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SUMMARY

Aquaculture, including both freshwater and marine production, has on a world scale exhibited one of the highest growth
rates within animal protein production during recent decades and is expected to expand further at the same rate within the
next 10 years. Control of diseases is one of themost prominent challenges if this production goal is to be reached. Apart from
viral, bacterial, fungal andmetazoan infections it has been documented that protozoan parasites affect health andwelfare and
thereby production of fish in marine aquaculture. Representatives within the main protozoan groups such as amoebae,
dinoflagellates, kinetoplastid flagellates, diplomonadid flagellates, apicomplexans, microsporidians and ciliates have been
shown to cause severe morbidity and mortality among farmed fish. Well studied examples are Neoparamoeba perurans,
Amyloodinium ocellatum, Spironucleus salmonicida, Ichthyobodo necator, Cryptobia salmositica, Loma salmonae, Cryptocaryon
irritans, Miamiensis avidus and Trichodina jadranica. The present report provides details on the parasites’ biology and
impact on productivity and evaluates tools for diagnosis, control and management. Special emphasis is placed on
antiprotozoan immune responses in fish and a strategy for development of vaccines is presented.
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INTRODUCTION

Production of teleosts in the marine environment is a
rapidly developing aquacultural activity worldwide.
In relation to the known number of fish species
described, which counts more than 28000 species
(Nelson, 2006), relatively few of these (<400 species)
are currently being propagated under artificial con-
ditions. However, even on this constricted basis,
production of marine fish in aquaculture enterprises
is a prominent player on the world market. In 2010,
the Atlantic salmon (Salmo salar) was produced in
quantities of more than 1.5 million tonnes, milkfish
(Chanos chanos) production exceeded 0.8 million
tonnes and sea bass (Dicentrarchus labrax) and sea
bream (Sparus aurata) rearing reached more than
450000 tonnes (FAO, 2012). As in all other types of
husbandry, infectious diseases represent one of the
main obstacles for safe production securing a high
level of animal welfare (Rodgers and Furones, 1998;
Segner et al. 2012). Viral, bacterial and fungal
diseases represent well known challenges to mari-
culture enterprises and call for special methods for
successful control. Strategies rely on improved
management procedures, breeding of resistant fish,

chemical/medical intervention and immunoprophy-
laxis including vaccination, which is currently used
for control of bacterial diseases. Metazoan parasites
including helminths and crustaceans are also con-
sidered severe pests in mariculture enterprises and
these parasites are in many cases visible to the naked
eye and therefore easily diagnosed disease agents.
Protozoans are limited in size and more difficult to
diagnose. If infections are observed macroscopically
this will be due to pathological tissue changes
(hyperplasia, hypertrophy or necrosis of host tissue)
induced by the protozoans.Despite the limited size of
protozoans their pathogenic effects on fish may be
devastating and can negatively impact on fish pro-
duction. The present report provides examples of
problems in marine fish farming caused by amoebae,
flagellates, apicomplexans, microsporideans and
ciliates.

AMOEBAE

Neoparamoeba perurans

Salmon farming in Tasmania, Europe, South
America and North America suffers from infections
with amoebae of the species Neoparamoeba perurans,
a parasite causing amoebic gill disease (AGD) in
Atlantic salmon (S. salar) in marine fish farms
(Young et al. 2007; Rozas et al. 2012). It is one of
the best documented gill diseases in salmon farming
eliciting high morbidity and some mortality. Other
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species of Neoparamoeba have been isolated from
various marine fishes (Dyková et al. 2007) but only
N. perurans has been proven explicitly to elicit
pathological reactions in fish gills (Young et al.
2008). Apart from Atlantic salmon host fishes such
as coho salmon (Oncorhynchus kisutch), chinook
salmon (O. tshawytscha), rainbow trout (O. mykiss),
ayu (Plecoglossus altivelis), sea bass (D. labrax) and
turbot (Scophthalmus maximus) have been diagnosed
with AGD (Nowak, 2012). Amoebae induce hyper-
plasia in affected gill areas where inflammatory foci,
clubbing and filament fusion may occur. Diagnosis
requires use of molecular tools (PCR or in situ
hybridization) because light microscopy cannot
differentiate between e.g. genera Paramoeba and
Neoparamoeba, both carrying eukaryotic endosym-
bionts. Neoparamoeba perurans is a marine species
and treatment can be performed by freshwater
bathing but use of hydrogen peroxide treatments
have shown some effects as well (Nowak, 2012).
Irritation of gill epithelia following invasion by
amoebae lead to IL-1beta expression followed by
hyperplasia (Adams and Nowak, 2003) and higher
infections lead to extensive inflammatory responses
with infiltration of reactive cells. These reactions
clearly indicate that host immune responses are
activated following infection but also that they are
part of the pathological reactions destroying the
architecture of the gill tissue leading to decreased
oxygen uptake and carbon dioxide release (Nowak,
2012). Control strategies may include breeding for
resistant salmon strains but immunoprophylactic
measures should be considered as well. Feeding
salmon with immunostimulating feed additives,
which often has been suggested to boost the fish
immune system, did not show a satisfactory effect on
infection levels (Bridle et al. 2005). Vaccines (im-
mersion or injection) based on live or killed amoebae
and even DNA vaccines have been tested experimen-
tally but without showing any significant efficacy
(Nowak, 2012).

DINOFLAGELLATES

Amyloodinium ocellatum

The dinoflagellate A. ocellatum has an ectoparasitic
life style and has been considered a pest in marine
aquaculture for decades due to its association with
severe morbidity and mortality (Paperna, 1981;
Pereira et al. 2011; Saraiva et al. 2011; Soares et al.
2012). The sessile stage on fish is termed the
trophont, attaching itself by rhizoids penetrating
surface epithelia of gills, skin and fins of host fishes.
Multiplication occurs in the environment in a cyst
stage termed the tomont. Numerous infective dino-
spores are released from the cyst whereafter the fish
can acquire additional infections (Noga, 1987). The
characteristic parasite is easily diagnosed by light
microscopy but molecular diagnostic tools including

PCR and sequencing of rDNA have been developed
(Levy et al. 2007). The pathogenic effect of the para-
site is associated with severe disturbance of epithelia
which evidently can lead to osmoregulatory problems
in the host fish (Noga, 1987). Effective treatment of
infections has been achieved by use of auxiliary
compounds containing formalin, copper and hydro-
gen peroxide, but experimental trials have shown that
also drugs such as chloroquine chloride and a series of
antibiotics have effects on A. ocellatum infections in
fish (Noga, 2012). Epithelial sloughing and rhizoid
penetration will presumably activate a series of im-
mune reactions which have not been fully described
but the severe hyperplasia and inflammatory reac-
tions elicited by the parasites are probably associated
with extensive production of cytokines. A series of
antimicrobial peptides such as HLPs (histone-like
proteins) and piscidins produced in the skin of certain
fish species show a clear killing effect on dinospores.
It has also been shown that specific serum antibodies
occur in hosts following infection and recovery
(Smith et al. 1992; Cecchini et al. 2001) which at
least could partly explain the dinospore-agglutinating
activity of tilapia serum (Smith et al. 1993). Clown
fish (Amphiprion frenatus) surviving from experi-
mental infections developed acquired immunity to
reinfection lasting for half a year (Cobb et al. 1998)
which suggest that development of a protective
vaccine may be a realistic future goal.

Ichthyodinium spp.

The endoparasitic dinoflagellate Ichthyodinium was
previously known from wild fish and fish eggs but
following the advent of cod (Gadus morhua) farming
(Buchmann et al. 1993; Pedersen et al. 1993) fish and
eggs from thesemarine species were found to be infec-
ted by dinoflagellates during routine investigations
for diseases and a tentative diagnosis based on light
microscopy was made. However, a precise generic
diagnosis was only recently obtained following
sequencing of rDNA from the organism (Skovgaard
et al. 2010). The parasite occurs as a trophozoite in
eggs and yolk sac larvae and it was initially suggested
that infection could affect host survival, a suggestion,
however, that could not be confirmed by Skovgaard
et al. (2010). The absence of multiplication in eggs
and larvae of cod indicated that the stimulation
of immune factors is minimal and thereby patho-
logical reactions are absent. However, Mori et al.
(2007) reported severe health and quality problems
associated with multiplication of Ichthyodinium
parasites in eggs and larvae of leopard coral grouper
(Plectropomus leopardus). Control efforts using
chemical or medical treatment may be difficult due
to the endoparasitic nature of this parasite and the
fragility and vulnerability of eggs and yolk sac larvae.
Therefore it is advisable to introduce improved
prophylactic hygienic measures combined with use
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of certified disease-free spawners, eggs and larvae in
order to eliminate infections. An alternative, but still
theoretical, immunoprophylactic strategy may be
immunization of spawners with subsequent transfer
of protective immune elements in the egg.

KINETOPLASTID FLAGELLATES

Cryptobia salmositica

The kinetoplastid flagellate C. salmositica infects
Pacific salmon belonging to the genus Oncorhynchus
and may cause considerable mortality in marine net
pens. It has relatively low host specificity and may
also infect sculpins (Cottus spp.) and Salvelinus
fontinalis (Woo, 2012). Although leeches (Piscicola
salmositica) are known to transmit these flagellates a
direct transfer from host to host under high host
densities has been described. The parasite penetrates
the fish surface and may remain in this microhabitat,
but the main pathogenic effect is associated with ex-
tensive parasitaemia. The parasite’s production of
cysteine- and metallo-proteases is considered to pro-
vide the parasite with penetration tools and to be
responsible for anaemia (Woo, 1979). Inflammatory
reactions lead to oedema, ascites and exophthalmia
with a general decrease in physiological functions
associated with lethargy and anorexia. The drug iso-
metamidium chloride (Samorin), which is a known
anti-trypanosomal compound, also exerts action
against crytobiosis in certain stages but not the
acute phase of the disease (Ardelli and Woo, 1999).
The occurrence of the flagellate in the host vascular
system evidently stimulates both innate and adaptive
immune responses. High antibody titres have been
measured in fish surviving an infection. The alterna-
tive complement activation pathway may confer pro-
tection to naturally resistant fish. Several strategies
for development of vaccines against cryptobiosis have
been tested including vaccinationwith cultured atten-
uated parasites (Woo andLi, 1990), recombinant pro-
tein vaccines and DNA-vaccines (Tan et al. 2008).

Ichthyobodo necator

This flagellate (Fig. 1) is found both in freshwater
and marine facilities. There is debate whether more
than one species is involved and recent studies have
provided molecular clues to differentiation of differ-
ent strains and species within the genus Ichthyobodo
(Isaksen et al. 2012). The parasite infects both skin
and gill epithelia and is associated with considerable
morbidity and even mortalities (Urawa et al. 1998).
The parasite occurs in two forms, a motile and a
sessile stage. The latter is probably the most
pathogenic due to its attachment and penetration of
host epithelia. Both stages are susceptible to auxiliary
chemical compounds such as formalin and various
oxidizing agents (hydrogen peroxide, sodium per-
carbonate, peracetic acid). The latter groupwill, from

an environmental perspective, be needed in future
production facilities should they be based on prin-
ciples of sustainability. Host reactions include mu-
cous cell involvement and hyperplasia (Urawa, 1992;
Urawa et al. 1998) and recent studies have shown that
experimental infections induce T cell and IgT
lymphocyte depletion in skin whereas IgM-positive
lymphocytes accumulate in the infected epidermis
(Chettri et al. 2012). Cytokine profiling indicated that
the parasites initiate a TH2 –like response in rainbow
trout skin being based on up-regulation of IL-4/13
and IL-10 genes. Furthermore, increased occurrence
of IgM-producing lymphocytes in the skin supports
this notion. Given the recent information that rain-
bow trout utilize IgT responses combined with T cell
involvement in gills when mounting effective re-
sponses against white spot disease (Jørgensen et al.
2011; Olsen et al. 2011) it may be worth reflecting on
the possibility that manipulation of host responses
towards I. necator in a similar way could increase
protection from a low to an acceptable level.

DIPLOMONADID FLAGELLATES

Spironucleus salmonis was originally described as
Hexamita salmonis; it is a common intestinal parasite
in farmed rainbow trout (Buchmann et al. 1995) eli-
citing intestinal dysfunction andweight loss probably
due to malabsorption (Uldal and Buchmann, 1996).
Reports on extraintestinal occurrence of a diplo-
monadid, previously diagnosed as H. salmonis
(Kent et al. 1992; Poppe et al. 1992) in maricultured
salmonids framed the pathological importance of
diplomonadids. It was later suggested that the causa-
tive agent was a corresponding species Spironucleus
barkhanus previously recorded in grayling
(Thymallus thymallus) and arctic charr (Salvelinus
alpinus) (Sterud et al. 1998) which was suspected in
the spread of the infection to Atlantic salmon and in
the subsequent appearance of extra-intestinal

Fig. 1. Ichthyobodo necator on dorsal fin of rainbow trout.
Scale bar 5 μM. Courtesy of Dr. O. S. Møller, Zoological
Museum, University of Copenhagen, Denmark.
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abcesses. However, molecular studies showed that
the pathogen was a closely related but new species,
Spironucleus salmonicida (Jørgensen and Sterud,
2006). The parasite’s pathogenicity is associated
with penetration of various tissues including muscles
and it has obviously an ability to evade innate re-
sponses of salmon. Treatment of spironucleosis was
previously conducted by the use of nitro-imidazoles
such as metronidazole, but due to the ban of this drug
in husbandry, including fish farming, alternative
compounds have been tested for possible antiparasi-
tic effects. Garlic extracts were indeed found to affect
the related flagellateSpironucleus vortens (Millet et al.
2011) which suggests that alternative drugs should be
tested also for S. salmonicida. Possible immuno-
prophylactic measures including immunostimulants
and/or vaccination should be investigated. This area
has many research opportunities due to the fact that
the nature of the host immune response towards these
diplomonadid flagellates has not yet been established.

APICOMPLEXA

A number of apicomplexan species are common in
wild fish from both freshwater and marine habitats.
However, reports on apicomplexan infections in
maricultured fish are few. When Heuch et al. (2011)
compared parasite infections in wild and mari-
cultured cod (G. morhua) in Norway they detected
Goussia spraguei as the only species within this group
and occurring only in wild fish. However, turbot
(S. maximus) farms in North West Spain were diag-
nosed with Cryptosporidium scophthalmi (Alvarez-
Pellitero et al. 2004). Although no evidence for severe
impact of infection was recorded, the authors showed
histopathological changes of the host intestinal
epithelium with leukocyte infiltration. Tissue
changes associated with Cryptosporidium spp. infec-
tions mainly of juvenile farmed turbot were reported
from Portugal (Saraiva et al. 2009) where the parasite
was found in bile duct epithelial cells. No ex-
perimental treatments of these infections were
performed but it may be worthwhile testing if anti-
coccidian compounds such as toltrazuril may have a
curative effect (Schmahl et al. 1989). The trend for a
lower prevalence and intensity with older fish suggest
development of age-dependent immunity against
these apicomplexans corresponding to anti-coccidian
responses in birds and mammals. This suggests that
further investigations on immune reactions in marine
piscine hosts should be performed in order to
elucidate immune mechanisms and potentials for
immunoprophylactic strategies.

MICROSPORIDIA

A range of microsporidians has been detected in
various maricultured fishes. One of these is Loma
salmonae in salmonids (Speare and Lovy, 2012),

but also Pleistophora anguillarum in Japanese eels
(Anguilla japonica) (Hung et al. 1996) and Entero-
cytozoon spp. in Atlantic halibut (Hippoglossus
hippoglossus) (Bergh et al. 2001) have been associated
with pathological reactions in farmed fishes.

Loma salmonae

Pacific salmon cultured in marine net-pens are par-
ticularly affected by L. salmonae which primarily
infects gill tissue but may be found in other organs
(e.g. intestine) as well. Parasite spores develop in a
host cell producing relatively large whitish xenomas
which rupture within weeks whereupon spores are
released to the environment. Implementation of hy-
gienic procedures including fallowing of production
sites for extended time periods may be an important
prophylactic strategy. Partial treatment success
against the parasitosis using fumagillin, albendazole
or monensin has been reported (Speare and Lovy,
2012). The inflammatory response to xenoma devel-
opment is absent or minimal and restricted to a weak
fibroblast migration towards the infected cell surface
(Speare and Lovy, 2012). This may indicate that the
parasite in this stage has an immune modulating
mechanism securing fulfilment of the life cycle.
However, following rupture and release of spores a
marked inflammatory response develops possibly due
to stimulation of damaged and exposed gill tissue by
external biotic and abiotic factors. The immune
response following spore release is initially based on
neutrophil colonization followed by macrophage and
lymphocyte attraction. Even dendritic-like cells may
take part in the host response (Lovy et al. 2006).
Humoral host responses against microsporidian
parasites are known to occur. Japanese eel (Anguilla
japonica) is able to mount an antibody reaction
against a series of antigens in P. anguillarum
(Buchmann et al. 1992; Hung et al. 1996) and the
combined cellular and humoral reactions may be de-
cisive elements when developing future immuno-
prophylactic strategies. Feeding of hosts with
immunostimulants such as beta-glucans has been de-
scribed to diminish the infection severity (Guselle
et al. 2010) but more effective methods should
be considered. Fish surviving an infection achieve
protection against reinfection which indicates
that vaccine development may be a realistic goal.
Experimental vaccines have indeed been found to
protect rainbow trout (Sánchez et al. 2001).

CILIATES

A suite of ciliates has been associated with disease
and mortality in mariculture. Marine white spot
disease caused byCryptocaryon has been in focus due
to its common occurrence in exhibition aquaria and
traditional warm water fish farming. During the last
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two decades also scuticociliates have been shown to
be aggressive invaders of host fish tissues whereas
trichodinids only occasionally cause severe problems.

Cryptocaryon irritans

Cryptocaryon irritans is an endoparasite penetrating
the host epidermis, feeding on sloughed cells indu-
cing a marked proliferation of epidermal cells where-
by the parasite location become macroscopically
visible as white spots (Yambot et al. 2003). This
parasitic ciliate has a resemblance to the freshwater
parasite Ichthyophthirius multifiliis and has a corre-
sponding but marine life cycle. However, analyses of
rDNA sequences suggest that the two ciliates are
merely distantly related and the biological similarities
may be due to convergent evolution (Colorni and
Diamant, 1993). As is known from its freshwater
counterpart C. irritans also induces specific antibody
production in infected fish host (Misumi et al. 2011)
which suggests that immunoprophylactic measures
including vaccination may be a future way of con-
trolling the disease. Treatments using various drugs
and chemicals (of which some are environmentally
friendly) have been and will probably in the near
future be essential ways of reducing infection levels in
farms (Picón-Camacho et al. 2011).

Scuticociliates

Farmed flatfishes, such as turbot (S. maximus) and
olive flounder (Paralichthys olivaceus) and percids,
such as sea bass (D. labrax), have been found invaded
by aggressive and invasive minute ciliates (Fig. 2).
Specific diagnosis of these pathogens is often
hampered due to a high degree of morphological
similarity between these ciliates. Recent work has
synonymized two species, Miamiensis avidus and
Philasterides dicentrarchi,which have been repeatedly

reported to be disease agents. This was partly based
on recent developments within molecular biology
which have improved diagnostic techniques. The
small subunit ribosomal RNA gene (SSU rRNA) has
proven useful for differentiation of genera, species
and strains (Song et al. 2009). As a consequence, a
number of other valid species within the genera
Uronema and Pseudocohnilembus have been reported
as pathogens in fish. Miamiensis avidus is a histo-
phagous parasite invading skin, gills, muscles, brain,
spinal cord and gut. The parasites are facultatively
parasitic and may survive and propagate in the
environment which may be problematic when
control measures have been implemented. Imple-
mentation of hygienic measures is the first step to
prevent infection. Auxiliary substances, including
formalin and hydrogen peroxide-containing com-
pounds, are known to kill free-living stages but
tissue-dwelling stages needmedication that interferes
with essential physiological pathways of the parasite
(Iglesias et al. 2002). Feeding fish with immunosti-
mulants can induce a general immune response
which may have a controlling effect on scuticociliate
infections. Among several reports Lee and Kim
(2009) also showed that oligonucleotides (CpG-
ODN) induced resistance in olive flounder against
M. avidus. The infected fish raise antibody responses
against the ciliates and several attempts to produce a
protective vaccine have been made. Recently high
protection combined with few side-effects was
recorded in turbot following immunization with
surface antigens of M. avidus mixed with poly-
meric microspheres (León-Rodríguez et al. 2012).
Although high hygienic standards and chemotherapy
may be convenient control measures immunopro-
phylactic methods may also have a future as can be
deduced from these recent vaccine studies.

Trichodina jadranica

Trichodinids (Fig. 3) are prevalent parasites both in
freshwater and marine fish culture systems.
Numerous species occur in most geographic regions
and climatic zones from arctic cod culture (Heuch
et al. 2011) to tropical bass (Lates calcarifer) pro-
duction (Rückert et al. 2008). A well-studied species
is T. jadranica which is an ectoparasite with limited
pathological effects on the host if the infection level is
limited. However, it has the potential to harm its host
severely when the parasite load reaches high levels.
European eels (Anguilla anguilla) farming in recircu-
lated water, both fresh and marine, have suffered
from recurrent attacks by T. jadranica (Madsen et al.
2000a). The ciliates attach to skin, fins and gills of the
European eel but do not penetrate the epidermis.
With its basic disc, reinforced by a rigid cytoskeleton
with contractile elements, the parasite can attach
firmly to the host surface and compress the epithelial
cell lining, whereby normal physiological functions

Fig. 2. Invasive scuticociliate isolated from brain of
turbot. Scale bar 10 μm. Courtesy of Dr J. Bresciani,
University of Copenhagen, Denmark.
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(e.g. gas exchange, ammonia release) are inhibited.
Lethargy, anorexia and death may result from heavy
infections. Although weaker individuals in the host
population seem to be themost susceptible no reports
on acquired immunity are available. The ciliates feed
onbacteria andorganicparticleswhich explains exces-
sive parasite propagation in polluted water. Thus,
it is known that mass occurrence of the parasite is
connected to a high organic content of the fish farm
water (Madsen et al. 2000b). Reducing the organic
load of fish farm water by mechanical filtration is
therefore a relevant management tool for prevention
of infections but in acute cases auxiliary chemical
compounds such as formalin have been used to
reduce infection levels. Due to the environmental and
health hazards connected with the use of formalin
alternative compounds are recommended for control.
Oxidizers including hydrogen peroxide-containing
products and even garlic juice were found to be
effective for elimination of these parasites (Madsen
et al. 2000a).

DISCUSSION

Future diagnostic methods

Early classical descriptions of protozoans have relied
on line drawings and light microscopy photo-
graphs with written reports on morphometric obser-
vations. Later, scanning and transmission electron
microscopy improved the diagnostic precision (Lom
and Dyková, 1992) and during recent decades se-
quencing of selected gene regions such as rDNA and
mitochondrial DNA have improved resolution even
further. It is to be expected that development of
sequencing techniques will allow us to obtain

information of a much larger part of the genome of
protozoan parasites and thereby create highly precise
diagnoses. Although morphometric and molecular
information is basic and indispensable for the diag-
nosis it should also be considered to include in vitro or
in vivo infection experiments in certain problematic
cases. Even small and not easily detectable mutations
in a pathogen can produce very large differences in
infectivity with regard to a certain host organism.
Thus, a single transition in the ITS region of the
helminth Gyrodactylus salaris (Jørgensen et al. 2007)
is associated with profound differences in infectivity
for Atlantic salmon. Likewise, a few substitutions in
the genome of the bacterium Yersinia ruckeri have
created a pathogen with different antigenic properties
leaving old vaccines ineffective (Desmukh et al.
2012).

Future disease control

Chemical control. Many diseases in fish are caused
by ectoparasitic protozoans invading skin, fins and
gills. These organisms apply free-living life cycle
stages (cysts, swarmers) which makes it possible
to control the infections through water disinfection
by use of substances such as copper sulphate and
formalin. Due to the environmentally problematic
effects of these compounds recent studies have recom-
mended alternative uses of oxidizers such as hy-
drogen peroxide and related compounds (sodium
percarbonate, peracetic acid).

Medical control. Several drugs with antiprotozoan
effects have been developed and are available for treat-
ment of humans and domestic animals. However,
although experimental work has demonstrated
marked activity against fish protozoans, their use
within aquacultural enterprises is limited due to
lack of licensing and to legislative restrictions.
Nitroimidazoles such as metronidazole and dimetri-
dazole show a strong effect on flagellates and ciliates
and this drug group is allowed for human use but not
for food production animals. Likewise, the anti-
coccidian drug toltrazuril can be used for prevention
of ciliate infections in fish (Jaafar and Buchmann,
2011). It is licensed for use in the poultry and pig
industry but it is questionable if the drug can be
licensed for aquacultural animals as well.

Management. Strict hygienic measures, quarantine
practices, compulsory use of certified disease-free
fish, fallowing of production sites and elimination of
infective parasite stages by various filtration tech-
niques are practices which should be used in any
production system. Thus, water filtration by the use
of mechanical filters may (dependent on the mesh
size) remove potentially harmful tomonts of

Fig. 3. Trichodina sp. on caudal fin of rainbow trout.
Scale bar 20 μm. Courtesy of Dr J. Bresciani, University
of Copenhagen, Denmark.

173Protozoan parasites in mariculture

https://doi.org/10.1017/S003118201300005X Published online by Cambridge University Press

https://doi.org/10.1017/S003118201300005X


C. irritans and thereby prevent multiplication within
tomocysts.

Breeding of innately resistant fish. Mechanisms
involved in and responsible for innate resistance
of specified stocks and species of fish towards
pathogens have not been fully elucidated. However,
a range of examples is available. A well-documented
example is the innate resistance of several Baltic
salmon strains against the ectoparasitic monogenean
G. salaris (Bakke et al. 1990; Dalgaard et al. 2003;
Lindenstrøm et al. 2006). In addition, susceptibility
and resistance of various salmonids towards the
bacterial pathogen Aeromonas salmonicida was also
reported to vary significantly between salmon strains
(Holten-Andersen et al. 2012). It is therefore relevant
to initiate breeding programmes in order to develop
strains with a low susceptibility towards pathogens
including protozoans.

Immunoprophylaxis. The potential and capacity
of the teleost immune system can be appreciated
through recent discoveries which have suggested that
immunoprophylactic measures may be significant
ways to secure fish health. Some strategies in the field
are based on feeding of fish with compounds often
termed immunostimulants which are chemicals
stimulating innate immune parameters. Other strat-
egies apply specific immunization of their production
animals against pathogens.

Immunostimulants. A series of structural molecules
from various sources e.g. bacteria, yeast, fungi
and lichens alone or together with synthetic products
(e.g. oligonucleotides) is currently used as im-
munostimulants. A large group of compounds on
this product shelf is the beta-glucans (Skov et al.
2012). The immunostimulants possess pathogen-
associated molecular patterns (PAMPS) which are
able to stimulate different pathogen recognition re-
ceptors (PRRs) in host fishes and thereby activate
innate immune reactions (Chettri et al. 2011). These
comprise among others toll-like receptors which
subsequently can initiate cascade reactions which
may limit or reduce infections. Results from con-
trolled laboratory (Jaafar et al. 2011) or field studies
(Xueqin et al. 2012) have indicated that immune
elements are activated by these feed additives.
Unfortunately the effect of these feed additives
on parasite infection levels, such as intensities of
the skin parasitizing ciliate I. multifiliis, is limited.
Correspondingly, immunostimulant feeding does
not result in a clear reduction of L. salmonae infection
in salmonids but merely leads to a more benign
course of infection (Guselle et al. 2010). Likewise,
AGD in salmon is not diminished by in-feed im-
munostimulants (Bridle et al. 2005). Therefore other
immunoprophylactic strategies are needed in order to
secure a satisfactory fish health level.

Vaccination. Disease control in aquacultural enter-
prises must ideally be based on integrated systems
applying high hygienic standards. This can be
achieved through filtration of water (with mechanical
and biological filters) securing optimal physico-
chemical water parameters, by breeding for resistant
fish strains and feeding at an optimal level. However,
additional control methods must be considered
in order to avoid medication. Vaccination is an
immuno-prophylactic measure which can provide
the fish with a high resistance against infection.
Significant results with development of antibacterial
vaccines have been achieved in theNorwegian salmon
industrywhere the use of antibiotics has been reduced
by 99 % during the latest 26 years despite a 20-fold
increase of the annual salmon production. High
efficacies of anti-viral vaccines have also been demon-
strated (Lorenzen et al. 2000) and efforts should
therefore be made in order to develop antiparasitic
vaccines. Due to the limited size of many protozoan
parasites the cellular and humoral immunological
armament in fish should have the basic ability to
develop protective immunity against at least some
of these pathogens. Experimental vaccines against
C. salmositica (Woo, 2012),L. salmonae (Sánchez et al.
2001; Rodríguez-Tovar et al. 2006) and I. multifiliis
(the freshwater equivalent toC. irritans) (Alishahi and
Buchmann, 2006) have been found to be partially
effectivewhich is promising for further achievements.
Cryptocaryon irritans is known to elicit antibody
production in affected fish (Misumi et al. 2011) which
is a valuable basis for further vaccine development.
Experimental studies have also demonstrated sig-
nificant activation of cellular and humoral immune
factors in fish exposed to several other protozoans
such as A. ocellatum (Noga, 2012) and I. necator
(Chettri et al. 2012). Thus, it is likely that production
of vaccines against A. ocellatum, S. salmonicida,
I. necator and L. salmonae may be realistic goals for
renewed research efforts. However, it cannot be
excluded that the parasites themselves or parasite-
derived molecules (Jørgensen and Buchmann, 2011)
divert the response of the host towards a less effective
immune pathway and this possibility should be taken
into account when designing vaccines and their
adjuvants. The recent development of reagents and
tools for investigating immunemechanisms infish can
create a basis for tailor-made vaccines stimulating
immune mechanisms in fish hosts which can provide
protection.

CONCLUSIONS AND FUTURE DIRECTIONS

Control of protozoan infections of maricultured
fishes must be performed through integrated efforts
applying prophylactic management methods creating
a better physical environment for the captive fishes.
Breeding for natural resistance and improved nutri-
tion should also be a priority area which can add to a
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high health status in mariculture enterprises.
Application of chemicals and drugs may be necessary
tools during acute outbreaks but more sustainable
methods should be implemented to avoid infections.
It should be noted that vaccine development is a
central task to be performed in order to exploit the
high potential of the fish immune system and reach
sustainability in fish farming. At present, most
experimental approaches can be considered rather
primitive and coarse vaccines based on crude parasite
preparations may not be sufficient for obtaining
protection and reaching production goals and high
welfare of farmed fish. Basic research on immune
mechanisms responsible for protection of fish against
protozoan diseases can direct future production of
tailor-made vaccines for specific parasitic diseases
(Jørgensen and Buchmann, 2011). The immunologi-
cal network in fish is extensive and different parasites
may lead the immune reactions in directions which
are not optimal for protection. It has been shown that
the development of reagents and their use in a range
of assays such as immunohistochemistry, immuno-
cytochemistry, flow-cytometry, gene expression
technology combined with in vivo challenge studies
can improve our understanding of fish immune
reactions, their diversity and potential. Due to
limited cross-reactivity of reagents developed for
salmonids (e.g. rabbit antibodies reacting with fish
IgM) with regard to cyprinids, anguillids, percids,
gadids and pleuronectids (Buchmann and Pedersen,
1994) it is necessary to initiate these research
initiatives for all the main fish taxa. Specific reagents
for the major fish groups in aquaculture should be
developed in order to provide a basis for elucidation
of fish immune responses against protozoans in
mariculture. Priorities should be reagents to describe
innate, adaptive responses, cellular (macrophage, T
cell and B cell markers) and humoral elements
(various immunoglobulin classes, complement fac-
tors, acute phase reactants, cytokines) within these
reaction pathways. This basic knowledge may even-
tually lead to optimization of vaccines not only
for fish in mariculture but also for higher vertebrates.
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