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Addition of particles or droplets to turbulent liquid flows or addition of droplets to
turbulent gas flows can lead to modulation of turbulence characteristics. Corresponding
observations have been reported for very small particle or droplet volume loadings Φv

and therefore may be important when simulating such flows. In this work, a modelling
framework that accounts for preferential concentration and reproduces isotropic and
anisotropic turbulence attenuation effects is presented. The framework is outlined
for both Reynolds-averaged Navier–Stokes (RANS) and joint probability density
function (p.d.f.) methods. Validations are performed involving a range of particle
and flow-field parameters and are based on the direct numerical simulation (DNS)
study of Boivin, Simonin & Squires (J. Fluid Mech., vol. 375, 1998, pp. 235–263)
dealing with heavy particles suspended in homogeneous isotropic turbulence (Stokes
number St = O(1–10), particle/fluid density ratio ρp/ρ = 2000, Φv = O(10−4)) and the
experimental investigation of Poelma, Westerweel & Ooms (J. Fluid Mech., vol. 589,
2007, pp. 315–351) involving light particles (St = O(0.1), ρp/ρ & 1, Φv = O(10−3))
settling in grid turbulence. The development in this work is restricted to volume
loadings where particle or droplet collisions are negligible.
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1. Introduction
Turbulent dispersed multiphase flows that involve particles or droplets dispersed

in turbulent carrier flows are present in many processes in nature and industry. For
example, droplet–turbulence interaction influences rain and cloud formation (Shaw
2003). Spray combustion or aerosol transport, for example, are relevant industrial and
environmental applications (Fernando & Choi 2007). Based on the high relevance of
dispersed multiphase flows in industrial and environmental processes, various reviews
have been compiled over the past few years dealing with the simulation of particle-
or droplet-laden flows (Loth 2000; Eaton 2006, 2009; Balachandar & Eaton 2010).
Henceforth, the term particle is used generically to cover both particles and droplets.

The fluid and particle phases are characterized by a small number of parameters.
The turbulence of the continuous fluid phase is described by the fluid density ρ and
viscosity ν, the integral length scale L, the Kolmogorov length and time scales η
and τη, respectively, the turbulent kinetic energy k, and its dissipation rate ε. The
particle phase is characterized by the particle diameter d, the particle density ρp,

† Email address for correspondence: meyerda@ethz.ch

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

25
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:meyerda@ethz.ch
https://doi.org/10.1017/jfm.2012.251


252 D. W. Meyer

and the volume loading Φv. The latter is equal to the ratio of volume fractions
occupied by the particle and fluid phases. In this work, we focus on a monodisperse
particle phase where particles of one size are present, but extensions for polydisperse
particles are discussed as well. Different interaction regimes between the two phases
can be distinguished based on Φv and were summarized by Poelma, Westerweel
& Ooms (2007, table 1). For Φv < 10−6, the dispersed phase is influenced by the
fluid-phase turbulence but not vice versa. In this regime, the interaction between the
fluid and particle phases is referred to as one-way coupling. At intermediate loadings,
10−5 < Φv < 10−2, both phases interact, which is called two-way coupling. If Φv is
increased above 10−2, the particles not only have an effect on the fluid phase but also
collide (four-way coupling). In this work, we focus on the two-way coupling regime.

Interphase processes of different form and complexity can be characterized by a set
of parameters. The Stokes relaxation time, defined as

τp ≡ 2
9
ρp

ρ

1
ν

(
d

2

)2

(1.1)

(see Squires & Eaton 1991a, equation (3.14)), quantifies the drag-driven particle
response time to velocity variations in the fluid phase. Particles with small τp

adjust quickly to velocity-field changes in the carrier flow. Based on the parameters
listed in the previous paragraph, a set of non-dimensional parameters can be
formulated: the length scale and density ratios d/η and ρp/ρ, respectively, the mass
loading Φm ≡ (ρp/ρ)Φv, the Stokes number St ≡ τp/τη, and the particle Reynolds
number Rep ≡ |u − v| d/ν. Here, |u − v| is the magnitude of the relative velocity
between the particle velocity v and the surrounding carrier fluid flow u.

For very small St and in the absence of external forces like gravity, particles behave
like passive tracers and are convected with the carrier flow, i.e. Rep ≈ 0. For increased
St or when external forces are present, particles no longer move synchronously with
the carrier flow; therefore Rep > 0, and the relative motion between the fluid and
particle phases leads, at sufficiently high loadings (Φv > 10−5), to modulations of the
carrier-phase turbulence (Eaton 2006; Balachandar & Eaton 2010). Boivin, Simonin &
Squires (1998, figure 3) have demonstrated by means of direct numerical simulation
(DNS) that in the absence of external forces particles with Stokes numbers in the
range from 1 to 10 can reduce the turbulence intensity, i.e. k, by more than 50 % for
Φv = O(10−4) and Φm = 1. This illustrates that even for very small volume loadings,
two-way coupling effects can be significant. More recently, Poelma et al. (2007) have
demonstrated experimentally that particles with St = O(0.1) settling under gravity may
induce an anisotropic dissipation tensor εij in the evolution equation of the fluid-phase
Reynolds stress tensor 〈uiuj〉. In the experiments of Geiss et al. (2004) and the
DNS of Elghobashi & Truesdell (1992) and Elghobashi (1993) similar effects were
documented.

Moreover, at moderate Stokes numbers, i.e. St ≈ 1, and with ρp/ρ > 1, particles
accumulate away from flow regions with high vorticity, which is referred to as
preferential concentration (Balachandar & Eaton 2010, § 4.1). A number of DNS
studies dealing with preferential concentration in homogeneous turbulence have been
conducted, for example by Squires & Eaton (1990, 1991b), He et al. (2005), and
Jung, Yeo & Lee (2008). Also by means of DNS, Sundaram & Collins (1997)
have demonstrated that preferential concentration is important in flows where particle
collisions matter. A review of preferential concentration effects in various flows was
compiled by Eaton & Fessler (1994). If τp� τη and St � 1, the turbulent fluid-phase

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

25
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.251


Turbulence modulation model 253

motions have virtually no influence on the particle motions. However, if the particles
are sufficiently large and Rep exceeds the critical Reynolds number of around 210
(Bagchi & Balachandar 2004, p. 121), vortex shedding occurs in the particle wakes,
which leads to turbulence augmentation (Balachandar & Eaton 2010, § 6.2). More
specifically, Eaton (2006, p. 12–87) and Balachandar & Eaton (2010, p. 125) conclude
that particles with diameters >0.1L lead to turbulence augmentation whereas smaller
ones lead to turbulence attenuation. In this work, we focus on quite small particle
Reynolds numbers Rep ≈ 0.3–30 and therefore ignore turbulence augmentation due to
vortex shedding.

Different simulation methods are applied for the simulation of turbulent particle-
laden flows. Loth (2000) has reviewed contributions that focus on the one-way
coupling regime and has included Reynolds-averaged Navier–Stokes (RANS) methods,
large-eddy simulation (LES), and DNS. For the treatment of the particle phase, Loth
has distinguished between Eulerian (based on conservation laws) and particle-based
Lagrangian methods. The Lagrangian methods were further decomposed into point-
volume and resolved-volume particle methods (Loth 2000, figure 4). Point-volume
particle methods do not resolve the particle geometry and neglect particle volume
effects on the continuous fluid phase. These methods are computationally efficient, but
applicable for d < η only.

For example, Minier, Peirano & Chibbaro (2004) have proposed an
Eulerian/Lagrangian point-volume simulation method, where an Eulerian grid-based
technique was applied to solve the RANS equations for the fluid phase and a
Lagrangian probability density function (p.d.f.) method was used for the particle phase.
Their method is applicable for heavy particles with ρp� ρ and accounts for two-way
coupling effects on the basis of the k-equation. Accordingly, anisotropic turbulence
modulation effects as documented by Geiss et al. (2004) and Poelma et al. (2007)
cannot be accounted for. Moreover, preferential concentration effects are not addressed
in the framework of Minier et al. (2004). However, model predictions were found to
be in good agreement with an experiment involving a particle-laden bluff-body flow.

More recently, Balachandar & Eaton (2010, § 3) have reviewed LES and DNS
simulation approaches. There, and also in other contributions focused on DNS (e.g.
Boivin et al. (1998) or Eaton (2006)), the point-volume particle method is referred
to as the point-force approximation or point-force coupling scheme. Shortcomings
of the point-force approximation were discussed by Eaton (2006, top of p. 12–91).
Balachandar & Eaton (2010) and also Eaton (2006, § 12.6.5) have discussed turbulence
modulation effects and concluded that improved models are needed for simulations in
the two-way coupling regime.

In the present work, a refined Eulerian/Lagrangian point-volume simulation
framework similar to the one proposed by Minier & Peirano (2001) is outlined. We
take the contributions of Boivin et al. (1998) and Poelma et al. (2007) as a reference
and develop models that can reproduce the reported turbulence modulation effects for
a range of particle and loading parameters. As outlined previously, the studies of
Boivin et al. (1998) and Poelma et al. (2007) focus on well-documented turbulence
modulation effects and deal with different canonical flows. Both studies provide details
about the selected flow and particle parameters and quantify turbulence modulation
effects based on quantities that are available in the RANS context. Moreover, in
both studies, d < η and in the DNS study of Boivin et al. (1998), the point-force
approximation is applied.

The main contributions of the present work are as follows. A stochastic Lagrangian
model for the particle phase is outlined that accounts for preferential concentration,
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anisotropy in the fluid-phase Reynolds stress tensor, and enforces consistency between
the seen and fluid-phase statistics. Based on the experimental work of Poelma et al.
(2007), a refined model for the dissipation tensor in the fluid-phase Reynolds stress
transport equation is proposed. It accounts for anisotropic dissipation effects and
formulations for both RANS and p.d.f. methods are presented. Moreover, a new non-
dimensional group is introduced that relates dissipation anisotropy to the underlying
particle- and fluid-phase characteristics. In § 2, the governing equations for the fluid
and particle phases are presented and the model formulations are outlined both in the
RANS (§§ 2.2 and 2.3) and p.d.f. context (§ 2.4). Section 3 deals with the validation
of the modelling framework based on the DNS data of Boivin et al. (1998) and the
experimental study of Poelma et al. (2007). Finally, conclusions are drawn in § 4.

2. Formulation
In several previous contributions dealing with dispersed two-phase flow (Squires

& Eaton 1990; Elghobashi 1993; Boivin et al. 1998), the point-force approximation
was applied. Here, the two-way coupling forces at the particle/fluid interface are
represented in the Navier–Stokes equation by Dirac delta functions, i.e.

Dû
Dt
≡ ∂û
∂t
+ (û ·∇)û=− 1

ρ
∇p̂+ ν∇2û+ 1

ρ

N∑
n=1

[Fnδ(x− xn)], (2.1)

where p̂ is the pressure, Fn and xn are the drag force experienced by particle n and
the position of particle n = 1 . . .N, respectively, with N dispersed particles in total.
δ(x − xn) ≡∏3

i=1δ(xi − xn
i ) is a vectorial Dirac delta function with δ(x − xn) = 0 for

x 6= xn and ∫ ∞
−∞

δ(x− xn) dx≡
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

δ(x− xn) dx1 dx2 dx3 = 1. (2.2)

Gravity effects may be included in (2.1) but can be lumped into a modified pressure p̂g

by means of a suitable potential, e.g. p̂g ≡ p̂ − ρ g x1. Here, g is the gravity constant.
The position xn(t) of particle n with velocity vn(t) is given by

dxn

dt
= vn (2.3)

and

mp
dvn

dt
=−mp

c

τp
[vn − u(xn, t)]︸ ︷︷ ︸
≡ Fn

+mp
ρ

ρp

Du
Dt
+ mp

(
1− ρ

ρp

)
g (2.4)

(Balachandar & Eaton 2010, p. 123). In (2.4), mp is the mass of a single particle, g is
the gravitational acceleration vector, and Fn is the Stokes drag force. In the definition
of Fn, u(xn, t) is the velocity of the fluid that is surrounding particle n but is not
disturbed by particle n; u(xn, t) at particle location xn is also referred to as seen
fluid-phase velocity. To account for nonlinear drag effects at elevated particle Reynolds
numbers Rep, the Schiller–Naumann drag correction c≡ 1+ 0.15Re0.687

p is applied with

Rep ≡ |v
n − u(xn, t)|d

ν
. (2.5)
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Turbulence modulation model 255

The second term on the right-hand side of (2.4) represents pressure and viscous forces
exerted by the fluid phase on particle n. The last term in (2.4) represents gravity and
buoyancy effects.

For small particles with d� η, the fluid-phase velocity in the undisturbed particle
neighbourhood, i.e. u(xn, t), is uniform to a good approximation but 6= û[xn(t), t]
from (2.1). To determine u(x, t) from the velocity field û(x, t), a low-pass filter of
width ∆ in the range d � ∆ < η is applied. The filtering removes the localized
flow-field disturbances induced by the particles and leads to a suitable approximation
for u(x, t). To this end, (2.1) is multiplied by the box filter kernel defined as

G(r)= 1
∆3

3∏
i=1

H
(

1
2∆− |ri|

)
(2.6)

with H(r) being the Heaviside step function. Subsequently, (2.1) is integrated with
respect to the displacement vector r. Unlike in LES, where typically the filter width
∆� η, here the filtering operation has little effect on the structure of (2.1). For the
time-derivative term, for example, we obtain∫ ∞

−∞
G(r)

∂û(x− r, t)

∂t
dr= ∂

∂t

∫ ∞
−∞

G(r)û(x− r, t) dr︸ ︷︷ ︸
≡ u(x, t)

= ∂u(x, t)

∂t
. (2.7)

The last term reduces to

1
ρ

N∑
n=1

{
Fn(t)

∫ ∞
−∞

G(r)δ[x− r− xn(t)] dr
}

= 1
ρ

N∑
n=1

{
Fn(t)G[x− xn(t)]

∫ ∞
−∞

δ[x− r− xn(t)] dr
}

= 1
∆3ρ

N∑
n=1

Fn(t)
3∏

i=1

H
[

1
2∆− |xi − xn

i (t)|
]

︸ ︷︷ ︸
= 1 for |xi − xn

i (t)|<∆/2∀i
and = 0 otherwise

= mp

∆3ρ
f (x, t)np(x, t) (2.8)

with f (x, t) being the algebraic mean of the Stokes drag forces Fn(t)/mp of all np(x, t)
particles inside the filter volume located at x. Finally, with the mass loading

Φm(x, t)≡ mpnp(x, t)

∆3ρ
, (2.9)

the filtered Navier–Stokes equation reduces to

∂u
∂t
+ (u ·∇)u=− 1

ρ
∇p+ ν∇2u+Φmf , (2.10)

where p(x, t) is the filtered pressure. Equation (2.10) is equivalent to equations applied,
for example, by Squires & Eaton (1990, p. 1193) and Rogers & Eaton (1991, p. 935),
and discussed in the review articles by Eaton (2006, § 12.6.3) and Balachandar
& Eaton (2010, p. 127). In the DNS studies of Boivin et al. (1998, § 2.5) and
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Elghobashi (1993, p. 1791), the effect of the point forces in the two-way coupling
term in (2.1) is distributed to neighbouring grid nodes of grid cells with size .η. This
treatment has the same effect on û(x, t) as the previously outlined filtering.

2.1. Reynolds-averaged equations
Next, RANS equations are discussed for the computationally efficient solution of
particle-laden flows. Ensemble averaging the Navier–Stokes equation (2.10) leads for
velocity component ui (Pope 2000, p. 85) to

∂〈ui〉
∂t
+ 〈uj〉∂〈ui〉

∂xj
=− 1

ρ

∂〈p〉
∂xi
+ ν ∂

2〈ui〉
∂xj∂xj

− ∂〈u
′
iu
′
j〉

∂xj
+ 〈Φmfi〉. (2.11)

In (2.11), the Reynolds decomposition with the fluctuating velocity defined as
u′ ≡ u − 〈u〉 was used. Equation (2.11) has a similar structure to the Navier–Stokes
equation (2.10), but the ensemble-averaged quantities show much less spatial
variability (Pope 2000, pp. 556–557) and, therefore, much coarser computational grids
can be used for its numerical solution. However, the Reynolds stress tensor 〈u′iu′j〉
and the two-way coupling term, i.e. 〈Φmfi〉, require closure relations. Corresponding
expressions are discussed in the following three sections.

A transport equation for 〈u′iu′j〉 is derived with the procedure outlined by Fox (2003,
§ 2.2.3) that is based on the relation

∂u′iu
′
j

∂y
= u′j

∂u′i
∂y
+ u′i

∂u′j
∂y
, (2.12)

where y is a generic independent variable representing t or an arbitrary spatial
coordinate xk. Subtracting RANS equation (2.11) from Navier–Stokes equation (2.10)
for component ui leads to an equation for u′i. Multiplication of this equation by u′j
and addition of a corresponding equation for u′j multiplied by u′i leads after ensemble
averaging to the Reynolds stress transport equation

∂〈u′iu′j〉
∂t
+ 〈uk〉

∂〈u′iu′j〉
∂xk

=−∂〈u
′
iu
′
ju
′
k〉

∂xk
+Pij +Πij + ν

∂2〈u′iu′j〉
∂xk∂xk

− εij

+〈Φmu′j fi〉 + 〈Φmu′i fj〉 (2.13)

with the production term

Pij ≡ 〈u′iu′k〉
∂〈uj〉
∂xk
+ 〈u′ju′k〉

∂〈ui〉
∂xk

, (2.14)

the velocity–pressure-gradient term

Πij ≡− 1
ρ

〈
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

〉
, (2.15)

and the dissipation tensor

εij ≡ 2ν
〈
∂u′i
∂xk

∂u′j
∂xk

〉
(2.16)

(except for the two-phase flow terms see Fox (2003, pp. 49–50)). The last two terms
appear in unclosed form and for example εij is often approximated by the isotropic
model εij = (2/3)εδij away from walls (Pope 2000, p. 388). Here, δij is the Kronecker
delta.
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For the turbulent kinetic energy k ≡ (1/2)〈u′iu′i〉, (2.13) reduces to

∂k

∂t
+ 〈uj〉 ∂k

∂xj
=−1

2

∂〈u′iu′iu′j〉
∂xj

− 1
ρ

∂〈u′jp′〉
∂xj

+ ν ∂
2〈u′iu′j〉
∂xi∂xj

+P

+ ν ∂2k

∂xj∂xj
− ε + 〈Φmu′i fi〉 (2.17)

with the kinetic energy production and dissipation rate

P ≡ 〈u′iu′j〉
∂〈ui〉
∂xj

and ε ≡ ν
〈
∂u′i
∂xj

∂u′i
∂xj

〉
︸ ︷︷ ︸
≡ ε̃

+ν ∂
2〈u′iu′j〉
∂xi∂xj

, (2.18)

respectively (Fox (2003, p. 51); Pope (2000, pp. 132–133)); ε̃ is the pseudo-
dissipation.

For forced homogeneous isotropic turbulence with 〈v〉 = 0 and 〈u〉 = 0, ∂k/∂t = 0
(or more precisely dk/dt = 0 since t remains the only independent variable), and all
particles uniformly distributed, i.e. Φm being constant, (2.17) simplifies to

dk

dt
=Pf − ε +PSt = 0 with PSt ≡Φm〈u′i fi〉 (2.19)

similar to Boivin et al. (1998, equation (3.1)). Here, Pf is an artificial forcing term
that was added to the k-equation to keep k constant over time. To implement Pf ,
for example Boivin et al. (1998) have used in their spectral DNS the forcing scheme
proposed by Eswaran & Pope (1988), where kinetic energy is added by random
excitation of the large-scale modes. −PSt in (2.19) is referred to by Eaton (2006,
p. 12–90) and Balachandar & Eaton (2010, p. 127) as particle extra dissipation.

2.2. Lagrangian particle-phase model
In this section, a new model is outlined that mimics the dynamics of particles and
enables the calculation of unclosed two-way coupling terms like 〈Φm fi〉 or 〈Φm u′ifi〉
based on an ensemble of particles. To this end, a new stochastic model for the
seen fluid phase velocity u(xn) and the Lagrangian fluid-phase acceleration Du/Dt,
both appearing in (2.4), is proposed. Stochastic processes for the Lagrangian fluid
acceleration were developed in the context of p.d.f. methods by Pope (1985, § 4.6).
However, since particles are not necessarily passively convected with the fluid flow,
modified processes are needed. In the limit of small or large Stokes numbers, particles
behave like fluid particles or heavy ballistic particles, respectively, both experiencing
the same local velocity statistics characterized by 〈u〉 and 〈u′iu′j〉. In the present work,
it is assumed that the seen velocity is characterized by 〈u〉 and 〈u′iu′j〉 from (2.11) and
(2.13) irrespective of the Stokes number.

To make sure that the seen velocity statistics are consistent with the mean fluid
velocity and Reynolds stress tensor at position xn(t) the following numerical scheme
is applied. The Reynolds stress tensor U with elements 〈u′iu′j〉 is a symmetric,
diagonalizable matrix. Therefore, V TUV =W , where matrix V and the diagonal matrix
W contain the eigenvectors and eigenvalues of tensor U, respectively. At every spatial
location or in every computational grid cell, the diagonalized Reynolds stress tensor
W can be computed for example by a QL-decomposition-based method as documented
by Press (2001, § 11). In the principal-axes coordinate system where W is defined, the
cross-covariances 〈w′iw′j〉 = 0 ∀i 6= j. If we assume that the local velocity p.d.f. is joint

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

25
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.251


258 D. W. Meyer

Gaussian, the velocity components w′i are statistically independent processes (Pope
2000, p. 63). Therefore, to model u(xn) and Du/Dt we attribute to every particle three
independent Ornstein–Uhlenbeck processes ξ n

i (t) with correlation time scales T∗L and
standard normal stationary probability distribution, i.e.

dξ n
i =−

dt

T∗L
ξ n

i +
√

2
T∗L

dWi(t), (2.20)

where dt is the time step size and dWi(t) is a Wiener process increment that is
statistically independent for every component i and particle n (Pope 2000, appendix J).
To obtain correct Reynolds stresses for the seen quantities in the original and principal-
axes coordinate systems, we set

w′ni =
√
〈w′ 2

i 〉ξ n
(i) and u(xn)= 〈u〉 + V w′n. (2.21)

Likewise, for the substantial derivative of the fluid-phase velocity

dw′ni =
√
〈w′ 2

i 〉 dξ n
(i) and

Du
Dt
= V

dw′n

dt
(2.22)

are used. In (2.21) and (2.22), brackets round indices are used to suppress Einstein
summation. Note that 〈u〉, V , W , and T∗L change as particles travel from grid cell
to grid cell. These changes are smooth, however, since the computational grid is
supposed to resolve variations of statistical quantities and particles do not travel over
several grid cells during one time step. Minier et al. (2004, equation (33)) have
formulated a random process for the seen fluid-phase velocity directly. Since this
process is based on k, anisotropy in the fluid-phase turbulence is not taken into
account. Moreover, consistency between the seen and fluid-phase velocity statistics is
not enforced.

The time scale of changes in the seen fluid velocity, T∗L , depends on the Stokes
number and external forces acting on particles (Minier & Peirano 2001). For St → 0
and in the absence of external forces, particles are passively convected by the
fluid flow, i.e. 〈|u(xn) − vn|〉 → 0, and T∗L reduces to the Lagrangian correlation
time scale TL of fluid-phase particles. In the ballistic motion limit that applies
for St→∞ or for strong external forces acting on particles, the relative velocity
〈|u(xn)− vn|〉 �√2k(xn)/3 and, consequently, the correlation time scale is determined
based on the frozen turbulence approximation (Pope 2000, equation (6.203)) by the
Eulerian time scale TE. TE is determined by the relative velocity between the particle
and fluid phases and the flow-field correlation length scale. A model for the correlation
time scale of the seen fluid velocity that attains the limits TL and TE was proposed
by Minier et al. (2004, p. 2423). More recently, He et al. (2005) and Jung et al.
(2008) have shown by means of DNS that away from these limits, preferential
concentration effects lead to considerable changes in T∗L . In this respect, Jung et al.
(2008, equation (29)) have proposed the model

T∗L
TL
= 0.245 exp

[
ln
(

St

CT1

)
1

1.3

]2

+ 1+ (0.025St)1.5TE/TL

1+ (0.025St)1.5
. (2.23)

As illustrated in figure 1, the second term dominates for St→ 0 and ∞ leading to
T∗L = TL and TE, respectively. The first term in (2.23) on the other hand accounts
for a prolongation of T∗L due to preferential concentration. Jung et al. (2008) have
determined the parameter value CT1 = 1.2 based on their DNS results. In this work,
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FIGURE 1. The lines show the dependence of T∗L on the Stokes number as modelled by (2.23)
for TE/TL = 1.3. T∗L(St) is plotted for two different CT1 parameter values, i.e. CT1 = 0.8 used
in this work (solid line), and CT1 = 1.2 proposed by Jung et al. (2008) based on their DNS
data (dashed line). The dotted line corresponds to T∗L(St) resulting from (2.23) with the first
term removed. The symbols represent the DNS results by: �, Jung et al. (2008) and •, He
et al. (2005).

CT1 = 0.8 is applied, which leads to good agreement of (2.23) with the DNS data of
Jung et al. (2008) and He et al. (2005) as seen in figure 1.

The development of Jung et al. (2008) is based on DNS with one-way coupling and
accordingly is valid for small mass loadings and does not take into account turbulence
modulation effects. We expect that the prolongation of T∗L due to preferential
concentration is amplified with increasing Φm, since particles form clusters with
increasing inertia that sweep surrounding fluid along. In this respect, we propose
the following generalization of model (2.23):

T∗L
TL
= 0.245 exp

[
ln
(

St

CT1

)
1

1.3

]2

(1+ CT2Φm)+ 1+ (0.025St)1.5TE/TL

1+ (0.025St)1.5
, (2.24)

where CT2 is a model parameter to be determined.
In a last step, closure expressions for the time scales TL and TE are presented. Based

on an analysis involving the Lagrangian structure function, Pope (1994, pp. 33–34) has
shown that the fluid-particle correlation time scale TL can be modelled as

TL = 4
3C0

k

ε
(2.25)

with C0 being a Reynolds-number-dependent model parameter. To determine the
Eulerian time scale, we apply the model TE = τ ≡ k/ε. As seen in figure 1, TE

becomes important in the modelling of T∗L for large Stokes numbers. Refined models
for TE that take the relative velocity between the fluid and particle phases into account
are conceivable (Minier et al. 2004, p. 2423) but of reduced importance in the present
work with St� 100.

In summary, the Lagrangian particle-phase model consists of the particle equations
of motion (2.4) and model equations (2.20)–(2.22) for the seen fluid-phase velocity
with the generalized correlation-time-scale model (2.24). The latter is based on TL

and TE given in the previous paragraph.

2.3. Anisotropic turbulence dissipation model
Poelma et al. (2007) have performed experiments with small volume and mass
loadings of solid particles dispersed in water. They have demonstrated that mean
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relative motion between the phases induced by external gravity forces can lead
to significant anisotropy in the fluid-phase dissipation tensor εij. More specifically,
the dissipation rate parallel to the mean relative velocity reduces, whereas the
perpendicular components increase (Poelma et al. 2007, figure 10). However, the
turbulent kinetic energy decay remains unchanged and therefore extra dissipation
seems virtually absent at the low mass loadings investigated. Next, a model is
presented that accounts (unlike the standard model εij = (2/3)εδij) for dissipation
anisotropy due to the particle phase.

Poelma et al. (2007, § 5.3) have suggested using the Stokes load defined as

ΦSt ≡Φv

6
π

η3

d3
St (2.26)

to relate the dissipation rate anisotropy to the underlying particle- and fluid-phase
parameters. ΦSt, however, does not include the mean relative velocity between
the phases which is causing the anisotropy. We propose the non-dimensional
mass–velocity–size coefficient,

MVS≡Φm

√
|〈u〉 − 〈v〉|√

2k/3

η

d
, (2.27)

and demonstrate in the Appendix that the MVS coefficient is to a good approximation
linearly correlated with the dissipation rate anisotropy observed in the experiments of
Poelma et al. (2007).

In a first step, a model formulation for the case where the mean relative velocity
vector 〈u〉 − 〈v〉 is aligned with the x1 coordinate is outlined. For this case, we propose
to model the dissipation tensor with elements εij by

Ẽ ≡




2(1− κ) 0 0
0 κ − 1 0
0 0 κ − 1

+ I

 2ε
3
. (2.28)

Here, I is the identity matrix, κ ≡ 1 + CaMVS and Ca is a model constant. With
increasing MVS coefficient, κ grows and ε11 becomes smaller while ε22 and ε33

increase. The trace of Ẽ is given by εii = 2ε. This is consistent with definitions (2.16)
and (2.18) of εij and ε, respectively, if ε̃ = ε, which is virtually always the case (Pope
2000, bottom of p. 132). Therefore, in agreement with the findings of Poelma et al.
(2007), the model (2.28) does not change the dissipation rate of k. Moreover, the
formulation was chosen such that κ = ε22/(εii/3) and therefore κ can be viewed as an
anisotropy ratio.

To generalize the model (2.28) for scenarios where the coordinate system is not
aligned with the mean relative velocity, the transformation R ≡ [r1, r2, r3]T with unity
vectors

r1 ≡ 〈u〉 − 〈v〉|〈u〉 − 〈v〉| , r2 ≡ r1 × e
|r1 × e| , and r3 ≡ r1 × r2 (2.29)

is introduced. The first vector r1 is parallel to the relative velocity vector 〈u〉 − 〈v〉 and
the second vector r2 is normal both to r1 and e. Vector e is any eigenvector of the
Reynolds stress tensor U that is not parallel to r1. The transformation R is constructed
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such that the velocity vector u in the coordinate system (x1, x2, x3)
T is mapped by

ũ= Ru (2.30)

to a coordinate system (x̃1, x̃2, x̃3)
T whose x̃1-direction is parallel to the relative

velocity vector. Conversely, R can be applied to map the model dissipation tensor
Ẽ – whose contribution is determined in the x̃ coordinate system – to the x coordinate
system with

E = RTẼR. (2.31)

Next, it is demonstrated that expression (2.31) is a tensor. Matrix Ẽ does not
change if the coordinate system is changed by means of a linear transformation,
say A. However, vector e and the relative velocity vector change; for example, ē= A e.
Therefore, in the new coordinate system, R transforms into R̄ = [A r1,A r2,A r3]T =
(A[r1, r2, r3])T = RAT and R̄T = A RT. Thus, we obtain

Ē = R̄TẼR̄ = A RTẼR︸ ︷︷ ︸
= E

AT, (2.32)

which is how a second-order tensor is supposed to transform (Pope 2000, p. 648).
In summary, the anisotropic turbulence dissipation model is based on the dissipation

tensor (2.31). The two tensors appearing in (2.31) are essentially based on the mean
relative velocity between the two phases and expression (2.28). The anisotropy ratio κ
that appears in (2.28) depends on the MVS coefficient (2.27).

2.4. Model formulation for joint p.d.f. methods
So far, a new framework to model turbulence modulation in the RANS context has
been formulated. In this section, corresponding formulations for p.d.f. methods are
proposed. More specifically, additions to the simplified Langevin model (SLM), which
is often applied in p.d.f. methods for the simulation of turbulent flows (Pope 2000,
§ 12.3), are outlined.

In p.d.f. methods, a transport equation for the joint p.d.f. of the fluid-phase
velocity u is solved instead of a set of moment transport equations as in RANS
methods. The p.d.f. transport equation is discussed in the textbooks by Pope (2000,
§ 12.2) and Fox (2003, § 6.5). A stochastic differential equation (SDE) that is
equivalent to the joint velocity p.d.f. transport equation is given by

dui =− 1
ρ

∂〈p〉
∂xi

dt + Gij[uj − 〈uj〉] dt +
√

C0ε dWi(t), (2.33)

which is equation (12.110) in Pope (2000). SDE (2.33) is a model for the Lagrangian
acceleration of a fluid particle, i.e. dui ≈ Dui/Dt dt (Pope 1985, §§ 4 or 4.6). C0 is
the same model constant that determines the Lagrangian time scale (2.25) and Gij is
a model for the mean acceleration of a fluid particle. From SDE (2.33), the Reynolds
stress transport equation

∂〈u′iu′j〉
∂t
+ 〈uk〉

∂〈u′iu′j〉
∂xk

=−∂〈u
′
iu
′
ju
′
k〉

∂xk
+Pij + Gik〈u′ju′k〉 + Gjk〈u′iu′k〉 + C0εδij (2.34)

can be derived (compare Pope (2000, § 12.2.3)). A simple model for the specification
of the tensor G with elements Gij is the SLM which reads

Gij =−
(

1
2 + 3

4 C0

) ε
k
δij. (2.35)
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To include the fluid-phase turbulence modulation effects discussed in §§ 2.2 and 2.3,
the SDE (2.33) is modified by including the mean Stokes drag contribution, i.e.

dui =− 1
ρ

∂〈p〉
∂xi

dt + 〈Φm fi〉 dt + G′ij[uj − 〈uj〉] dt +
√

C0ε dWi(t), (2.36)

and by modifying Gij with two additions, i.e. tensor

G′ = G + 1
2k
〈Φmu′i fi〉I − E ′ (2.37)

with elements G′ij is proposed as a replacement for Gij in (2.33). In (2.36) and (2.37),
x identifies the current fluid-particle position. The last two terms in (2.37) account for
turbulence attenuation and anisotropic dissipation with

E ′ = RTẼ ′R and Ẽ ′ ≡



2(1− κ)
〈ũ′1ũ′1〉

0 0

0
κ − 1
〈ũ′2ũ′2〉

0

0 0
κ − 1
〈ũ′3ũ′3〉


ε

3
, (2.38)

respectively. In Ẽ ′, the Reynolds stresses 〈ũ′iũ′i〉 stem from the transformed Reynolds
stress tensor Ũ = RURT (compare (2.30)). In the x̃ coordinate system (defined by
the transformation R based on expression (2.29)), it can be shown by insertion of
expression (2.37) as a replacement for Gij into (2.34) that the resulting Reynolds stress
dissipation tensor is equivalent to the RANS formulation (2.28). To prove that E ′ is a
tensor, the same arguments as outlined after (2.31) are applicable.

3. Model validation
In the following two sections, the turbulence modulation modelling framework that

has been outlined is validated for different parameter values. In § 3.1, a validation
based on the DNS study of Boivin et al. (1998) is presented and in § 3.2 model
comparisons with the experimental study of Poelma et al. (2007) are provided. Both
cases involve particle parameters in the range Φm ≈ 0–1 and St ≈ 0.1–14.

3.1. Attenuation of homogeneous isotropic turbulence
3.1.1. DNS setup

Boivin et al. (1998) have performed DNS of forced homogeneous isotropic
turbulence with different particle relaxation times τp and mass loadings Φm = 0, 0.2,
0.5, and 1. They have inspected the turbulent kinetic energy budget given by (2.19)
and have monitored the turbulence level given by k at which the forcing energy
production, dissipation, and extra dissipation terms balance. Since all the different
contributions to the energy budget are reported, their work provides an ideal reference
to validate the Lagrangian particle-phase model (introduced in § 2.2) for different
particles and mass loadings.

The turbulent fluid flow in their simulations was characterized by ν = 0.015 m s−1

(see Boivin et al. 1998, table 1) and the Taylor-scale Reynolds numbers

Reλ ≡
√

20
3

k2

εν
(3.1)
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τp Φm

0.2 0.5 1.0

0.069 67.19/5.387 58.90/4.758 45.01/4.028
0.251 66.56/5.046 70.85/4.902 57.58/4.671
0.698 66.95/4.847 74.55/5.123 67.13/4.721

TABLE 1. Values of Reλ/Pf (where Pf (m2 s−3) is the forcing energy production rate)
for different particle relaxation times τp (s) and mass loadings Φm. The reported values
were determined with (2.19) and (3.1) and k, ε, and PSt reported in Boivin et al. (1998,
figures 3, 4, and 12), respectively.

summarized in table 1. To maintain stationarity, the large-scale flow structures were
excited by the stochastic forcing scheme outlined by Eswaran & Pope (1988). The
applied forcing energy production rates Pf are summarized in table 1. Small,
heavy particles with a density ratio ρp/ρ = 2000 (see Boivin, Simonin & Squires
2000, table 3) and diameters d/η = 0.11, 0.21, and 0.35 (see Boivin et al. 1998,
table 2) were used. The resulting τp values listed in table 1 were calculated with
definition (1.1). To this end, the Kolmogorov length scale η ≡ (ν3/ε)

1/4 = 0.0277 m
for Φm = 0 was determined with the values reported in Boivin et al. (1998, table 1).
Owing to the high density ratio, the pressure and viscous force term in particle
equation (2.4) was not included in the DNS and the model simulations.

3.1.2. Simulation setup
In the simulations, the anisotropic turbulence dissipation model (introduced in § 2.3)

drops out because on average there is no velocity difference between the two phases.
Therefore, the present validation case is focused on the accurate modelling of the extra
dissipation term in the k budget (2.19). To determine the stationary turbulence level
in the model calculations, the energy budget (2.19) was solved until a stationary state
with respect to k was reached. To this end, the simulator of Fuchs, Jenny & Meyer
(2010) was used as a basis. At the beginning of the simulation, k was set to 7 m2 s−2,
which is the turbulent kinetic energy reported by Boivin et al. (1998, table 1) for
Φm = 0. For the forcing production rate Pf , the values reported in table 1 were
used. To calculate the dissipation rate ε in (2.19), the Taylor-scale Reynolds numbers
provided in table 1 were enforced: definition (3.1) leads to

ε = 20
3

k2

Re2
λν

(3.2)

for the energy dissipation rate. The parameter C0 in the model expression (2.25) for
TL was set to 4.68 based on expression (2.25) and the values reported by Boivin
et al. (1998, table 1) for the case with Φm = 0, i.e. TL = 0.35 s, ε = 5.7 m2 s−3, and
k = 7 m2 s−2. The resulting C0 is in the range of values reported by Pope (1994,
pp. 54–55). In model (2.24) for the seen fluid velocity correlation time T∗L , CT2 = 23
was found to lead to accurate predictions in the present study. To obtain reliable
estimates for the extra dissipation term in (2.19), ensembles of 10 000 particles were
used in all simulations and the statistics were time averaged over 40TL. Note that the
particles in the model simulations represent all probable states of physical particles,
but are not to be confused with the number of physical particles present in a DNS.
In the Reynolds-averaged energy budget (2.19), the number of physical particles is
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FIGURE 2. Attenuation of turbulent kinetic energy k as predicted by (a) the DNS of Boivin
et al. (1998) and (b) the model for different mass loadings Φm and particle diameters: solid,
d/η = 0.11, τp = 0.069 s; dashed, d/η = 0.21, τp = 0.251 s; dotted, d/η = 0.35, τp = 0.698 s.
The turbulent kinetic energy is normalized by k = 7 m2 s−2 at Φm = 0.
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FIGURE 3. Extra dissipation −PSt as predicted by (a) the DNS of Boivin et al. (1998) and
(b) the model for different mass loadings Φm and particle diameters. Line styles as in figure 2.
−PSt is normalized by ε = 5.7 m2 s−3 at Φm = 0.

represented by the mass loading Φm. At the beginning of the simulation, all ξ n
i were

initialized with Gaussian random numbers with zero mean and unity variance and the
vn

i were set equal to
√

2k/3ξ n
i . For the time integration of (2.19) and (2.20), forward

Euler schemes with a time step dt = 0.001 s were used. The Wiener process increment
dW(t) was discretized with a normal random variable with zero mean and standard
deviation equal to

√
dt (Gardiner 2004, § 3.8.1).

3.1.3. Results
Based on the Pf and Reλ values taken from the DNS and the Lagrangian particle-

phase model outlined in § 2.2, predictions for different particle relaxation times and
mass loadings can be made. In figure 2, the turbulent kinetic energies that resulted
from the model computations are compared with the corresponding DNS results. For
the case with τp = 0.069 s and Φm = 0.2, k is somewhat too small but otherwise
there is very good overall agreement. These observations are supported by the extra
dissipation predictions provided in figure 3. For τp = 0.069 s and Φm = 0.2, the extra
dissipation is larger in the model simulations compared to the DNS. For all other
particles and mass loadings, −PSt is in very good agreement and the Lagrangian
particle-phase model with the generalized correlation-time-scale model (2.24) performs
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FIGURE 4. Dissipation of turbulent kinetic energy k as predicted by (a) the DNS of Boivin
et al. (1998) and (b) the model for different mass loadings Φm and particle diameters. Line
styles as in figure 2. The dissipation rate is normalized by ε = 5.7 m2 s−3 at Φm = 0.
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FIGURE 5. Stokes numbers as predicted by (a) the DNS of Boivin et al. (1998) and (b) the
model for different mass loadings Φm and particle diameters. Line styles as in figure 2.

very well. Given the fact that k is accurately predicted and that Reλ is taken from
the DNS, it is not surprising that the dissipation rates calculated from (3.2) are in
very good agreement with the DNS results as seen in figure 4. The Stokes numbers
St ≡ τp/τη in the model simulations and the DNS with the Kolmogorov time scale
τη ≡ √ν/ε are reported in figure 5. The very good agreement of St between the
model and the DNS is expected from the very good agreement observed in ε.
The importance of the generalized correlation-time-scale model (2.24) is illustrated
in figure 6. Here, simulation results with the first term in (2.24) removed are
provided. Except for τp = 0.698 s, where St ≈ 10 as seen in figure 5 and consequently
preferential concentration effects are small (compare figure 1), the model results
are significantly different from the DNS. Therefore, it seems crucial to account for
preferential concentration effects if St ≈ 1 as for the cases with τp = 0.069 s and
τp = 0.251 s.

3.2. Gravitational settling of particles in decaying grid turbulence
3.2.1. Experimental setup

To validate the anisotropic turbulence dissipation model presented in § 2.3 and to
further test the applicability of the Lagrangian particle-phase model in a spatially
inhomogeneous scenario, an attempt is made to reproduce the gravity-driven flow
investigated by Poelma et al. (2007). They have studied anisotropic dissipation effects
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FIGURE 6. Extra dissipation −PSt (a) and turbulent kinetic energy k (b) as predicted by the
model with the first term in the T∗L model (2.24) removed. Line styles as in figure 2. −PSt and
k are normalized by ε = 5.7 m2 s−3 and k = 7 m2 s−2 at Φm = 0, respectively.

No. d
(µm)

ρp

(kg m−3)

τp
(ms)

St |〈u〉−〈v〉|
(m s−1)

Φv

(%)
Φm
(%)

√
2k0/3

(m s−1)
ω0
(s−1)

LD
(m)

1 153 3800 5.0 0.07 0.0246 0.12 0.44 0.00805 1.59 0.45
2 280 3800 16.6 0.23 0.0604 0.10 0.38 0.00901 1.73 0.5
3 254 2450 8.8 0.12 0.0366 0.26 0.65 0.01033 2.80 0.675
4 254 2450 8.8 0.12 0.0366 0.072 0.18 0.00879 1.89 0.6
5 280 3800 16.6 0.23 0.0604 0.18 0.67 0.00904 1.73 0.5

TABLE 2. Particle- and fluid-phase parameters from five experiments conducted by Poelma
et al. (2007, tables 3 and 4). The fluid-phase boundary conditions k0 and ω0 were extracted
from Poelma et al. (2007, figures 16–18).

in a solid/liquid two-phase system. In their experiments, particles were settling in a
channel with constant cross-section under gravity at constant mean velocities relative
to a parallel, upward, uniform fluid flow. Measurements were taken in a small
section in the channel centre to minimize boundary layer effects (Poelma et al. 2007,
pp. 326–327). In all experiments, the mean relative settling velocity was more than
8 times smaller in magnitude than the mean upward fluid flow and, therefore, the
particles were also moving upward in all cases.

The parameters of the first five experiments that were conducted by Poelma et al.
(2007) are reported in table 2. Poelma et al. (2007) have provided Reynolds stress
evolution data for experiments 1–6, but experiment 6 involved significant turbulence
augmentation due to particle wakes. This effect is not captured by the present models
and therefore experiment 6 was excluded from the present validation. The fluid-
phase density and kinematic viscosity were ρ = 1000 kg m−3 and ν = 10−6 m2 s−1,
respectively. The particles were uniformly distributed in the test section and the mean
fluid flow velocity was 〈u〉 = (0.53 m s−1, 0, 0)T in all experiments. The mean relative
velocities between the particle and fluid phases, i.e. |〈u〉 − 〈v〉| = 〈u1〉 − 〈v1〉, were
constant in the flow domain (Poelma 2004, p. 136) and are reported in table 2. At
the inflow boundary (or the virtual origin in the experiments (Poelma et al. 2007,
figure 10)) at x1 = 0, the fluid-phase Reynolds stress tensor is isotropic. The location
of the turbulence generating grid, however, was approximately 35 grid spacings M
upstream of x1 = 0. Moreover, the root-mean-square particle-phase velocity at x1 = 0
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was isotropic and equal to the fluid-phase value (Poelma et al. 2007, figure 7). The
corresponding values, i.e.

√
2k0/3, are listed in table 2 and were extracted from

Poelma et al. (2007, figures 16–18). Also the dissipation rates at the inflow boundary,
ε0, or more precisely ω0 = ε0/k0 are listed in table 2 and were estimated based on the
slope of k at the inflow from Poelma et al. (2007, figures 16–18).

3.2.2. Simulation setup
For the simulations presented in this section, the single-phase p.d.f. code of

Meyer & Jenny (2007) was enhanced by two-phase flow functionality. In a next
step, the general model formulations presented in § 2 are simplified for the case
under consideration. Since the particle distribution is uniform and the mean flow
velocities for both phases are to a good approximation constant (Poelma 2004, p. 136);
(Poelma et al. 2007, § 2.5), it suffices to focus on statistics of the fluctuating velocity
components. From (2.4), we obtain a corresponding equation for the fluctuating
particle velocity, i.e.

dv′ n

dt
=− c

τp
[vn − u(xn)] + 1

τp
〈c[vn − u(xn)]〉 + ρ

ρp

(
Du
Dt
− ∂〈u

′u′1〉
∂x1

)
(3.3)

since 〈
Dui

Dt

〉
= ∂〈u

′
iu
′
1〉

∂x1
(3.4)

and with x1 being the only direction of spatial inhomogeneity and 〈u〉 being constant
in time and space. The fluid-phase equations (2.36) and (2.37) reduce to

du′i =
∂〈u′iu′1〉
∂x1

dt + G′iju
′
j dt +

√
C0ε dWi(t) (3.5)

with

G′ = G + Φm

2k
〈u′i fi〉I − E ′ and R = I. (3.6)

The first term on the right-hand side of (3.5) results from subtracting the mean
from (2.36) or more precisely

du′i = dui −
〈

Dui

Dt

〉
dt = dui −

∂〈u′iu′j〉
∂xj

dt. (3.7)

This is consistent with SDE (7.59) given by Fox (2003, § 7.4.2). To determine the
dissipation rate ε, the gamma distribution model of Jayesh & Pope (1995) for
the turbulence frequency 〈ω〉 = ε/k was applied. Here, an instantaneous turbulence
frequency ω is attributed to every fluid particle and the SDE

dω =−(ω − 〈ω〉) dt

Tω
− 〈ω〉ωSω +

√
2σ 2〈ω〉ω

Tω
dW(t) with Tω = 1

C3〈ω〉 (3.8)

is solved for every particle (Pope 2000, § 12.5.3). For the flow under consideration
with 〈u〉 being constant, the source term Sω simplifies to Cω2 with Cω2, C3, and σ

being model constants. Details about the numerical time integration of the SDEs and
the estimation of position-dependent statistics like k(x1) and ε(x1) (based on 〈ω(x1)〉)
are provided in Meyer & Jenny (2007, § 4.1). For the calculation of the Kolmogorov
length scale that appears in the MVS coefficient (2.27), the definition η ≡ (ν3/ε)

1/4
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with ε(x1) was applied. Given the small Stokes numbers, the particle- and seen fluid-
phase velocities at the inflow were initialized as equal, i.e. v′ ni =

√
〈u′2i 〉ξ n

(i). (For the
flow under consideration, the Reynolds stress tensor W in (2.21) and (2.22) is equal
to U and the transformation V = I .) By inspecting the simulation results, it was found
that the correlation between the two velocities is high in the entire domain as expected
and therefore setting v′ ni =

√
〈u′2i 〉ξ n

(i) at the inflow is reasonable. Since the Stokes
numbers and mass loadings are small, the correlation time scale (2.24) was simplified
to T∗L = TL. To reduce the statistical error in the results, time averaging was applied
after the statistics in each simulation had reached a stationary state in time.

For the simulations of experiments 1–5, the domain sizes LD as listed in table 2
were used. In all simulations, the domain was discretized with 100 grid cells and
1002 computational particles were used for each phase. To initialize the fluctuating
velocities of the particles of both phases at the isotropic inflow, the turbulent kinetic
energies k0 reported in table 2 were applied. The turbulence frequencies of the
fluid-phase particles were initialized such that 〈ω〉 = ω0, which are also provided
in table 2. Both k0 and ω0 at the virtual origin were extracted from Poelma et al.
(2007, figures 16–18) based on linear fits for 1/k(x1). Subsequently, ω0 = ε0/k0 was
determined based on

ε =− d
dt

k(x1 = 〈u1〉t)=−〈u1〉 dk

dx1
. (3.9)

Relation (3.9) is applicable if grid turbulence is approximated as decaying
homogeneous turbulence in a moving reference frame (Pope 2000, § 5.4.6). To
determine the time step size, a CFL number of 1/4 was applied in connection with
the mean velocity (1t ≈ 2.5 × 10−3 s). For the velocity SDE (3.5) and the gamma
distribution model (3.8), standard values for the model constants were applied, i.e.
C0 = 2.1 (Pope 2000, p. 504), C3 = 1, and σ 2 = 1/4 (Pope 2000, § 12.5.3). However,
Cω2 was calibrated based on the data reported by Poelma et al. (2007, table 2) for
single-phase flow. It was found that Cω2 = 0.96 leads to very good agreement as is
seen in figure 7 for both the turbulent kinetic energy k and turbulence frequency
〈ω〉. Here, to normalize the downstream coordinate x1, the grid spacing M = 7.5 mm
reported by Poelma et al. (2007, § 2.1) was used. The anisotropy model parameter Cα

was set to 28. This value leads to very good agreement for experiment 1 and was used
for all simulations.

3.2.3. Results
In figures 8 and 9, the anisotropic dissipation and the Lagrangian particle-phase

models are validated with the experimental data of Poelma et al. (2007). A second set
of simulation runs with the extra dissipation term in SDE (3.5) removed showed no
significant difference with respect to the results presented in figures 8 and 9. Therefore,
unlike in the DNS case studied in § 3.1 and in agreement with the conclusions of
Poelma and coworkers, the extra dissipation represented by the Lagrangian particle-
phase model plays a minor role in their setup. On the other hand, strong anisotropic
dissipation effects are visible in figures 8 and 9 and there is very good overall
agreement between the experimental data and the model predictions. The Reynolds
stress evolutions are predicted correctly and depending on MVS(x1), the anisotropic
dissipation model regulates the level of anisotropy. For example, a comparison of
experiments 3 and 4, where the mass loading Φm was reduced by a factor of 3.7,
shows a reduction of anisotropy in experiment 4 that is captured by the model.
Comparing cases 3 and 5, where Φm is almost equal but the mean relative velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

25
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.251


Turbulence modulation model 269

0.5

1.0

1.5

2.0

4

6

20 40 60 80

2

8

20 40 60 80

(a) (b)(× 103)

FIGURE 7. Validation of single-phase flow simulation results (lines) with experimental data
of Poelma et al. (2007, table 2) (solid circles). The normalized inverse of the turbulent kinetic
energy (a) and the turbulence frequency (b) are compared. The values reported by Poelma
and coworkers for the turbulence frequency or more precisely the dissipation rate needed
to be correct by a factor of 2/3 (C. Poelma 2011, personal communication). The crosses
in (b) represent the results obtained from a linear fit to the experimental data in (a) and
application of (3.9).

differs by a factor of 1.7, reveals that the mean relative velocity has a reduced effect
on the anisotropy level; and similarly for experiments 1 and 2, where the small change
of Φm (×0.86) almost compensates for the larger change in the mean relative velocity
(×2.5). The effect of Φm is also visible in experiments 2 and 5, where the particle
loading was varied. The model captures all these variations very well. It does not,
however, include a mechanism for turbulence augmentation due to vortex shedding
in particle wakes. In experiment 5, this effect is most probably responsible for a
stabilization of the Reynolds stresses for x1/M > 40 as documented in figure 9(b)
(Poelma et al. 2007, § 5.4). This limitation is causing the most pronounced deviations
in the present validation.

4. Conclusions
In the present study, a modelling framework that accounts for turbulence modulation

in particle- or droplet-laden flows is outlined. The framework consists essentially
of two sub-models. The first component is a Lagrangian particle-phase model that
mimics particle dynamics and can be used to calculate mean drag and extra dissipation
effects acting on the fluid phase. The model accounts for preferential concentration
effects that become important for moderate Stokes numbers. The second sub-model
reproduces anisotropic dissipation effects of the Reynolds stresses that originate from a
mean relative velocity between the phases. To this end, a new non-dimensional group
was introduced to parametrize the anisotropic dissipation effect. Formulations of both
models for RANS and joint p.d.f. methods are presented.

The performance of both models was verified in two test cases. Both cases deal
with simple canonical flows, which minimizes interference with other models, e.g.
turbulence models or turbulence augmentation models, and thus facilitates a thorough
validation of the proposed modelling framework. The first validation case uses DNS
data of stationary homogeneous isotropic turbulence as a reference. DNS data sets
with particles suspended at different mass loadings and with different relaxation times
were used. The model accurately quantifies the particle extra dissipation for the entire
range of relaxation times and mass loadings. Accurate modelling of the seen fluid
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FIGURE 8. Validation of Reynolds stress evolutions resulting from two-phase flow
simulations (lines) and experiments by Poelma et al. (2007, figures 16–18) (symbols). Results
of (a) experiment 1, (b) experiment 2, and (c) experiment 3. 〈u1〉2/〈u′1u′1〉 (dotted lines and
crosses), 〈u1〉2/〈u′3u′3〉 (dashed lines and dots), and 〈u1〉2/(2k/3) (solid lines).

velocity correlation time scale proved to be crucial for particles with short relaxation
times where preferential concentration effects are important. In the second validation
case, experimental data of particles settling under gravity in decaying grid turbulence
were used as a reference. The resulting anisotropy in the dissipation rate tensor and
the Reynolds stresses was accurately reproduced by the proposed framework for the
different particle classes and mass loadings investigated.

The presented work can be generalized in several ways. For example, in applications
involving flows with inhomogeneous particle distributions, the particle mass loading
in (2.11) and (2.13) needs to be estimated by counting particles in grid cells of the
computational domain. Moreover, a generalization of the Lagrangian particle-phase
model for polydisperse particles is straightforward. In the anisotropic dissipation
model, on the other hand, the particle size d influences the MVS coefficient. To
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FIGURE 9. As figure 8 but for (a) experiment 4 and (b) experiment 5.

account for size distributions – quantified by the local size p.d.f. fd(y; x) with sample
space variable y – we suggest applying an average MVS coefficient of the form

MVS=
∫ ∞

0
MVS(d = y)fd(y; x) dy. (4.1)

In a Lagrangian particle-phase method, where physical particles are represented by
computational particles, statistics such as fd(y; x) are readily available. Finally, the
proposed generalization of the correlation-time-scale model (2.24), where a linear mass
loading dependence was introduced, should be verified by means of DNS.
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Appendix. Mass–velocity–size coefficient
Poelma et al. (2007, figure 19) have proposed the Stokes load given by

definition (2.26) to parametrize particle-generated dissipation anisotropy. The mean
relative velocity between the phases that causes and determines the anisotropy,
however, is not represented in the Stokes load ΦSt. In the absence of a mean relative
velocity, like in the DNS case discussed in § 3.1, ΦSt may be well above zero, but
nevertheless the flow is isotropic. Here, we introduce the mass–velocity–size (MVS)
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FIGURE 10. Anisotropy ratios εx/ε0 (Poelma et al. 2007, p. 343) versus MVS coefficients
for the experiments reported by Poelma et al. (2007, tables 3, 4 and figure 19). The labels
identify each experiment and correspond with the numbers in table 2 of this work and table 4
of Poelma et al. (2007).

coefficient,

MVS≡Φm

√
|〈u〉 − 〈v〉|√

2k/3

η

d
, (A 1)

as an alternative non-dimensional parameter. It is based, like ΦSt, on the volume
loading Φv, the density ratio ρp/ρ, and the particle diameter d/η, but also includes the
mean relative velocity |〈u〉 − 〈v〉|.

Based on the data reported by Poelma et al. (2007, tables 3, 4 and figure 19) the
anisotropy ratio εx/ε0 (Poelma et al. 2007, p. 343) for all experiments can be plotted
as a function of the MVS coefficient. The corresponding data points for the different
experiments are depicted in figure 10 and illustrate that there is a linear correlation
between the MVS coefficient and εx/ε0. (Experiment 3 is not included in figure 10
since it could not be identified in Poelma et al. (2007, figure 19). Experiments 7 and 8
were not included in § 3.2 because no Reynolds stress data were provided in Poelma
et al. (2007) for these experiments.)
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