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Scattering of sound waves by a cylindrical
vortex : a semi-analytical theory

By J. R E I N S C H K E†, W. M Ö H R I N G AND F. O B E R M E I E R
MPI für Strömungsforschung, Bunsenstraße 10, D–37073 Göttingen, Germany

(Received 29 December 1994 and in revised form 1 October 1996)

A semi-analytical theory for the scattering of plane sound waves by a compressible,
non-homentropic, circular-cylindrical, single vortex is presented in this paper. As
a special case, the scattering of sound by a cylindrical inhomogeneity (hot spot) is
investigated. Contrary to the otherwise analogous quantum-mechanical scattering
problem, there are singularities in the modified acoustic wave equation for radii
xs ∈ (0,∞) when the scattering by a vortex is considered. It will be shown how these
singularities can be treated.

This sound-scattering theory is applied to the problem of the interaction of weak
plane shock waves with a strong cylindrical vortex. The calculated scattered sound
signal has a rather complicated structure in which a cylindrical wave with an essen-
tially quadrupolar directivity pattern is discernible. In the case of shock–hot-spot
interaction a scattered sound signal with dipole-like amplitude is obtained. Both
results qualitatively agree with experimental findings.

1. Introduction
Knowledge of sound scattering by a vortical flow field is a prerequisite for many

aeroacoustic calculations. A prototype of this general problem is the scattering
of plane sound waves by a single cylindrical vortex. As a ‘direct’ problem, its
understanding is also the first step towards the solution of the ‘inverse’ problem, i.e.
the determination of vortex location and strength by means of the scattered sound
signal, which is of practical importance for aircraft transport (Ferziger 1974).

The problem of scattering of sound waves by a vortex has been considered by
numerous authors during the last few decades (e.g. Müller & Matschat 1959; Fetter
1964; Obermeier 1968; O’Shea 1975; Broadbent 1977; Kambe & Mya Oo 1981;
Kambe 1982; Howe 1983; Klimow 1988 and Colonius, Lele & Moin 1994). For a
brief summary of the crucial assumptions and results of most of the quoted authors
we refer the reader to the article by Colonius et al. (1994).

With the exception of the numerical calculation carried out by Colonius et al.
(1994), the different theoretical approaches make the following assumptions: the
maximum azimuthal base-flow velocity is small compared to the sound velocity, the
base flow is incompressible and homentropic, the theory is only applicable for very
specific vortex models, namely potential or Rankine vortices (see §2), and either the
acoustic wavelength is regarded small or the vortex is assumed acoustically compact.
The present approach developed in §3 tackles the problem without making any of
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274 J. Reinschke, W. Möhring and F. Obermeier

these assumptions. This is necessary since we want to apply the sound-scattering
theory to the problem of shock–vortex interaction, considering an experimental set-
up where vortices and shocks are produced in the same flow. Such experiments have
been carried out by several groups. Mandella & Bershader (1987) investigated the
structure of a single compressible cylindrical vortex. Their results will be summed up
in §2. The works of Hollingsworth & Richards (1955) as well as Dosanjh & Weeks
(1965) focus on shock–vortex interaction. Their experimental findings are compared
with our theoretical results in §4. Shock–hot-spot interaction is also considered in
this section.

To facilitate the readability, a list of variables and symbols that occur in several
places throughout the article is given in Appendix A.

2. Vortex models
Throughout the article we use a cylindrical coordinate system (r, φ, z), where the

z-axis coincides with the symmetry axis of the vortex. The velocity field of the base
flow is given by v̄ = (ū, v̄, w̄). One generally assumes that the radial and axial velocity
components ū and w̄ are negligible in comparison to the azimuthal component v̄.
This is confirmed by experiments. In the case of a potential vortex, the velocity
vector reduces to v̄ = (0, Γ̄∞/2πr, 0), where Γ̄∞ denotes the base flow circulation. For
a Rankine vortex,

v̄(r) =

{
Γ̄∞ r/(2 πR

2) for r < R,

Γ̄∞/(2 π r) for r > R.
(2.1)

The radius r = R, where the azimuthal velocity assumes its maximum value, is called
the vortex radius. For an incompressible vortex, the azimuthal velocity is governed by
the azimuthal Navier–Stokes equation

∂v̄(r, t)

∂t
= ν̄

(
∂2v̄

∂r2
+

1

r

∂v̄

∂r
− v̄

r2

)
. (2.2)

The variable ν̄ = µ̄/ρ̄∞ denotes the kinematic shear viscosity. An often-used solution
of equation (2.2) is the so-called Oseen vortex

v̄Oseen(r, t) =
Γ̄∞

2 π r

(
1− e−r

2/(4ν̄t)
)
, (2.3)

whose velocity profile decays as 1/r for large radii r. Partially differentiating (2.3)
with respect to time t gives solutions of (2.2) that decay exponentially far outside the
vortex core. Other solutions were found by Kirde (1962). They are given by

v̄Kirde(r, t) =
v̄(r1, 0)

rn̄1

Γ
(

1
2
(n̄+ 3)

)
2n̄+1

4 (ν̄t)(1−n̄)/2 rM

(
1− n̄

2
; 2;− r2

4ν̄t

)
, −3 < n̄ < ∞. (2.4)

M(a; b; x) denotes the confluent hypergeometric function and Γ(n̄) the factorial or
Gamma function. For t > 0 the azimuthal velocity from equation (2.4) is proportional
to the radius for r → 0 and decays as rn̄ for large radii. Thus, only values n̄ < 0 are
physically reasonable.

Experimental investigations of a single trailing vortex (Tung et al. 1983; see also the
discussions in Moore & Saffman 1973 and Reinschke 1994) reveal that the azimuthal
velocity profile resembles a Kirde vortex with n̄ = −1/2 for r < l and an Oseen
vortex outside. This distinction makes sense only if the vortex under consideration is
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Scattering of sound waves by a cylindrical vortex 275

sufficiently ‘young’, i.e. R < l. In the experiments of Tung et al. (1983), l was found
to be approximately 1/100 of the wing span.

Compressible vortices are usually produced in flows of transonic convective speed,
i.e. in transonic wind tunnels (Schürmann 1994) or in shock tubes (Mandella & Ber-
shader 1987). These authors measure pressure and density profiles p̄(r) = p̄(r, t0) and
ρ̄(r) = ρ̄(r, t0) simultaneously at a particular instant t0 and determine the azimuthal
velocity profile v̄(r) = v̄(r, t0) by means of the radial momentum equation

v̄2(r, t)

r
=

1

ρ̄(r, t)

∂p̄(r, t)

∂r
. (2.5)

They find that Lorentz functions are the simplest best-fitting approximations to the
measured pressure and density profiles, i.e.

p̄(r) = p̄∞

(
1− tp

1 + (r/bp)2

)
, ρ̄(r) = ρ̄∞

(
1− tq

1 + (r/bq)2

)
, (2.6)

for radii r not greatly exceeding the vortex radius R. The constants p̄∞, ρ̄∞, tp, bp, tq
and bq are determined by comparison with the measured pressure and density curves.
The azimuthal velocity v̄(r), which is computed from (2.6) and (2.5), resembles an
Oseen vortex; v̄(r) decays as 1/r for r →∞.

Now we introduce non-dimensional variables. The non-dimensional radius x is
defined via r = xR and the non-dimensional sound speed c(x) via c̄(r) = c(x)c̄∞.
The non-dimensional base-flow variables are given as follows: the azimuthal velocity
V (x) via v̄(r) = V (x)c̄∞, the pressure P (x) via p̄(r) = P (x)ρ̄∞c̄

2
∞, the density Q(x) via

ρ̄(r) = Q(x)ρ̄∞, the temperature T (x) via T̄ (r) = T (x)T̄∞, and the entropy S(x) via
s̄(r) − s̄∞ = S(x)R̄∗, where R̄∗ is the specific gas constant. The subscript ∞ denotes
base flow variables far outside the vortex core, where the medium is approximately
at rest. The medium in which the vortex is formed is assumed to be an ideal gas, i.e.
c̄2
∞ = κp̄∞/ρ̄∞, κ being the ratio of specific heats cp/cv .

A typical compressible vortex, as it was produced by Mandella & Bershader (1987)
(see also Lee & Bershader 1994), is described in terms of non-dimensional variables
by

P (x) =
1

κ

[
1− 0.70

1 + (x/1.25)2

]
, (2.7)

Q(x) = 1− 0.65

1 + (x/1.5)2
, (2.8)

V (x) =
0.947

κ1/2
x
(

1 +
(
x/1.25

)2
)−1

(
1− 0.65

1 +
(
x/1.5

)2

)−1/2

. (2.9)

Obviously, a single vortex of this kind could not exist alone since its kinetic energy
would be infinite. Moreover, the scattered sound field of such a vortex does not
converge because of the slow decay rate of the vortex far outside the vortex core.
This phenomenon has been noted e.g. by Müller & Matschat (1959), O’Shea (1975)
and Colonius et al. (1994). The ‘remedy’ is either to introduces a cut-off radius L,
such that

V (x) ≡ 0, P (x) ≡ 1

κ
, Q(x) ≡ 1 for x > L,

or to use a modified vortex model that decays more rapidly in the far field, i.e. the far-
field circulation of such a vortex would be zero. The introduction of a cut-off radius
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Figure 1. Non-dimensional base-flow functions of the model vortex: (a) velocity V (x),
(b) pressure κP (x) (solid) and density Q(x) (dotted), (c) temperature T (x), (d) entropy S(x).

L is hard to justify physically, and the results of the corresponding sound-scattering
theory would depend on the choice of L. In order to avoid this L-dependence, a
modified vortex model was chosen which fits the experimental compressible vortex
data of Mandella & Bershader (1987) in the core region, but decays exponentially
outside:

P (x) =
1

κ

[
1− 0.70e−cr(axx)2

]
, (2.10)

Q(x) = 1− 0.65e−cq(axx)2

, (2.11)

V (x) =

(
1.40cr
κ

)1/2

axxe−(cr−cq)(axx)2/2
(

ecq(axx)2 − 0.65
)−1/2

, (2.12)

where

cr :=
ln 2

1.252
, cq :=

ln 2

1.52
, and ax := 1.23652.

The scaling factor ax is determined such that Vmax = V (x = 1). Figure 1 shows the
base-flow functions of the model vortex. For the model hot spot we set P (x) ≡ 1/κ
and V (x) ≡ 0. Q(x) is the same as in (2.11).

3. Scattering of sound
From a theoretical point of view, the following two different kinds of scattering

mechanisms can be distinguished.
(a) The medium in which the sound propagates is homogeneous and at rest.

Obstacles are introduced into this medium, on the surface of which certain boundary
conditions have to be satisfied. This can be achieved only if there exists a scattered
wave in addition to the incoming wave.
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(b) There are no obstacles and, thus, no boundary conditions within the medium
in which the sound propagates. Instead, there is a base flow and/or inhomogeneities.
A modified wave equation holds in the region of significant base flow; the asymptotic
solution of the modified wave equation is again the sum of an incoming and a
scattered/refracted wave.
The scattering of sound by a vortex is of the second kind. So is the quantum-
mechanical scattering of plane waves by a central potential. Therefore, the authors
have tried to apply quantum-mechanical scattering theory (phase-shift theory) to the
acoustic scattering problem. Fetter (1964) has already followed this concept but
considered only incompressible potential and Rankine vortices in the limit of very
low frequencies ω̄.

3.1. Basic equations

The dimensional physical variables such as the pressure pg , the density ρg and the
velocity vg = (ug, vg, wg) are split into base-flow variables (denoted by a bar) and
sound variables (dotted):

pg = p̄+ ṗ, ρg = ρ̄+ ρ̇, ug = u̇, vg = v̄ + v̇, wg = ẇ.

Let the vortex be infinitely extended along the z-axis. Since plane sound waves with
wave vector parallel to the z-axis are not scattered by the vortex (Fetter 1964), we
can assume for simplicity that the wave vector is perpendicular to the vortex axis
(ẇ = 0). Furthermore, we presume that all base-flow variables neither depend on the
time t nor on the azimuthal angle φ during the scattering process. In general, friction
and heat conduction will be neglected. The acoustic approximation is employed, i.e.
all subsequent equations are linearized in the sound variables. The linearized Euler
equations can be expressed as follows: the radial component is

ρ̄

[(
∂

∂t
+
v̄

r

∂

∂φ

)
u̇− 2v̄

r
v̇

]
= −∂ṗ

∂r
+
v̄2

r
ρ̇, (3.1)

and the azimuthal Euler equation yields

ρ̄

[(
∂

∂t
+
v̄

r

∂

∂φ

)
v̇ +

(
dv̄

dr
+
v̄

r

)
u̇

]
= −1

r

∂ṗ

∂φ
. (3.2)

The linearized continuity equation is

ρ̄

(
∂

∂r
+

1

r

)
u̇+

ρ̄

r

∂v̇

∂φ
+

dρ̄

dr
u̇ = −∂ρ̇

∂t
− v̄

r

∂ρ̇

∂φ
. (3.3)

The sound perturbation is considered adiabatic. If the base flow is non-homentropic,
the conservation of entropy takes the form

∂ṗ

∂t
+ u̇

dp̄

dr
+ v̄

1

r

∂ṗ

∂φ
= c̄2

(
∂ρ̇

∂t
+ v̄

1

r

∂ρ̇

∂φ
+ u̇

dρ̄

dr

)
. (3.4)

In the case of a homentropic base flow, i.e. grad s̄ = 0, (3.4) reduces to

ṗ ≈ ∂pg(ρ, s)

∂ρg

∣∣∣∣
s̄

ρ̇ = c̄2(r)ρ̇,

or

ṗ(r, φ, t) = c̄2(r)ρ̇(r, φ, t). (3.5)
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It turns out that there are no significant new difficulties arising if (3.4) is used instead
of (3.5). Since we would like to avoid long formulas as much as possible, the scattering
theory will be developed in §3 only for the homentropic case. Appendix B contains
the corresponding formulas for general non-homentropic base flows.

The following separation assumption is made for all sound variables, written down
here for ṗ only:

ṗ(r, φ, t) = Re
(
p̂ω̄(r, φ)e−iω̄t

)
, (3.6)

where p̂ω̄(r, φ) is a periodic function of the azimuthal coordinate φ:

p̂ω̄(r, φ) = p̂ω̄(r, φ+ 2π). (3.7)

This allows us to develop p̂ω̄(r, φ) into a Fourier series:

p̂ω̄(r, φ) =

∞∑
n=−∞

p̂ω̄n(r)e
inφ (3.8)

with

p̂ω̄n(r) =
1

2π

∫ 2π

φ=0

dφp̂ω̄(r, φ)e−inφ. (3.9)

Corresponding relations hold for all other acoustic variables.

By means of (3.5) we eliminate ρ̇(r, φ, t) in (3.1) to (3.3) and apply (1/2π)
∫ 2π

φ=0
dφe−inφ

to these equations. This is equivalent to making the following substitutions in (3.1)–
(3.3):

∂

∂t
−→ −iω̄,

∂

∂φ
−→ in, ṗ(r, φ, t) −→ p̂ω̄n(r) etc., (3.10)

and the three equations then read

ρ̄

[(
−iω̄ +

v̄

r
in

)
ûω̄n −

2v̄

r
v̂ω̄n

]
= −dp̂ω̄n

dr
+
v̄2

c̄2r
p̂ω̄n, (3.11)

ρ̄

[(
−iω̄ +

v̄

r
in

)
v̂ω̄n +

(
dv̄

dr
+
v̄

r

)
ûω̄n

]
= −in

1

r
p̂ω̄n, (3.12)

ρ̄

(
d

dr
+

1

r

)
ûω̄n +

ρ̄

r
inv̂ω̄n +

dρ̄

dr
ûω̄n = −iω̄ρ̂ω̄n −

v̄

r
inρ̂ω̄n. (3.13)

Now we introduce non-dimensional sound variables which correspond to the non-
dimensional base-flow variables defined in §2, below equation (2.6): the partial sound
pressure wave pωn(x) is given by p̂ω̄n(r) = pωn(x)ρ̄∞c̄

2
∞, the partial sound density

ρωn(x) by ρ̂ω̄n(r) = ρωn(x)ρ̄∞, the radial sound velocity component uωn(x) by ûω̄n(r) =
uωn(x)c̄∞, and the azimuthal sound velocity component vωn(x) by v̂ω̄n(r) = vωn(x)c̄∞.
For numerical calculations we assume that the sound propagates in an ideal, two-
atomic gas. Thus,

c2(x) = κ
P (x)

Q(x)
, (3.14)

where κ = 1.4 is the ratio of specific heats. We introduce the following abbreviations:

a1(x) :=
V (x) n

x
− ω, b1(x) :=

2V (x)

x
,

f1(x) :=
dV (x)

dx
+
V (x)

x
, g1(x) :=

V 2(x)

c2(x)x
.

 (3.15)
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Now, the basic equations can be expressed as

iQa1 uωn − Qb1 vωn = −dpωn
dx

+ g1 pωn, (3.16a)

Qf1 uωn + iQa1 vωn = −i
n

x
pωn, (3.16b)

duωn
dx

+

(
1

x
+

1

Q

dQ

dx

)
uωn + i

n

x
vωn = −i

1

c2 Q
a1 pωn. (3.16c)

The system of equations corresponding to general non-homentropic vortices can be
found in Appendix B, equations (B 1).

3.2. The modified wave equation

Equations (3.16) simplify drastically if there is no base flow. Elimination of uωn and
vωn yields the separated normal wave equation in cylindrical coordinates

d2pωn

dx2
+

1

x

dpωn
dx

+

(
k2 − n2

x2

)
pωn = 0 (3.17)

with wavenumber k := ω/c. In analogous fashion a modified wave equation (a
second-order ordinary differential equation for pωn(x)) can be constructed from the
system (3.16). With the aid of (3.16b), we eliminate vωn from (3.16a) and (3.16c) and
arrive at

p′ωn = i

(
Qb1 f1

a1

− Qa1

)
uωn +

(
g1 −

b1 n

a1 x

)
pωn, (3.18a)

u′ωn =

(
n f1

x a1

− 1

x
− 1

Q

dQ

dx

)
uωn − i

(
a1

c2 Q
+

n2

Qa1 x2

)
pωn. (3.18b)

Substituting (3.18b) into (3.18a) results in the modified wave equation for pωn(x)

p′′ωn(x) + co1(x)p′ωn(x) + co0(x)pωn(x) = 0 (3.19)

with

co1(x) :=
1

x
+
n

x

b1(x)

a1(x)
− n

x

f1(x)

a1(x)
− g1(x) +

a′1(x)

a1(x)
− a′2(x)

a2(x)
(3.20)

and

co0(x) :=
−n2

x2
− g1(x)

x
+
n

x

f1(x)g1(x)

a1(x)
− a2(x)

c2(x)
− g1(x)a′1(x)

a1(x)
− n

x

b1(x)a′2(x)

a1(x)a2(x)

+
g1(x)a′2(x)

a2(x)
− n

x

b′1(x)

a1(x)
− g′1(x), (3.21)

where a2 := b1f1 − a2
1. The prime denotes d/dx. Equation (3.19) in conjunction with

(3.20) and (3.21) reduces to the corresponding one obtained by Fetter (1964) if an
incompressible potential vortex is considered. Note that equations (3.16) and (3.19)
for a homentropic vortex depend only on two base-flow variables, namely V (x) and
c2(x), whereas in the general non-homentropic case a third, Q(x), is required.

In general, equation (3.19) can be integrated numerically only. But before we can
do this, some difficulties have to be overcome.

What are the initial values of pωn(x) and p′ωn(x) for the integration in the neigh-
bourhood of x = 0?

How can one integrate across the regular singularities of (3.19) at points x ∈ (0,∞)?
These questions will be answered in the next subsection.
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3.3. Singularities

3.3.1. Singularity xs0 = 0

We assume that all base-flow variables are regular functions of x in x = 0, i.e. they
can be developed into power series. V (x) has to be an odd function of x at x = 0,
while Q(x), P (x) and c2(x) are even:

V (x) =

∞∑
j=0

Vj x
2j+1, Q(x) =

∞∑
j=0

Qj x
2j , c2(x) =

∞∑
j=0

c̃j x
2j . (3.22)

As a consequence, co1(x) and co0(x) are of the form

co1(x) =:
1

x

(
1 + C11x

2 + O(x4)
)
, co0(x) =:

1

x2

(
(−n2) + C01x

2 + O(x4)
)
,

where the newly defined constants C11 and C01 can be expressed in terms of Vj , c̃j ,
and – in the general case – Qj . At least one fundamental solution of (3.19) in the
vicinity of x = 0 can be found in terms of a Frobenius series

pωn(x) =

∞∑
j=0

pj x
j+ν . (3.23)

Inserting (3.23) into (3.19) yields the index equation for ν, namely ν(ν−1)+ν−n2 = 0,
i.e. ν1 = |n| and ν2 = −|n|. Since ν1 − ν2 = 2|n| ∈ N, the second fundamental solution
is not of the form (3.23). Just like Neumann functions (Bessel functions of the second
kind), the second fundamental solution diverges at x = 0. Since all terms in the sum
(3.8) are linearly independent, the sound pressure would be infinite at x = 0 if one
pωn(x) diverged. Thus, the integration constant in front of the second fundamental
solution has to be set equal to zero. The singularity at x = 0 caused by the cylindrical
coordinate system yields one inner boundary condition for every partial wave pωn(x).
The solution of (3.19) in the vicinity of x = 0 can be expressed as

pωn(x) = xn
(
p0 + p2x

2 + O(x4)
)

(3.24)

with

p2 = −p0

C11 |n|+ C01

4(|n|+ 1)
,

where p0 is an integration constant which can be chosen arbitrarily. We set p0 := 1.
In this way the initial values for the numerical integration of (3.18) and (3.19),
respectively, are fixed.

3.3.2. Singularity xs2 with a2(xs2) = 0

This singularity only occurs in (3.19), but not in (3.18). Apart from the vicinity of
xs1 with a1(xs1) = 0, we therefore use (3.18) for numerical integration.

3.3.3. Singularity xs1 with a1(xs1) = 0

This singularity cannot be so easily treated as the afore-mentioned one, since there
is no system of two first-order differential equations similar to (3.18) where this
singularity disappears. Fetter (1964) tried to get rid of it by a transformation of
(3.19). The validity as well as the generalizability of his approach appear doubtful.

A close look at the singularity under consideration reveals that it is very similar
to the kind that occurs in the stability analysis of a laminar, incompressible flow
over a semi-infinite plate, i.e. the singularity in the Orr–Sommerfeld equation. The
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neighbourhood of the singular point is called the critical layer. Let x0 be the singular
point of the Orr–Sommerfeld equation. A small imaginary part ci is added to the real
sound velocity c = cr . The singular point is then translated from the real axis into
the complex plane. If the sign of the imaginary part Im(x0) of the singular point is
positive (negative), the phase of η := x−x0 is shifted by π (−π) when the real part of
η is increased from negative to positive values and the limit |Im(x0)| −→ 0 is taken.

Generalizing the results on critical layers (Tollmien 1929, 1935, 1947; Lin 1955;
Booker & Bretherton 1967) one concludes that the so-called causal solution is the
correct one: the sign of ci has to be chosen such that all acoustic perturbation variables
vanish as t→ −∞. In the following we will argue according to this causality criterion.
It can be shown (see Appendix C) that the same results would have been obtained if
friction had been taken into account instead of utilizing the causality argument.

The singularity xs1 occurs for

W (xs1) :=
V (xs1)

xs1
=
ω

n
. (3.25)

Since x > 0, V (x) > 0, and ω > 0, there are only singular points for partial waves
pωn(x) with n > 0. Two cases have to be distinguished:

(a) V (x) is ‘predominantly linear’ in x for small values of x, then W (x) has its
maximum at x = 0 and decays monotonically, i.e. W ′(xs1) < 0;

(b) V (x) is proportional to a higher power of x for small x, e.g. V (x) ∼ x3.
In this case W (x) has its maximum value at a point x > 0. It is then possible
that two different singularities occur at x = xs1(1) and x = xs1(2) with W ′(xs1(1)) > 0
and W ′(xs1(2)) < 0, respectively. (This case, however, appears to be of no physical
significance since all known vortex models are of type (a).)

The separation of the time variable t was done via e−iωt = e−iωrt eωit. A solution
growing in time is thus obtained by setting ωi > 0. It is W (Re(xs1)) = ωr/n. On the
one hand we have

W (xs1) =
ω

n
=
ωr

n
+ i

ωi

n
and, on the other hand, a Taylor-series expansion of W (xs1) about Re(xs1) furnishes

W (xs1) ≈W (Re(xs1)) +W ′(Re(xs1))i Im(xs1).

It follows that

Im(xs1) ≈
1

W ′(Re(xs1))

ωi

n
, (3.26)

i.e. for W ′(Re(xs1)) < 0 we have Im(xs1) < 0 (or for W ′(Re(xs1)) > 0 we get
Im(xs1) > 0). This means: if x passes over the singular point xs1 from left to right
and |ωi| approaches zero, the argument θ changes from π (or −π) to 0, where
x − xs = |x − xs| eiθ . Note once more that there are no vortex models known where
type (b) singularities could occur.

From now on, the variables xs1 and ω are again assumed to be real. Let I = [x1, x2]
(x1 < xs1 < x2, |x1 − x2| � 1) be the transition region where we have to calculate
the two fundamental solutions p1ωn(x) and p2ωn(x) of (3.19) in terms of power series.
We first numerically integrate from the vicinity of x = 0 up to x = x1, thus knowing
pωn(x1) and p′ωn(x1). The two integration constants IC1 and IC2 can be found by
solving

pωn(x1) = IC1p1ωn(x1) + IC2p2ωn(x1),
p′ωn(x1) = IC1p

′
1ωn(x1) + IC2p

′
2ωn(x1).

}
(3.27)

The integration is afterwards continued starting from x2.
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In order to obtain the two fundamental solutions around xs1, we proceed in a
similar way as in §3.3.1. The coefficients co1(x) and co0(x) are developed into power
series:

co1(x) =
1

x− xs1

∞∑
j=0

αj (x− xs1)j , co0(x) =
1

(x− xs1)2

∞∑
j=0

βj (x− xs1)j , (3.28)

where αj and βj are constants. In doing this, it turns out that the base flow of a
potential vortex is a special case which has to be treated separately since zeros of
a1(x) and a2(x) coincide. This case was considered by Fetter (1964). For technical
reasons we want to exclude it in the subsequent discussion. It then follows from (3.21)
that β0 = 0 while (3.20) yields α0 = n (b1(x)− f1(x)) /

(
xa′1(x)

)
+ 1, which turns out

to be equal to zero, too, if use is made of the definitions (3.15). Writing pωn(x) as a
Frobenius series

pωn(x) =

∞∑
j=0

cj (x− xs1)j+ν (3.29)

leads to the index equation ν(ν − 1) = 0, i.e. ν1 = 1 and ν2 = 0. Thus, the first
fundamental solution assumes the form

p1ωn(x) =

∞∑
j=0

cj (x− xs1)j+1 (3.30)

with

c0 := 1, cj := −

j∑
k=1

cj−k (βk + αk (j + 1− k))

(j + 1) j
, j = 1, 2, . . . .

Since ν1 − ν2 = 1, the second fundamental solution is usually not a Frobenius series.
This solution, p2ωn(x), can be found by setting

p2ωn(x) = up(x)p1ωn(x). (3.31)

One obtains

u′p(x) =

( ∞∑
j=0

cj(x− xs1)j+1

)−2

exp

(
−

∞∑
j=1

1

j
αj(x− xs1)j

)
=: (x− xs1)−2 g(x) (3.32)

with

g(x) =:

∞∑
j=0

gj (x− xs1)j ,

where the gj are newly defined constants. In particular, we have

g0 =
1

c2
0

= 1, g1 = −α1

c2
0

− 2
c1

c3
0

=
β1

c2
0

= β1 6= 0.

Integrating (3.32) yields

up(x) = −(x− xs1)−1 + β1 ln(x− xs1) +

∞∑
j=1

1

j
gj+1 (x− xs1)j , (3.33)

and together with (3.30) and (3.31) the second fundamental solution is found. Note

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

96
00

42
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112096004211


Scattering of sound waves by a cylindrical vortex 283

that the logarithmic term in p2ωn(x) does not vanish. This logarithmic term in (3.33)
stands for ln |x − xs1| for x < xs1 and for ln |x − xs1| ∓ iπ for x > xs1, whereby the
minus sign applies for a type (a) and the plus sign for a type (b) singularity.

In the non-homentropic base flow case, α0 = 0 is maintained, but β0 = 0 is no
longer valid. As a consequence, ν1 and ν2 as well as their difference are not integers,
thus allowing both fundamential solutions of (3.19) to be expressed as Frobenius
series

pi,ωn(x) = (x− xs1)νi
∞∑
j=0

ci,j (x− xs1)j , (i = 1, 2) (3.34)

where

ci,0 = 1, ci,j = −

j∑
k=1

ci,j−k (βk + αk (j − k + νi))

(j + νi) (j − 1 + νi) + β0

, j = 1, 2, . . . . (3.35)

The expression (x− xs1)νi means |x− xs1|νi for x < xs1 and |x− xs1|νie∓iπνi for x > xs1
with the minus sign for a type (a) and the plus sign for a type (b) singularity.

Finally in this subsection we want to investigate the physical significance of the
singularities under consideration. If there were no energy transfer between the base
flow and the sound perturbation, the integral

〈Es〉t :=

〈∫
C

dx · I s
〉
t

=

∫
C

dx · 1
2

Re (vω(x, φ)pω(x, φ)) (3.36)

would have to vanish. C symbolizes a closed contour encircling the vortex in the
(x, φ)-plane. The brackets 〈.〉t represent averaging in time. I s is the energy flux or
the total acoustic intensity, i.e. the intensity of both incoming and scattered sound
waves. If the ratio p′ωn(x)/pωn(x) is real for all integer n and sufficiently large x, 〈Es〉t
is definitely equal to zero. But if the pressure ratio is complex for some n, 〈Es〉t will
in general be different from zero. Since the non-dimensional azimuthal velocity V (x)
in a vortex does not vanish everywhere, there is a number nmin > 0 such that

∀ n > nmin ∃ xs1(n) : a1(xs1(n)) = 0.

The occurrence of a singularity at x = xs1(n) causes the ratio p′ωn(x)/pωn(x) to be
complex for x > xs1(n) and, hence, the integral in (3.36) might be non-zero. This can
be interpreted in a way analogous to McKenzie (1979): the critical layer causes an
energy transfer between the base flow and the acoustic perturbation.

If V (x) ≡ 0, i.e. if we consider the scattering of sound by a cylindrical inhomogene-
ity, there are no singularities and, thus, there is no energy transfer. Since scattering
processes without energy transfer are usually referred to as elastic scattering processes,
we will call the scattering by an inhomogeneity elastic scattering and that by a vortex
inelastic scattering.

3.4. Scattering theory

Utilizing the theory developed in §3.3, we can compute the partial waves pωn(x) up
to an arbitrary scaling factor which was called p0 and set equal to one. These partial
waves contain the incoming as well as the scattered sound wave. It is the aim of
this subsection to derive an expression for the far-field scattered sound wave alone,
provided that the amplitude of the incoming plane sound wave is known.

A three-dimensional elastic scattering theory for plane waves scattered by a real
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central potential has been developed in quantum mechanics (see e.g. Taylor 1972). This
theory is generally referred to as phase-shift method. It could be directly transferred
to the two-dimensional sound scattering problem if there were no singularities of the
kind treated in §3.3.3. If a partial wave possesses such a singularity and the ratio
p′ωn(x)/pωn(x) is thus complex outside the vortex region, two real phase angles (instead
of one in the elastic quantum-mechanical scattering theory) are required to describe
one partial wave.

The partial wave pωn(x) is a solution of the Bessel differential equation (3.17) for
large x, i.e. (ω = k (!)):

pωn(x) = AnJn(kx) + BnYn(kx)

x→∞−→
(

2

πkx

)1/2 [
An cos

(
kx− πn

2
− π

4

)
+ Bn sin

(
kx− πn

2
− π

4

)]
(3.37)

with complex constants An and Bn. These constants are numerically evaluated by
solving

(
pωn(x)

p′ωn(x)

)
x=xf

=

 Jn(kx) Yn(kx)

k
d

d(kx)
Jn(kx) k

d

d(kx)
Yn(kx)


x=xf

(
An

Bn

)
, (3.38)

where xf is chosen sufficiently large. For the solutions An, Bn to converge for
sufficiently large xf , the base flow of the model vortex has to decay rapidly enough
far outside the vortex core. This is ensured by the base-flow variables as prescribed
by (2.10)–(2.12). We define new constants Ãn and B̃n via An =: Ãn(1 + i) and
Bn/Ãn =: B̃n =: B̃rn + iB̃in. Substituting An and Bn in the second line of (3.37) results
in

pωn(x)
x→∞−→ 1

(kx)1/2

[
Nrn cos

(
kx− πn

2
− π

4
+ δrn

)
+ iNin cos

(
kx− πn

2
− π

4
+ δin

)]
(3.39)

with

δrn: = arctan
(
− B̃rn

)
, δin: = arctan

(
− B̃in

)
(3.40)

and

Nrn := Ãn

(
2

π

)1/2 (
1 + B̃2

rn

)1/2
, Nin := Ãn

(
2

π

)1/2 (
1 + B̃2

in

)1/2
. (3.41)

If there were no vortex, we would obtain

pωn(x) = Cn Jn(kx)
x→∞−→ (Crn + iCin)

(
2

πkx

)1/2

cos
(
kx− πn

2
− π

4

)
, (3.42)

i.e. the essential influence of the base flow is that it causes a phase shift of all partial
waves with two phase angles δrn and δin for each partial wave. If a pωn(x) is multiplied
by an arbitrary complex constant, this has no impact on the phase shifts. The phase
angles are, thus, independent of the special value of p0 in (3.24), which had been set
equal to 1 arbitrarily. The aim is therefore to express the required solution for the
scattered wave in terms of the phase angles only, as it is done in quantum-mechanical
scattering theory.

We have p′ωn(x)/pωn(x) ∈ R ↔ An/Bn ∈ R. If p′ωn(x)/pωn(x) ∈ R, the phase shift of
this partial wave can be described by one phase angle δn, since δrn = δin =: δn holds
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in this case. The scattering theory is thus much simpler if we restrict ourselves to the
scattering by inhomogeneities.

The Fourier component of the sound pressure

pω(x, φ) =

∞∑
n=−∞

pωn(x)einφ (3.43)

can be decomposed into a sum of an incoming wave pinω(x, φ) and a scattered wave
pscω (x, φ). The incoming plane wave can be developed into a series of Bessel functions
of the first kind Jn(kx) (see Morse & Feshbach 1953):

pinω(x, φ) = Feik·x = Feikx cosφ =

∞∑
n=−∞

FJn(kx)ein(φ+π/2)

x→∞−→
∞∑

n=−∞
F

(
2

πkx

)1/2

cos
(
kx− πn

2
− π

4

)
ein(φ+π/2), (3.44)

where the complex amplitude F = Fr + iFi determines magnitude and phase of the
incoming plane wave. The scattered wave has to satisfy the Helmholtz equation

∆pscω (x, φ) + k2 pscω (x, φ) = 0 (3.45)

as well as Sommerfeld’s radiation condition

lim
x→∞

x1/2

(
∂pscω
∂x
− ikpscω

)
= 0. (3.46)

Therefore the scattered wave asymptotically is

pscω (x, φ)
x→∞−→ F x−1/2 f(φ) eikx+iπ/4, (3.47)

where f(φ) is called the scattering amplitude. On the one hand (3.44) and (3.47) yield

pω(x, φ) = pinω(x, φ) + pscω (x, φ),

i.e.

pω(x, φ)
x→∞−→

∞∑
n=−∞

F

(
2

πkx

)1/2

cos
(
kx− πn

2
− π

4

)
ein(φ+ π

2 )

+F x−1/2 f(φ) eikx+iπ/4, (3.48)

and on the other hand it is deduced from (3.39) and (3.43) that

pω(x, φ)
x→∞−→

∞∑
n=−∞

1

(kx)1/2

{
Nrn cos

(
kx− πn

2
− π

4
+ δrn

)}
einφ

+ i
1

(kx)1/2

{
Nin cos

(
kx− πn

2
− π

4
+ δin

)}
einφ. (3.49)

Equation (3.49) can be transformed into

pω(x, φ) =

∞∑
n=−∞

(
2

πkx

)1/2

cos
(
kx− πn

2
− π

4

)(π
2

)1/2

einφ
(
Nrne

−iδrn + iNine
−iδin
)

+ x−1/2 eikx+iπ/4

∞∑
n=−∞

k−1/2 einφ e−iπn/2 (Nrn sin δrn + iNin sin δin) . (3.50)
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A comparison of the upper lines of (3.48) and (3.50) gives

F · einπ/2 =
(π

2

)1/2 (
Nrn e−iδrn + iNin e−iδin

)
. (3.51)

This provides, together with (3.41), an expression for the so far unknown constants
Ãn:

Ãn = Fei πn/2

/(
e−iδrn

cos δrn
+ i

e−iδin

cos δin

)
. (3.52)

Comparing the lower lines of (3.48) and (3.50) gives a formula for the inelastic
scattering amplitude:

finel(φ) =

∞∑
n=−∞

F−1 k−1/2 einφ e−iπn/2 (Nrn sin δrn + iNin sin δin) . (3.53)

Finally, we insert (3.41) and (3.52) into (3.53) and arrive at

finel(φ) =

(
2

πk

)1/2 ∞∑
n=−∞

einφ (tan δrn + i tan δin)

/(
e−iδrn

cos δrn
+ i

e−iδin

cos δin

)
. (3.54)

If the scattering is elastic, δin = δrn =: δn, and equation (3.54) reduces to

fel(φ) =

(
2

π k

)1/2 ∞∑
n=−∞

einφ ei δn sin δn. (3.55)

From an experimental point of view, one is usually interested in the differential
cross-section and the total cross-section, i.e.

dσS

dφ
(φ) = |f(φ)|2 and σS =

∫ 2π

0

|f(φ)|2 dφ, (3.56)

instead of the scattering amplitude itself. The differential cross-sections for several
values of k are plotted for scattering by the model vortex (figure 2) as well as for
scattering by the model inhomogeneity (figure 3). Note that in the latter case the
elastic scattering amplitudes and, consequently, the differential cross-sections are even
functions of φ. This is guaranteed by δn = δ(−n), which itself is a consequence of the
fact that the modified wave equation contains only even powers of n for an elastic
scattering process.

The total cross-section tends towards zero for ω → 0. Let us, as usual, call the
(n = 0)-term in (3.54) and (3.55) the monopole term, the (|n| = 1)-terms the dipole
terms etc. What are the dominating terms in the low-frequency or long-wavelength
limit? For the numerically tested model vortex, the monopole, dipole and quadrupole
terms are prevailing, whereas in the case of the model hot spot only the dipole term
has to be taken into account. (The latter result is of no surprise as it had already
been predicted by Rayleigh 1945.) More and more higher-order multipole terms have
to be taken into account the higher the frequency of the incoming sound wave. This
will be looked at in greater detail in the next subsection.

3.5. Formal analogy between quantum-mechanical and acoustic scattering theory

All equations that will subsequently be quoted from quantum mechanics will be
denoted by =∗ instead of = in order to avoid confusion between quantum-mechanical
and acoustic theories.
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Figure 2. Differential cross-sections for the sound scattering by the model vortex for different
wavenumbers k.
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Figure 3. Differential cross-sections for the sound scattering by the model hot spot for different
wavenumbers k.
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The elastic total cross-section is given by

σelS =
4

ω

∞∑
n=−∞

sin2 δn.

Within the quantum-mechanical elastic scattering theory one obtains for the same
variable

σelS =∗
4π

p2

∞∑
l=0

(2l + 1) sin2 δl,

which indicates that there is some formal correspondence between quantum-mechanical
and acoustic scattering variables, e.g. δl=̂δn. In order to support this assertion, we
rewrite equation (3.19) as

p′′ωn(x) +

(
1

x
− c̃o1(x)

)
p′ωn(x) +

(
ω2 − n2

x2
− c̃o0(x)

)
pωn(x) = 0, (3.57)

where the coefficient functions c̃o1(x) and c̃o0(x) are less singular at x = 0 than the
dominant terms 1/x and n2/x2, respectively. The term proportional to p′ωn(x) can be
eliminated by a transformation pωn(x) 7→ ϕωn(x) via

pωn(x) = ϕωn(x) exp

(
−1

2

∫ x

1

(
1

ξ
− c̃o1(ξ)

)
dξ

)
which replaces (3.57) by

ϕ′′ωn(x) +

(
ω2 −

n2 − 1
4

x2
− Cωn(x)

)
ϕωn(x) = 0, (3.58)

where Cωn(x) is defined as

Cωn(x) := c̃o0(x) + (c̃o1(x))2 − 1
2
c̃o′1(x)− 1

2

c̃o1(x)

x
.

The radial Schrödinger equation for the quantum-mechanical partial wave functions
ψl(r) is (cf. e.g. Taylor 1972)

ψ′′l (r) +

(
p2 − l (l + 1)

r2
− V (r)

)
ψl(r) =∗ 0,

or, if l is replaced by λ := l + 1
2
,

ψ′′l (r) +

(
p2 −

λ2 − 1
4

r2
− V (r)

)
ψl(r) =∗ 0. (3.59)

Here, r stands for the distance from the origin in R3, V (r) is the quantum-mechanical
central potential, l is the angular momentum eigenvalue, and p the momentum
eigenvalue of the incoming particle. The comparison of (3.59) and (3.58) suggests a
correspondence as listed in table 1. By means of a simple energy argument (cf. Taylor
1972) one concludes in quantum mechanics that phase angles δl with

l � paV

(aV is the typical extension of the scattering potential) do not contribute significantly
to the scattering amplitude. Utilizing the above-mentioned analogy, we suppose that
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Quantum-mechanical variable Acoustic variable Correspondence

three-dimensional radius: r two-dimensional radius: x r=̂x
particle momentum frequency of the p=̂ω

eigenvalue: p incoming wave: ω
angular momentum separation parameter for n=̂l + 1

2
eigenvalue: l the azimuthal angle φ: n

central potential: V (r) potential function: Cωn(x) V (r)=̂Cωn(x)
phase angle: δl phase angle: δn δl=̂δn
partial wave function: ψl(r) transf. partial sound ψl(r)=̂ϕωn(x)

pressure: ϕωn(x)

Table 1. The correspondence between quantum-mechanical and acoustic scattering variables

in the acoustic case those phase angles δn with

|n| � ωaC (3.60)

(aC is a typical extension of the vortex/hot spot) are negligible. This result is confirmed
by numerical experiments according to which the number of phase shifts to be taken
into account grows linearly with frequency ω.

4. Application of the scattering theory
4.1. Shocks and N-waves

A periodic sequence of shocks is approximated by a sequence of N-waves (see figure
4). The steep flanks represent the shocks with a finite period of time τS of increasing
pressure. The time τA during which the pressure decreases between two successive
shocks should be long in comparison to τS . Such shock N-waves with a sufficiently
small amplitude can be decomposed into a Fourier series (for practical calculations
a Fourier sum) of sinusoidal sound waves of different frequencies. Shock–vortex
interaction can thus be theoretically treated by an appropriate sound-scattering theory
if weak shocks only are considered. Vortex deformation should be negligible during
the passage of a shock. We should therefore consider a strong vortex, regarding
the base flow as compressible. In the same way shock–hot-spot interaction can
be theoretically investigated. In addition to the non-dimensional polar coordinate
system (x, φ), we will use non-dimensional Cartesian coordinates (ξ1, ξ2) when it is
appropriate.

4.2. Shock–vortex interaction

In our calculations the ratio τA/τS was chosen to be 24 and also 24 different frequencies
were retained in the Fourier sum. The distance between two successive shock fronts
was 100 times the vortex radius R. The vortex rotated in an anti-clockwise direction.

Experimental investigations of the shock–vortex interaction have mainly been
carried out in shock tubes (e.g. Hollingsworth & Richards 1955; Dosanjh & Weeks
1965). A plane shock passes over a two-dimensional wing at a small angle of
attack. Thereby a cylindrical vortex is shed from the trailing edge of the wing. The
shock is reflected at the closed end of the shock tube and interacts with the vortex
afterwards. These experiments reveal the following three different phenomena related
to shock–vortex interaction.

1. The shock is deformed whilst passing over the vortex. Depending on the shock
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Figure 4. A periodic sequence of shocks represented by successive N-waves.

and vortex strengths, this can result in structures of ‘initial’ and ‘reflected’ shocks as
they are known from the reflection of a plane shock by a wedge (see Elzey, Picone &
Oran 1992).

2. A cylindrical sound wave with a quasi-quadrupolar amplitude is formed, which
is cut off by the shock since the sound velocity exceeds the shock velocity in the centre-
of-vortex coordinate system. The predominantly quadrupolar directivity pattern of
the cylindrical sound wave is particularly well documented in Dosanjh & Weeks (1965
see, in particular, figure 4). The authors were able to measure the pressure amplitude
along the circumference of the cylindrical sound wave very accurately and fitted a
curve consisting of monopole, dipole and quadrupole terms only to their experimental
data. The fit is very good, and Dosanjh & Weeks (1965) find the quadrupole term to
be the dominant one.

3. The vortex is deformed.
It is the second phenomenon which is supposed to be fairly well described by the
sound-scattering theory. Apart from this, one could hope that the calculated scattered
sound signal also contains a structure which can be interpreted as a ‘reflected shock’.
The third phenomenon, apparently, cannot be treated.

The spatial pressure distribution of the scattered sound signal for the model vortex
is shown in figure 5 as a so-called ‘density plot’. Brighter up to white spots represent
areas of positive sound pressure and darker up to black spots indicate negative sound
pressures, respectively. Zero pressure corresponds to grey. The cross in the middle of
the graphs marks the centre of the vortex. The position of the undisturbed incoming
shock, which has passed over the vortex, is drawn in by three lines. The left one at
ξ1 = 38 corresponds to a pressure maximum of the N-wave, the right one at ξ1 = 42
to a pressure minimum and the line in the middle at ξ1 = 40 is where the pressure
crosses the zero value. In an inner region, for x < 15, the scattered sound pressure
was set equal to zero because the calculated signal is only asymptotically valid.

The kind of representation chosen in figure 5(a) emphasizes structures caused by
small pressure fluctuations in an exaggerated manner. These small fluctuations are
probably the result of the finite Fourier sum and have no physical meaning. In figure
5(b) they are made disappear by a different kind of representation. Although the
main structure is still quite complicated, a quadrupole-like nearly cylindrical sound
wave might now be discernible where a circle is additionally drawn on the figure. In
the calculated picture, the cylindrical sound wave forms a full circle because sound
and shock speeds are equal in the weak shock limit. The location of the positive and
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(a)

(b)

Figure 5. Density plot of the scattered sound pressure signal for the scattering by
the model vortex.

negative pressure peaks is consistent with experimental findings of Hollingsworth &
Richards (1955) and Dosanjh & Weeks (1965). A quantitative comparison of the
amplitude of the scattered sound wave between Dosanjh & Weeks’ experiments and
this theoretical result is, however, not possible because their shocks were not weak in
the sense of this theory. The white area in the fourth quadrant might tentatively be
interpreted as a reflected shock.

4.3. Shock–hot-spot interaction

For the computed shock–hot-spot interaction we used the model hot spot of §2 as
well as the N-wave model of §4.2.

The density plot of the scattered sound pressure signal (equivalent to figure 5 in
the previous subsection) is presented in figure 6. It is obvious that the scattered sound
signal has to be symmetric with respect to the direction of shock propagation. The
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(a)

(b)

Figure 6. Density plot of the scattered sound pressure signal for the scattering by
the model hot spot.

scattered sound signal essentially consists of two successive cylindrical, nearly dipolar
sound waves. In the forward-scattering region the outer sound wave is a compression
wave while the inner one is an expansion wave. In the backward-scattering region it
is the other way round. The sound scattering has its minimum perpendicular to the
direction of shock wave propagation.

Hamernik & Dosanjh (1973) carried out an experiment in order to investigate
shock–hot-spot interactions where the hot spot was produced by a copper-wire ex-
plosion. When a shock passed over the hot spot, a cylindrical sound wave was
generated, the amplitude of which was measured by Mach–Zehnder interferometry.
The amplitude obtained in this way is nearly dipolar, but not really symmetric with
respect to the direction of shock propagation. A radial cross-section of the scattered
sound pressure at φ = π features only the outer minimum but not the inner maximum
found in our calculations. It is believed that the differences between experiment and
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theory are due to an insufficient experimental set-up since the presumed medium
at rest could probably not be guaranteed in the experiment due to the wire explo-
sion. Additionally, the shock strengths were not weak, which renders a quantitative
comparison between experimental and theoretical results impossible.

5. Conclusions
A semi-analytical theory for the calculation of the scattering of a plane sound

wave by a single cylindrical vortex was developed. As a special case, the scattering
by a cylindrical inhomogeneity was considered. The theory made use of the acoustic
approximation and assumed that the dependence of the base flow variables on time
and on the azimuthal angle φ can be neglected during the scattering process.

It was shown that a formal analogy between three-dimensional quantum-mechanical
and two-dimensional acoustic scattering theories exists which was mainly employed
to estimate the computational effort as a function of the frequency ω of the incoming
sound wave. Contrary to the quantum-mechanical scattering theory, there are singu-
larities in the modified wave equation for finite but non-zero radii if the scattering
by a vortex is considered. It was shown how these singularities can be treated. A
consequence of the existence of these singularities is that the scattering by a vortex is
inelastic whereas the scattering by a hot spot is elastic.

The sound-scattering theory was applied to the problem of shock–vortex interaction
and shock–hot-spot interaction. The shock, actually a periodic sequence of weak plane
shocks, is represented by a sequence of N-waves, which can by approximated by a
Fourier sum of plane sinusoidal sound waves. In this way shock–vortex interaction
was traced back to the problem of sound scattering by a vortex. The calculated
cylindrical sound waves, which are formed when the shock is passing over the
vortex/hot spot, are in qualitative agreement with experimental results for both cases.
Quantitative comparisons could not be made since no experiments with really weak
shocks were known.

Further investigations should be carried out in order to tackle the inverse scattering
problem for a compressible cylindrical vortex. The formal analogy between quantum-
mechanical and acoustic direct scattering theories may possibly serve as a basis for
transferring results of the inverse scattering problem from quantum mechanics to
acoustics. A satisfactory solution of the inverse scattering problem could be of
practical relevance for determining the location and strength of vortices at airports
(Ferziger 1974).

Appendix A
(r, φ, z) dimensional cylindrical coordinate system
R dimensional vortex radius
(x, φ) non-dimensional polar coordinate system
xs non-dimensional radial location of a singularity
(ξ1, ξ2) non-dimensional Cartesian coordinate system

dimensional sum of base flow and sound variables:
ρg(r, φ, t), pg(r, φ, t), density, pressure,
ug(r, φ, t), vg(r, φ, t), wg = 0 radial, azimuthal and axial velocities.

dimensional base flow variables:
ρ̄(r), p̄(r), v̄(r), Γ̄ (r), density, pressure, azimuthal velocity, circulation,
s̄(r), T̄ (r), c̄(r) entropy, temperature and sound velocity
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non-dimensional base flow variables:
Q(x), P (x), V (x), density, pressure, azimuthal velocity,
S(x), T (x), c(x) entropy, temperature and sound velocity

a1(x), a2(x), a3(x), functions defined through non-dimensional base flow
b1(x), f1(x), g1(x) variables (see (3.15), and below (3.21) and (B 1))

dimensional sound perturbation variables:
ρ̇(r, φ, t), ṗ(r, φ, t), density, pressure,
u̇(r, φ, t), v̇(r, φ, t), ẇ = 0 radial, azimuthal and axial velocity components

dimensional Fourier components of the sound variables:
ρ̂ω̄(r, φ), p̂ω̄(r, φ), density, pressure,
ûω̄(r, φ), v̂ω̄(r, φ) radial and azimuthal velocities

ρ̂ω̄n(r), p̂ω̄n(r) dimensional partial density and pressure waves
ûω̄n(r), v̂ω̄n(r) dimensional partial radial and azimuthal velocity waves

ρωn(x), pωn(x) non-dimensional partial density and pressure waves
uωn(x), vωn(x) non-dimensional radial and azimuthal velocity waves

ω̄, ω dimensional and non-dimensional frequency
k, k = |k| non-dimensional wave vector and wavenumber

(ω = k far outside the vortex/hot-spot)
n azimuthal separation parameter in einφ

κ = 1.4 ratio of specific heats
Jn(kx), Yn(kx) Bessel functions of the first and second kind
δrn, δin phase angles for nth partial wave;
(δn) for elastic scattering δrn = δin =: δn.
f(φ) scattering amplitude
(dσS/dφ)(φ), σS differential and total cross-section

subscript ‘∞’ denotes base flow variable for large radii
superscript ‘in’ denotes incoming plane sound wave
superscript ‘sc’ denotes scattered sound wave
superscript ‘el’ stands for ‘elastic’ and refers to scattering by a hot spot
superscript ‘inel’ stands for ‘inelastic’ and refers to scattering by a vortex

Appendix B. Equations for non-homentropic base flow

The basic equations for a non-homentropic base flow are

i
(
Qa2

1 + a3

)
uωn − Qa1 b1 vωn =−a1

dpωn
dx

+ a1 g1 pωn,

Q f1 uωn + iQa1 vωn =−i
n

x
pωn,

duωn
dx

+
1

x
uωn +

1

c2Q

dP

dx
uωn + i

n

x
vωn =−i

a1

c2 Q
pωn,


(B 1)

where a3 stands for

a3 := g1

(
dP

dx
− c2 dQ

dx

)
.
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The system of equations (3.18) has to be replaced by

p′ωn = i

(
−Qa1 −

a3

a1

+
Qb1 f1

a1

)
uωn +

(
g1 −

b1 n

a1 x

)
pωn,

u′ωn =

(
f1 n

a1 x
− 1

x
− 1

c2 Q

dP

dx

)
uωn + i

(
n2

Qa1 x2
− a1

c2 Q

)
pωn.

 (B 2)

The coefficient functions co1(x) and co0(x) in the modified wave equation (3.19) contain
18 and 32 terms instead of 6 and 9 in (3.20) and (3.21). The general expressions
for both coefficient functions were calculated with the aid of mathematica (Wolfram
1992). We do not give them here for brevity.

Appendix C. Frictional effects
In this Appendix we investigate the influence small friction has on the partial

sound pressure waves pωn(x). Despite the incorporation of friction, we will still
assume that the base flow is approximately homentropic, in order to keep the length
of the equations still manageable. The compressible Navier–Stokes equations are

ρg

(
∂vg
∂t

+
(
vg · ∇

)
vg

)
= −grad pg + µ̄∆vg +

(
µ̄P + 1

3
µ̄
)

grad div vg. (C 1)

The two friction coefficients are denoted by µ̄ (= dynamic shear viscosity) and µ̄P
(= dynamic bulk viscosity). Since we need these equations in cylindrical coordinates,
they are rewritten as

ρg

(
∂vg
∂t

+
(
vg · ∇

)
vg

)
= −grad pg + α grad div vg − β rot rot vg (C 2)

with β := µ̄, and α := µ̄P + 4
3
µ̄. In order to derive the basic equations including friction

we proceed as in §3.1. Two Reynolds numbers Re1 and Re2 have to be defined:

Re1 :=
ρ̄∞c̄∞R

α
and Re2 :=

ρ̄∞c̄∞R

β
. (C 3)

We eventually arrive at

iQa1 uωn − Qb1 vωn =−dpωn
dx

+ g1 pωn + D1,

Q f1 uωn + iQa1 vωn =− i n

x
pωn + D2,

duωn
dx

+

(
1

x
+

1

Q

dQ

dx

)
uωn + i

n

x
vωn =−i

1

c2 Q
a1 pωn,


(C 4)

which is precisely the same as (3.16) apart from the frictional terms D1 and D2.
Now we turn to the friction-including proof of the phase jump at x = xs1 where

a1(xs1) = 0. The two fundamental solutions of (3.19) formulated as series about
x = xs1 are of the following form:

p1ωn(x) = (x− xs1)P1(x),

p2ωn(x) = β1 (x− xs1)P1(x) ln(x− xs1)−P2(x),

where P1(x) and P2(x) are power series about x = xs1 with the first term being equal
to one. The first fundamental solution p1ωn(x) is analytic in x = xs1 whereas the first
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derivative of the second solution has a logarithmic singularity there. Thus, the partial
azimuthal sound velocity vωn(x) possesses the same singularity and consequently
vω(x, φ) too, which is physically impossible. We conclude therefore, that p2ωn(x) has
to be replaced by some other analytic function p21(x) in a small neighbourhood U
around x = xs1. Outside U, p21(x) should become p2ωn(x). The function p21(x) can be
obtained if a friction-including equation is considered instead of (3.19). This equation
must turn into (3.19) in the limit of negligible friction.

An approximate friction-including wave equation for pωn(x) can be found as follows.
We proceed as we did in deriving the frictionless wave equation (3.19), but retain D1

and D2 in the two momentum equations. In a second step we eliminate uωn(x) and
vωn(x) in D1 and D2 by means of

uωn = −i
a1

Qa2

dpωn
dx

+ i
a1 g1 − b1 n/x

Qa2

pωn (C 5)

and

vωn = − f1

Qa2

dpωn
dx

+
a1 n/x− f1 g1

Qa2

pωn. (C 6)

Equations (C 5) and (C 6) can be found by inserting (3.16b) into (3.16a). Neglected
terms are of O(1/(Re2)

2). The resulting differential equation is of fourth order and has
no singularity in x = xs1, provided a2(xs1) 6= 0. This approximate friction-including
wave equation assumes the form

rco4(x)piv
ωn(x) + rco3(x)p′′′ωn(x) + (oco2(x) + rco2(x)) p′′ωn(x)

+ (oco1(x) + rco1(x)) p′ωn(x) + (oco0(x) + rco0(x)) pωn(x) = 0, (C 7)

where
oco1(x)

oco2(x)
= co1(x) and

oco0(x)

oco2(x)
= co0(x).

All coefficient functions with first letter r are of O(1/Re2). We neglect rco2(x), rco1(x)
and rco0(x) from now on. All remaining coefficient functions are developed into
power series about the singularity x = xs1. We obtain for oco1(x)

oco1(x) =

[
−1

Q(x)a2(x)

(
−n
x
b1(x) +

n

x
f1(x)− a′1(x)

)]
x=xs1

+ O(x− xs1). (C 8)

The first term on the right-hand side vanishes since a′1(x) = (n/x) (f1(x)− b1(x)) and
a2(xs1) 6= 0 as presumed. Thus, we have

oco1(x) =

∞∑
j=1

α(1)j(x− xs1)j

as well as

rco4(x) =
i

Re2

∞∑
j=0

α(4)j(x− xs1)j , rco3(x) =
i

Re2

∞∑
j=0

α(3)j(x− xs1)j ,

oco2(x) =

∞∑
j=1

α(2)j(x− xs1)j , oco0(x) =

∞∑
j=0

α(0)j(x− xs1)j .


(C 9)

We introduce a new variable η which replaces x− xs1:

ε · η = (x− xs1) with p̃(η) := pωn(x) and ε� 1. (C 10)
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We insert the series expansions (C 9) into equation (C 7), divide by α(2)1 and rearrange
the terms in the order of powers of ε, thereby obtaining

1

Re2

1

ε3

α(4)0

α(2)1

i
d4

dη4
p̃(η) + η

d2

dη2
p̃(η) +

1

Re2

1

ε2
i

(
α(4)1

α(2)1

η
d4

dη4
p̃(η) +

α(3)0

α(2)1

d3

dη3
p̃(η)

)
= −ε

(
α(2)2

α(2)1

η2 d2

dη2
p̃(η) +

α(1)1

α(2)1

η
d

dη
p̃(η) +

α(0)0

α(2)1

p̃(η)

)
+ O(ε2). (C 11)

The first two terms on the left-hand side of (C 11) should be of O(1), and all other
terms of (C 11) of O(ε). This is achieved by setting

1

Re2

1

ε3

α(4)0

α(2)1

= 1. (C 12)

Since p21(x) should be bounded for x = xs1, the assumption

p21(x) = 1 + εp21ε(x) (C 13)

is made for x ∈ U. Inserting p̃21(η) = p21(x) into equation (C 11), neglecting all terms
∼ O(ε2) and dividing by ε yields a differential equation for p̃21ε(η):

i
d4

dη4
p̃21ε(η) + η

d2

dη2
p̃21ε(η) = −α(0)0

α(2)1

. (C 14)

The solutions p′′21ε(η) of (C 14) are Airy functions (see Abramowitz & Stegun 1964)

η1/2 H
(1)
1/3

(
2
3

(i η)3/2
)

and η1/2 H
(2)
1/3

(
2
3

(i η)3/2
)
, (C 15)

where H (1) and H (2) are Hankel functions of the first and second kind. By means of
the Airy functions given in (C 15) one can construct p̃21ε(η) and, thus, p21(x). This
is done in a way similar to the treatment of the singularity in the Orr–Sommerfeld
problem (cf. Tollmien 1929). The Hankel functions have an analytic asymptotic
representation valid in the whole lower η-half-plane, but not in the whole upper η-
half-plane. Therefore, one has to choose an integration path in the lower η-half-plane.
With the aid of mathematica we obtained

rco4(x) =
i

Re1

a2
1(x)

[a2(x)Q(x)]2
+

i

Re2

b1(x)f1(x)

[a2(x)Q(x)]2
⇒ α(4)0 =

1

Q2(xs1)

1

b1(xs1)f1(xs1)

and

oco2(x) =
a1(x)

a2(x)Q(x)
⇒ α(2)1 =

d

dx
(oco2(x))

∣∣∣∣
x=xs1

=
a′1(xs1)

b1(xs1)f1(xs1)Q(xs1)
.

Consequently,

α(4)0

α(2)1

=
Q(x)

a′1(x)

∣∣∣∣
x=xs1

=
Q(xs1)

nW ′(xs1)
, (C 16)

provided that W ′(xs1) 6= 0. Let ε be real. According to (C 12) and since n > 0,
Q(xs1) > 0, and Re2 > 0, one concludes

ε
>

<
0 ←→ α(4)0

α(2)1

>

<
0 ←→ W ′(xs1)

>

<
0. (C 17)

This means: for W ′(xs1) < 0 we have to integrate in the upper x-half-plane. This
corresponds to a phase jump of −π of the second frictionless fundamental solution
p2ωn(x) at x = xs1 when the increasing independent variable x passes over xs1. For
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298 J. Reinschke, W. Möhring and F. Obermeier

W ′(xs1) > 0, we would get a phase jump of +π. This is precisely the same result as
the one furnished by the causality argument.
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