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Abstract

The desert locust (Schistocerca gregaria) is a destructive migratory pest, posing great threat to
over 60 countries globally. In the backdrop of climate change, the habitat suitability of desert
locusts is poised to undergo alterations. Hence, investigating the shifting dynamics of desert
locust habitats holds profound significance in ensuring global agricultural resilience and food
security. In this study, we combined the maximum entropy modelling and geographic infor-
mation system technology to conduct a comprehensive analysis of the impact of climate
change on the distribution patterns and habitat adaptability of desert locusts. The results indi-
cate that the suitable areas for desert locusts (0.2976 × 108 km2) are concentrated in northern
Africa and southwestern Asia, accounting for 19.97% of the total global land area. Key envir-
onmental variables affecting the desert locust distribution include temperature annual range,
mean temperature of the coldest quarter, average temperature of February, and precipitation
of the driest month. Under the SSP1–2.6 and SSP5–8.5 climate scenarios, potential suitable
areas for desert locusts are estimated to increase from 2030 (2021–2040) to 2090
(2081–2100). By 2090, highly suitable areas for SSP1–2.6 and SSP5–8.5 are projected to be
0.0606 × 108 and 0.0891 × 108 km2, respectively, reflecting an expansion of 1.84 and 2.77%
compared to existing ones. These research findings provide a theoretical basis for adopting
prevention and control strategies for desert locusts.

Introduction

The desert locust, Schistocerca gregaria is known to be the oldest migratory insect (Song et al.,
2017), capable of covering distances of 150–200 km daily with the airflow (Yuga and Wani,
2022). They feed on over 400 types of plants, including wheat, corn, rice, potatoes, and various
other crops and each locust can consume fresh green leaves equivalent to its body weight daily
(FAO, 2020; Yuga and Wani, 2022). Thriving in semi-arid and arid environments, desert
locusts find suitable breeding sites in bare lands (Latchininsky and Sivanpillai, 2010) and
are widely distributed in African and the Middle Eastern deserts. They pose a threat to
food security and significantly impact local agricultural production (Brader et al., 2006;
Kimathi et al., 2020). Desert locusts affect at least 1/10th of the world’s population directly
or indirectly (Latchininsky et al., 2016).

With the advancement of civilisation, the excessive use of fossil fuels has led to a tremen-
dous emission of greenhouse gases, including carbon dioxide, significantly contributing to glo-
bal warming (Aminu et al., 2017). Studies indicate that global warming may expand pest
geographical distribution, increase overwintering survival rates, boost reproductive rates, and
alter plant–pest interactions (Skendžić et al., 2021). Simultaneously, it provides an opportunity
for pests to move from one region to another in search of food and colonise new areas (FAO,
2020). Research has indicated a close correlation between the occurrence and migration of des-
ert locusts with climate factors. Climate change, such as rainfall, can cause seasonal disasters of
desert locusts (Uvarov, 1966). In 2020, a desert locust plague in East Africa was attributed to a
cyclonic storm in the Arabian Peninsula in 2018. The abnormal climate brought additional
rainfall to the Arabian Desert, increasing the hatching rate of desert locust eggs. Abundant
rainfall also promoted vegetation growth, providing ample food supply for desert locusts.
The combination of warm weather and abundant rainfall triggered an 8000-fold increase in
locusts in the Arabian Desert (Stone, 2020). However, 2019 saw a decrease in rainfall in the
Arabian Peninsula. As a result, the vegetation failed to meet the needs of high-density desert
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locusts, leading to the eastward migration of desert locusts and
causing locust infestations in bordering areas, such as the
India–Pakistan border in 2020 (Salih et al., 2020). There is a
close correlation between the occurrences of desert locusts and
the environment. Nevertheless, their rapid escalation into out-
breaks in the short term and the uncertainty surrounding out-
break area make prediction efforts particularly crucial. Since the
1900s, efforts have been made to forecast desert locusts, mainly
through remote-sensing technology (Klein et al., 2021). This
involves on-site investigations to record the growth conditions
and population dynamics of desert locusts, combined with histor-
ical ecological data to predict the distribution of desert locusts in
the near future (Cressman, 2013).

Maximum entropy (MaxEnt)modelling, a programme thatmod-
els species distributions from occurrence records of ‘presence-only’
species (Phillips et al., 2004), analyses the relationship between the
species record locations and environmental characteristics.
Locations with similar environmental characteristics are predicted
as potential distribution areas for the species (Elith et al., 2011;
Sillero, 2011; Ahmed et al., 2015; Li et al., 2020; Muyobela et al.,
2023). MaxEnt model demonstrates a notable advantage, requiring
a relatively low number of species sampling points (≥5 points) for
accurate predictions, making it a user-friendly and computationally
efficient approach with high accuracy (Phillips and Dudík, 2008).
Wen et al. (2023) analysed the habitat suitability ofOedaleus asiaticus
on theMongolian Plateau; the results showed that the suitable area of
O. asiaticus was increasing. Accumulated precipitation and surface
temperature are identified as themain driving factors for the changes
in the distribution ofO. asiaticus. Abou-Shaara et al. (2022) analysed
the potential habitable areas of the pest Plecia nearctica offering
insights that can provide information for making control measures.
Until now, MaxEnt has been widely used in predicting suitable
areas for insects. In this study, we usedMaxEntmodel and employed
environmental data from known distribution points to identify crit-
ical factors influencing their distribution. After factor optimisation,

we analysed the potential geographical distribution of desert locusts
under the present and future climate parameters, aiming to make
accurate predictions in advance and guide efforts for the prevention
and control of desert locusts.

Materials and methods

Species occurrence data

The occurrence data of desert locusts were sourced from the
Locust Hub (https://locust-hub-hqfao.hub.arcgis.com/) of the
Food and Agriculture Organization of the United Nations
(FAO). To mitigate spatial autocorrelation between occurrence
locations (Verbruggen et al., 2013) and address sampling bias
induced by clustering effects, the collected occurrence data were
loaded into ArcGIS. This process involved removing non-natural
points eliminating duplicate coordinates in latitude and longitude.
To avoid the bias caused by unbalanced data points, we checked and
confirmed that each grid cell had only a single distribution point
based on climatic precision. Ultimately, 1915 occurrence data
points of desert locusts were used for modelling (table S1, fig. 1).

Environmental data

The environmental data were sourced from the global climate
database, WorldClim (https://worldclim.org/), with a spatial reso-
lution of 2.5 arc-minutes and encompassing 43 environmental
factors, comprising 19 bioclimatic variables and 24 climate vari-
ables. The current climate data were composed of historical cli-
mate data from 1970 to 2000. The BCC-CSM2-MR model was
selected for future climate data (Wu et al., 2019). The study
also chose the climate change scenario data for the years 2030
(average for 2021–2040), 2050 (average for 2041–2060), 2070
(average for 2061–2080), and 2090 (average for 2081–2100)
under the sustainable development pathway (SSP1–2.6), and the

Figure 1. Global occurrence records of locusts. Each red point refers to an occurrence record.
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fossil fuel-intensive development pathway (SSP5–8.5) (Popp et al.,
2017; Meinshausen et al., 2020).

To address multicollinearity among environmental variables
and improve the simulation accuracy of the MaxEnt model
(Feng et al., 2019), the ‘SDMtune’ package was used for appropri-
ate variable selection (Vignali et al., 2020). The dataset was
divided into 25% testing data and 75% training data to train the
MaxEnt model. Environmental variables with a correlation coef-
ficient greater than 0.8 were removed based on their contribution
percentages (fig. 2A). Finally, ten biologically meaningful climate
variables were selected for modelling, including mean diurnal tem-
perature range (bio02), temperature annual range (bio07), mean
temperature of the coldest quarter (bio11), precipitation of the dri-
est month (bio14), precipitation seasonality (bio15), precipitation
of the warmest quarter (bio18), precipitation of the coldest quarter
(bio19), precipitation of February (prec02), precipitation of April
(prec04), and precipitation of June (prec06).

Optimisation of model parameter

The calibration, creation, and evaluation of the model were con-
ducted using the ‘Kuenm’ package in R (Cobos et al., 2019), in
which the two most critical parameters are feature combination
(FC) and regularisation multiplier (RM) (Merow et al., 2013).
Here, FC covers fivemain features: linear features, quadratic features,
product features, threshold features, andhinge features,with a total of
29 other parameter combinations. Similarly, RMparameters were set
with intervals of 0.1, ranging from 0.1 to 4, resulting in a total of 40
RM values. This yielded 1160 (29 FC × 40 RM) parameter combina-
tions. Model performance was assessed based on the omission rate
(E), model complexity, and the Akaike information criterion
(AICc) (Sugiura, 1978; Akaike, 1998). A smaller omission rate (E)
should be less than 5%, while a lower AICc value indicates a better
fit between the model and the data. For delta_AICc, a lower value
indicates more accurate predictions, and the model is deemed opti-
mal when delta_AICc = 0. Ultimately, the model exhibited the high-
est performance when RM= 0.3 and FC =QP (Quadratic features,
Product features), with E = 0.048 (table S2, fig. 2B).

Based on MaxEnt 3.4.4, the potential suitable areas of desert
locusts were predicted. This study randomly selected 25% of the
desert locust data as the testing set, while the remaining 75%
were used as the training set. After ten runs, the output prediction
results were averaged, with the area under curve (AUC) as the
evaluation metric for model accuracy. Higher AUC values correl-
ate with greater accuracy (Phillips et al., 2006). AUC values between
0.5 and 0.7 indicate low prediction accuracy, between 0.7 and 0.8
indicate moderate accuracy, and above 0.8 indicate high accuracy.
The jackknife method was employed to test the importance of
each environmental factor in the suitable area distribution of desert
locusts (Guan et al., 2021). A larger regularisation training gain
value in the jackknife method indicates a greater influence of that
factor. Finally, the ASC (ASCII File) result files were imported
into ArcGIS to delineate the suitable areas of desert locusts.

Suitable area division and spatial pattern changes

The minimum training presence logistic threshold was chosen as
the classification threshold for non-suitable and suitable areas
(Escalante et al., 2013). The output values from MaxEnt software
range from 0 to 1, where values closer to 1 indicate a higher likeli-
hood of species presence. Given that the value of the minimum
training presence logistic threshold was 0.0649 (table S3), the suit-
able area range was divided into four levels: non-suitability area
(0–0.0649), low-suitability area (0.0649–0.35), moderate-suitability
area (0.35–0.55), and high-suitability area (0.55–1.0).

The output from MaxEnt software was loaded into ArcGIS,
and the reclassify tool in spatial analysis was used for visual
representation of the predicted results. Finally, the proportions
of different suitability levels were calculated.

Results

Modelling result evaluation

The prediction model of suitable areas for desert locusts exhibited
an average AUC value of 0.900 over ten runs (fig. 3A), indicating

Figure 2. Model optimisation. (A) Heat map showing the correlation coefficient matrix of ten selected environmental variables. (B) Optimal model selection for
predicting potential suitable areas of desert locusts.

Bulletin of Entomological Research 3

https://doi.org/10.1017/S0007485324000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0007485324000440


higher prediction accuracy of the MaxEnt model and its suitability
for predicting the suitability of areas for desert locusts.

Factors influencing spatial distribution pattern of desert
locusts

According to the contribution results of environmental variables
(table S4), temperature annual range (bio07), mean temperature
of coldest quarter (bio11), precipitation of February (prec02),
and precipitation of driest month (bio14) were the major factors
affecting the model prediction results. These factors displayed
respective contributions of 43.6, 33.5, 8.3, and 4.5%, with a cumu-
lative contribution of 89.9%. Temperature annual range (bio07)
and mean temperature of coldest quarter (bio11), as shown in

the results of the jackknife test (fig. 3B), exhibited the greatest
gain in prediction effect, indicating their greatest influence on
the model prediction results.

Analysis of the curves of the most important contributing
environmental variables in the MaxEnt model of desert locusts
(fig. 4A) shows that within a 1°C range of annual temperature
variations, the occurrence probability of desert locusts is as high
as 68.5% and decreases with an increase in the value of annual
temperature variations. As the average temperature in the coldest
season rises (fig. 4B), the occurrence probability of desert locusts
declines and levels off at around 29°C, with an occurrence probabil-
ity of about 40.0%. Desert locusts tend to avoid areas with excessive
precipitation.When the precipitation in February (fig. 4C) is 1 mm,
the probability of occurrence is the highest. As precipitation

Figure 3. (A) Model suitability test on the basis of AUC value in predicting desert locusts’ suitable areas. (B) Importance of ten selected environmental variables
evaluated by jackknife testing.

Figure 4. Response curves of the important contributing environmental variables in the MaxEnt model: (A) temperature annual range; (B) mean temperature of
coldest quarter; (C) precipitation of February; (D) precipitation of driest month.
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increases, the probability of occurrence decreases and tends
to stabilise at 160 mm; higher rainfall in the driest month
(fig. 4D) corresponds to a lower occurrence probability of desert
locusts, with the occurrence probability close to 0 when it reaches
80 mm.

Distribution of potential suitable areas for desert locusts under
current climate

Under the current climate, the major suitable areas for desert
locusts are located in northern Africa and southwestern Asia,
near the Horn of Africa (fig. 5). These areas include Morocco,
Algeria, Libya, Egypt, Western Sahara, Mauritania, Mali, Niger,
Chad, Sudan, Eritrea, Djibouti, Ethiopia, Central Africa,
Cameroon, Nigeria, Benin, Togo, Ghana, Guinea, Bissau,
Senegal, Uganda, Kenya, Syria, Jordan, Iraq, Saudi Arabia,
Yemen, Oman, Iran, Afghanistan, Pakistan, India, and other
regions. In the coastal areas of the Americas, there are low suitable
areas, such as Mexico, Venezuela, Peru, Chile, etc. In Oceania,
only Australia has low suitable areas. Europe also has low suitable
areas distributed in very few areas near Africa, Portugal, Spain,
Italy, Greece, and other regions. High-suitability areas are
mainly distributed in Mauritania, Mali, Niger, Chad, Sudan,
Ethiopia, Kenya, Somalia, Saudi Arabia, Yemen, Oman, India,
and other regions.

Statistically, the suitable areas for desert locusts cover an area
of about 0.2976 × 108 km2, around 19.97% of the global land.
High-suitability areas, mainly distributed in Mauritania, Mali,
Nigeria, Chad, Sudan, Ethiopia, Kenya, Saudi Arabia, Yemen,
Pakistan, India, etc., cover 0.0479 × 108 km2, 3.21% of the global
land. Moderate-suitability areas cover 0.1005 × 108 km2, 6.75% of
the global land, while low-suitability areas, mainly distributed in
the Americas, Oceania, and western Asia, cover 0.1492 × 108 km2,
10.01% of the global land.

Changes in suitable areas of desert locusts under future
climate conditions

Under the SSP1–2.6 scenario (fig. 6A, C), the total suitable areas
for desert locusts exhibit a decreasing trend and become relatively
stable after 2050. Similarly, the low- and moderate-suitability
areas show a decreasing trend, with these areas being transformed
into high-suitability areas, which exhibit an increasing trend until
2070. Under the SSP5–8.5 scenario (fig. 6B, D), the total suitable
areas undergo a decrease followed by an increase. However, the
high-suitability areas show expansion throughout the period.

In 2030, the high-suitability areas under the SSP1–2.6 scenario
cover 0.0567 × 108 km2 (0.6%) more than the current area.
Similarly, under the SSP5–8.5 scenario, the high-suitability areas
cover 0.0606 × 108 km2 (1.85%) more than the current area. By
2090, the high-suitability areas under the SSP1–2.6 and
SSP5–8.5 scenarios will respectively cover 0.0603 × 108 and
0.0891 × 108 km2, with expansions of 1.84 and 2.77% compared
to the current area. In comparison with the current high-
suitability areas, the future high-suitability areas will mainly
expand in North African regions such as Algeria, Libya, Chad,
Egypt; and India, Iran, Saudi Arabia, and Iraq.

A comparative analysis has been conducted between the
potential high-suitability areas under different climates in 2090
and the current ones. The results showed that under the
SSP1–2.6 scenario (fig. 7A), the stable areas of desert locusts
cover an area of 0.0788 × 108 km2, with an increase of 0.0231 ×
108 km2 in the high-suitability areas, mainly concentrated in
Algeria, Chad, Sudan, Saudi Arabia, Nigeria, and other regions.
Under the SSP5–8.5 scenario (fig. 7B), the stable areas of desert
locusts cover an area of 0.0717 × 108 km2, with an increase of
0.0759 × 108 km2 in the high-suitability areas, mainly concentrated
in Algeria, Niger, Libya, Chad, Egypt, Sudan, Saudi Arabia, Iran,
Pakistan, and other regions. The high-suitability areas exhibit

Figure 5. Potential suitable areas for desert locusts under current climate conditions.
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northward expansion in this scenario comparedwith SSP1–2.6. The
regions of the stable areas are almost the same in both scenarios, but
the increase in high-suitability areas under SSP5–8.5 is larger than
that under SSP1–2.6 by 0.0528 × 108 km2.

Discussion

In this study, we collected 1915 representative occurrence data
points and used an optimised model to predict the distribution
area changes during climate change. Actually, the default

Figure 6. Potential suitable areas for desert locusts under the future climate scenario: (A) under the SSP1–2.6 scenario and (B) under the SSP5–8.5 scenario.
Changes in each suitable area of desert locusts from current to 2090: (C) under the SSP1–2.6 scenario and (D) under the SSP5–8.5 scenario.
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parameters of the MaxEnt model were initially designed to simu-
late the actual spatial distribution of 266 species in six different
regions. However, for the prediction of the spatial distribution
areas of species, the model may face issues such as overfitting,
higher complexity, and lower accuracy, which require further opti-
misation (Warren and Seifert, 2011; Radosavljevic and Anderson,
2014). It has been shown that adjustments to the model para-
meters made by delta_AICc can constrain the model complexity
(Akaike, 1998). Larger values of delta_AICc indicate higher model
complexity, and vice versa (Sugiura, 1978). In our study, ‘Kuenm’
package in R was employed to optimise the MaxEnt model, with
the parameter of E < 2 and the smallest delta_AICc value selected
to avoid overfitting and improve prediction accuracy. Additionally,
the selection of environmental variables is crucial for predicting the
distribution of suitable areas. For the selection of environmental vari-
ables, the ‘SDMtune’ data package (Vignali et al., 2020) was applied
for correlation analysis of 43 variables to eliminate environmental
variables with strong correlations. The optimised model exhibits an
AUC value of 0.900, indicating a better fit between themodel predic-
tion and the actual spatial distribution, allowing for accurate predic-
tion of the potential geographic distribution of desert locusts.

The study found that the distribution probability of desert
locusts decreased with the increase in the average temperature
in the coldest season, levelling off at 29°C. This suggests that des-
pite the preference of desert locusts for high temperatures, overly
high temperatures can also affect their survival, possibly because
higher temperatures induce a decrease in the hatching rate or sur-
vival rate of their eggs. The egg-hatching rate of desert locusts was
proportional to the temperature rise from 15 to 35°C, but too high
temperature will reduce the hatching rate (Hunter-Jones, 1970).
The 2020 desert locust outbreak was caused by abundant precipi-
tation (Ceccato et al., 2007; Wang et al., 2021; Zhao et al., 2023).
However, this study found that desert locusts avoid areas with
excessive precipitation, and their distribution probability remains
almost zero when precipitation reaches 80 mm in the driest
month. Additionally, overly wet soil fails to meet their reproduc-
tion requirements. Previous studies have found that desert locusts
will not lay eggs until precipitation exceeds 25 mm since sufficient
moisture ensures egg hatching and larvae growth (Roffey and
Popov, 1968). However, extreme rainfall could overwhelm locust
eggs and result in death (Ackonor, 1989; Dinku et al., 2010).
Only suitable temperature and humidity can provide the neces-
sary conditions for desert locusts’ survival.

The spread and diffusion of organisms is a process influenced
by various environmental factors, with outbreaks being the result
of the combined effects of climate, vegetation, soil, and other

factors. Previous studies showed extreme climate events can
enhance the process of biological invasion (Bellard et al., 2013),
and a series of chain reactions caused by global climate change
have made invasive species adaptable to new habitats
(Hoffmann and Sgrò, 2011), which raises threats to local produc-
tion and economies. Given the influence by abnormal climatic
conditions, in 2018, the Arabian Peninsula and the Indian
Peninsula’s desert areas witnessed an increase in rainfall, leading
to the formation of seasonal lakes in the desert that provided
favourable conditions for plant growth and also for the breeding
and growth of desert locusts. The population of desert locusts
considerably rose in a short period, resulting in the widespread
locust plague in early 2020 (Salih et al., 2020; Stone, 2020).
Additionally, as a migratory invasive insect, desert locusts can
also spread through air currents (Wang et al., 2021), with their
main dispersal routes influenced by the monsoon. In the summer,
desert locusts move towards Central Asia and the Arabian
Peninsula in the northeast direction with the help of the south-
west monsoon, then continue to disperse eastwards to India
and Pakistan, and northwards up to the surroundings of the
Caspian Sea (Rainey, 1951), severely threatening agriculture and
pastoral production. With great cautious, these newly emerged
suitable areas should pay additional attention to monitor the
migration and prevent the establishment of desert locusts.

Conclusion

We used optimised MaxEnt model and parameters to predict
potential geographical distribution of desert locusts. Themain cli-
matic factors affecting the distribution of desert locusts are: tem-
perature annual range, mean temperature of coldest quarter,
precipitation of February, and precipitation of driest month. The
results showed an increase of high risk area in the future climate
conditions, especially in North Africa. The newly emerged suitable
areas included Brazil, Argentina, Chile, Venezuela, America,
Mexico, Spain, Turkey, and Australia. Our study provided import-
ant evidence for desert locusts’ monitoring and management.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0007485324000440.
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Figure 7. Changes in high suitable areas of desert locusts in 2090: (A) under the SSP1–2.6 scenario and (B) under the SSP5–8.5 scenario.
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