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This paper formalizes the observable interface behaviour of open systems for a

strongly-typed, concurrent object-oriented language with single-class inheritance. We

formally characterize the observable behaviour in terms of interactions at the

program-environment interface. The behaviour is given by transitions between contextual

judgments, where the absent environment is represented abstractly as assumption context. A

particular challenge is the fact that, when the system is considered as open, code from the

environment can be inherited to the component and vice versa. This requires to incorporate

an abstract version of the heap into the environment assumptions when characterizing the

interface behaviour. We prove the soundness of the abstract interface description.

1. Introduction

A component is a part of a larger system, which interacts with its environment, and can

be considered as a black-box whose internals are hidden. Such a separation of internal

behaviour from externally relevant interface behaviour is crucial for compositionality. The

most popular programming paradigm nowadays is object orientation, which in particular

supports interfaces and encapsulation of objects. Another crucial feature in mainstream

object orientation is inheritance, which allows code reuse and is intended to support

incremental program development by gradually extending and specializing an existing

class hierarchy.

In this paper, we consider components as sets of classes with an inheritance structure.

As open and being part of an overall program, they cannot execute on their own, but only

in interaction with their environment. They are furthermore open in those component

classes that may inherit from classes specified in the environment and conversely also the

environment may extend component classes using inheritance.

The openness of a system in the presence of inheritance and late-binding is problematic.

With a standard behavioural interface specification given as pre- and post-conditions for

the available methods, replacing one super or base class by another satisfying the same

interface description, may break the code of the client of the super-class, i.e. change the

behaviour of the ‘environment’ of the super-class. Consider the following code fragment.
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Listing 1. Fragile base class.

c l a s s A { c l a s s B ex t end s A {
vo i d add ( ) { . . . } vo i d add ( ) {
vo i d add2 ( ) { . . . } s i z e = s i z e + 1;
. . . supe r . add ( ) ; }

} vo i d add2 ( ) {
s i z e = s i z e + 2;
supe r . add2 ( ) ; }

}

The two methods add and add2 are intended to add one and two elements respectively to

some container data structure. This completely (albeit informally) describes the intended

behaviour of A’s methods. Class B in addition keeps information about the size of the

container. Due to the late-binding, this implementation of B is wrong if the add2-method

of the super-class A is implemented via self -calls using two times the add -method. A

sub-class could observe a difference, namely by overriding the auxiliary method which

is invoked by the inherited method in one situation but not in the other. A similar

phenomenon is also described as fragile base class problem (Mikhajlov and Sekerinski

1998; Ruby and Leavens 2000; Snyder 1986; Stata and Guttag 1995). Nothing, however,

in the interface distinguishes the two different super-classes: the interface specification

is too weak to allow to consider the super-class as a black-box which can be safely

substituted based on its interface specification only, i.e. ignoring this phenomenon results

in a non-compositional semantical description.

The challenge therefore is to give a formal, behavioural interface description which

matches what can be observed by client code in the presence of inheritance and late-

binding. A basic soundness requirement (also known as adequacy) is that two open

systems with the same interface description should be safely exchangeable for each

other without leading to different outcomes when used in arbitrary contexts. Therefore,

ignoring observable details (such as self-calls) in the interface description would lead

to an unsound semantical description. Soundness, however, it is not the only desirable

property when characterizing the open semantics. The semantics should not contain

unnecessary, unobservable details and in particular the semantics should only include

possible behaviours, i.e. behaviours generated by some actual (well-formed, well-typed)

program in the given language. This is related to the notion of definability in fully

abstract semantics (cf. e.g. Curien (2007) for a discussion of definability) where typically

the hard part of achieving full abstraction is to design a semantic domain where each

element in the semantics of an actual (open) program fragment, i.e. the semantic function

should be surjective such that the semantic domain only contains definable elements. For

illustration: the classical example of course is domain theory for functional languages,

where programs are not interpreted over sets of arbitrary functions, but restricted to

continuous functions (in appropriately defined cpo’s) as those are the only functions which

are definable, i.e. computable. In languages with mutable state, as here, the observable

behaviour takes the form of a set of interaction sequences or traces, here consisting of

method invocations and the eventual returning of their results, and we are interested in

capturing the interface traces as precise as possible. A rigorous account of such an interface

behaviour is important also for formal, compositional verification of open programs.

In settings with more complex forms of program composition than plain sequential
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composition (in particular in the presence of concurrency but also for object-oriented

languages), a key ingredient to obtain a modular Hoare-style reasoning system is to

record the interacting behaviour appropriately in a logical history variable. Capturing the

potentially possible histories not precisely then leads to incomplete reasoning for verifying

an open component independent from its environment. Not realizing that no environment

exists which able to engage in a given history or trace, the proof method would work with

weaker assumptions than otherwise possible, potentially unable to prove assertions which

actually do hold in all concrete programs. A precise account of the open semantics is also

beneficial for compositional optimization of components: only when showing the same

external behaviour, one program can replace another without changing the interaction

with any client code, and being able to ignore traces which cannot actually occur makes

program’s observable equivalence more coarse-grained, thus potentially allowing more

optimizations.

This paper formalizes an open semantics for a statically typed object-oriented calculus

featuring concurrency, dynamic object creation, mutable heap and single inheritance.

The behavioural interface description is phrased in a typed assumption-commitment

framework. The setting allows that component classes to inherit from environment classes

and vice versa. Thus, the account really captures the observable, behavioural aspects of

class inheritance without restrictions, for instance by allowing inheritance only within

the component. A consequence of that set-up is that a precise characterization of the

open semantics and of the legal traces needs to take an abstraction of the heap into

account. We prove the soundness of the abstractions. The results here extend previous

work with inheritance, which is a central feature for object-oriented languages. Earlier we

considered the problem of open systems for different choices of language features (but

without inheritance), e.g. for futures and promises (Ábrahám et al. 2009) and for Java-like

monitors (Ábrahám et al. 2006). Object-connectivity plays a crucial role in the current

work (as in Ábrahám et al. (2005)) but is here a semantical consequence of inheritance.

Including inheritance influences in subtle ways what is observable, e.g. the observer

may override component methods or inherit its own methods to the component which

then are rebound by late-binding. Capturing the resulting interface behaviour accurately

complicates the semantics considerably. As mentioned, we consider a concurrent, object-

oriented calculus and the model of concurrency used here is based on active objects using

asynchronous method calls and futures. It thus resembles the communication mechanisms

of loosely coupled interacting objects known from actor-based (Agha and Hewitt 1987)

languages such as Erlang (Armstrong et al. 1996) and Scala (Odersky et al. 2011). We

stress, however, that the particular choice of the concurrency model is, to a certain degree,

orthogonal to the results; particular details concerning the exact format of the interface

interaction of course depend on the details of the chosen model. But the core message

of the paper, namely that capturing the influence of inheritance requires to take into

account an abstract representation of the heap topology is independent from the chosen

concurrency model.

The paper is organized as follows. We start in Section 2 by explaining the approach of

this paper in more detail, by way of examples. Section 3 presents syntax and static type

system of the calculus. The main contributions (the typed open semantics, the legal traces,
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and the soundness of the abstractions) are presented in Sections 4 and 5. We conclude in

Section 6 discussing related work.

2. Interface behaviour, inheritance and object connectivity

We start by giving more technical intuition to the challenges when defining an open

semantics in our setting. E.g. as self-calls lead to observable differences in the presence

of inheritance, they are part of the observable behaviour. On the other hand, behaviour

which is impossible should not be included in the open semantics.

2.1. Existential abstraction of the environment

With sets of classes as units of composition, we start by discussing informally what can be

observed from outside a ‘component’ when considering inheritance. Even when restricting

ourselves to run-of-the-mill notion of single inheritance between classes with sub-type

polymorphism, late-binding and method overriding, a number of design issues influence

what can be observed from the outside given a set of classes. We discuss some of the

issues using object-oriented pseudo-code for illustration. An interface interaction happens

if a step of the component affects the environment and vice versa. Objects encapsulate

their states, and thus the interaction takes the form of method calls and returns, where the

control changes from executing component code to environment code (outgoing message)

and vice versa (incoming message)†. Thus the interface behaviour will be given in terms of

traces of call and return labels exchanged at the interface, where in our setting component

classes can extend those from the environment via inheritance, and vice versa. Writing

C
t

=⇒ Ć , the t denotes the trace of interface actions by which component C evolves into

Ć , potentially executing internal steps, as well, not recorded in t. Being open, C does

not act in isolation, but interacts with some environment. That is, we are interested in

traces t where there exists an environment E such that C ‖ E
t

=⇒̄
t

Ć ‖ É by which we

mean: component C produces the trace t and E produces the dual trace t̄, both together

‘cancelling out’ to internal steps. Our goal is an open semantics with the environment

existentially abstracted away. With infinitely many possible environments E, the challenge

is to capture what is common to all those environments. This will be done in form of

assumptions about the environment: the operational semantics specifies the behaviour of

C under certain assumptions ΞE about the environment. Following standard notation

from logics, we do not write ΞE ‖ C , but rather ΞE � C . Reductions thus will look like‡

ΞE � C
t

=⇒ Ξ́E � Ć . (1)

† Note in passing: if the language allowed shared variables, an interface interaction would not necessarily mean

that the control flow passes in the interface step from component to environment or vice versa.
‡ To avoid later confusion: the ΞE as used in the semantics later does not only formalize assumptions about

the environment, but also commitments of the component, to make the setting symmetric. Also, the notation

ΞE will not be used later, it is used only here for explanatory reasons.
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Such a characterization of the abstract interface behaviour is relevant and useful for

the following reasons. First: the set of traces according to Equation (1) is in general more

restricted than the one obtained when ignoring the environments altogether. This means,

when reasoning about the behaviour of C based on the traces, e.g. for the purpose of

verification, the more precise knowledge of the possible traces allows to carry out stronger

arguments about C . Secondly, an application for a trace description is black-box testing,

in that one describes the behaviour of a component in terms of the interface traces and

then synthesize appropriate test drivers from it. Obviously it makes no sense to specify

interface behaviour which is not possible, since in this case one could not generate a

corresponding tester. Finally, and not as the least gain, the formulation gives insight

into the inherent semantical nature of the language, as the assumptions ΞE capture the

existentially abstracted environment behaviour.

Similarly to the representation of the environment by an assumption context in

Equation (1), one can additionally abstract away from any concrete component C and

replace it by a commitment context, obtaining a formalization of possible interface

interaction in the language which we call legal traces. The following two sections explain

two important (and technically challenging) consequences of inheritance and late-binding

for the observable behaviour: one showing that self-calls may be observable and thus

need to be included in the traces and secondly that one needs an abstract existential

over-approximation of the heap structure to avoid ‘illegal’ traces. In the technical part

afterwards, the semantics in the form of Equation (1) is given in Sections 4 and 5 presents

possible interface behaviour in the form of legal traces.

2.2. Self-calls and cross-border inheritance

Assume two classes, CC as a component class implementing a method mC , and CE in

the environment providing a method mE . Figure 1(a) illustrates the situation where an

instance oC of the component class executes mC and calls the method mE on an instance

oE of the environment class, represented by the outgoing call oE.mE! which crosses the

interface. In general, we use ! to denote outgoing communication from the perspective of

the component and ? for incoming communication. Even if both caller and callee objects

are instances of the component class CC , the call from mC to mE still crosses the border,

provided mC is implemented in CC and mE is inherited from class CE to CC (cf. Figure

1(b) and Listing 2). Especially, if caller and callee are the same object, i.e. if mC calls the

(inherited) mE via a self-call, it is still an interface interaction, as the code of mE is given

by the environment (Figure 1(c)).

Listing 2. Late binding.

c l a s s CE { c l a s s CC ex t end s CE {
. . . . .
p u b l i c v o i d mE ( ) { . . . } . . p u b l i c v o i d mC ( ) { . . . x .mE . . . }

} }

Likewise in the inverse situation in Listing 3, which illustrates late-binding and

overriding: the self-call in method m1 is a component-internal call when executed in
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Comp. Env.
CC CE

mC

mE

oE.mE !

(a)

Comp. Env.

CC

CEextends

mC

mE

oE.mE !

(b)

Comp. Env.

CC

CEextends

mC

mE

mE

self.mE !

(c)

Fig. 1. Calls across the interface.

an instance of CC , but an interface call when m1 is an (inherited) method of an instance

of CE . The call from the inherited m1 to the overridden m2 is also called a downcall (Ruby

and Leavens 2000) which can be seen as a special form of a call-back.

Listing 3. Overriding.
c l a s s CC { c l a s s CE ex t end s CC {

. . . . . .
p u b l i c v o i d m1 ( ) { . . . s e l f .m2 . . . } p u b l i c v o i d m2 ( ) { . . . }
p u b l i c v o i d m2 ( ) { . . . } . . .

} }

2.3. Dynamic type and overriding

As in Java, we assume that classes, besides being generators of objects, play the role of

types as well, and that inheritance implies subtyping. The type system is thus nominal

and supports nominal subtyping.The question is, whether in the presence of subtyping,

the dynamic type of an object is observable. More concretely, assuming two classes CC

and CE , with CE a subclass of CC , does it make a difference to have an instance of CC or

of CE? Consider the following two expressions:

let x:CC = new CC in t and let x:CC = new CE in t. (2)

In the first case, the dynamic type of the instance is CC , in the second case it is the

subclass/subtype CE . Can one distinguish the two situations? If the super-class CC is

a component class and CE is an observer class, the two situations of Equation (2) are

distinguishable: by overriding a method of CC in CE , the behaviour of instances of CC

differs from instances of CE . An illustrative example is given by the Java-code in Listing

4, which shows the situation where an instance of the sub-class is created†.

† Since the observer class Dynamictypeobs1 literally mentions new CC() resp. new CE(), one might argue that

just by that fact it can see a difference. The point, however, is the change in behaviour, and this would also

be observable if the observer would not itself create the instance with static type CE , but it would receive it

as handed over from the environment, for instance as return value of a method call.
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Listing 4. Dynamic type.
pub l i c c l a s s Dynamictypeobs1 {

pub l i c s t a t i c void main ( S t r i n g [ ] a rg s ) {
CE c = new CC ( ) ;
c .m( ) ;

}
}

c l a s s CC {
void m ( ) {System . out . p r i n t (”C C” ) ; }

}

c l a s s CE ex tends CC {
void m ( ) {System . out . p r i n t (”C E ” ) ; } ;

}

Also in the inverse situation that CE is component class and CC a class of the environment,

the two situations of Equation (2) are distinguishable.

2.4. Connectivity as abstract heap representation in the interface

Objects encapsulate their instance states such that fields of an object cannot be accessed

from outside the instance, i.e. the field can be referenced only via the this-identifier (when

following Java-like notation). This is slightly stronger than the restriction for private

fields in Java, which allow access among instances of the same class. In particular, each

method can access only the fields of the class that the method is defined in. In the

presence of inheritance between component and environment, each object may contain

fields defined by the component and fields defined by the environment. Since fields are

private (per instance), component fields are manipulated only by component methods,

and dually for environment fields. If the component instantiates a new object, fields from

the component class CC belong to the component part of the heap and fields from CE

to the environment part (cf. Figure 2(a), where the environment part, coming from the

abstract environment, is greyed out).

In Figure 2(b), the component creates two instances of CC , say o1 and o2. Directly

after creation, the fields of o1 and o2 are undefined (in absence of constructors) and

in particular, o1 and o2 are surely unconnected (i.e. their fields do not refer to each

other).

The creator of the two objects on the component side could call a set-method on o1 with

parameter o2 to set one of the fields of o1 to point to o2. If the set-method is defined in the

component class CC , then it may access only fields defined in CC . Thus, the call is internal

and not visible at the interface, as indicated in Figure 2(c). However, if the set-method

is inherited from CE , then the call executes a method specified by the environment and

modifies fields in the environment part of o1. Therefore, the call is a visible interface

interaction (Figure 2(d)). This fact should be reflected in the open semantics.

In general, we can see an instance to be split into two halves, one containing the

component fields and methods and the other the ones provided by the environment. The

environment part of the objects created by the component is unconnected unless brought

in connection by (outgoing) communication, sending some object identities as parameter

or return values across the border. In the above example, if the set-method is defined in
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Comp. Env.

CC

CE
extends

newCC

CC fields CE fields

(a)

Comp. Env.

CC

CE
extends

newCC

newCC

o1

o2

(b)

Comp. Env.

CC

CE
extends

o1.set(o2)

o1

o2

(c)

Comp. Env.

CC

CE
extends

o1.set(o2)

o1

o2

(d)

Fig. 2. Heap structure and connectivity.

the environment, then after the creator calls the set-method of o1 with parameter o2, the

environment part of o1 has a reference to o2 (Figure 2(d)). Now o1 may call a method of

o2 and pass on its own identity as a parameter, such that o1 and o2 both ‘know’ about

each other, i.e. they are fully connected.

The situation concerning component and environment is completely symmetric. The

environment part of objects created by the environment can be connected among each other

without being observable at the interface. The environment may connect the component

part of those objects via (from the component view) incoming communication.

To describe the possible interface behaviour, where all possible environments are

represented abstractly by assumption contexts, the potential connectivity of the environ-

ment is important. For example, an incoming call of the form o1.m(o2)? is impossible

if, judging from the earlier interaction history, o1 and o2 cannot be in connection in

the environment (i.e. the environment parts of o1 and o2 do not have any references

to each other). Besides checking that incoming communication is consistent with the

assumptions concerning the heap structure (‘connectivity’), the values communicated over

the interface update those connectivity assumptions, e.g. an outgoing communication

o1.m(o2)! adds the knowledge to the assumption that after the step, (the environment

part of) o1 may now be in connection with o2. As via environment-internal commu-

nication, o1 may communicate with o2 and with all other objects it may know, the

assumed connectivity is taken as a reflexive, transitive and symmetric relation, i.e. an

equivalence relation. We call the equivalence classes of objects that may be connected

with each other cliques of objects. The operational semantics in Section 4 formalizes these

intuitions.

3. Calculus

This section presents the calculus, its syntax and operational semantics. It is a concurrent

variant of an imperative, object-calculus in the style of the calculi from Abadi and Cardelli

(1996) with asynchronous method calls. Unlike in de Boer et al. (2007) and Ábrahám et al.

(2009), we omit the treatment of first-class futures, which can be seen as a generalization

of asynchronous method calls, to simplify the presentation. We start with the abstract

syntax in Section 3.1 and present the type system in Section 3.2.
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Table 1. Abstract syntax.

bi

C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[O,L] | n〈t〉 component

O ::= n,M, F object

M ::= l = m, . . . , l = m method suite

F ::= l = f, . . . , l = f fields

m ::= ς(n:T ).λ(x:T , . . . , x:T ).t method

f ::= v | ⊥n field

t ::= v | stop | let x:T = e in t thread

e ::= t | if v = v then e else e | if undef (v.l()) then e else e expr.

| n@l(�v) | v.l() | v.l() := v

| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values

L ::= ⊥ | 	 lock status

3.1. Syntax

The abstract syntax is given in Table 1. It distinguishes between user syntax and run-time

syntax (the latter underlined). The user syntax contains the phrases in which programs

are written; the run-time syntax contains syntactic constituents additionally needed to

express the behaviour of the executing program in the operational semantics.

The basic syntactic category of names n, which count among the values v, represents

references to classes, to objects and to threads. To facilitate reading, we allow ourselves

to write o and its syntactic variants for names referring to objects, c for classes and p for

threads (‘processes’). Technically, the disambiguation between the different roles of the

names is done by the type system and the abstract syntax of Table 1 uses the non-specific

n for names. The unit value is represented by () and x stands for variables, i.e. local

variables and formal parameters, but not instance variables.

A component C is a collection of classes, objects and (named) threads, with 0 representing

the empty component. The sub-entities of a component are composed using the parallel-

construct ‖. The entities executing in parallel are the named threads p〈t〉, where t is the

code being executed and p is the name of the thread. A class c[(c′,M, F)] carries a name c,

it references its immediate super-class c′ and defines its methods and fields in M and F . An

object o[c,M, F, L] with identity o keeps a reference to the class c it instantiates, contains

the embedded methods from its class, stores the current value F of its fields, and maintains

a binary lock L indicating whether any code is currently active inside the object (in which

case the lock is taken indicated by 	) or not (in which case the lock is free indicated by

⊥). Among the three kinds of entities at component level – threads p〈t〉, classes c[(c′,M, F)]

and objects o[c,M, F, L] – only the threads are active, executing entities, being the target

of the reduction rules. The objects, in contrast, store the embedded methods implemented

by their classes and the state in their fields or instance variables, whereas the classes are

constant entities specifying the methods.

The named threads p〈t〉 are incarnations of method bodies ‘in execution’. Incarnations

insofar, as the formal parameters have been replaced by actual ones, especially the
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method’s self-parameter has been replaced by the identity of the target object of the

method call. The term t is basically a sequence of expressions, where the let-construct

is used for sequencing and for local declarations; in an expression let x:T = e in t, the

let x acts as a binder for occurrences of x in t. As usual, sequential composition t1; t2
abbreviates let x:T = t1 in t2, where x does not occur free in t2. During execution, p〈t〉
contains in t the currently running code of a method body. When evaluated, the thread

is of the form p〈v〉 and the value can be accessed via p, the future reference or future for

short.

Each thread belongs to one specific object ‘inside’ which it executes, i.e. whose instance

variables it has access to. Object locks are used to rule out unprotected concurrent access

to the object states: though each object may have more than one method body incarnation

partially evaluated, at each time point at most one of those bodies (the lock owner) can be

active inside the object. In the terminology of Java, all methods are implicitly considered

‘synchronized’. The final construct at the component level is the ν-operator for hiding

and dynamic scoping, as known from the π-calculus. In a component C = ν(n:T ).C ′, the

scope of the name n (of type T ) is restricted to C ′ and unknown outside C . ν-binders

are introduced when dynamically creating new named entities, i.e. when instantiating new

objects or new threads. The scope is dynamic, i.e. when the name is communicated by

message passing, it is enlarged.

Besides components, the grammar specifies the lower level syntactic constructs, in

particular, methods, expressions and (unnamed) threads, which are basically sequences of

expressions. A method ς(n:T ).λ(x1:T1, . . . xk:Tk).t provides the method body t abstracted

over the ς-bound ‘self ’ parameter, here n, and the formal parameters x1, . . . , xk . For fields,

they are either a value or yet undefined. In freshly created objects, the lock is free, and

all class-typed fields carry undefined references ⊥c, where class name c is the type of the

field. For basic types such as integers, booleans, etc. fields carry concrete values like true,

false, 0, 1, . . . of appropriate types as initial values; in the theoretical development, any

built-in basic types, their values, and appropriate operations do not play a role and left

out mostly; for instance, we do not formalize well-typedness conditions for those basic

types and values. We allow, however, to use them in illustrative examples.

We use f for instance variables or fields and l = v, resp. l = ⊥c for field variable

definition. Field access is written as v.l() and field update as v′.l() := v. Note that the

construct v.l() is used for field access only, but not for method invocation. Note further

that the syntax does not allow to set a field back to undefined. Direct access (read or

write) to fields of objects other than oneself is forbidden by convention, i.e. it is forbidden

that a method ever executes o.f() resp. o.l() := v for an object different from ‘self’. More

precisely, we assume that field accesses v.l() and field updates v.l() := v in the static code,

i.e. in the method bodies, can use the ς-bound self-parameter as v, only; the parameter

corresponds to the reserved word this in Java. In connection with inheritance, there are

two further restrictions we assume for the field access: a method defined in a subclass is

not allowed to directly access fields that are defined in the super-class, neither by using

the keyword super (which we omitted anyhow), nor by accessing the variable via self,

when the field is inherited. In Java, that would correspond to private fields, as they cannot

be accessed by subclasses. These design choices will have quite some impact on what is
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observable at the interface. Intuitively, the more liberal the language is w.r.t. field access,

the more details about instances become observable. Instantiation of a new object from

class c is denoted by new c.

Method calls are written o@l(�v), where the call to l with callee o is sent asynchronously

and not, as in for instance in Java, synchronously where the caller blocks for the return

of the result. The further expressions claim, get, suspend, grab and release deal with

communication and synchronization. As mentioned, objects come equipped with binary

locks, responsible for mutual exclusion. The two basic, complementary operations on a

lock are grab and release. The first allows an activity to acquire access in case the lock

is free (⊥), thereby setting it to 	, and release(o) conversely relinquishes the lock of the

object o, giving other threads the chance to be executed in its stead. The user is not allowed

to directly manipulate the object locks. Thus, both expressions belong to the run-time

syntax. Instead of using directly grab and release, the lock-handling is done automatically

when executing a method body: before starting to execute the method, the lock has to

be acquired and upon termination, the lock is released again. Besides that, lock-handling

is involved also when futures are claimed, i.e. when a client code executing in an object,

say o, intends to read the result of a future. The expression claim@(p, o) is the attempt

to obtain the result of a method call from the future p while in possession of the lock of

object o. There are two possibilities in that situation: either the value of the future has

already been determined, i.e. the method calculating the result has terminated, in which

case the client just obtains the value without losing its own lock. In the alternative case,

where the value is not yet determined, the client trying to read the value gives up its lock

via release and continues executing only after the requested value has been determined

(using get to read it) and after it has re-acquired the lock. Unlike claim, the get-operation

is not part of the user-syntax. Both expressions are used to read back the value from a

future, the difference in behaviour is that get unconditionally attempts to get the value,

i.e. blocks until the value has arrived, whereas claim gives up the lock temporarily, if the

value has not yet arrived, as explained. Finally, executing suspend(o) causes the activity

to relinquish and re-grab the lock of the object o. We assume by convention that when

appearing in methods of classes, the claim- and the suspend-commands only refer to the

self-parameter self , i.e. they are written claim@(p, self ) and suspend(self ).

3.2. Type system

The language is typed and the available types are given in the following grammar:

T ::= B | Unit | 〈T 〉 | [S] | [(S)] | n types

U ::= T × · · · × T → T member types

S ::= l:U, . . . , (l):U, . . . , l:T signatures.

Besides base types B (left unspecified; typical examples are booleans, integers, etc.),

Unit is the type of the unit value (). Type 〈T 〉 represents a reference to a future which will

return a value of type T , in case it eventually terminates. The name of a class serves as the

type for its instances. The member types U serve to give types for methods and fields in

classes. As auxiliary type constructions (i.e. not as part of the user syntax, but to formulate
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the type system) we need the type or interface of unnamed objects, written [S], and the

interface type for classes, written [(S)], where S is the signature. The signature contain

the labels l of the available members together with the expected types. Furthermore, we

distinguish whether a member labelled l is actually implemented by the class (in which

case we write l:U), or whether it is provided, but inherited from a super-class (in which

case we write (l):U). For a given signature, we write S.l to mean that S contains a member

labelled l and that S.l denotes its type. Fields, also labelled by labels l, are of types T .

We allow ourselves to write �T for T1× · · · ×Tk etc. where we assume that the number of

arguments matches in the rules, and write Unit→ T for T1 × · · · × Tk → T when k = 0.

We are interested in the behaviour of well-typed programs, only, and the section presents

the type system to characterize those. As the operational rules later, the derivation rules

for typing are grouped into two sets: one for typing at the level of components, i.e. global

configurations, and one for their syntactic sub-constituents.

Table 2 defines the typing on the level of global configurations, i.e. for ‘sets’ of objects,

classes and named threads. On that level, the typing judgments are of the form

Δ � C : Θ , (3)

where Δ and Θ are name contexts, i.e. finite mappings from names (of classes, objects and

threads) to types. In the judgment, Δ plays the role of the typing assumptions about the

environment, and Θ of the commitments of the component, i.e. the names offered to the

environment. Sometimes, the words required and provided interface are used to describe

their dual roles. Δ must contain at least all external names referenced by C and dually Θ

mentions the names offered by C .

The empty configuration 0 is well-typed in any context and exports no names (cf. rule

T-Empty). Two configurations in parallel can refer mutually to each other’s commitments

and together offer the (disjoint) union of their names (cf. rule T-Par). It will be an

invariant of the operational semantics that the identities of parallel entities are disjoint

w.r.t. the mentioned names†. Therefore, Θ1 and Θ2 in the rule for parallel composition are

merged disjointly, indicated by writing Θ1,Θ2 (analogously for the assumption contexts).

In general, C1 and C2 can rely on the same assumptions that also C1 ‖ C2 in the conclusion

uses, as it represents the environment common to C1 ‖ C2.

The ν-binder hides object names and future/thread names inside the component (cf.

rule T-Nu). In the T-Nu-rule, we assume that the bound name n is new to Δ and Θ.

Object names created by new and thread/future names created by asynchronous method

calls are heap allocated and thus checked in a ‘parallel’ context (cf. again the assumption-

commitment rule T-Par). The rule for named classes introduces the name of the class and

its type into the commitment (cf. T-NClass). The code [(O)] of the class c[(O)] is checked

in an assumption context where the name of the class is available.

Note also that the premise of T-NClass (like those of T-NObj and T-NThread) is not

covered by the rules for type checking at the component level, but by the rules for the

lower level entities (in this particular case, by rule T-Obj from Table 3). The judgments

† In the open semantics later, the Δ and the Θ contexts will not be disjoint w.r.t. object names.
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Table 2. Typing (component level).

T-Empty

Δ � 0 : ()

Δ1,Θ2 � C1 : Θ1 Δ2,Θ1 � C2 : Θ2
T-Par

Δ1,Δ2 � C1 ‖ C2 : Θ1,Θ2

Δ � C : Θ, n:T
T-Nu

Δ � ν(n:T ).C : Θ

•; Δ, c:[(S )] � [(O)] : c
T-NClass

Δ � c[(O)] : (c:[(S )])

•; Δ � c : [(S )] •; Δ, o:c � [O,L] : c
T-NObj

Δ � o[O,L] : (o:c)

•; Δ, p:〈T 〉 � t : T
T-NThread

Δ � p〈t〉 : (p:〈T 〉)
Δ′ � Δ Θ � Θ′ Δ � C : Θ

T-Sub

Δ′ � C : Θ′

use as assumption not just a name context, but additionally a stack-organized context Γ

in order to handle the let-bound variables. So in general, the assumption context at that

level is of the form Γ; Δ. The premise of T-NClass starts, however, with Γ being empty,

i.e. with no assumptions about the type of local variables. This is written in the premise as

•; Δ, c:[(S)] � [(O)] : c; similar for the premises of T-NObj and T-NThread. An instantiated

object will be available in the exported context Θ by rule T-NObj. Threads p〈t〉 are treated

by rule T-NThread, where the type 〈T 〉 of the future reference p is matched against the

result type T of thread t. The last rule is a rule of subsumption, expressing a simple form

of subtyping: we allow that an object respectively a class contains at least the members

which are required by the interface. This corresponds to width subtyping.

Next we formalize the typing for objects and threads and their syntactic sub-constituents.

The judgments are of the form

Γ; Δ � e : T , (4)

(and analogously m, [(O)], etc. instead of e). The typing is given in Tables 3 and 4. Besides

assumptions about the provided names of the environment kept in Δ, the typing is done

relative to assumptions about occurring free variables. They are kept separately in a

variable context Γ, a finite mapping from variables to types.

Rule T-Class type-checks classes [(c2,�lf = �f,�l = �m)], ‘called’ in the premise of rule

T-NClass from Table 2 for named classes on the global level, where c1 in the conclusion

of T-Class is the class/type of [(c2,�lf =�f,�l = �m)] and c2 its direct super-class. The name

of the class c1 is used in the first premise to determine its interface type, which lists

the types of the class members. For the methods, �l:�U specifies the type of the method

directly implemented by c1 and (�l′):�U ′ those inherited from c2 (i.e. implemented by c2

or further inherited by a class higher up in the hierarchy). The premises Γ; Δ � fi : Ti

and Γ; Δ � mj : Uj check the well-typedness of all implemented members of the class.

We silently assume that fi ranges over all fields and mj over all methods implemented

by the class and mentioned in �lf resp. in �l of the signature. That also implies that the

class does not provide code for methods with labels from (�l′). The inherited methods are

dealt with in the last premise Γ; Δ � c2.l
′
j ′ : U

′
j ′ . The c2.l

′
j ′ : U

′
j ′ is a short-hand for looking

up the type of l′j ′ from the interface information of c2, i.e. for Γ; Δ � c2 : [(S2)] where

S2 = · · · l′j ′:Uj ′ · · · or S2 = · · · (l′j ′):Uj ′ · · · . That is, the type of l′j ′ is checked to coincide
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Table 3. Typing (1).

Γ; Δ � c1 : [(�lf:�T ,�l:�U, (�l′):�U ′)] Γ; Δ � fi : Ti

Γ; Δ � mj : Uj mj = ς(sj:c1).λ(�xj:�Tj).tj Γ; Δ � c2.l
′
j′ : U

′
j′

T-Class

Γ; Δ � [(c2,�lf =�f,�l = �m)] : c1

Γ � c.li : Ti Γ � c.l′j : U ′j Γ; Δ � fi : Ti Γ; Δ � mj : U ′j
T-Obj

Γ; Δ � [l1 = f1, . . . , lk = fk, l
′
1 = m1, . . . , l

′
n = mn, L] : c

Γ,�x:�T ; Δ, s:c � t : T ′

T-Memb

Γ; Δ � ς(s:c).λ(�x:�T ).t : �T → T ′

Γ; Δ � c : [(S )]
T-Undef

Γ; Δ � ⊥c : c

Γ; Δ � v : c Γ; Δ � c : [(S )] Γ; Δ � v′ : S.l
T-FUpdate

Γ; Δ � v.l := v′ : c

Γ; Δ � c : [(S )]
T-NewC

Γ; Δ � new c : c

Γ; Δ � e : T1 Γ, x:T1; Δ � t : T2
T-Let

Γ; Δ � let x:T1 = e in t : T2

Γ; Δ � v1 : T1 Γ; Δ � v2 : T1 Γ; Δ � e1 : T2 Γ; Δ � e2 : T2
T-Cond

Γ; Δ � if v1 = v2 then e1 else e2 : T2

Γ; Δ � v : c Γ; Δ � c : [(. . . , l:T , . . .)] Γ; Δ � e1 : T2 Γ; Δ � e2 : T2
T-Cond⊥

Γ; Δ � if undef(v.l()) then e1 else e2 : T2

T-Stop

Γ; Δ � stop : T
T-Unit

Γ; Δ � () : Unit

Table 4. Typing (2).

Γ; Δ � p : 〈T 〉 Γ; Δ � o:c
T-Claim

Γ; Δ � claim@(p, o) : T

Γ; Δ � p : 〈T 〉
T-Get

Γ; Δ � get@p : T

Γ(x) = T
T-Var

Γ; Δ � x : T

Δ(n) = T
T-Name

Γ; Δ � n : T

Δ � o : c
T-Suspend

Γ; Δ � suspend(o) : Unit

Δ � o : c
T-Grab

Γ; Δ � grab(o) : Unit

Δ � o : c
T-Release

Γ; Δ � release(o) : Unit

Γ; Δ � v : c Γ; Δ � c.l : �T → T Γ; Δ � vi : Ti
T-Call

Γ; Δ � v@l(�v) : T

Γ; Δ � t : T Δ � T � T ′

T-Sub

Γ; Δ � t : T ′

with the interface information of c1 independent of whether the super-class implements

l′j ′ directly or whether it’s inherited. Typing for objects in rule T-Obj works similarly,

where c is the class the object instantiates. As the implementation of objects embeds the

implementation of methods into the object, we need to check both fields and methods here,

against the interface type of class c. The rest of the rules are straightforward, including

the ones for expressions from Table 4.

The next example illustrates the type system, in particular the type checking of classes

and the role of the interfaces.
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Example 1 (type checking of classes). Assume two classes c1 and c2, where c2 extends

c1. Assume further that c2 implements the two methods labelled l1 and l3, and that

the super-class c1 implements l1 and l2. The expected interfaces for the two classes are

therefore

[(S1)] = [(l1:U1, l2:U2)] and [(S2)] = [(l1:U1, (l2):U2, l3:U3)] (5)

for c1 and c2 respectively. As seen in the (right-hand) interface of Equation (5), the

available methods of instances of c2 are l1 (implemented by c2, and overriding the

corresponding method of c1), l2 (which is not implemented by c2 but inherited), and l3,

which again is implemented by c2. The derivation for both classes ends with an instance

of rule T-Par:

Δ2 � c1[(l1 = m1, l2 = m2)] : (c1:[(S1)]) Δ1 � c2[(c1, l1 = m′1, l3 = m3)] : (c2:[(S2)])
T-Par

Δ0 � c1[(l1 = m1, l2 = m2)] ‖ c2[(c1, l1 = m′1, l3 = m3)] : (c1:[(S1)], c2:[(S2)])
(6)

Note that the interface [(S1)] for c1 is used as assumption to type-check c2 and vice versa.

In the derivation, we use the following abbreviations:

Δ3 � Δ1, c2:[(S2)]

Δ2 � Δ0, c2:[(S2)]

Δ1 � Δ0, c1:[(S1)].

(7)

The second premise of Equation (6) gives rise to the following sub-derivation:

Δ3 � c2 : [(S2)] Δ3 � m′1 : U1 Δ3 � m3 : U3 Δ3 � c1.l2 : U2
T-Class

Δ3 � [(c1, l1 = m′1, l3 = m3)] : c2
T-NClass

Δ1 � c2[(c1, l1 = m′1, l3 = m3)] : (c2:[(S2)])

(8)

The type-check of the second premise of Equation (6) works similarly. �

4. Typed operational semantics for open systems

The operational semantics is given in two stages, component-internal steps and external

ones, where the latter describe the interaction at the interface. Section 4.1 starts with

component-internal steps, i.e. those definable without reference to the environment. In

particular, those steps have no externally observable effect. The external semantics,

presented afterwards in Section 4.2, define the interaction between component and

environment. They are defined in reference to assumption and commitment contexts.

4.1. Internal semantics

The internal steps rewrite components as given in the abstract grammar from Table 1.

In the configurations, one can distinguish two parts, a ‘mutable’ and a fixed one. The

parts that change are the threads, which are being executed, and the objects which form

the mutable heap. Immutable are the classes which are referenced when doing method

look-up and which are arranged in the inheritance hierarchy. To simplify the writing of

the operational rules, we factor out the immutable class hierarchy. A configuration of the
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closed semantics is then of the form

Γc � C , (9)

where C contains the parallel composition of all instantiated objects and all running

threads and the class table Γc contains all class definitions. To stress the distinction

between the mutable and the immutable part, we use � as separator (and not the parallel

composition, as in the abstract syntax). With the classes being immutable, the operational

steps do not change Γc and are thus of the form

Γc � C −→ Γc � C ′ . (10)

Later in the semantics, we will distinguish confluent steps � and non-confluent ones
τ−→; when being unspecific we simply write −→ for internal transition relation. Actually,

the information in Γc is needed only at one point, namely when binding a method call

resp. a field access to the corresponding code resp. to the data location. In the embedding

representation, this binding is established when a new object is instantiated (cf. rule NewO

and Definition 2 below); no other (internal) step actually refers to Γc; in the rules of

Table 6, we omit mentioning Γc, except in the rule NewO for instantiation where it is

needed.

The internal semantics describes the operational behaviour of a closed system, not

interacting with an environment. The corresponding reduction steps are shown in Table 6,

distinguishing between confluent steps � and other internal transitions
τ−→, both invisible

at the interface. The �-steps, on the one hand, do not access the instance state of the

objects. They are free of side effects and race conditions, and hence confluent. The
τ−→-

steps, in contrast, access the instance state, either by reading or by writing it, and may

thus lead to race conditions.

The first seven rules deal with the basic sequential constructs, all as �-steps. The basic

evaluation mechanism is substitution (cf. rule Red). Note that the rule requires that the

leading let-bound variable is replaced only by values v. In the rule Let dealing with nested

let-constructs, the variable x1 is assumed not to occur free in t. The operational behaviour

of the two forms of conditionals are axiomatized by the four Cond-rules. Depending on

the result of the comparison in the first pair of rules, resp., the result of checking for

definedness in the second pair, either the then- or the else-branch is taken. Evaluating

stop terminates the thread for good, i.e. the rest of the thread will never be executed as

there is no reduction rule for p〈stop〉 (cf. rule Stop).

For accessing the fields of an object (to update the field or to read it), the object

containing the field is consulted†. Remember further that we assume that fields are never

accessed directly but only via corresponding accessor methods (‘get’ and ‘set’) and that we

interpret the notations x.l() and v.l() := v to represent those accessor methods. Rule FGet

deals with field look-up. In the rule, F.l stands for ⊥c, resp., for v, where o[M,F, L] =

o[. . . , l = ⊥c, . . . , L], if the field is yet undefined, resp., o[M,F, L] = o[M, . . . , l = v, . . . , L].

† In the current semantics, the object contains all fields; in the open semantics later, the object members, i.e.

the fields and the methods are distributed over the component and the environment, and only the fields of

the object implemented by the component show up in the (internal) rules.
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In rule FSet, the meta-mathematical notation F.l := v stands for (. . . , l = v, . . .), when

F = (. . . , l = v′, . . .). Rule NewT captures the execution of an asynchronous method call

o@l(�v); the step creates a new thread p which at the same time serves are future reference

to the later result. As the identity is fresh and not (yet) known to threads other than the

creating one, the configuration is enclosed inside a ν-scope. The expression p〈call o.l(�v):T 〉!
describes the message for the method call. The expression run-time syntax and additional

to the grammar of Table 1), as part of the productions for C .

Rule Call deals with receiving an internal method call of method l with object o as the

callee. Being an internal method call means that the code of the method is implemented

by the component and not the environment. In our semantic representation based on

embedding, the question whether the method labelled l in object o is implemented by the

component or by the environment is already resolved (see the rule for object instantiation

below). In the configuration after the reduction step, the meta-mathematical notation

M.l(o)(�v) stands for t[o/s][�v/�x], when the method suite M contains a method definition

of the form l = ς(s:T ).λ(�x:�T ).t, which in this case is unique.

In the embedding representation of objects, the point in time where the binding is

resolved is when instantiating a new object (cf. rule NewO). To determine which fields

and methods are meant in a call is formalized in the function members from Definition 2.

The function uses the class hierarchy and implements the search through the class

hierarchy collecting the members supported by an instance of the given class. We have

to distinguish between fields and methods. Methods are late-bound and thus, the method

nearest in the class hierarchy reachable is the one supported by an instance. To model

private methods (not directly supported by the abstract syntax), one could assume that all

private methods are named differently, i.e. a private method in a class is named differently

from all other (private or public methods)†. Fields are considered private and thus subject

to the same naming convention as the one for private methods. Of course, renaming a

field or method does not per se render it private, since being private means some access

restrictions, as well. Especially, a private method or field cannot be accessed from a

subclass. But those restrictions are captured by the type system. We insist that for each

pair of get/set accessor methods, either both are considered private or both public.

For the method to implement the embedding in Definition 2, Rule M-Top deals with a

class without super-class (which corresponds to Object in Java), in which case the fields

and methods available are simply the ones as defined in the class. Sub-classing is covered

by rule M-Inh. Methods from an instance of the subclass c1 of c2 are taken from c1

and c2, with those of c1 taking priority, i.e. one takes only those methods available at

c2, which are not provided directly from c1, written M2 \M1. For fields, we do not need

to ignore fields from c2, since all fields are considered being named differently, so no

confusion can arise. That we copy in fields also from the super-classes does not imply that

they are actually accessible in the corresponding instance. Privacy restrictions, however,

are dealt with not by the members-function, but statically by the type system. The public

† We furthermore do not consider overloading here.
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Table 5. Members.

Γc � c = [(⊥,M, F)]
M-Top

Γc � members(c) = M,F

Γc � c1 = [(c2,M1, F1)] M = M1,M2 \M1

F = F1, F2 Γc � members(c2) = M2, F2
M-Inh

Γc � members(c1) = M,F

availability of methods for instances of a class is determined by the signature of the class

and subtyping via subsumption allows to hide methods and make them thus unavailable.

Definition 2 (embedding). Given a class hierarchy Γc and a class name c, then the function

members is given inductively in Table 5.

With this definition, the instantiation of rule NewO is rather straightforward. The

new-statement creates a new instance with a fresh name, o in the rule. Since the reference

is fresh, it appears under the ν-binder in the post-configuration.

Example 3. Assume two classes

Γc � circle1=[(⊥, setCenterX = ς(s:circle1).λ(x:float). s.centerX() := x,

setCenterY = ς(s:circle1).λ(x:float). s.centerY() := x,

setRadius = ς(s:circle1).λ(x:float). s.radius1() := x,

centerX = 0.0, centerY = 0.0, radius1 = 0.0 )]

Γc � circle2=[( circle1, setRadius = ς(s:circle2).λ(x:float). s.radius2():=x; s.A():=x∗x∗pi,

radius2 = 0.0, A = 0.0, pi = 3.14 )] .

Then

Γc � members(circle2) =

setRadius = ς(s:circle2).λ(x:float). s.radius2():=x; s.A():=x∗x∗pi,

setCenterX = ς(s:circle1).λ(x:float). s.centerX() := x,

setCenterY = ς(s:circle1).λ(x:float). s.centerY() := x,

radius2 = 0.0, A = 0.0, pi = 3.14, centerX = 0.0, centerY = 0.0, radius1 = 0.0 .

Note that though the field radius1 is contained in instances of circle2, this field is not

accessible.

Claiming as well as executing the get-expression fetches the value of a future reference.

The two expressions differ, however, whether or not the lock may be released in case the

requested future is not yet evaluated. Claiming a future fetches the value without releasing

the lock, if the value is already available (cf. rule Claim1), and works in that situation

identical to getting the value in rule Get. If the value is not yet there, Claim2 releases the

lock temporarily, i.e. the thread attempts to re-acquire it immediately afterward. There is

no rule corresponding to Claim2 for get, i.e. trying to dereference a future reference via

get blocks without releasing the lock. Release and grab are dual and set the lock to free

resp. set it to the state 	 of ‘taken’. Both operations are not user syntax. The expression

suspend, finally, introduces a scheduling point by temporarily releasing and then trying

to re-acquire the lock.
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Table 6. Internal steps.

p〈let x:T = v in t〉� p〈t[v/x]〉 Red

p〈let x2:T2 = (letx1:T1 = e1 in e) in t〉� p〈let x1:T1 = e1 in (letx2:T2 = e in t)〉 Let

p〈let x:T = (if v = v then e1 else e2) in t〉� p〈let x:T = e1 in t〉 Cond1

p〈let x:T = (if v1 = v2 then e1 else e2) in t〉� p〈let x:T = e2 in t〉 where v1 = v2 Cond2

p〈let x:T = (if undef(⊥c) then e1 else e2) in t〉� p〈let x:T = e1 in t〉 Cond
⊥
1

p〈let x:T = (if undef(v) then e1 else e2) in t〉� p〈let x:T = e2 in t〉 Cond
⊥
2

p〈let x:T = stop in t〉� p〈stop〉 Stop

o[c,M, F, L] ‖ p〈let x:T = o.l() in t〉
τ−→ o[c,M, F, L] ‖ p〈let x:T = F.l in t〉 FGet

o[c,M, F, L] ‖ p〈let x:T = o.l() := v in t〉
τ−→ o[c,M, F.l := v, L] ‖ p〈let x:T = o in t〉 FSet

p′〈let x:〈T 〉 = o@l(�v) in t〉� ν(p:〈T 〉).(p′〈let x:〈T 〉 = p in t〉 ‖ p〈call o.l(�v):T 〉!) NewT

o[c,M, F,⊥] ‖ p〈call o.l(�v):T 〉! τ−→ o[c,M, F,	] ‖ p〈let x:T = M.l(o)(�v) in release(o); x〉 Call

Γc � members(c) = M,F
NewO

Γc � p〈let x:T = new c in t〉� Γc � ν(o:c).(o[c,M, F,⊥] ‖ p〈let x:T = o in t〉)
p1〈let x : T = claim@(p2 , o) in t〉 ‖ p2〈v〉� p1〈let x : T = v in t〉 Claim1

t2 = v
Claim2

p1〈let x : T = claim@(p2, o) in t1〉 ‖ p2〈t2〉�
p1〈let x : T = release(o)〉; get@p2 in grab(o); t1 ‖ p2〈t2〉

p1〈let x : T = get@p2 in t〉 ‖ p2〈v〉� p1〈let x : T = v in t〉 Get

p〈suspend(o); t〉� p〈release(o); grab(o); t〉 Suspend

o[c,M, F,⊥] ‖ p〈grab(o); t〉
τ−→ o[c,M, F,	] ‖ p〈t〉 Grab

o[c,M, F,	] ‖ p〈release(o); t〉
τ−→ o[c,M, F,⊥] ‖ p〈t〉 Release

Example 4 (internal semantics). Assume that the class circle2 from Example 3 is defined

in the component. Then calling the method setCenterX of an instance o of circle2 is an

internal call. Its execution creates a fresh thread (rule NewT) that grabs the object’s lock

and executes the method call (rule Call). The method sets the value of a field (rule FSet)

and, after a reduction (rule Let), releases the lock (rule Release).

o[circle2, centerX = 0.0, . . .,⊥] ‖ p′〈let x:〈circle2〉 = o@setCenterX(5.0) in t〉
� o[circle2, centerX = 0.0, . . .,⊥] ‖ ν(p:〈circle2〉).(p′〈let x:〈circle2〉 = p in t〉 ‖

p〈call o.setCenterX(5.0):circle2〉!))
τ−→ o[circle2, centerX = 0.0, . . .,	] ‖ ν(p:〈circle2〉).(p′〈let x:〈circle2〉 = p in t〉 ‖

p〈let x:circle2 = o.centerX() := 5.0 in release(o); x〉)
τ−→ o[circle2, centerX = 5.0, . . .,	] ‖ ν(p:〈circle2〉).(p′〈let x:〈circle2〉 = p in t〉 ‖

p〈let x:circle2 = o in release(o); x〉)
� o[circle2, centerX = 5.0, . . .,	] ‖ ν(p:〈circle2〉).(p′〈let x:〈circle2〉 = p in t〉 ‖

p〈release(o); o〉)
τ−→ o[circle2, centerX = 5.0, . . .,⊥] ‖ ν(p:〈circle2〉).(p′〈let x:〈circle2〉 = p in t〉 ‖

p〈o〉)

The above reduction relations are used modulo structural congruence, which captures

the algebraic properties of parallel composition and the hiding operator. The basic axioms

for ≡ are shown in Table 7 where in the fourth axiom, n does not occur free in C1. The

congruence relation is imported into the reduction relations in Table 8. Note that all

syntactic entities are always tacitly understood modulo α-conversion.
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Table 7. Structural congruence.

0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T ).C2 ≡ ν(n:T ).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 8. Reduction modulo congruence.

C ≡ � ≡ C ′

C � C ′

C � C ′

C ‖ C ′′ � C ′ ‖ C ′′
C � C ′

ν(n:T ).C � ν(n:T ).C ′

C ≡ τ−→ ≡ C ′

C
τ−→ C ′

C
τ−→ C ′

C ‖ C ′′ τ−→ C ′ ‖ C ′′
C

τ−→ C ′

ν(n:T ).C
τ−→ ν(n:T ).C ′

4.2. External semantics

In the external semantics, a component exchanges information via method calls and when

getting back the result of a method call (cf. Table 9), i.e. via call and get labels (by

convention, referred to as γc and γg , for short). Interaction is either incoming (?) or

outgoing (!). In the labels, p is the identifier of the thread carrying out the call resp.

of being queried via claim or get. Scope extrusion of fresh names across the interface

is indicated by the ν-binder. In ν(n:T )o, the o represents the identity of the object that

creates the thread or object n.

4.2.1. Connectivity contexts and cliques. An important condition for the open semantics

concerns which combinations of names can occur in communications. A well-typed

component thus takes into account the relation of objects from the assumption context

Δ among each other, and the knowledge of objects from Δ about those exported by the

component, i.e. those from Θ. The connectivity contexts EΔ and EΘ over-approximate the

heap structure, i.e. the pointer structure of the objects among each other, divided into the

component part and the environment part. See the discussion related to Figure 2 for an

illustration of connectivity as heap abstraction.

Definition 5 (name contexts). Δ and Θ are the assumption and commitment contexts

containing name bindings of the form n:T . More precisely, bindings o:c for object names

and p:〈T 〉 for future references/thread names. Additionally, we use � to represent the

initial activity/initial clique. The pair of Δ and Θ satisfies the following invariants. The �
is contained in either Δ or in Θ (indicating where the initial activity at the program start

is located). Furthermore, if Δ � o:c1 and Θ � o:c2, then c1 = c2. Wr.t. future references,

the domains of Δ and Θ are disjoint, i.e. if Δ � p : 〈T 〉, then Θ � p : 〈T 〉, and conversely.

We write Δ,Θ for the ‘union’ of both bindings, i.e. Δ,Θ � n : T if Δ � n : T or Θ � n : T .

To facilitate the following notationally, we use the following conventions.

Notation 6 (contexts). We abbreviate the pair Δ;EΔ and Θ;EΘ of both assumption and

commitment context by Ξ, i.e. we write for instance Ξ � C for Δ;EΔ � C : Θ;EΘ. The ΞΔ
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Table 9. Labels.

γ ::= p〈call o.l(�v):T 〉 | p〈get(v)〉 | ν(n:T )o basic labels

a ::= γ? | γ! receive and send labels

refers to the assumption context Δ;EΔ, and ΞΘ to Θ;EΘ. Furthermore, we understand Ξ́

as consisting of Δ́; ÉΔ and Θ́; ÉΘ, etc.

Definition 7 (connectivity contexts). The semantics is given by labelled transitions between

judgments of the form Δ;EΔ � C : Θ;EΘ, where Δ and Θ are name contexts (cf. Definition

5). The assumption connectivity context is a binary relation of the following form, where

Δo refers to the object identities of Δ, Θp to the thread identities of Θ, etc.,

EΔ ⊆ (Δo × Δo) + (Δo × Ξp) + (Δp × Δo) (11)

and dually EΘ ⊆ (Θo ×Θo) + (Θo × Ξp) + (Θp ×Θo). We write n1 ↪→ n2 (‘n1 may know

n2’) for pairs from these relations.

In analogy to the name contexts Δ, connectivity contexts EΔ express assumptions about

the environment, and EΘ commitments of the component.

Remark 8 (invariant). The connectivity context of Equation (11) consists of three ‘parts’.

The part from Δo × Δo over-approximates which environment fields of objects may know

which objects. Similarly a pair o ↪→ p from Δo × Ξp indicates that the (environment

half of) object o may know future p. Since we do not support first-class futures, which

means, future references cannot be passed around as arguments, there is exactly one

object with o ↪→ p, which is the creator of that future. In our setting that is the caller

of the corresponding method. The intuition for the pair of the form p ↪→ o is slightly

different; it means that thread p is executing inside object o (and thus ‘knows’ o via the

self-parameter). More precisely, the thread has started executing in o by acquiring the

lock, but so far the result has not been obtained via executing get, so the thread p is not

yet garbage collected. As an invariant of the semantics, there is at most one object such

that p ↪→ o.

There is a further invariant, concerning o1 ↪→ p and p ↪→ o2: if o1 and p are both on

‘the same side’, say Δ � o1 and Δ � p, then there exists no o2 such that EΔ � p ↪→ o2 or

EΘ � p ↪→ o2. And conversely: if EΔ � p ↪→ o2 (i.e. p executes in an environment object

o2), then EΘ � o1 ↪→ p for some o1 with Θ � o1 (i.e. the caller o1 is active in Θ and its

component fields know the thread/future p). �

As mentioned, the component has to over-approximate via EΔ which environment parts

of the objects are potentially connected, and, symmetrically, for the own part of the heap

via EΘ. The worst case concerning possible connections is represented by the reflexive,

transitive and symmetric closure of the ↪→-relation:
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Table 10. Binding.

Δ,Θ � c : [(�l:�U, (�l′):�U ′)] l ∈�l
Find1

Δ,Θ � find (c, l) = c

Δ,Θ � c1 : [(�l:�U, (�l′):�U ′)] l /∈�l Δ,Θ � c1 �1 c2 Δ,Θ � find (c2, l) = c3
Find2

Δ,Θ � find (c1, l) = c3

Definition 9 (acquaintance). Given Δ and EΔ, we write � for the reflexive, transitive and

symmetric closure of the ↪→-pairs of objects from the domain of Δ, i.e.

� � (↪→↓Δo×Δo
∪ ←↩↓Δo×Δo

)∗ ⊆ Δo × Δo . (12)

Note that we close the ↪→-relation concerning the environment-part of the heap, only.

As judgment, we use

Δ;EΔ � o1 � o2. (13)

For Θ and EΘ, the definitions are applied dually. Furthermore, we write Δ;EΔ � o ↪→ p if

o ↪→ p ∈ EΔ, and analogously Δ;EΔ � p ↪→ o. Note that we use the transitive and reflexive

closure for the connectivity among object identities, only.

4.2.2. Typed configurations. The assumption contexts are an abstraction of the (absent)

environment, consulted to check whether an incoming action is currently possible, and

updated in an outgoing communication. The commitments play a dual role, i.e. they

are updated in incoming communication. With the code of the component present, the

commitment contexts are not used for checks for outgoing communication. Part of the

check concerns type checking, i.e. basically whether the values transmitted in a label

correspond to the declared types for the corresponding method. This is covered in the

following two definitions, where the first one searches the class hierarchy to determine the

class that implements a given member.

Definition 10 (find). Given Δ,Θ, the function find takes a class name and a member label

l and returns the class which implements the member. The function is inductively given

in Table 10.

The rules for the find function of Table 10 work straightforwardly, determining the class

a member is defined in. Unlike the members function from Definition 2, the functions

here uses the interface information to find the class. The members function from Table 5

for the closed semantics consults the class table to do the same. This is no longer possible,

as we do not have, the complete class table at hand in the open semantics.

Basically, the function searches the class hierarchy starting from c and moving to the

super-classes and returns the first class that implements the member labelled l. In the base

case of rule Find1, the member l is found in the current class c: the signature [�l:�U, (�l′):�U ′]

indicates that the member l is implemented by c as opposed to being inherited from a

super-class. If c does not implement the member in that l /∈�l (cf. rule Find2), the function

continues the search recursively with the immediate super-class c2 of c1, as stipulated by

https://doi.org/10.1017/S0960129514000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000255


Observable interface behaviour and inheritance 583

Table 11. Checking static assumptions.

Ξ � o : c Ξ � find (c, l) = c′ Γc
Θ � c′ Ξ � c′ : [(. . . , l:�T → T , . . .)] Ξ ��v : �T Δ � p : 〈T 〉

LT-CallI

Ξ � p〈call o.l(�v):T 〉?
Δ � p : 〈T 〉 Ξ � v : T

LT-GetI

Ξ � p〈get(v)〉?

Ξ � n Δ � o:c Ξ � T

LT-NewI

Ξ � ν(n:T )o?

the premise Δ,Θ � c1 �1 c2. Note that the implementing class is found based on the

interface information Δ,Θ, only.

Definition 11 (well-typedness). Let a be an incoming communication label. The assertion

Ξ � a (14)

(‘under the context Ξ, label a is well-typed’) is given by the rules of Table 11. For outgoing

communication, the definition is dual.

For an incoming call to be well-typed (cf. rule LT-CallI), the callee name o and

future/thread name p must already be known at the interface (as required by the first

and the last premise). To be an interface interaction – here an incoming call from the

environment to the component – the code of the method l must be located at the

component side. This is assured by the second and third premise: the find-function

determines the class c′ where the method is implemented and Γc
Θ � c′ assures that the

class is part of the component, as in the open semantics, only the class table Γc
Θ of the

component is available. Finally, the declared type �T → T of the method is checked against

the communicated values�v and the future reference p, which is to reference the method’s

return value, must be of the matching type 〈T 〉. Note that the last premise requires that

the p is a part of the assumption environment Δ. Well-typedness for get-labels used to

fetch the result from an asynchronous method calls is covered by rule LT-GetI, basically

requiring that type 〈T 〉 of p corresponds to the type T of the value v the name p references.

Rule LT-NewI finally deals with incoming communication of a fresh name n, either an

object reference or a future reference. The requirement is that the name is indeed fresh,

and that the type mentioned in the label is actually a type (stipulated by Ξ � T ). Besides

that, the name creation must come from an execution in an object on the environment

side, stipulated by the second premise.

The interface interaction provides also information that updates the contexts.

Definition 12 (name context update). Let Ξ be a context and a an incoming label, with

Ξ � a (cf. Definition 11) with incoming label a. The updated context Ξ́ = Ξ + a is defined

as follows (dually for outgoing communication):

1. a = ν(n:T )o′?, then Δ́ = Δ, n:T and Θ́ = Θ.

2. If a = p〈call o.l(�v):T 〉?, then Δ́ = Δ \ p and Θ́ = Θ, p:〈T 〉∪(o:c,�v:�T ), where Δ � p : 〈T 〉
and where the types �T resp. c of the arguments �v resp. of o are given by Δ � vi : Ti,

resp. Δ � o : c.

3. If a = p〈get(v)〉?, then Δ́ = Δ \ p and Θ́ = Θ ∪ v:T , where Δ � p : 〈T 〉.
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Table 12. Connectivity check.

Ξ � ν(n:T )o?

Δ � o′ : c EΔ � o′ ↪→ p EΔ � o′ � o,�v

Ξ � p〈call o.l(�v):T 〉?

EΘ � o′ ↪→ p EΔ � p ↪→ o� v

Ξ � p〈get(v)〉?

Part 1 covers communication of a fresh identity n where the assumption context Δ is

extended by the type information for the new identifier n; the commitment context Θ is

left unchanged. If n represents a future reference, (assumed to be) freshly created by the

environment, the update from Δ to Δ́ captures the intuition that the new thread/future

reference is issued by an asynchronous call from (another) thread in the environment, and

that initially, before actually grabbing the lock, the activity resides in the environment.

If n represents a reference to an object instantiated by the environment, the intuition is

as follows. As mentioned, the instance state of an object in the open semantics is split

into two halves, one implemented by the component and one by the environment, which

therefore is not represented in the open configuration. At the time when an object is

instantiated by the environment (which is the situation for incoming communication), the

new object identifier is communicated at the interface through the ν-label, and the half of

the object belonging to the environment is already instantiated, i.e. its fields and methods

are (assumed to be) embedded. The members of the component, however, are not yet

embedded, i.e. after the fresh object identifier has been communicated, only one half of

the object is instantiated, namely the half at the side, which executed the instantiation

command; in the case of incoming communication, that is the environment. Remember

from the conditions on Δ and Θ from Definition 5 that a binding o:c for an object

identifier can be contained in Δ or Θ or in both (in the latter case with the same type c).

After ν(o:c)o′?, the o is given a type in the environment context, only.

That changes in part 2 which deals with incoming call labels. The communication of

the call label at the interface represents the moment where the method actually grabs the

lock of the callee, o in this case. At that point, the thread p changes from the side of the

caller to the side where the method body is implemented. This means, the corresponding

binding p:〈T 〉 is removed from Δ and added to Θ. That preserves the invariant from

Definition 5, that future/thread names are either bound in Δ or in Θ but not in both.

Part 2 updates Θ also w.r.t. the callee identity o. Remember from the discussion in part

1 that in the communication step ν(o:c)o′?, the corresponding binding o:c is added to

Δ, only. In the call-step now, also Θ is extended by that binding. Part 3 finally updates

the name contexts in case of an incoming get-communication. As our language does not

support first-class futures, each future is referenced at most once; afterwards it can be

garbage collected. This is reflected in the update, in that we remove the binding from the

corresponding context, here Δ.

The checks of the connectivity assumptions are formalized as follows:

Definition 13 (connectivity context check). Let Ξ be a context and a be an incoming

communication label. Overloading the notation from Definition 11, we write Ξ � a if the

conditions of Table 12 are met. For outgoing communication, the definition works dually.

In the semantical rules, Ξ � a means that both typing and connectivity are checked.
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For incoming ν-labels, the connectivity is not checked. Remember from rule LT-NewI,

that for well-typedness, the environment on the other side needs to contain at least one

object, required by Δ � o:c in the premise of the rule. For incoming method calls, the caller,

o′ in the rule is the object that issued the asynchronous method call, checked by o′ ↪→ p,

where p is the thread to execute the method body and furthermore, o′ must be contained

in the environment (by Δ � o′). For fetching the result of a method call via get, the caller

o′ must know the thread/future reference p, and since it is an incoming communication,

the acquaintance must follow from the commitment context EΘ which implies that the call

had been issued by the half of o′ contained in the component, not the environment. Note

further that the well-typedness assumption for incoming get-communication requires (by

the premise Δ � p : 〈T 〉), that the thread is actually on the environment side, not the

component side. The last two conditions assure that prior call had been issued already

(as an outgoing call from the component to the environment) and that the thread p is

not just been created without actually having started executing. The remaining premises

in the rules for calls, resp. for get-labels require that the ‘sender’ of the information know

the transmitted arguments. In the case of incoming calls, the sender is the caller, o′ in

the rules. That it knows the arguments and caller o is required by EΔ � o′ � o,�v. For

the incoming get-label, the sender of the information is the callee o, which is required to

know the argument v. In the premise EΔ � p ↪→ o � v, the part EΔ � p ↪→ o determines

o as the caller; in the connectivity update later, by adding a pair p ↪→ o for method calls,

the caller is remembered.

For updating connectivity, communication may bring objects in connection which had

been separated before. For an incoming call, this can be directly formulated by adding

the fact that the receiver of the communication now is acquainted with all transmitted

arguments. As far as the thread p is concerned: the fact that p starts executing in the

callee o after the call is remembered by adding p ↪→ o to the commitment connectivity.

See part 2 of Definition 14 below. Similarly in part 3 for incoming get information:

the object o dereferencing the future p now knows the value v communicated in the

communication. The object o is determined by the condition EΘ � o ↪→ p. Since the

future reference/thread is garbage collected after dereferencing, the connection o ↪→ p

is removed from the connectivity context, as well. Furthermore removed is the pair

p ↪→ o′, where o′ indicates the object that has executed the method body leading to

the result v. As mentioned, the incoming information updates basically the connectivity

for the commitment, but that is the case only for the two cases 2 and 3 just discussed.

For incoming fresh identifiers in case 1, the assumed connectivity of the environment is

updated, namely by the assumption that the originator o′ of the new identifier n knows it.

Definition 14 (connectivity context update). Assume Ξ � a. The update of the connectivity

contexts Ξ́ = Ξ + a is defined as follows. (The definition for outgoing communication is

dual.)

1. If a = ν(n:T )o′?, then ÉΔ = EΔ, o
′ ↪→ n.

2. If a = p〈call o.l(�v):T 〉?, then ÉΘ = EΘ, o ↪→�v, p ↪→ o.

3. If a = p〈get(v)〉?, then ÉΘ = (EΘ, o ↪→ v) \(o ↪→ p), where EΘ � (o ↪→ p), and

ÉΔ = EΔ \(p ↪→ o′) (where EΔ � p ↪→ o′).
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The situation of the connectivity context update is also illustrated in Figure 2 in

Section 2.4. In Figure 2(a) and (b), the component on the left-hand side creates two

objects o1 and o2. Assume that component thread executing in object o issues the

two object-creation statements. The two interface communications are thus labelled by

ν(o1:CC)o! and ν(o2:CC)o!. According to the dual situation of part 1 of Definition 14,

the assumption context ÉΘ after the two steps contains o ↪→ o1 and o ↪→ o2 and,

via transitivity, reflexivity and symmetry, also ÉΘ � o1 � o2. This reflects that fact,

that the sender o1 and o2 may know each other without further interface interaction.

That is illustrated in a step to Figure 2(c), when an call to the component-internal set-

method sets a component field of o1 to point to o2 (depicted by the corresponding bold

arrow in the figure). However, the assumption context ÉΔ after the steps is unchanged

compared to the situation EΔ before the steps, which means that ÉΔ � o1 � o2, since

o1 and o2 are two (different) fresh identifiers. In that situation, for instance no incoming

call of the form p′′〈call o′.l(o1, o2):T 〉? would be possible, since the connectivity check

from Definition 13 would fail for incoming communication. Using a set-method which

is implemented by the environment instead, the situation changes, which is illustrated

in the step from Figure 2(b)–(d): in this situation, the method call to the set-method

is an external communication, labelled p〈call o1.set(o2):Unit〉!. According to the dual

situation of Definition 14(2), ÉΘ is further updated to contain o1 ↪→ o2, which is shown

by the bold arrow in Figure 2(d) (we ignore the role of the thread identifier in the

example).

4.2.3. External steps. The semantics is given as labelled transitions between typing

judgments of the form

Δ;EΔ � C : Γc
Θ,Θ;EΘ . (15)

Note that only the class table Γc
Θ of class definitions of the component is available, the

environment classes are missing. As Γc
Θ does not change during execution, we assume it

is given implicitly. As before, we abbreviate the judgment of Equation (15) as Ξ � C (cf.

Notation 6). The steps of the external semantics are of the form

Ξ � C
a−→ Ξ́ � Ć . (16)

Based on the previous definitions to check and update the context information, the

typed operational rules of the external semantics are given in Table 13. Conceptually,

the rules fall into two groups, namely those for incoming communication and those for

outgoing communication (plus a few internal ones).

As shown in Equation (15) also the class table Γc is split into an assumption and a

commitment half (Γc
Δ and Γc

Θ). As the environment part Γc
Δ is not available, instantiation

can embed only those members of a new object which are actually provided by Γc
Θ. We

have to adapt Definition 2 for embedding fields and methods during instantiation to

deal with the fact that the whole class table is no longer available. Given a class table

Γc
Θ plus the interface information, which in particular contains information about the
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class hierarchy, the function members looks up the implementation of the members of an

instance of class c.

Definition 15. Let Δ,Θ be a well-formed typing context, Γc
Θ the component half of the

class table, and c a class name. Given Δ,Θ and Γc
Θ, the function members on class names

c is defined as follows:

members(c) = {R.l | Δ,Θ � find (c, l) = c′ and Γc
Θ = c′[(R)],Γc′

Θ }. (17)

The definition for Γc
Δ works dually.

Using the find -function from Definition 10, the function members finds the implementation

for all (public) component members of a class c. As the function returns the code, the

interface information Δ,Θ alone is not good enough, we need the class table. Once, find

has determined the (name of the) class, the class table Γc
Θ is consulted to extract the

methods and fields of the class, from which R.l selects the intended one. For instance, in

the situation of Listing 2 in the informal exposition of Section 2, invoking members on the

subclass in the component will give back only method mC , since only this method, unlike

mE of the super-class is actually implemented by the component itself. Assuming classes as

given in Listing 3, where here CE is assumed to be an component class (in contrast to the

discussion in Section 2), invoking members on the subclass CE gives back implementations

CE ’s implementation for m2 independent of the fact whether CC is a component or an

environment class, since the method is overridden in CE . Whether members also contains

the method m1 depends on whether the super-class is a component class, as well, or

not.

Now to the operational rules of the open semantics. The first four rules of Table 13

deal with exchange of ‘new’ information, i.e. with identifiers created at one side and

communicated to the other. In rule NewOO, the component instantiates a new object.

Executing the new c-expression creates o as a fresh identifier and the component heap is

extended by the new object instance o[c,M, F,⊥]. In our semantics, that object represents

only one half of the global view on the object, namely the half which contains the

record M,F of those members (methods and fields) actually implemented by component

classes. The function members determines that record and embeds it into o, consulting the

interface information Δ and Θ (as part of Ξ) and the component half of the class-table

Γc
Θ immediately after instantiation, the lock is free, represented by ⊥. The step of the

component is labelled by ν(o:c)o′!, which is used to update the interface information in Ξ

to Ξ́ = Ξ+ a. Part of the label is the creating object o′ whose identity is determined by the

premise EΘ � p ↪→ o′. The second part of the context information which is updated by

Ξ + a is the connectivity. In case of NewOO, the label communicates information about a

new identity and it is the sender’s connectivity information which is updated, which means

for outgoing communication, the connectivity of the component side. For the receiving,

environment side, the object o is not yet added to the corresponding context Δ (see

Definition 12(1)). For the communication labels later, which do not deal with transmitting

fresh information, the situation is dual: sending information from the component to

the environment updates the environment information (especially connectivity), not the
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component information. Rule NewOI is dual to NewOO and deals with the situation that

a new object identity is transmitted from the environment to the component, indicated

by a label of the form ν(o:c)o′?. The premises Ξ � a and Ξ́ = Ξ + a check whether the

communication is possible, resp., update the context appropriately. The premise Ξ � a for

checking whether the interaction a is possible as a next step has not been present (in dual

form) in NewOO: for steps initiated by the component, such as creating a new object

and publishing its identity at the interface, it is not necessary whether the step is actually

possible: the fact that the code executes the state shows that it is possible. Note that unlike

in rule NewOO, no object half is actually instantiated in step. Outgoing calls are dealt

with by the rules NewTO and CallO. In NewTO, the component executes the expression

o@l(�v) for asynchronous method calls, creating a new process (and future reference) p and

a message p〈call o.l(�v):T 〉!. The step does not distinguish between internal and external

method calls. The fresh identity p of the new thread is immediately communicated to the

environment by the label ν(p:〈T 〉)o′!, and the contexts Ξ is updated to Ξ́ appropriately

(the creator o′ of the thread is determined in the same way as in rule NewOO). Rule

NewTI deals with the dual situation. As in general for steps of the environment, we need

to check whether the step is possible, which is done by the premise Ξ � a.

The message for an outgoing call is communicated at the interface in rule CallO,

i.e. the rule describes a situation continuing from a configuration after a NewTO-step.

To be an external call requires that the callee object o does not implement the called

method l (formulated by the premise M.l = ⊥). Since M.l = ⊥ and since we assume

all programs to be well-typed, the method must be implemented by the environment

and thus is assumed to be embedded in the environment part of the object. Another

pre-condition for the step concerns the lock of the object. Note that we assume that

the interface interaction representing an outgoing call atomically captures the step when

the lock is actually taken. Since in the configuration, we conceptually represent only the

perspective of the component on the ‘shared’ lock, we require that, from the perspective

of the component, it is free by requiring that the object is of the form o[c,M, F,⊥]. Even

if we do not know whether the environment has ‘actually’ taken the lock or not, the

CallO-step is enabled based on that fact that the component does not hold the lock.

Having abstracted away from the environment, it is enough to know that there exists

an environment that currently does not hold the lock, in other words, that the lock

may be free. Note further that after the CallO-step, the lock, as represented in the

semantics, is free still! Even if the interface step is understood as atomically taking the

lock, it is unobservable when it frees it again, so in absence of an environment and in

absence of interference, it is possible that the lock is free again next time the component

does a step, so the semantics might as well not take the lock at all. In other words:

whether or not the environment is in possession of the lock or not is unobservable for the

component.

The CallI-rules are dual to CallO and deal with incoming calls. As objects created by

the environment are instantiated at the component only when they are called for the first

time, we distinguish two situations: the object half is not yet instantiated or it is already

(rules CallI1 and CallI2). In the first case, the new object needs to be instantiated,

using the members-function analogously to the instantiation in rule NewOO to embed the
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members of the object. After the instantiation, the lock is taken, since the communication

step corresponds to the point in time where the method actually starts executing. In

case of CallI2, the callee object is already present in the component. The same is done

for all object reference arguments from the actual parameters �v; we simply write C(�v)

to denote the corresponding newly instantiated object-halves. To be able to accept the

incoming call, the lock must be free before the step, and is it taken afterwards. Again,

by writing M.l(o)(�v) we mean especially, that the methods M of the callee o actually

contain the method labelled l and hence it is an incoming call from the environment to

the component. In both CallI rules, the well-typedness and connectivity is checked in the

premises, and the contexts updated appropriately.

The ClaimI- and GetI-rules all deal with the component receiving the result of a

method call by referencing the corresponding future reference, p′ in the rules. Remember

that there are two constructs with which to obtain the return value of a method call:

claim and get. Both have the same ‘functional’ behaviour but behave differently as far

as the lock-handling is concerned (cf. also the rules of the internal semantics of Table

6). That means that the checks for well-formedness, typing and connectivity coincide for

both kinds of interactions. The same applies for the context updates. When claiming

a future, there are two possible reactions of the thread executing the claim: either the

claim is immediately successful (in rule ClaimI1) and the value is imported, or the future

is not yet evaluated in which case claiming thread releases the lock temporarily in an

internal step (cf. rule ClaimI2). In both cases, the future is located in the environment,

as requested by Δ � p′; in case of ClaimI1, that is part of the check Ξ � a. An outgoing

get-communication in rule GetO simply updates the contexts and removes the consumed

future from the component.

The following example illustrates the interface behaviour and the role of the assumption

and commitment context on a small example involving inheritance.

Example 16 (observable trace). Assume class c′ extends c, inheriting a method m from c

and containing a method m′ which is sketched in Listing 5. Assume further, that c′ is a

component class and c is a class from the environment.

Listing 5. Observable trace and cross-border inheritance.

T m′ ( ) {
l e t x2 : c = new c ( )
in l e t y1:c

′′ = t h i s .m( )
in l e t y2:c

′′ = x2 .m( )
in t

}

In the above code, the method call notation x.m() abbreviates an asynchronous call

to m followed immediately by the corresponding get-operation on the corresponding

future, i.e. let y:T = x.m() in t abbreviates let y:T = (let y′:〈T 〉 = x@m() in get@y′) in t.

Furthermore, we use the more conventional this instead of the ς-bound self-parameter of

the formal calculus. Assuming that method m′ is being invoked on an object o1 (meaning

that this is substituted by o1 in the running code), one possible trace, using the operational
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Table 13. External steps.

a = ν(o:c)o′ ! EΘ � p ↪→ o′ Δ ,Θ;ΓΘ � members(c) = M,F Ξ́ = Ξ + a

NewOO

Ξ � C ‖ p〈letx:c′ = new c in t〉 a−→ Ξ́ � C ‖ p〈let x:c′ = o in t〉 ‖ o[c,M, F,⊥]

a = ν(o:c)o′? Ξ � a Ξ́ = Ξ + a

NewOI

Ξ � C
a−→ Ξ́ � C

a = ν(p:〈T 〉)o′? Ξ � a Ξ́ = Ξ + a

NewTI

Ξ � C
a−→ Ξ́ � C

a = ν(p:〈T 〉)o′ ! EΘ � p′ ↪→ o′ Ξ́ = Ξ + a

NewTO

Ξ � C ‖ p′〈let x:〈T 〉 = o@l(�v) in t〉 a−→ Ξ́ � C ‖ p′〈letx:〈T 〉 = p in t〉 ‖ p〈call o.l(�v):T 〉!
a = p〈call o.l(�v):T 〉! C = C ′ ‖ o[c,M, F,⊥] M.l = ⊥ Ξ́ = Ξ + a

CallO

Ξ � C ‖ a a−→ Ξ́ � C

a = p〈call o.l(�v):T 〉? Ξ � a Ξ́ = Ξ + a Θ � o Δ � o:c Δ ,Θ;ΓΘ � members(c) = M,F

CallI1

Ξ � C
a−→ Ξ́ � C ‖ p〈let x:T = M.l(o)(�v) in release(o); x〉 ‖ o[c,M, F,	] ‖ C(�v)

a = p〈call o.l(�v):T 〉? Ξ � a Ξ́ = Ξ + a

CallI2

Ξ � C ‖ o[c,M, F,⊥]
a−→ Ξ́ � C ‖ p〈let x:T = M.l(o)(�v) in release(o); x〉 ‖ o[c,M, F,	] ‖ C(�v)

a = p′〈get(v)〉? Ξ � a Ξ́ = Ξ + a

ClaimI1

Ξ � C ‖ p〈let x:T = claim@(p′ , ) in t〉 a−→ Ξ́ � C ‖ p〈let x:T = v in t〉 ‖ C(v)

Δ � p′

ClaimI2

Ξ � C ‖ p〈let x:T = claim@(p′ , o) in t〉� Ξ � C ‖ p〈release(o); letx:T = get@p′ in grab(o); t〉 ‖ C(v)

a = p′〈get(v)〉? Ξ � a Ξ́ = Ξ + a

GetI

Ξ � C ‖ p〈let x:T = get@p′ in t〉 a−→ Ξ́ � C ‖ p〈let x:T = v in t〉 ‖ C(v)

a = p〈get(v)〉! Ξ́ = Ξ + a

GetO

Ξ � C ‖ p〈v〉 a−→ Ξ́ � C

rules of Tables 6 and 13, looks as follows:

p〈call o1.m
′():T 〉?.ν(o2:c)o1

!.

ν(p1:〈c′′〉)o1
!.p1〈call o1.m():c′′〉!.p1〈get(o′1)〉?.

ν(p2:〈c′′〉)o1
!.p2〈call o2.m():c′′〉!.p2〈get(o′2)〉?

(18)

After invocation of m′, the method creates a new object o2, indicated by the outgoing

ν-label. The remaining 6 labels represent the two method calls with o1, resp. o2 as callee

(the call to o1 is a direct self-call), and the corresponding communication of the results

back to the caller, represented by the two get-labels. Due to the asynchronous nature of

communication, that trace is only one possible behaviour, e.g. alternatively the order of

the outgoing calls may be swapped.

The change of the assumption and commitment contexts during the execution is shown

in Equation (19). The second column contains the respective communication labels, the

last 4 columns contain the corresponding contexts after executing the label; in case the

step leaves the context unchanged, we leave the corresponding entry empty. For the

contexts Θ and Δ, we elide the typing information. Furthermore, the super-scripts refer

to the line in the table and the contexts without grave-accent to the state before the step.

For example, in the first line, the entry Δ0 \ p represents the assumption context Δ́0 after

https://doi.org/10.1017/S0960129514000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000255


Observable interface behaviour and inheritance 591

the incoming call, relating it to the assumption context Δ0 before that initial call.

label ÉΘ Θ́ Δ́ ÉΔ

0 p〈call o1.m
′():T 〉? E0

Θ, p↪→o1 Θ0, p, o1 Δ0 \ p
1 ν(o2:c)o1

!. E1
Θ, o1↪→o2 Θ1, o2

2 ν(p1:〈c′′〉)o1
! E2

Θ, o1↪→p1 Θ2, p1

3 p1〈call o1.m():c′′〉! Θ3 \ p1 Δ3, p1, o1 E3
Δ, p1↪→o1

4 p1〈get(o′1)〉? (E4
Θ \ o1↪→p1), o1↪→o′1 Δ4 \ p1 E4

Δ \ p1↪→o1

5 ν(p2:〈c′′〉)o1
! E5

Θ, o1↪→p2 Θ5, p2

6 p2〈call o2.m():c′′〉! Θ6 \ p2 Δ6, p2, o2 E6
Δ, p2↪→o2

7 p2〈get(o′2)〉? (E7
Θ \ o1↪→p2), o1↪→o′2 Δ7 \ p2 E7

Δ \ p2↪→o2

(19)

The table represents the context updates for the various steps from Definitions 12 and

14. The checks for well-typedness and connectivity from Definitions 11 and 13 are

given in Equation (20). As mentioned, for outgoing communication, well-typedness and

connectivity of the interaction label are not checked by the premises of the rules of

Table 13, as their satisfaction is maintained by the steps of the semantics. The table from

Equation (20) list the checks (which are the exact duals of their counterparts for incoming

communication) nonetheless. When considering the trace of Equation (18) in isolation, i.e.

not as observable behaviour of the concrete program from Listing 5, then the checks for

incoming and outgoing communications would validate that the trace is the behaviour

of a arbitrary program with the statically given classes c and c′ and their inheritance

structure. In the table of Equation (20), the inheritance structure is used in the call-steps,

where Ξ � find (c′, m′) = c′, and Ξ � find (c′, m) = c determine c′ resp. c implementing the

corresponding method body, and Γc
Θ � c′ resp. Γc

Δ � c determine that c′ is a component

class and c a class of the environment.

label typing connectivity

0 p〈call o1.m
′():T 〉? Ξ � o1:c

′,
Ξ � find (c′, m′) = c′,
Γc

Θ � c′

Ξ � c′:[(m′:Unit→ T , . . .)],

Δ � p:〈T 〉

Δ � o:c̃, EΔ � o↪→p, EΔ � o�o1

1 ν(o2:c)o1
!. Ξ � o2,Θ � o1:c

′,Ξ � c

2 ν(p1:〈c′′〉)o1
! Ξ � p1,Θ � o1:c

′,Ξ � 〈c′′〉
3 p1〈call o1.m():c′′〉! Ξ � o1:c

′,
Ξ � find (c′, m) = c,

Γc
Δ � c′,

Ξ � c : [(m:Unit→ c′′, . . .)],
Θ � p1:〈c′′〉

Θ � o1:c
′, EΘ � o1↪→p1, EΘ � o1�o1

4 p1〈get(o′1)〉? Δ � p1:〈c′′〉,Ξ � o′1:c
′′ EΔ � p1↪→o1�o′1, EΘ � o1↪→p1

5 ν(p2:〈c′′〉)o1
! Ξ � p2,Θ � o1:c

′,Ξ � 〈c′′〉
6 p2〈call o2.m():c′′〉! Ξ � o2:c,

Ξ � find (c, m) = c

Γc
Δ � c,

Ξ � c : [(m:Unit→ c′′, . . .)],
Θ � p2:〈c′′〉

Θ � o1:c
′, EΘ � o1↪→p2, EΘ � o1�o2

7 p2〈get(o′2)〉? Δ � p2:〈c′′〉,Ξ � o′2:c
′′ EΔ � p2↪→o2�o′2, EΘ � o1↪→p2

(20)

Two points are worth noting: the requirement Ξ � o2 expressing that o2 is fresh in line

1 of Equation (20) ultimately entails that after line 6, object o2 cannot be connected to o′1,
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i.e. E7
Δ � o2 � o′1. In other words, due to the connectivity check in line 7 of Equation (20),

the last incoming communication p2〈get(o′2)〉? of the program is impossible if o′2 = o′1,

and the corresponding trace would be illegal, and the assertion y1 = y2 as pre-condition

to t in Listing 5 would be provable. The information that y1 and y2 are no aliases (at that

point) can be used to show that when replacing the rest of the method t by an alternative

t′ where subsequent sequential accesses to y1 and y2 are executed in parallel instead is

an observably equivalent variation of t. Without the open semantics keeping track of the

potential connectivity of objects, such an optimization would not be possible.

Furthermore note that for the calls, the type information is used to determine where the

code of the method resides. That is done with the help of the find -function (cf. Definition

10). E.g. in line 0 of Equation (20), method m′ is implemented in class c′, and in lines 3

and 6 resp., find establishes the environment class c to contain m. For example, for the

outgoing call of the self-call, the condition Γc
Δ � c′ asserts that c′ (which implements m)

is an environment class, and therefore the self-call is an interface interaction; if Γc
Θ � c′

instead, the call would be a component-internal step.

Finally consider a restricted set-up, where, unlike as in the example here, component

code can neither instantiate an environment class nor where a component class can

inherit methods from environment classes. In that situation, outgoing communication

labels of the form ν(o:c)o! (as in line 1) would not occur, and as a consequence, for

incoming communication, negative connectivity assertions such as E7
Δ � o2 � o′1 from

above would never be derived. The restricted set-up corresponds roughly to the use of

class libraries: the client code using the library of course can instantiate library classes or

extend them via inheritance, but the converse direction is not possible. In that setting, the

semantics simplifies considerably as the connectivity can be ignored to obtain a precise

open semantics. Furthermore, self-calls of a library component are always internal. �

Remark 17 (interface information). The interface information, as far as typing is con-

cerned, is kept in Δ and Θ and contains the names of the (publicly available) interface

types, i.e. their signature. Furthermore, the class hierarchy is part of the interface

information, i.e. which class extends which one. A final piece of information relevant

at the interface is not only to mention the available methods, but also, whether a method

needs actually to be implemented by the class, or whether it is inherited from a super-class.

The last piece of information is typically not part of an interface description; interfaces

in Java, for instance, do not specify that. There is a good reason why it is included in

our representation, namely: whether or not a class overrides a method or inherits it is

observable from the outside. �

Remark 18 (lock). The state of an object, i.e. its fields, are represented in the open

semantics split: only the fields pertaining the component are represented, those of the

environment are not. The lock can be seen as part of the instance state, but it does not

belong exclusively to one of the two sides, it is shared. In a configuration of the open

semantics, each object represented therefore contains ‘one half’ of its lock, interpreted as

follows. A lock taken 	 represents the situation that a component thread is in possession

of the lock. A free lock ⊥ means the opposite: no component thread currently holds the
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lock. This, however, does not represent information about the status of the lock as far

as the environment is concerned. A lock status ⊥ means that the environment may or

may not currently hold the lock. Due to the asynchronous nature of communication and

(related to that) due to the absence of re-entrant threading, a lock status of ⊥ from the

perspective of the component has no implications about whether the environment holds

the lock or not. Even if the component has issued a call to an environment method, which

during execution holds the lock, the component does not know whether the execution

has not yet started, is under way, or is already finished. The latter case, that a particular

method that has been called by the component and executed by the environment has

finished can be ‘observed’ by the fact that the methods return value is available. But then

again, the way to ‘observe’ that is via claim or get, which do not allow to observe the

negative fact that the value is not yet there and that consequently the particular method

has not yet given back that lock. And after the value is available, it is unobservable

from the perspective of the component, whether or not another thread has taken the lock

again in the meantime. In summary: if, from the perspective of the component, the lock

is free, the component can never be sure about the lock status as far as the environment

is concerned. In that sense, the component and the environment are decoupled. In a

Java-like setting with synchronous method calls and re-entrant monitors, this is not the

case and complicates matters considerably (cf. Ábrahám et al. (2008), which deals with

re-entrant monitor behaviour). �

Remark 19 (concurrency model). The results of this paper are formulated for a concurrent,

object-oriented language based on active objects and asynchronous method calls. The

concurrency model is thus different from the concurrency model based on multi-threading

used in languages as Java and C�. As far as the inheritance is concerned, the situation in

our calculus resembles closely to the one in those mentioned languages, representing the

mainstream of object-oriented languages: late-bound methods and a single inheritance

class hierarchy.

This means that in principle the results of this work apply to a multi-threaded setting,

as well, namely that inheritance makes self-calls observable, and that approximation of

the heap structure is relevant interface information. Concerning the details, using a lan-

guage based on multi-threading, re-entrant monitors and inheritance, would considerably

complicate the interface behaviour. One reason is that for a precise characterization, one

would need to characterize the re-entrant behaviour of threads: the future references here

would be interpreted as thread identifiers and for each thread identifier, the trace must be

a (prefix of) a context-free language of matching calls and returns. That corresponds to

well-bracketed strategies in game theory (cf. e.g. Abramsky and McCusker (1997).

One reason is that the presence of the synchronized keyword as in Java complicates

the setting in at least one of the following two ways, depending on which decision is taken

w.r.t. whether being synchronized or not is public interface information.

If the question of being synchronized is part of the interface information of a method,

the interaction trace reveals in many cases information, that the re-entrant lock of a given

object is definitely taken, and that information must be taken into account. In our setting

here, the information that a lock is taken is not part of the interface information which
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Table 14. Legal traces (dual rules omitted).

Ξ � ε : trace L-Empty

a = ν(n:c)o′? Ξ � a Ξ́ = Ξ + a Ξ́ � s : trace
L-NewI

Ξ � a s : trace

a = p〈call o.l(�v):T 〉? Ξ � a Ξ́ = Ξ + a Ξ́ � s : trace
L-CallI

Ξ � a s : trace

a = p′〈get(v)〉? Ξ � a Ξ́ = Ξ + a Ξ́ � s : trace
L-GetI

Ξ � a s : trace

simplifies the treatment considerably. The consequences of multi-threading with re-entrant

locks are explored in Ábrahám et al. (2006), but without inheritance. If, alternatively,

the decision is taken that synchronized is not part of the interface information, a

synchronized method does not really provide protection against interference, especially if

an unsynchronized method is inherited.

We consider these (considerable) complications as a serious counter-argument against

the multi-threading concurrency model. �

5. Interface behaviour and legal traces

Next we characterize the possible (‘legal’) interface behaviour as interaction traces between

component and environment. Half of the work has been done already in the careful

definition of the external steps in Table 13: for incoming communication, for which the

environment is responsible, the assumption contexts are consulted to check whether the

communication originates from a realizable environment. Concerning the reaction of the

component, no such checks were necessary. To characterize when a given trace is legal,

the behaviour of the component side, i.e. the outgoing communication, must adhere to the

dual discipline we imposed on the environment for the open semantics. This means, we

analogously abstract away from the program code, rendering the situation symmetric. The

rules of Table 14 specify legality of traces. We use the same conventions and notations

as for the operational semantics (cf. Notation 6). The judgments in the derivation system

are of the form

Ξ � s : trace . (21)

We write Ξ � s : trace, if there exists a derivation according to the rules of Table 14.

The empty trace is always legal (cf. rule L-Empty), and distinguishing according to the

first action a of the trace, the rules check whether a is possible. Furthermore, the contexts

are updated appropriately, and the rules recur checking the tail of the trace. With the

connectivity contexts EΔ and EΘ as part of the judgment, we must still clarify what it

‘means’, i.e. when does Ξ � C hold? Besides the typing part, this concerns the commitment

part EΘ. The relation EΘ asserts about the component C that the connectivity of (mainly)

the objects halves from the component is not larger than the connectivity entailed by

EΘ, i.e. EΘ is a conservative over-approximation of the component connectivity. Given

a component C and two names o from Θ and n from Θ,Δ, we write C � o ↪→ n, if
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C ≡ C ′ ‖ o[. . . , f = n, . . .], i.e. o contains in one of its fields a reference to n. Furthermore,

for a thread name p in Θ, we write C � p ↪→ o, if either C ≡ C ′ ‖ p〈. . . release(o); v〉 or

p〈v〉.We can thus define:

Definition 20. The judgment Ξ � C holds, if

1. Δ � C : Θ (well-typedness).

2. Connectivity:

a. C � o1 ↪→ o2 implies EΘ � o1 � o2.

b. C � o ↪→ p implies EΘ � o ↪→ p.

c. C � p ↪→ o implies EΘ � p ↪→ o.

We simply write Ξ � C to assert that the judgment is satisfied. Note that references

mentioned in threads do not ‘count’ as acquaintance.

We need to show that the behavioural description of Table 14, actually does what it

claims to do, to characterize the possible interface behaviour. We show the soundness

of this abstraction plus the necessary ancillary lemmas such as subject reduction. Subject

reduction means, preservation of well-typedness under reduction.

Lemma 21 (subject reduction). Assume Ξ � C .

1. a. If C ≡ Ć , then Ξ � Ć .

b. If C � Ć , then Ξ � Ć .

c. If C
τ−→ Ć , then Ξ � Ć .

2. If Ξ � C
a−→ Ξ́ � Ć , then Ξ́ � Ć .

Proof. All parts by induction on the derivation for different reduction relations resp.

equivalence relation. For all parts, we are given Ξ � C , (see Definition 20). The assertion

Ξ � C consists of a typing part and a part asserting that the actual connectivity of C is

over-approximated by the commitments EΘ of Ξ.

We start by proving preservation of the well-typedness part. For part 1a, assume C ≡ Ć .

The equivalence relation is given in Table 7 as the reflexive, transitive and symmetric

closure of the rules shown. Reflexivity is trivial, transitivity follows by induction in the

number of ≡-steps. For C = 0 ‖ C ′, assume Ξ � 0 ‖ C ′. For the typing part, it means

Δ1,Δ1 � 0 ‖ C ′ : Θ1,Θ2 with Δ1,Θ2 � 0 : Θ1 and Δ2,Θ1 � C ′ : Θ2 by sub-derivation

(as premises of T-Par). Since 0 contains no objects, Θ1 must be empty too. Note that

the subsumption rule T-Sub does not allow to remove or add objects identities. Hence,

Θ2 = Θ which means Δ1 � C ′ : Θ. Weakening the environment assumptions Δ1 to

Δ1,Δ2 gives Δ � C ′ : Θ, as required. The inverse direction, given Ξ � C ′, is simpler

since Ξ � C ′ ‖ 0 follows by parallel composition and the fact that 0 is well-typed under

any assumptions (and with empty commitments). Symmetry in the second rule of Table

7 is straightforward, as the treatment of typing is defined symmetrically w.r.t. ‖. For

associativity, the typing part follows by inversion/application of the rule T-Par. The cases

for ν-binders are straightforward (observing that for the forth equation, n does not occur

free in C1, as mentioned in the text).
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The preservation for reduction modulo congruence from Table 8 (for C
τ−→ Ć and

C � Ć follows from part 1a for ≡, induction, and preservation for basic
τ−→-steps resp.

�-steps. For steps of the form
τ−→, the basic steps are defined in Table 6 and ‘embedded’

into a larger context by the 5th and 6th rule of Table 8. Those basic steps are proven by

case distinction on the respective rules of Table 6:

Case: Red: p〈let x:T = v in t〉� p〈t[v/x]〉.
The well-typedness assumption Ξ � C implies Δ′ � p〈let x:T = v in t〉 : (p:〈T ′〉) for some

name context Δ′ and some type T ′ and furthermore, by inverting rules T-NThread

(from Table 2), T-Let (from Table 3), •; Δ′, p:〈T ′〉 � v : T and x:T ; Δ′, p:〈T ′〉 � t : T ′.

Hence, by a (standard) substitution lemma, i.e. preservation of typing under substitution,

•; Δ′, p:〈T ′〉 � t[v/x] : T ′, and the result follows by T-NThread.

Case: NewO: p〈let x:T = new c in t〉� ν(o:c).(o[c,M, F,⊥] ‖ p〈let x:T = o in t〉).
relative to the class table Γc and where Γc � members(c) = M,F . Remember, that in the

operational semantics, we group all class definitions together into Γc as class table. The

well-typedness assumption Ξ � p〈let x:T = new c in t〉 means Δ � p〈let x:T = new c in t〉 :
Θ. Inverting T-NThread and the rule for the let-construct gives

•; Δ, p:〈T ′〉 � new c : T x:T ; Δ, p:〈T ′〉 � t : T ′

T-Let

•; Δ, p:〈T ′〉 � let x:T = new c in t : T ′

T-NThread

Δ � p〈let x:T = new c in t〉 : Θ

(22)

where Θ = p:〈T ′〉. The left-most premise •; Δ, p:〈T ′〉 � new c : T is justified by a sequence

of instances of the subsumption rule T-Sub and one instance of T-New, which implies

that type T = c′ for some class name c′ and Δ, p:〈T ′〉 � c � c′.

The configuration after the step can be derived as follows (abbreviating Δ, p:〈T ′〉 as

Δ′):

Δ,Θ � o[c,M, F,⊥] : o:c

•; Δ′, o:c � o : c Δ′, o:c � c � c′

•; Δ′, o:c � o : c′ x:c′; Δ′, o:c � t : T ′

•; Δ′, o:c � let x:c′ = o in t : T ′

Δ, o:c � p〈let x:c′ = o in t〉 : Θ

Δ � o[c,M, F,⊥] ‖ p〈let x:c′ = o in t〉 : Θ, o:c

Δ � ν(o:c).(o[c,M, F,⊥] ‖ p〈let x:c′ = o in t〉) : Θ

The premise Δ′, o:c � c � c′ follows from Δ, o:c � c � c′ by weakening Δ′ = Δ, p:〈T ′〉
to Δ′, o:c. Likewise by weakening, the premise x:c′; Δ′, o:c � t : T ′ follows from the

corresponding premise in the derivation in Equation (22). The left-most premise follows

by T-NObj. The remaining rules for � as well as for
τ−→ work similarly.

Case: CallI1 with a = p〈call o.l(�v):T 〉?
We are given

Ξ � a Ξ́ = Ξ + a Θ � o Δ � o:c Δ,Θ; ΓΘ � members(c) = M,F

Ξ � C
a−→ Ξ́ � C ‖ p〈let x:T = M.l(o)(�v) in release(o); x〉 ‖ o[c,M, F,	] ‖ C(�v)
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The well-typedness assumption Ξ � C before the step can be written as Δ � C : Θ. To

be well-typed after the reduction step requires that all four components are well-typed.

The update of the context from Ξ to Ξ́, as far as the typing is concerned, is given

in Definition 12, for this case, in part 2 of the definition. The commitment part Θ is

updated to Θ́ = Θ, p:〈T 〉, o:c,�v:�T , the assumption context Δ remains unchanged in the

step. Let us abbreviate p:〈T 〉 as Θp and the bindings o:c,�v:�T as Θo. The (unchanged)

part C is well-typed in the context Δ,Θp,Θo � C : Θ (by weakening). For Δ,Θ,Θo �
p〈let x:T = M.l(o)(�v) in release(o); x〉 : Θp follows by T-NThread, two times T-Let,

T-Release, and T-Var. The premise Ξ � a checks well-typedness of the incoming label

a = p〈call o.l(�v):T 〉? (cf. Definition 11, resp. rule LT-CallI from Table 11). In particular,

the premise assures that the types of the parameters match the declared ones for the

method labelled l and that the return type equally corresponds to the one declared in

the signature of the class implementing l. Note also that T is the type as declared

for the local variable x which ultimately will contain the future value, and hence the

future reference is typed by 〈T 〉 (as stipulated by Θp). The corresponding method body,

say M.l = m = ς(s:c′).λ(�x:�T ′).t is assured to be well-typed correspondingly (by rule

T-Class, which checks member implementations (methods and fields) against their type

as declared in the class signature). That is, the method implementation m is of type
�T → T , in particular also Δ,Θ,Θp � m : �T → T . By preservation of well-typedness under

substitution, that implies Δ,Θ,Θp � M.l(o)(�v) : �T → T , as well; remember that M.l(o)(�v)

abbreviates t[o/s][�v/�x], i.e. the substitution of the formal parameters by the actual ones in

the body t of the method m labelled l of the method suite M). The remaining parts of the

post-configuration, the newly instantiated objects o[c,M, F,	] and C(�v), are well-typed

by T-NObj and the fact that the corresponding classes they instantiate are assumed

well-typed before the step. The well-typedness of the overall post-configuration follows

then by instances of T-Par.

The remaining cases for preserving well-typedness work similarly.

Concerning preservation of the connectivity part of Ξ � C , i.e. part 2 of Definition 20:

we need to prove that the connectivity commitment context correctly over-approximates

the actual connectivity as reflected in the fields of the objects and as captured by the

notation C � o1 ↪→ o2 in Definition 20. For the proof of subject reduction, we weaken the

formulation of the correctness invariant of Definition 2 slightly. We write C � o1 ↪→ o2 if

1. C � o1 ↪→ o2 or

2. C = C ′ ‖ p〈t〉 where t is a method body of object o1 and contains o2, or

3. C = C ′ ‖ p〈call o1.l(�v):T 〉! and where o2 is contained in�v.

So instead of proving part 2 of Definition 20 directly we use the weaker C � o1 ↪→ o2

as invariant instead. The result for the original, stronger formulation follows directly since

object fields, being instance private, can be changed only by threads executing inside that

object.

Now preservation of this relaxed invariant is straightforward: for C ≡ Ć , preservation

is trivial, since ≡ only rearranges the representation of the component without changing

the contents of the fields nor changing the code of the thread. For the confluent steps

of the form C � Ć , note that no fields of objects are read or updated, those steps
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work solely in a thread-local manner. Since Eθ does not change in the step (and threads

may only ‘forget’ references), the preservation is likewise straightforward. In case of

NewT, issuing a method call, the step looks as follows: p′〈let x:〈T 〉 = o2@l(�v) in t〉 �
ν(p:〈T 〉).(p′〈let x:〈T 〉 = p in t〉 ‖ p〈call o2.l(�v):T 〉!). Assuming that the thread p′ issuing

the call executes a method body inside object o1, we have by assumption C � o1 ↪→ o2 and

C � o1 ↪→ vi for all arguments (by clause 2 of the definition of the weakened invariant).

After the step, C � o1 ↪→ o2 and C � o1 ↪→ vi by clause 3 and potentially less actually

connectivity by thread p′. The case for receiving a method call for role Call works

similarly, the remaining cases are simpler. For non-confluent steps, one interesting case is

FSet, which updates a field of an object:

o[c,M, F, L] ‖ p〈let x:T = o.l() := v in t〉 τ−→ o[c,M, F.l := v, L] ‖ p〈let x:T = o in t〉. (23)

Since fields are instance-local, thread p executes ‘inside’ o, i.e. C � o ↪→ v before the step

(due to clause 2 of the weakened invariant) and likewise for the configuration after the

step, with the updated field, due to clause 1.

The external steps Ξ � C
a−→ Ξ́ � for part 2 of the lemma are immediate. For incoming

calls where ap〈call o.l(�v):T 〉? (by rule CallI1 resp. CallI2), C � o ↪→ vi for all arguments

by clause 2. By part 2 of Definition 14 EΘ is updated by all pairs o ↪→�v, i.e. ÉΘ � o� vi for

all arguments vi, by reflexivity of�. The case for incoming get-labels works similarly. For

incoming ν-labels in case 1 of Definition 14, corresponding to an instance of rule NewOI

for object references resp. of rule NewTI for thread-identifiers/future references, the case

is immediate, as only the assumption context EΔ changes. Note that in both cases, the

component C itself is unchanged, i.e. Ć = C . The cases for outgoing communication work

similarly: we show the case for GetO where the step is of the form Ξ � C ‖ p〈v〉 a−→ Ξ́ � C

and where a = p〈get(v)〉!. Before the step, we are given EΔ � o ↪→ p (and EΔ � o ↪→ p)

indicating that object o references the future p, which indicates that o is the caller of the

component side method which has resulted in the evaluated future p〈v〉. Furthermore, we

have EΘ � p ↪→ o′ which represents that the future has been evaluated in callee o′. After

the step GetO, the future p〈v〉 is removed from the component; analogously, in (the dual

formulation of) part 1 of Definition 14, that is reflected by ÉΘ = EΘ \ p ↪→ o′. Since all

other parts of the component are unchanged, ÉΔ � C : ÉΘ, as required.

Lemma 22 (subject reduction). Ξ � C and Ξ � C
s

=⇒ Ξ́ � Ć imply Ξ́ � Ć .

Proof. By induction on the number of steps, using preservation under single steps from

Lemma 21.

An interesting invariant concerns the connectivity of names transmitted boundedly.

Incoming communication, e.g. not only updates the commitment contexts – something

one would expect – but also the assumption contexts. The fact that no new information

is learned about already known objects (‘no surprise’) in the assumptions can be phrased

using the notion of conservative extension.

Definition 23 (conservative extension). Given two contexts ΞΔ and Ξ́Δ where Δ́ is an

extension of Δ. Then we write ΞΔ � Ξ́Δ if Ξ́Δ � n1 � n2 implies ΞΔ � n1 � n2, for all n1, n2

with Δ � n1, n2.
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Lemma 24 (no surprise). Let Ξ � C
a−→ Ξ́ � Ć for some incoming label a. Then Ξ � Ξ́.

For outgoing steps, the situation is dual.

Proof. By definition of the incoming steps from Table 13, using the context update

from Definition 12 and 14.

Finally to the proof of soundness, that the open semantics is over-approximated by the

legal traces. The proof is rather straightforward and the result may seem unsurprising as

such, because the premises that governs the steps of the open semantics are partly re-used

in the formalization of the legal traces. The reason why the legal traces and the open

semantics fit together well and lead thus to a clean proof, however, rests on the careful

‘assumption-commitment’ design of the steps of semantics: incoming steps depends only

on assumptions about the environment and dually outgoing steps depend only on the

given component (resp. on the commitment context for the legal traces). This clear dualism

and separation of concern allows now a clean proof. Another important aspect in that

context is that the legal traces (as a ‘symmetric abstraction’ of the open semantics) are not

just a sound over-approximation. Even without taking the connectivity (or well-typedness

or all the other conditions into account) they would over-approximate the semantics.

Important is, that when considering these conditions, in particular, restricting the traces

by considering connectivity, the legal traces are still sound.

Theorem 25 (soundness). If Ξ0 � C and Ξ0 � C
s

=⇒, then Ξ0 � s : trace.

Proof. By induction on the number of steps in
s

=⇒. The base case of zero steps (which

implies s = ε) is immediate, using L-Empty. The induction for internal steps of the form

Ξ � C =⇒ Ξ � Ć follow by subject reduction for internal steps from Lemma 22; in

particular, internal steps do not change the context Ξ. Remain the external steps of Table

13. First note the contexts Ξ are updated by each external step to Ξ́ the same way as the

contexts are updated in the legal trace system.

The cases for incoming communication are checked straightforwardly, as the operational

rules check incoming communication already, i.e. the premises of the operational rules

have their counterparts in the rules for legal traces.

Case: NewOI.

Immediate, as the premises of L-NewI coincide with the ones of NewOI; note that the

name n included object names o. The case for NewTI works analogously.

Case: CallI1 and CallI2.

Both cases are covered immediately by L-CallI. The cases for incoming get labels are

likewise immediate.

The cases for outgoing communication are slightly more complex, as the label in the

operational rule is not type-checked or checked for well-connectedness as for incoming

communication and as is done in the rules for legality. For all cases of outgoing

communication we need therefore to check that the condition Ξ � a, stating that the

(legal) trace can be extended by label a is actually satisfied. We concentrate in the

argument on the connectivity part, as the typing part is checked straightforwardly. Cf.

Table 12.
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E. Ábrahám, T. M. T. Tran and M. Steffen 600

Case: NewOO with a = ν(o:c)o′!

The connectivity part of Ξ � a for a ν-label is empty. Concerning typing: as for LT-NewO

of Table 11, the premise Θ � o′ follows from the premise EΘ � p ↪→ o′.

Case: CallO with a = p〈call o.l(�v):T 〉!
The open semantics specifies, that a CallO-step (sending the call message) must be

preceded by a NewTO-step, which creates the new future/thread reference, p in this case.

The premise of NewTO implies ẼΘ � p′ ↪→ o′ (where ẼΘ is the connectivity context before

that step, o′ is the creating object and p′ the spawning thread). Furthermore, the update

premise Ξ̃′ = Ξ̃ + ν(p:〈T̃ 〉)o′! of the NewTO-step implies for the connectivity after that

step: Ẽ ′Θ � o′ ↪→ p. Since no information is ever forgotten, also EΘ � o′ ↪→ p and Θ � o′:c.

Finally, EΘ � o′ ↪→ o,�v, since we have Ξ � C before the step (by subject reduction), i.e.

EΘ is a sound over-approximation of the connectivity of C .

The remaining cases work similarly.

6. Conclusion

This paper formally investigates the interface behaviour of a typed, object-oriented

language with inheritance. The interface behaviour is characterized in the form of a typed

operational semantics of an open system, consisting of a set of classes. The semantics is

formalized in the form of commitments of the component and in particular assumptions

about the environment. The fact that the components are open w.r.t. inheritance, i.e. a

component can inherit from the environment and vice versa, has as a consequence that

the assumptions and commitments need to contain an abstraction of the heap topology,

keeping track of which object may be in connection with other objects. We show the

soundness of the abstractions.

Related work. Denotational semantics are inherently defined in a compositional manner.

For class-based, object-oriented languages for instance Cook (1989) develops such a

semantics for a calculus with inheritance, based on fix-points, closures and semantic

domains; a similar approach is presented in Reddy (1988). Another early denotational

semantics of inheritance for a subsect of Smalltalk-80 is presented in Kamin (1988).

The semantics makes use of a global fixpoint with all classes present, which makes the

semantics non-compositional.

Banerjee and Naumann (2005) are concerned with observable equivalence of classes

resp. objects and substitutability in a setting of a class-based, object-oriented language

with inheritance. Different from our approach, where objects are inherently concurrent,

they are focusing on the ‘data’ aspect of object-oriented languages, i.e. they are interested

in whether two class-based implementations of some data structure are indistinguishable

by any observer or context. To capture observable equivalence they use the well-known

notion of representation independence (Haynes 1984) (cf. also Donahue (1979); Mitchell

(1986); Reynolds (1974, 1983)). It is a formal definition of when the representation of

a data type does not influence the rest of the program and thus it is a contextual

characterization of encapsulation. Technically, representation independence is defined as

follows: the internal states of the two data types are related by a simulation relation, called
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local coupling relation in Banerjee and Naumann (2005), representation independent if

the two locally coupled internal representations do not lead to an observable difference

in the global system, which is formalized by stating that the two global systems are

connected by a global (or induced) coupling relation. While in our setting we aim for

a behavioural interface description ensuring substitutability, representation independence,

e.g. in Banerjee and Naumann (2005), defines criteria on the internal representation of

a data type to assure that two ‘components’ with the same static interface (the method

signature) have the same ‘dynamic’ interface behaviour. Those criteria boil down to

the following: encapsulation or confinement of the representation assures representation

independence and thus observable equivalence. Encapsulation is ensured statically in

Banerjee and Naumann (2005) by ownership restrictions. In contrast, our behavioural

interface description takes a ‘black-box’ view and considers two systems to be equivalent,

if they exhibit the same traces at the interface. Also Poetzsch-Heffter and Schäfer (2007)

use the notion of representation independence as a criterion of what is a good description

of an interface behaviour. In the tradition of Featherweight Java and related proposals,

the language they study is an object-oriented calculus similar to the one we use with

mainly two differences: their language is sequential (and thus deterministic) and they

do not use an unstructured heap. Instead, inspired by ownership concepts, the heap is

hierarchically structured into nested ‘boxes’. Each object belongs to exactly one (directly

surrounding) box. Important for the question of interface behaviour is that the boxes form

one basis for their notion of run-time component. Statically and as in our framework,

a component consists of a set of classes. There is, however, an important restriction

in Poetzsch-Heffter and Schäfer (2007): to form a component, the corresponding set

of classes must be ‘closed’ in that all classes, methods, etc. used in the code of the

component are actually defined in the component itself (which is ‘declaration complete’ in

the terminology of Poetzsch-Heffter and Schäfer (2007); in our notation, the component

C is defined with an empty assumption context, i.e. • � C : Θ). Hence a component

cannot instantiate classes of the environment nor can it inherit from environment classes.

Note that dually the environment needs not to be declaration complete: the environment

can mention component classes and methods, but not vice versa. Conceptually, one can

think of a definition complete component as a form of library, where the program can

refer to the library, but not vice versa. Technically that restriction implies that when

describing the possible interface behaviour of a component, connectivity is irrelevant, as

the component can neither instantiate classes outside the component nor can it inherit

methods from outside. In our setting, a component is not definition complete. However,

the environment is represented abstractly as assumption (and the component announces

its classes and methods in the form of commitments), i.e. the assumption-commitment

formulation allows to avoid the (severe) restriction requiring declaration completeness.

Similarly as in our work, (Poetzsch-Heffter and Schäfer 2007) need to characterize

allowed interactions at the interface of the component or box, in their case to be able

to define properly their ‘behaviour semantics’ and representation independence. This

involves answering the question when given a trace (called history in Poetzsch-Heffter and

Schäfer (2007)), what is the reaction of the component. Such a reaction is defined only

when the history is actually well-formed, which basically corresponds conceptually to our
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formalization of legal traces. Again, however, connectivity does not play a role due to

their restrictions. Similarly in the more recent (Welsch and Poetzsch-Heffter 2014), which

develops a full-abstract trace semantics for a class-based object-oriented calculus, again

under the restriction of definition-completeness. In that work, the trace semantics is also

used as formal basis for a verification method, using appropriate simulation relations.

Similarly, in the context of observable equivalence and a fully abstract semantics based

on interface traces, Jeffrey and Rathke (2005) and Jeffrey and Rathke (2002) do not

need to consider connectivity: in Jeffrey and Rathke (2002), because the language is

object-based, i.e. without classes at all. Jeffrey and Rathke (2005), in contrast, avoids

considering connectivity by introducing ‘packages’ as units of composition, which, in

the terminology of Poetzsch-Heffter and Schäfer (2007) are definition complete. Also

Viswanathan (1998) considers an object-based setting. In absence of class inheritance

and method overriding, object-based languages (or prototype based languages) typically

support method update, i.e. the replacement of methods at run-time. Apart from the

technical results in the paper, which is not a trace based formulation of the semantics

but the observable equivalence between an object-oriented program and its translation

into a lower level representation (translational full abstraction), their results show that

self-calls become observable when considering late-binding and method update. This is

similar to the observable semantics here which shows that with late-binding and method

overriding, self-calls must be considered in the interface behaviour. Compared to our

setting, the calculus is simpler in that it does not have pointers at all (hence the question

of connectivity does not arise in the first place). Neither do they consider concurrency.

The enhanced ‘distinguishing power’ when adding inheritance is also relevant proof-

theoretically, i.e. when trying to verify object-oriented programs and design proof systems

for that. Koutavas and Wand (2007) develop a proof technique based on bisimulations to

capture contextual equivalence for a class-based language (without and with inheritance).

Besides observational equivalences based on traces, also bisimulation has been used, e.g.

in Gordon and Rees (1996) for a functional first-order variant of Abadi and Cardelli’s

object caluli (Abadi and Cardelli 1996) with subtyping. Similarly in Gordon et al. (1997),

considering imperative objects; in the proto-type based setting object cloning is used

instead of class inheritance. Breazu-Tannen et al. (1990) present a denotational semantics

in the presence of subtyping (‘coercions’) achieving computational adequacy w.r.t. a given

operational semantics.

In the context of Java and JML, (Ruby and Leavens 2000) are concerned with which

interface information is needed to allow safe inheritance of methods (which they call

the semantic fragile subclassing problem). In particular downcalls are problematic, i.e.

the situation when an inherited method calls via a self-call the method of the sub-class

overriding the corresponding method from the super-class.

The results here extends our previous work namely with inheritance. Earlier we

considered the problem of characterizing the interface behaviour of an open system for

different choices of language features (but without inheritance). For example, Ábrahám

et al. (2009) deals with futures and promises, i.e. using a similar concurrency model than

the one here. One of the challenges there was to capture the influence of promises by

a ‘resource aware’ type and effect system as promises can be ‘fulfilled’, i.e. bound to
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code, only once. Ábrahám et al. (2006) investigates the influence of locks and monitors

on the interface behaviour. Again, the results reported therein are rather similar as far

as the goals and general setting is concerned. Unlike here, the calculus is inspired by

Java’s model of concurrency, i.e. based on multi-threading and re-entrant locks, whereas

here we are basing our study on active objects. The seemingly innocent change of the

communication and synchronization model (from remote procedure call or remote method

call communication to asynchronous method calls, from re-entrant locks to binary locks)

leads to a quite more complicated interface behaviour for Java-like monitors. Ultimately,

the reason for that complication can be attributed to the more tighter coupling of objects

in the multi-threaded setting. The general common-sense observation that loosely coupled

systems entail a more compositional system description and especially simplify reasoning

in a modular fashion is also exploited in Ahrendt and Dylla (2012), Din et al. (2012) and

Kurnia and Poetzsch-Heffter (2013) in the context of Hoare-style proof systems.
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