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Let A be a self-adjoint operator on a Hilbert space. It is well known that A admits a
unique decomposition into a direct sum of three self-adjoint operators A p , Aac and
A s c such that there exists an orthonormal basis of eigenvectors for the operator A p ,
the operator Aac has purely absolutely continuous spectrum and the operator A s c

has purely singular continuous spectrum. We show the existence of a natural further
decomposition of the singular continuous component A s c into a direct sum of two
self-adjoint operators A D

s c and AND
s c . The corresponding subspaces and spectra are

called decaying and purely non-decaying singular subspaces and spectra. Similar
decompositions are also shown for unitary operators and for general normal operators.

1. Introduction

Based on our decomposition of measures over arbitrary non-discrete locally compact
topological abelian groups as the direct sum of decaying and purely non-decaying
measures [1,2], we obtain a natural decomposition of the singular continuous sub-
space of a normal operator as the orthogonal direct sum of two stable subspaces:
the decaying and purely non-decaying components. The decaying subspaces describe
mixing and decay in classical and quantum physics [4,7,8].

First, we introduce the key concepts.

Definition 1.1 (see [5]). An operator A : DA ³ H ! H in a Hilbert space H is
said to be normal if and only if

(a) the operator A is closed and densely de ned;

(b) the domains of the operators A y , A y A and AA y are dense in H, where A y is
the adjoint of A;

(c) A y A = AA y in the sense that their domains are equal: DAyA = DAAy and
A y Ax = AA y x for any x 2 DAyA = DAAy .

The spectral theorem for normal operators implies that an operator A in a Hilbert
space is normal if and only if A is unitarily equivalent to an operator of multipli-
cation by a measurable function in an L2-space over some measurable space.
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The class of normal operators contains the class of self-adjoint operators and the
class of unitary operators.

Definition 1.2. We say that a function f on a locally compact topological space X
vanishes at in¯nity if and only if, for any " > 0, there exists a compact set K » X
such that f(x) < " for any x 2 X n K. We denote the space of all continuous
complex-valued functions on X vanishing at in nity by C0(X). This space is a
Banach space with respect to the norm

kfkc = sup jf j: (1.1)

Definition 1.3. Let A be a normal operator in a Hilbert space H and f 2 H. The
¼ -additive Borel measure · f is said to be a spectral measure associated to the vector
f if and only if

(f; ’(A)f ) =

Z

C
’ d · f (1.2)

for any ’ 2 C0(C). This measure exists, is unique and positive according to the
Riesz{Markov theorem [9]. The scalar product (¢; ¢) is antilinear and linear with
respect to the  rst and second argument, respectively.

Note that equation (1.2) actually holds for any Borel function ’ : C ! C and
any f 2 D’(A). Moreover, f 2 H belongs to D’(A) if and only if

Z

C
j’j2 d · f < +1:

Definition 1.4. Let A be a normal operator in a Hilbert space H. We say that a
closed linear subspace H0 of H is stable with respect to A if and only if ’(A)f 2 H0

for any f 2 H0 \ D’(A) and any Borel function ’ : C ! C.
If H is a direct orthogonal sum of a sequence ( nite or in nite) of closed stable

(with respect to A) subspaces Hn : H =
L

n Hn (here and everywhere below we
use symbol © for orthogonal direct sum of closed subspaces of a Hilbert space),
then A is the direct sum of the restrictions An of A to Hn and each An is a normal
operator in Hn.

Recall [10] that the Fourier transform of a Borel  nite ¼ -additive measure · on
a locally compact abelian topological group G is the function ~· : G£ ! C,

~· (h) =

Z

G

ei(gjh) d · (g);

where (g j h) = h(g), G£ is the dual group of G, i.e. G£ is the group of all
continuous homomorphisms h : G ! T1 = R=(2 º Z) from G to the circle T1.

Definition 1.5. A Borel positive  nite ¼ -additive measure · on a locally com-
pact abelian topological group G is said to be decaying [2] if its Fourier transform
~· : G£ ! C vanishes at in nity. The measure · is said to be purely non-decaying
if any non-zero measure ¸ absolutely continuous with respect to · is not decaying.

Definition 1.6. Let A be a normal operator on a Hilbert space H. We say that
A has purely point spectrum if and only if, for any f 2 H, the spectral measure
· f has countable support, or, equivalently, there exists an orthonormal basis in H
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consisting of the eigenvectors of A. We denote by H p the closed linear hull of the
eigenvectors of a normal operator A. Equivalently, H p is the set of all vectors f 2 H
for which the spectral measure · f has countable support.

After stating the results for self-adjoint (see x 2) unitary (see x 3) and normal
(see x 4) operators, we prove the necessary lemmas (see x 5) and the main results
(see x 6) and show the non-triviality of our decomposition of singular continuous
subspace (see x 7).

2. The decay spectrum of self-adjoint operators

Definition 2.1. Let A be a self-adjoint operator on a Hilbert space H. We say
that A has purely absolutely continuous spectrum if, for any f 2 H, the spectral
measure · f is absolutely continuous with respect to the Lebesgue measure on the
real line. We say that A has purely singular continuous spectrum if, for any f 2 H,
the spectral measure · f is continuous and singular with respect to the Lebesgue
measure on the real line.

The absolutely continuous subspace Hac for A is the set of vectors f 2 H for
which the spectral measure · f is absolutely continuous with respect to the Lebesgue
measure on the real line. The singular continuous subspace H s c for A is the set of
vectors f 2 H for which the spectral measure · f is continuous and singular with
respect to the Lebesgue measure on the real line.

The following proposition is a well-known result (see, for example, [13]).

Proposition 2.2. Let A be a self-adjoint operator on a Hilbert space H. Then the
Hilbert space H is the orthogonal direct sum of three closed linear subspaces Hac,
H s c and H p , stable with respect to A,

H = Hac © H s c © H p : (2.1)

Thus A is the direct sum of three self-adjoint operators Aac, A s c and A p , being
the restrictions of A to Hac, H s c and H p , respectively. Moreover, A p has purely
point spectrum, Aac has purely absolutely continuous spectrum and A s c has purely
singular continuous spectrum.

Definition 2.3. Let A be a self-adjoint operator on a Hilbert space H. A vector
f 2 H is said to be decaying (or f 2 H D ) if

lim
jtj! 1

(f; eitAf ) = 0; t 2 R: (2.2)

A vector f 2 H is said to be purely non-decaying (or f 2 HND ) if it is orthogonal
to all decaying vectors. We say that A has purely decaying spectrum if H = H D

and we say that A has purely non-decaying spectrum if H D = f0g

Theorem 2.4. Let A be a self-adjoint operator on a Hilbert space H. A vector
f 2 H is decaying if and only if the spectral measure · f is decaying as a measure
on R; f is purely non-decaying if and only if the spectral measure · f is purely
non-decaying as a measure on R.
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Theorem 2.5. Let A be a self-adjoint operator on a Hilbert space H. Then H is
the orthogonal direct sum of two closed linear subspaces H D and HND stable with
respect to A,

H = H D © HND : (2.3)

Thus the operator A is the direct sum of two self-adjoint operators A D and AND ,
being the restrictions of A to H D and HND , respectively. Moreover, H p ³ HND and
Hac ³ H D .

Corollary 2.6. Let A be a self-adjoint operator on a Hilbert space H. Then

H = H p © HND
s c © H D

s c © Hac;

H s c = HND
s c © H D

s c;

HND = H p © HND
s c ;

H D = H D
s c © Hac;

9
>>>>=

>>>>;

(2.4)

where HND
s c = H s c \ HND and H D

s c = H D \ H s c

Moreover, A is the direct sum of four self-adjoint operators Aac, A D
s c, AND

s c

and A p , being the restrictions of A to Hac, H D
s c, HND

s c and H p , respectively. The
operator A D

s c has purely singular continuous and purely decaying spectrum and the
operator AND

s c has purely singular continuous and purely non-decaying spectrum.

3. The decay spectrum of unitary operators

The de nitions of unitary operators with purely absolutely continuous and with
purely singular continuous spectrum, as well as the de nition of absolutely con-
tinuous and singular continuous subspaces for unitary operators, can be obtained
from the corresponding de nitions for self-adjoint operators (see de nition 2.1) by
replacing the Lebesgue measure on the real line with the Lebesgue measure on the
unit circle.

The following proposition can be obtained from proposition 2.2 by the Cayley
transform.

Proposition 3.1. Let U be a unitary operator in a Hilbert space H. Then the
Hilbert space H is the orthogonal direct sum of three closed linear subspaces Hac,
H s c and H p , stable with respect to U ,

H = Hac © H s c © H p : (3.1)

Thus U is the direct sum of three unitary operators Uac, Us c and Up , being the
restrictions of U to Hac, H s c and H p , respectively. Moreover, Up has purely point
spectrum, Uac has purely absolutely continuous spectrum and Us c has purely singular
continuous spectrum.

Definition 3.2. Let U be a unitary operator on a Hilbert space H. A vector f 2 H
is said to be decaying (or f 2 H D ) if

lim
jnj! 1

(f; Unf ) = 0; n 2 Z: (3.2)
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A vector f 2 H is said to be purely non-decaying (or f 2 HND ) if it is orthogonal
to all decaying vectors. We say that A has purely decaying spectrum if H = H D

and we say that A has purely non-decaying spectrum if H D = f0g.

Theorem 3.3. Let U be a unitary operator on a Hilbert space H. A vector f 2 H
is decaying if and only if the spectral measure · f is decaying as a measure on the
unit circle; f is purely non-decaying if and only if the spectral measure · f is purely
non-decaying as a measure on the unit circle.

Theorem 3.4. Let U be a unitary operator on a Hilbert space H. Then H is the
orthogonal direct sum of two closed linear subspaces H D and HND , stable with
respect to U ,

H = H D © HND : (3.3)

Thus the operator U is the direct sum of two unitary operators U D and UND ,
being the restrictions of U to H D and HND , respectively. Moreover, H p ³ HND and
Hac ³ H D .

Corollary 3.5. Let U be a unitary operator on a Hilbert space H. Then

H = H p © HND
s c © H D

s c © Hac;

H s c = HND
s c © H D

s c;

HND = H p © HND
s c ;

H D = H D
s c © Hac;

9
>>>>=

>>>>;

(3.4)

where HND
s c = H s c \ HND and H D

s c = H D \ H s c. Thus U is the direct sum of four
unitary operators Uac, U D

s c , U ND
s c and Up , being the restrictions of U to Hac, H D

s c,
HND

s c and H p , respectively. The operator U D
s c has purely singular continuous and

purely decaying spectrum and the operator U ND
s c has purely singular continuous and

purely non-decaying spectrum.

4. The decay spectrum of normal operators

In this section we deal with normal operators whose spectrum is not concentrated in
the real line or unit circle. Therefore, they are neither self-adjoint nor unitary. The
de nitions of normal operators with purely absolutely continuous and with purely
singular continuous spectrum, as well as the de nition of absolutely continuous
and singular continuous subspaces for normal operators, can be obtained from the
corresponding de nitions for self-adjoint operators (see de nition 2.1) by replacing
the Lebesgue measure on the real line with the Lebesgue measure on the complex
plane.

The following proposition is the well-known analogue of proposition 2.2 for nor-
mal operators.

Proposition 4.1. Let A be a normal operator on a Hilbert space H. Then the
Hilbert space H is the orthogonal direct sum of three closed linear subspaces H p ,
Hac and H s c, stable with respect to A,

H = H p © Hac © H s c: (4.1)
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Thus A is the direct sum of three normal operators A p , Aac and A s c, being the
restrictions of A to H p , Hac and H s c, respectively. Moreover, A p has purely point
spectrum, Aac has purely absolutely continuous spectrum and A s c has purely singular
continuous spectrum.

We would like to point out here that any non-zero self-adjoint or unitary operator
considered as a normal operator has purely singular spectrum, since any measure,
concentrated on the real line or on the unit circle, is singular with respect to the
two-dimensional Lebesgue measure.

Definition 4.2. Let A be a normal operator on a Hilbert space H. A vector f 2 H
is said to be decaying (with respect to the two-dimensional Lebesgue measure) (or
f 2 H D ) if and only if

lim
jtj + jsj! 1

(f; eitAR + isAIf ) = 0; t; s 2 R; (4.2)

where AR = 1
2 (A + A y ) is the real part of A and AI = (A ¡ A y )=2i is the imaginary

part of A. A vector f 2 H is said to be purely non-decaying (or f 2 HND ) if it is
orthogonal to all decaying vectors. We say that A has purely decaying spectrum if
H = H D and we say that A has purely non-decaying spectrum if H D = f0g.

Theorem 4.3. Let A be a normal operator on a Hilbert space H, f 2 H. Then f
is decaying if and only if the spectral measure · f is decaying as a measure on the
complex plane; f is purely non-decaying if and only if the spectral measure · f is
purely non-decaying as a measure on the complex plane.

Theorem 4.4. Let A be a normal operator on a Hilbert space H. Then H is the
orthogonal direct sum of two closed linear subspaces H D and HND , stable with
respect to A,

H = H D © HND : (4.3)

Thus the operator A is the direct sum of two normal operators A D and AND ,
being the restrictions of A to H D and HND , respectively. Moreover, H p ³ HND

and Hac ³ H D .

Corollary 4.5. Let A be a normal operator on a Hilbert space H. Then

H = H p © HND
s c © H D

s c © Hac;

H s c = HND
s c © H D

s c;

HND = H p © HND
s c ;

H D = H D
s c © Hac;

9
>>>>=

>>>>;

(4.4)

where HND
s c = H s c \ HND and H D

s c = H D \ H s c and A is the direct sum of four
normal operators Aac, A D

s c, AND
s c and A p , being the restrictions of A to Hac, H D

s c,
HND

s c and H p , respectively. The operator A D
s c has purely singular continuous and

purely decaying spectrum and the operator AND
s c has purely singular continuous and

purely non-decaying spectrum.
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5. Basic lemmas

Let · and ¸ be positive ¼ -additive measures on some measurable space (X; F). We
write · ¿ ¸ if · is absolutely continuous with respect to the measure ¸ and we
write · ? ¸ if the measure · is singular with respect to ¸ .

Theorem 5.1 (Lebesgue theorem [11]). Let · and ¸ be positive ¼ -additive mea-
sures on some measurable space (X; F). Then there exist unique measures · 1 and
· 2 such that · 1 ¿ ¸ , · 2 ? ¸ and · = · 1 + · 2.

Definition 5.2. Let A be a normal operator in a Hilbert space H and f 2 H. The
cyclic subspace of H generated by f is

Hf = f’(A)f j’ : C ! C is a Borel function and f 2 D’(A)g: (5.1)

Evidently, Hf is a closed linear subspace of H, stable with respect to A. Note
that a closed linear subspace H0 of H is stable with respect to A if and only if
Hf ³ H0 for any f 2 H0.

Lemma 5.3. For any normal operator A on a Hilbert space H and any f; g 2 H,
we have

(i) if g ? Hf , then Hg ? Hf ;

(ii) if · g ? · f , then Hg ? Hf ;

(iii) if g 2 Hf , then · g ¿ · f .

Proof. If g 2 Hf , then there exists a Borel function ’ : C ! C such that g = ’(A)f .
Then, for any Á 2 C0(C),
Z

C
Á d · g = (g; Á(A)g) = (’(A)f; Á(A)’(A)f ) = (f; (Áj’j2)(A)f ) =

Z

C
Áj’j2 d · f :

Therefore, · g ¿ · f (the density of · g with respect to · f is j’j2). Condition (iii) is
proved.

Let g ? Hf . To prove (i), it su¯ ces to check that, for any bounded Borel functions
’; Á : C ! C, the equality (’(A)g; Á(A)f ) = 0 is valid. But (’(A)g; Á(A)f ) =
(g; ( ·’Á)(A)f) = 0, since ( ·’Á)(A)f 2 Hf . Condition (i) is proved.

Suppose now that · g ? · f . Let h 2 Hf and p 2 Hg . According to the already
proven condition (iii), · h ¿ · f and · p ¿ · g . Therefore, · h ? · p, i.e. there exists
a Borel set B ³ C such that · h(B) = · p(C n B) = 0. Let ’(z) = 1 for z 2 B and
’(B) = 0 for z 2 C n B. Evidently, the operator P = ’(A) is an orthoprojection,
P h = 0 and P p = p. Therefore, h ? p. Hence Hf ? Hg. Lemma 5.3 is proved.

Lemma 5.4. Let A be a normal operator in a Hilbert space H and H0 be a closed
linear subspace of H, stable with respect to A. Then the orthocomplement H1 of H0

is also stable with respect to A.

Proof. Let f 2 H1, g 2 H0. Since H0 is stable with respect to A, Hg ³ H0.
Therefore, f ? Hg. Lemma 5.3 implies that Hg ? Hf and, in particular, g ? Hf .
Since g is an arbitrary element of H0, Hf ? H0. Therefore, Hf ³ H1. Hence H1 is
stable with respect to A. Lemma 5.4 is proved.
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The following two lemmas are proved in [2].

Lemma 5.5. Let · be a decaying measure on a non-discrete locally compact abelian
topological group and ¸ 2 M be a measure absolutely continuous with respect to · .
Then the measure ¸ is also decaying.

Lemma 5.6. Let · be a decaying measure on a non-discrete locally compact abelian
topological group G and ¸ be a purely non-decaying measure on G. Then · is singular
with respect to ¸ .

6. Proof of the theorems

Proof of theorem 2.5. Suppose that the conditions of theorem 2.5 are satis ed.
First, let us check that the set H D is a closed linear subspace of H. Let f 2 H D

and c 2 C. Then

lim
t ! 1

(cf; eitA(cf )) = jcj2 lim
t! 1

(f; eitAf ) = 0:

Therefore, cf 2 H D . It is clear that the function (f; eitAf ) coincides with the Fourier
transform of · f ,

(f; eitAf ) = ~· f (t): (6.1)

Now let f; g 2 H D . Then

lim
t! 1

(f + g; eitA(f + g)) = lim
t! 1

((f; eitAf ) + (g; eitAg) + (f; eitAg) + (g; eitAf ))

= lim
t! 1

((f; eitAg) + (g; eitAf)): (6.2)

It is clear that the function (f; eitAg)+(g; eitAf) coincides with the Fourier transform
of the complex-valued Borel measure ¸ on C de ned by the equality

¸ (B) = (f; ’B(A)g) + (g; ’B(A)f );

where ’B(z) = 1 if z 2 B and ’B(z) = 0 if z =2 B. Clearly, for any Borel set B ³ C,

j ¸ (B)j 6 j(f; ’B(A)g) + (g; ’B(A)f )j
= j(f; ’2

B(A)g) + (g; ’2
B(A)f )j

6 2j(’B(A)f; ’B(A)g)j
6 (’B(A)f; ’B(A)f ) + (’B(A)g; ’B(A)g)

= (f; ’2
B(A)f ) + (g; ’2

B(A)g)

= (f; ’B(A)f ) + (g; ’B(A)g)

= · f (B) + · g(B): (6.3)

Therefore, ¸ ¿ · f + · g. Since ~· f ; ~· g 2 C0(R), lemma 5.5 implies that ~¸ vanishes
at in nity. This, together with (6.2) and (6.1), implies that f + g 2 H D . Therefore,
H D is a linear subspace of H. Suppose now that fn is a sequence of elements of
H D converging to f 2 H with respect to the norm of the Hilbert space H. Then,
obviously, the sequence of functions gn(t) = (fn; eitAfn) converges uniformly to the
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function g(t) = (f; eitAf) (jgn(t) ¡ g(t)j 6 2kfkkfn ¡ fk). Since a uniform limit of
a sequence of elements of C0(R) is an element of C0(R),

lim
t! 1

(f; eitAf ) = 0:

Therefore, f 2 H D . Thus the space H D is closed. The inclusion Hac ³ H D fol-
lows from the Riemann{Lebesgue lemma and (6.1). Since the convergence of the
Fourier transform to zero implies continuity of a measure on real line, we have that
H D ³ Hac © H s c. Therefore, H p ³ HND (HND is the orthocomplement of H D ).

Let us verify that H D is stable with respect to A. Let ’ : C ! C be a Borel func-
tion, f 2 H D \ D’(A) and g = ’(A)f . We have to prove that g 2 H D . Lemma 5.3
implies that g 2 Hf and therefore · g ¿ · f . The measure · f is decaying since
f 2 H D . Lemma 5.5 now implies that · g is decaying and therefore g 2 H D . Thus
H D is stable with respect to A and so is HND according to lemma 5.4. The spaces
H D

s c and HND
s c are stable with respect to A, as intersection of stable subspaces. All

other statements of theorem 2.5 follow easily from the proven ones.

Proof of theorem 3.4. This is identical to the proof of theorem 2.5; the only dif-
ference is that we deal with measures on a unit circle instead of measures on R.
Alternatively, it follows from theorem 2.5 using the Cayley transform.

Proof of theorem 4.4. This is identical to the proof of theorem 2.5; the only di¬er-
ence is that we deal with measures on C instead of measures on R.

Proof of theorem 2.4. Suppose that the conditions of theorem 2.4 are satis ed. For-
mula (6.1) implies that f 2 H D if and only if · f is decaying. Suppose that f 2 H
and · f is purely non-decaying. Also let g 2 H D , i.e. · g is decaying. According to
lemma 5.6, · g ? · f . Therefore, lemma 5.3 implies that g ? f . Hence f ? H D , or,
equivalently, f 2 HND .

Suppose now that f 2 HND . We have to prove that · f is purely non-decaying.
If not, there exists a non-zero Borel measure ¸ on R such that ¸ is decaying and
¸ ¿ · f . Lemma 5.5 implies that ¸ is decaying. Let ’ : C ! [0; +1) be the density
of ¸ with respect to · f . Consider g =

p
’(A)f . Clearly,

kgk2 = (
p

’(A)f;
p

’(A)f ) = (f; ’(A)f ) =

Z

C
’ d · f = j ¸ j(C) < 1:

Thus f 2 Dp
’(A) and vector g 2 Hf ³ H is well de ned. Let Á 2 C0(C). Then

Z

C
Á d · g = (g; Á(A)g) = (Á

p
’(A)f;

p
’(A)f) = (’Á(A)f; f ) =

Z

C
Á’ d · f :

Therefore, ’ is the density of · g with respect to · f . Thus · g = ¸ is decaying. Hence
g 2 H D \ Hf for f 2 HND , which contradicts the invariance of HND with respect
to A proved in the previous subsection. Theorem 2.4 is proved.

Proof of theorem 3.3. This is identical to the proof of theorem 2.4; the only di¬er-
ence is that we deal with measures on the unit circle instead of measures on R.

Proof of theorem 4.3. This is identical to the proof of theorem 2.4; the only di¬er-
ence is that we deal with measures on C instead of measures on R.
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7. Non-triviality of the decomposition of
the singular continuous subspace

The following examples show the non-triviality of the decomposition of the subspace
H s c in terms of decay and non-decay parts.

For any ¬ > 0, let ¸ ¬ be the measure on the real line concentrated in the two point
set f¡ ¬ ; ¬ g such that ¸ ¬ (f¡ ¬ g) = ¸ ¬ (f ¬ g) = 1

2 . For any ³ > 1, let · ³ be the weak
limit of the sequence of measures ¸ ³ ¡ 1 ¤ ¢ ¢ ¢ ¤ ¸ ³ ¡ n , where ¤ is the convolution. Note
that the standard Cantor measure (up to a linear change of variables) coincides
with · 3 and · 2 is the normalized Lebesgue measure on the segment [ ¡ 1; 1]. It is
straightforward to verify that the Fourier transform ~· ³ of · ³ is given by the formula

~· ³ (x) =

1Y

n= 1

cos

³
x

³ n

´
: (7.1)

In [2], it is shown that · ³ is purely non-decaying if ³ is an integer and ³ > 3.
Erd�os [6] showed that · ³ , for rational non-integer theta greater than 2, is decaying
(in both cases, we treat · ³ as a measure on the real line).

Example 7.1. Self-adjoint operator with non-trivial decomposition of H s c. Con-
sider the measure · = · 3 + · 5=2 on the real line, where · 3 and · 5=2 are measures
de ned by (7.1). Then · is a singular continuous measure, which is neither decaying
nor purely non-decaying.

Let H = L2(R; · ) and let the operator A on H be de ned by the formula Af (x) =
xf(x). Then A is a self-adjoint operator on H, H p = Hac = f0g and both spaces
H D

s c and HND
s c are in nite dimensional. This example shows that our decomposition

of the space H s c is non-trivial.

The analogous example for unitary operator can be obtained from the previous
one using Cayley transform.

Let · be the measure from example 7.1 and ² be an arbitrary positive  nite
measure on R, absolutely continuous with respect to the Lebesgue measure. Also
let ¸ be the measure on the complex plane such that

¸ (A + iB) = · (A) ² (B) (7.2)

for any Borel subsets A and B of R. Then ¸ is an example of a singular continuous
measure on the complex plane, which is neither decaying nor purely non-decaying.

Example 7.2. Normal operator with non-trivial decomposition of H s c. Let H =
L2(C; ¸ ) and let the operator A on H be de ned by the formula Af (z) = zf (z).
Then A is a normal operator on H, H p = Hac = f0g and the spaces H D

s c and HND
s c

are in nite dimensional. This example shows that our decomposition of the space
H s c for normal operators is non-trivial.

8. Concluding remarks

The motivation of the decomposition into decaying and purely non-decaying spec-
tral subspaces is the complete spectral characterization [3] of mixing and decay
in classical and quantum systems [4, 7, 8]. In the case of quantum systems, the
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spectral measure of the Liouville{von Neumann operator generating the statistical
evolution, is the convolution of the spectral measure of the Hamiltonian with its
re®ection [3]. In [3], we corrected some erroneous statements [12] on the spectrum
of the Liouville{von Neumann operator in the Hilbert{Schmidt space.

Acknowledgments

We thank Professor I. Prigogine for his interest and support, and Professor Z. Such-
anetski for fruitful discussions. We also acknowledge the  nancial support of the
Belgian Government under the Interuniversity Attraction Poles and the European
Commission DG III ESPRIT project NTCONGS.

References

1 I. Antoniou and S. A. Shkarin. Decomposition of singular measures. Dokl. Math. 61 (2000),
24{27.

2 I. Antoniou and S. A. Shkarin. Decaying measures on locally compact abelian topological
groups. J. Edinb. R. Soc. A 131 (2001), 1257{1273. (Following paper.)

3 I. Antoniou, S. A. Shkarin and Z. Suchanetcki. The spectrum of the Liouville{von Neumann
operator in the Hilbert{Schmidt space. J. Math. Phys. 40 (1999), 4106{4118

4 I. Cornfeld, S. Fomin and Ya. Sinai. Ergodic theory (Springer, 1982).

5 N. Dunford and T. Schwartz. Linear operators, vols I, II, III (Wiley, 1988).

6 P. Erd�os. On a family of symmetric Bernoulli convolutions. Am. J. Math. 61 (1939), 974{
976.

7 P. Exner. Open quantum systems and Feynman integrals (Dordrecht, The Netherlands:
Reidel, 1985).

8 L. Fonda, G. Girardi and A. Rimini. Decay theory of unstable quantum systems. Rep. Prog.
Phys. 41 (1978), 587{631.

9 M. Reed and B. Simon. Functional analysis. In Methods of modern mathematical physics,
vol. 1 (Academic, 1972).

10 W. Rudin. Fourier analysis on groups (Wiley, 1990).

11 G. E. Shilov and B. L. Gurevich. Integral, measure andderivative: aunī edapproach (New
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