, for λ = 0,

R0(S) =
r∑

j=1

[
2
(
npj + √

npjSj
)

log

(
1 + Sj√

npj

)
− 2

√
npjSj − S2

j − S3
j

3
√

npj

]
.

Here we used that
∑r

j=1 pj = 1 and
∑r

j=1
√

pjSj = 0.

Let us now bound the quantity of interest,
∣∣E[h(Tλ)] − χ2

(r−1)h
∣∣. By a first-order Taylor

expansion and the triangle inequality we have that

∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣=
∣∣∣∣∣E
[

h

(
r∑

j=1

S2
j + λ − 1

3

r∑
j=1

S3
j√

npj
+ Rλ(S)

)]
− χ2

(r−1)h

∣∣∣∣∣
≤
∣∣∣∣∣E
[

h

(
r∑

j=1

S2
j + λ − 1

3

r∑
j=1

S3
j√

npj

)]
− χ2

(r−1)h

∣∣∣∣∣+ R1,

where R1 = ‖h′‖E|Rλ(S)|. Another Taylor expansion and application of the triangle inequality
gives us the bound

∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣≤ R1 + R2 + R3 + R4, where

R2 = ∣∣E[h(χ2)] − χ2
(r−1)h

∣∣,
R3 = |λ − 1|

3

∣∣∣∣∣E
[

r∑
j=1

S3
j√

npj
h′
(

r∑
k=1

S2
k

)]∣∣∣∣∣,

R4 = (λ − 1)2

18
‖h′′‖E

[(
r∑

j=1

S3
j√

npj

)2]
,

and we recall that Pearson’s statistic is given by χ2 =∑r
j=1 S2

j .

We can bound the remainder R2 immediately using either (4) or (6). To bound R3, we recall
another bound of [14] (see the bound for |Eh2(S)| given on p. 747): for j = 1, . . . , r,∣∣∣∣∣E

[
S3

j h′
(

r∑
k=1

S2
k

)]∣∣∣∣∣≤ {
2‖h′‖ + 202‖h′′‖ + 819‖h(3)‖ + 100 974‖h(4)‖} r∑

k=1

1√
npk

.

Using this inequality. we obtain the bound

R3 ≤ |λ − 1|
3n

(
r∑

j=1

1√
pj

)2{
2‖h′‖ + 202‖h′′‖ + 819‖h(3)‖ + 100 974‖h(4)‖}.

https://doi.org/10.1017/jpr.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.7


1072 R. E. GAUNT

Let us now bound R4. Using the moment bounds (18) and (20) (our assumption that npj ≥ r
for all j = 1, . . . r allows us to apply this bound) gives

E

[(
r∑

j=1

S3
j√

npj

)2]
=

r∑
j=1

E[S6
j ]

npj
+

r∑
j=1

r∑
k =j

E[S3
j S3

k ]

n
√

pjpk

≤
r∑

j=1

28

npj
+

r∑
j=1

∑
k =j

{
6

nr
√

pjpk
+ 4

n

}
≤ 38

nr

(
r∑

j=1

1√
pj

)2

.

Therefore,

R4 ≤ 19(λ − 1)2

9nr
‖h′′‖

(
r∑

j=1

1√
pj

)2

.

Lastly, we bound R1. We consider the cases λ = 0 (the likelihood ratio statistic), λ ≥ 3, and
λ ∈ (−1, 3) \ {0} separately. Using that Sj = (Uj − npj)/

√
npj and then applying inequality (23)

of Lemma 4, we have that, for λ = 0,

R1 = ‖h′‖E|R0(S)|

= ‖h′‖E
∣∣∣∣∣

r∑
j=1

[
2Uj log

(
Uj

npj

)
− 2(Uj − npj) − (Uj − npj)2

npj
+ (Uj − npj)3

3(npj)2

]∣∣∣∣∣
≤ 2‖h′‖

3

r∑
j=1

E[(Uj − npj)4]

(npj)3
≤ 8‖h′‖

3

r∑
j=1

1

npj
, (29)

where we used that E[(Uj − npj)4] ≤ 4(npj)2 in the final step (see (17)).
Suppose now that λ ≥ 3. Applying inequality (24) of Lemma 4, we have, for λ ≥ 3,

R1 = ‖h′‖E|Rλ(S)|

= 2‖h′‖
λ(λ + 1)

E

∣∣∣∣∣
r∑

j=1

[ Uλ+1
j

(npj)λ
− npj − (λ + 1)(Uj − npj) − λ(λ + 1)

2

(Uj − npj)2

npj

− (λ − 1)λ(λ + 1)

6

(Uj − npj)3

(npj)2

]∣∣∣∣∣ (30)

≤ (λ − 2)(λ − 1)‖h′‖
12

r∑
j=1

E

[(
1 + Uλ−3

j

(npj)λ−3

)
(Uj − npj)4

(npj)3

]

≤ (λ − 2)(λ − 1)‖h′‖
12

r∑
j=1

{
E[(Uj − npj)4]

(npj)3

+ 1

(npj)λ
(
E
[
(Uj − npj)

6])2/3(
E[U3λ−9

j ]
)1/3

}

≤ (λ − 2)(λ − 1)‖h′‖
12

r∑
j=1

{
4

npj
+ 282/3 × (e9/4)1/3

npj

}

≤ 2(λ − 2)(λ − 1)‖h′‖
r∑

j=1

1

npj
. (31)
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Here we used Hölder’s inequality to obtain the second inequality; to get the third inequality we
used the moment bounds (17), (18), and (19), respectively, E

[
(Uj − npj)4

]≤ 4(npj)2, E
[
(Uj −

npj)6
]≤ 28(npj)3, and E[U3λ−9

j ] ≤ e9/4(npj)3λ−9, where the latter bound is valid due to our

assumption that np∗ ≥ 2(λ − 3)2 for λ ≥ 3.
Lastly, we consider the case λ ∈ (−1, 3) \ {0}. Applying inequality (25) of Lemma 4 to (30)

and proceeding as before gives that, for λ ∈ (−1, 3) \ {0},

R1 ≤ |(λ − 2)(λ − 1)|‖h′‖
6(λ + 1)

r∑
j=1

E[(Uj − npj)4]

(npj)3
≤ 2|(λ − 2)(λ − 1)|‖h′‖

3(λ + 1)

r∑
j=1

1

npj
. (32)

To obtain a universal bound on
∣∣E[h(Tλ)] − χ2

(r−1)h
∣∣ that is valid for all λ > −1, we observe

that we can take the following upper bound for R1 (valid for λ ≥ 3 under the condition that
np∗ ≥ 2(λ − 3)2),

R1 ≤ |(λ − 1)(λ − 2)(12λ + 13)|‖h′‖
6(λ + 1)

r∑
j=1

1

npj
, (33)

which can be seen to be greater than each of the upper bounds (29), (31), and (32) that were
obtained for the cases λ = 0, λ ≥ 3, and λ ∈ (−1, 3) \ {0}, respectively.

Finally, we sum up our bound in (33) for R1 and our bounds for R2, R3, and R4. To obtain a
compact final bound we use the inequality

(∑r
j=1 p−1/2

j

)2 ≤ r
∑r

j=1 p−1
j , which follows from

the Cauchy–Schwarz inequality. Using (4) to bound R2 gives us the bound in (10), while using
(6) to bound R2 yields (11). This completes the proof. �

Remark 6. It was a fortunate accident that the term R3 had previously been bounded in [14].
That this term is O(n−1) is in some sense the key reason as to why the O(n−1) rate is attained.
Indeed, through our use of Taylor expansions we could guarantee that the remainder terms R1
and R4 would be O(n−1), and R2 = ∣∣E[h(χ2)] − χ2

(r−1)h
∣∣ had, of course, already been shown

to be O(n−1) by [14]. To give a self-contained account as to why the O(n−1) rate is attained,
we therefore briefly sketch why R3 = O(n−1).

Let g(s) =∑r
j=1 p−1/2

j s3
j h′(∑r

k=1 s2
k

)
. Observe that g(−s) = −g(s). Now, let Z be a cen-

tered r-dimensional multivariate normal random vector with covariance matrix equal to
that of S. Then, because Z =d −Z, we have that E[g(Z)] = −E[g(−Z)] = −E[g(Z)], so that
E[g(Z)] = 0. Therefore,

R3 = |λ − 1|
3
√

n
|E[g(S)]| = |λ − 1|

3
√

n

∣∣E[g(S)] −E[g(Z)]
∣∣.

The quantity
∣∣E[g(S)] −E[g(Z)]

∣∣ can then be bounded to order O(n−1/2) by Stein’s method
for multivariate normal approximation with polynomial growth rate test functions [13].

Proof of Theorem 3. The proof is similar to that of Theorem 2, but a little shorter and simpler.
For our aim of obtaining an order n−1/2 bound, we express Tλ in the form Tλ =∑r

j=1 S2
j +

Rλ(S) = χ2 + Rλ(S), where, for λ ∈ (−1, ∞) \ {0},

Rλ(S) = 2

λ(λ + 1)

r∑
j=1

[
npj

(
1 + Sj√

npj

)λ+1

− npj − (λ + 1)
√

npjSj − λ(λ + 1)

2
S2

j

]
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and, for λ = 0,

R0(S) =
r∑

j=1

[
2
(
npj + √

npjSj
)

log

(
1 + Sj√

npj

)
− 2

√
npjSj − S2

j

]
.

Now, by a first-order Taylor expansion and the triangle inequality we have that∣∣E[h(Tλ)] − χ2
(r−1)h

∣∣= ∣∣E[h(χ2 + Rλ(S))] − χ2
(r−1)h

∣∣≤ ∣∣E[h(χ2)] − χ2
(r−1)h

∣∣+ R1,

where R1 = ‖h′‖E|Rλ(S)|.
The quantity

∣∣E[h(χ2)] − χ2
(r−1)h

∣∣ can be immediately bounded using either (5) or (7). To
bound R1, we consider the cases λ = 0, λ ≥ 2, and λ ∈ (−1, 2) \ {0} separately. For λ = 0, using
inequality (26) of Lemma 5 we obtain the bound

R1 = ‖h′‖E
∣∣∣∣∣

r∑
j=1

[
2Uj log

(
Uj

npj

)
− 2(Uj − npj) − (Uj − npj)2

npj

]∣∣∣∣∣
≤ ‖h′‖

r∑
j=1

E[|Uj − npj|3]

(npj)2
≤ 3‖h′‖

r∑
j=1

1√
npj

, (34)

where we used inequality (16) in the final step.
For λ ≥ 2 we use inequality (27) of Lemma 5 to get

R1 = 2‖h′‖
λ(λ + 1)

E

∣∣∣∣∣
r∑

j=1

[ Uλ+1
j

(npj)λ
− npj − (λ + 1)(Uj − npj) − λ(λ + 1)

2

(Uj − npj)2

npj

]∣∣∣∣∣
≤ (λ − 1)‖h′‖

3

r∑
j=1

E

[(
1 + Uλ−2

j

(npj)λ−2

) |Uj − npj|3
(npj)2

]

≤ (λ − 1)‖h′‖
3

r∑
j=1

{
E[|Uj − npj|3]

(npj)2
+ 1

(npj)λ
(
E
[
(Uj − npj)

6])1/2(
E[U2λ−4

j ]
)1/2

}

≤ (λ − 1)‖h′‖
3

r∑
j=1

{
3√
npj

+ 281/2 × e1/2

√
npj

}
≤ 4(λ − 1)‖h′‖

r∑
j=1

1√
npj

. (35)

Here we used the Cauchy–Schwarz inequality to obtain the second inequality; to get the third
inequality we used the moment bounds (16), (18), and (19), respectively, E

[
(Uj − npj)4

]≤
4(npj)2, E

[
(Uj − npj)6

]≤ 28(npj)3, and E[U2λ−4
j ] ≤ e(npj)2λ−4, where the latter bound is valid

due to our assumption that np∗ ≥ 2(λ − 2)2 for λ ≥ 2.
Lastly, we consider the case λ ∈ (−1, 2) \ {0}. Using inequality (28) of Lemma 5 on (30)

and proceeding as before gives that, for λ ∈ (−1, 2) \ {0},

R1 ≤ |λ − 1|‖h′‖
λ + 1

r∑
j=1

E[|Uj − npj|3]

(npj)2
≤ 3|λ − 1|‖h′‖

λ + 1

r∑
j=1

1√
npj

. (36)
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To obtain a universal bound on
∣∣E[h(Tλ)] − χ2

(r−1)h
∣∣ that is valid for all λ > −1, we observe

that we can take the following upper bound for R1 (valid for λ ≥ 2 provided np∗ ≥ 2(λ − 2)2),

R1 ≤ |(λ − 1)(4λ + 7)|‖h′‖
λ + 1

r∑
j=1

1√
npj

, (37)

which can be seen to be greater than each of the upper bounds (34), (35), and (36) that were
obtained for the cases λ = 0, λ ≥ 2, and λ ∈ (−1, 2) \ {0}, respectively.

Summing up our bound (37) for R1 and either the bound (5) or the bound (7) for
∣∣E[h(χ2)] −

χ2
(r−1)h

∣∣ now yields the desired bounds (12) and (13), respectively. �

Proof of Corollary 1. Let α > 0 and, for fixed z > 0, define

hα(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if x ≤ z,

1 − 2(x − z)2/α2, if z < x ≤ z + α/2,

2(x − (z + α))2/α2, if z + α/2 < x ≤ z + α,

0, if x ≥ z + α.

Then h′
α is Lipshitz with ‖hα‖ = 1, ‖h′

α‖ = 2/α, and ‖h′′
α‖ = 4/α2. Let Yr−1 ∼ χ2

(r−1). Then,

using (12), together with the basic inequality
∑r

j=1 p−1/2
j ≤ r/

√
p∗, gives

P(Tλ ≤ z) − P(Yr−1 ≤ z)

≤E[hα(Tλ)] −E[hα(Yr−1)] +E[hα(Yr−1)] − P(Yr−1 ≤ z)

≤ 1√
np∗

{
72‖hα‖ +

(
552 + |(λ − 1)(4λ + 7)|r

λ + 1

)
‖h′

α‖ + 1008‖h′′
α‖
}

+ P(z ≤ Yr−1 ≤ z + α)

= 1√
np∗

{
72 + 1104

α
+ |(λ − 1)(4λ + 7)|r

(λ + 1)α
+ 4032

α2

}
+ P(z ≤ Yr−1 ≤ z + α). (38)

It was shown in [14, p.754] that

P(z ≤ Yr−1 ≤ z + α) ≤

⎧⎪⎪⎨
⎪⎪⎩

√
2α/π, if r = 2,

α/2, if r = 3,
α

2
√

π (r − 3)
, if r ≥ 4.

(39)

Upper bounds for the cases r = 2, r = 3, and r ≥ 4 follow on substituting inequality (39)
into (38) and selecting a suitable α. We choose α = 52.75(np∗)−1/5 for r = 2; we take
α = 25.27(np∗)−1/6 when r = 3; and α = 30.58(r − 3)1/6(np∗)−1/6 for r ≥ 4. A lower bound
can be obtained similarly, which is the negative of the upper bound. The proof is now
complete. �

Appendix A. Stein’s method for chi-square approximation and proof of Theorem 1

The first detailed study of Stein’s method for chi-square approximation was given in [21].
For further details on Stein’s method for chi-square approximation we refer the reader to
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[9, 14, 24]. At the heart of Stein’s method for chi-square approximation is the following
so-called Stein equation for the χ2

(p) distribution (see [8]),

xf ′′(x) + 1

2
(p − x)f ′(x) = h(x) − χ2

(p)h, (40)

where h is a real-valued test function and we recall that χ2
(d)h denotes the quantity E[h(Yp)] for

Yp ∼ χ2
(p). It is straightforward to verify that

f ′(x) = 1

xρ(x)

∫ x

0

(
h(t) − χ2

(p)h
)
ρ(t) dt, (41)

where ρ(x) denotes the χ2
(p) density, solves the Stein equation (40) (see [35, Lemma 1, p. 59]).

Suppose we wish to obtain error bounds for the approximation of the distribution of a
random variable of interest W and a χ2

(p) distribution. The Stein equation (40) allows us to

obtain bounds on the quantity of interest
∣∣E[h(W)] − χ2

(p)h
∣∣ by the following transfer principle:

evaluate both sides of (40) at W and take expectations to obtain

∣∣E[h(W)] − χ2
(p)h

∣∣=E

[
Wf ′′(W) + 1

2
(p − W)f ′(W)

]
, (42)

where f is the solution (41). Thus, the chi-square approximation problem is reduced to bound-
ing the right-hand side of (42). For this procedure to be effective, one requires suitable
estimates for the solution of the Stein equation together with certain lower-order derivatives
of the solution. We now record some bounds for solution (41) that will be needed in the proof
of Theorem 1.

We first state a bound from [21]. For h ∈ Ck,k
b (R+),

‖f (k)‖ ≤ 2‖h(k)‖
k

, k ≥ 1. (43)

The following bound from [12] improved a bound from [27]. For h ∈ Ck−1,k−1
b (R+),

‖f (k)‖ ≤
{√

2(
√

2π + e−1)√
p + 2k − 2

+ 4

p + 2k − 2

}
‖h(k−1)‖, k ≥ 1, (44)

where h(0) ≡ h. The conditions on the test function h for the bounds (43) and (44) are the same
(but presented in a simpler manner) as those used in [14], in which it was noted that the bounds
are valid under these conditions which are weaker than those presented in [21] and [12]. From
(44), we deduce (using that p ≥ 1 and k ≥ 2) the simplified bounds

‖f (k)‖ ≤ 6.375‖h(k−1)‖√
p + 1

, k ≥ 2, (45)

and

‖f (k)‖ ≤
{√

2(
√

2π + e−1)√
2k − 1

+ 4

2k − 1

}
‖h(k−1)‖, k ≥ 2. (46)

Finally, we record a bound from [14]. For h ∈ Ck−2,k−1
b (R+),

‖f (k)‖ ≤ 4

p + 2

(
3‖h(k−1)‖ + 2‖h(k−2)‖), k ≥ 2. (47)
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Proof of Theorem 1. In the proof of the bounds (4) and (5), [14] obtained the intermediate
bounds ∣∣E[h(χ2)] − χ2

(r−1)h
∣∣≤ 1

n

{
19‖f ′′‖ + 309‖f (3)‖ + 1089‖f (4)‖

+ 1997‖f (5)‖ + 100 974‖f (6)‖}( r∑
j=1

1√
pj

)2

(48)

and ∣∣E[h(χ2)] − χ2
(r−1)h

∣∣≤ 1√
n

{
18‖f ′′‖ + 84‖f (3)‖} r∑

j=1

1√
pj

, (49)

where f is the solution (41) of the χ2
(r−1) Stein equation.

We note that bounding the derivatives of the solution f of the χ2
(r−1) Stein equation in (48)

and (49) using inequality (47) then yields the bounds (4) and (5), respectively. The bounds (6)
and (7) of Theorem 1 are obtained by instead using inequality (45) to bound the derivatives
of f in the bounds (4) and (5), respectively. To get the bound (8) of Theorem 1, we use the
inequality (43) to bound ‖f ′′‖, . . . , ‖f (5)‖ and (46) to bound ‖f (6)‖ in (48). Finally, to obtain
the bound (9) we use (43) to bound ‖f ′′‖ and (46) to bound ‖f (3)‖ in (49). �

Appendix B. Proof of Lemma 4

Proof of Lemma 4. (i) Without loss of generality, we let a = 1; the general a > 0 case follows
by rescaling. We therefore need to prove that, for x ≥ 0,

|f (x)| ≤ 2

3
(x − 1)4, (50)

where f (x) := 2x log(x) − 2(x − 1) − (x − 1)2 + 1
3 (x − 1)3. It is readily checked that inequality

(50) holds for x = 0 and x = 2. For 0 < x < 2 (i.e. |x − 1| < 1), we can use a Taylor expansion
to obtain the bound

|f (x)| = 2(x − 1)4
∣∣∣∣

∞∑
k=0

(−1)k(x − 1)k

(k + 3)(k + 4)

∣∣∣∣≤ 2(x − 1)4
∞∑

k=0

1

(k + 3)(k + 4)
= 2

3
(x − 1)4,

so inequality (50) is satisfied for 0 < x < 2. Now, suppose x > 2. We have that f ′(x) = 2 log(x) −
2(x − 1) + (x − 1)2 and d

dx

(
2(x − 1)4/3

)= 8(x − 1)3/3. By the elementary inequality log(u) ≤
u − 1 for u ≥ 1, we get that

|f ′(x)| = |2 log(x) − 2(x − 1) + (x − 1)2|
= 2 log(x) − 2(x − 1) + (x − 1)2 ≤ (x − 1)2 ≤ 8

3
(x − 1)3,

where the final inequality holds because x > 2. Therefore, for x > 2, 2(x − 1)4/3 grows faster
than |f (x)|. Since |f (2)| < 2(2 − 1)4/3 = 2/3, it follows that inequality (50) holds for all x > 2.
We have now shown that (50) is satisfied for all x ≥ 0, as required.

(ii) Suppose λ ≥ 3. Again, without loss of generality, we may set a = 1. We therefore need
to prove that, for x ≥ 0,

|gλ(x)| ≤ (λ − 2)(λ − 1)λ(λ + 1)

24

(
1 + xλ−3)(x − 1)4, (51)
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where

gλ(x) := xλ+1 − 1 − (λ + 1)(x − 1) − λ(λ + 1)

2
(x − 1)2 − (λ − 1)λ(λ + 1)

6
(x − 1)3. (52)

By a Taylor expansion of xλ+1 about x = 1 we have that

gλ(x) = (λ − 2)(λ − 1)λ(λ + 1)

24
ξλ−3(x − 1)4, (53)

where ξ > 0 is between 1 and x. Now, as ξ is between 1 and x and because λ ≥ 3, we have
that ξλ−3 ≤ (max{1, x})λ−3 ≤ 1 + xλ−3, and applying this inequality to (53) gives us (51), as
required.

(iii) Suppose now that λ ∈ (−1, 3) \ {0}. Without loss of generality we set a = 1, and it
therefore suffices to prove that, for x ≥ 0,

|gλ(x)| ≤ |(λ − 2)(λ − 1)λ|
6

(x − 1)4. (54)

We shall verify inequality (54) by treating the cases 0 < x ≤ 2 and x ≥ 2 separately (it is readily
checked that the inequality holds at x = 0). For 0 < x < 2 (i.e. |x − 1| < 1) we can use a Taylor
expansion to write gλ(x) = (x − 1)4Gλ(x), where

Gλ(x) =
∞∑

k=0

(
λ + 1

k + 4

)
(x − 1)k,

and the generalised binomial coefficient is given by
(a

j

)= [a(a − 1)(a − 2) · · · (a − j + 1)]/j!
for a > 0 and j ∈N. We now observe that, since λ < 3, the generalised binomial coefficients(
λ+1
k+4

)
are either positive for all even k ≥ 0 and negative for all odd k ≥ 1, or are negative for

all even k ≥ 0 and positive for all odd k ≥ 1 (or, exceptionally, always equal to zero if λ ∈
{1, 2}, which is a trivial case in which gλ(x) = 0 for all x ≥ 0). Hence, for 0 < x < 2, Gλ(x)
is bounded above by |Gλ(0)|, and a short calculation using the expression in (52) (note that
Gλ(x) = gλ(x)/(x − 1)4) shows that Gλ(0) = |(λ − 2)(λ − 1)λ|/6. Thus, for 0 ≤ x < 2, we have
the bound

|gλ(x)| ≤ |(λ − 2)(λ − 1)λ|
6

(x − 1)4.

Suppose now that x ≥ 2. Recall from (53) that

gλ(x) = (λ − 2)(λ − 1)λ(λ + 1)

24
ξλ−3(x − 1)4,

where ξ > 0 is between 1 and x. In fact, because we are considering the case x ≥ 2, we know
that ξ > 1. Therefore, since λ < 3, we have that ξλ−3 < 1. Therefore, for x ≥ 2,

|gλ(x)| = |(λ − 2)(λ − 1)λ(λ + 1)|
24

(x − 1)4 ≤ |(λ − 2)(λ − 1)λ|
6

(x − 1)4,

where the second inequality follows because λ ∈ (−1, 3) \ {0}. We have thus proved inequality
(54), which completes the proof of the lemma. �
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