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An experimental investigation on the initial instability of nonlinear deep-water wave
trains including wind effects is reported. The experiment was conducted at the Ocean
Engineering Laboratory wind-wave facility (50 m long, 4.2 m wide, 2.1 m deep), with
a fully computer-controlled mechanical wave generator to explore the parameter
space: steepness; sideband frequency; wind speed. The estimated growth rates of
the Benjamin–Feir instability from seeded wind-free experiments agreed well with
the theoretical prediction derived from Krasitskii’s four-wave reduced equation as
computed here. Wind was added to the same wave system; the growth rates of the
sidebands were reduced for weak, and enhanced for strong wind forcing. Experiments
with naturally selected sidebands, i.e. unseeded, were conducted as well; measurements
showed that wind did not inhibit the growth of sidebands in the case of either two-
dimensional or three-dimensional instabilities. A comparison of the results with earlier
work suggests that there are two independent effects of wind: first, the alteration of
the inviscid growth for a given modulational frequency as shown by comparison with
the seeded experiments without wind; second, a change in the natural modulational
frequency appearing in the presence of wind which is a function of the wave age,
as observed in unseeded experiments. Both effects combined will determine whether
the modulational instability is enhanced or suppressed; comparison of experimental
results with theoretical predictions suggests that the effect of wind on the natural
selection of the modulational frequency is the dominant effect. It was shown that
for moderate to old waves, the net effect of wind on the modulational instability is
small. For all the experiments except a few unseeded cases with weak breakers, the
modulation was small and no breaking was observed within the tank.

1. Introduction
We report here a systematic experimental study of the initial instability of deep-

water wave trains (Stokes’ waves) including wind effects. Since the report of Benjamin
& Feir (1967), a variety of experiments have been conducted to study the evolution
of modulational wave trains (Lake et al. 1977; Melville 1982; Su et al. 1982; Su &
Green 1984; Bliven, Huang & Long 1986). Only a few of these were concerned with
and measured the initial growth rate of the sidebands or compared measurements
with theory. This was partially because the lack of well-controlled wave generators

limited the choice of the relevant parameters, ε ≡ ak and δ̂ ≡ δω/εω. The work
that we present here is a part of the systematic experimental study conducted in the
Ocean Engineering Laboratory large wind-wave facility, partially reported previously
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56 T. Waseda and M. P. Tulin

for the long-time evolution of the wave group that includes breaking effects (Tulin &
Waseda 1999).

Both Benjamin & Feir (1967) and Lake et al. (1977) conducted early experiments

for a fixed δ̂ varying ε. Those data were compared with a variety of theories
(Benjamin 1967; Benjamin & Feir 1967; Lake & Yuen 1977; Yuen & Lake 1982;
Janssen 1983). The Benjamin & Feir (1967) theory, which is based on a perturbation
approach, was shown by Lake & Yuen (1977) to be reproduced by the nonlinear
Schrödinger equation. While Benjamin (1967) showed only fair agreement with theory
and experiment, Yuen & Lake (1982) improved theoretical agreement with initial
growth rates using Zakharov’s theory (Zakharov 1968). Janssen (1983) used the
modified nonlinear Schrödinger equation (Dysthe 1979) to predict initial growth
rates, and showed a significant improvement over nonlinear Schrödinger equation
predictions. Although theories that include finite-amplitude effects (Zakharov 1968;
Dysthe 1979), show significant improvement over the linear instability analysis of
Benjamin (1967), their validity is still limited to relatively small steepnesses; this may
readily be seen in a diagram showing predictions of the fastest growing modulational
frequency against steepness (Dysthe 1979; Longuet-Higgins 1980; Yuen & Lake 1982).
Zakharov’s theory agrees with the exact solution of Longuet-Higgins up to moderate
steepness while Dysthe’s theory fails for relatively small steepness (ε < 0.1).

To extend available data without wind, we have conducted a set of experiments for a

fixed ε varying δ̂. Seeded experiments were conducted with a wave-generator motion

controlled by prescribing ε, δ̂, and the initial modulation (‘seeded’). The resulting
surface elevation time series were obtained from 11 stations along the tank, allowing
us to obtain a reliable growth rate estimate. The measured growth rates were in
reasonable agreement with those computed by us using the theory of Krasitskii (1994).

For some selected cases, we have added wind. The wind speed was varied
(1.8–13.1 m s−1, wave ages Cp/U1m = 0.12–0.87, or Cp/u∗ = 1.8–7.4) and the growth
rate estimates were compared with the no wind cases; here Cp is the phase velocity,
U1m is the mean wind speed at 1 m height, and u∗ is the friction velocity. The compari-
son showed that the influence of wind depends on wave age; growth is suppressed
with moderately old and old waves but enhanced with young waves.

In addition to these experiments, a long run of a monochromatic wave was
conducted with and without wind. Sidebands develop naturally due to the disturbance
originating from the wave front which propagates between the wave generator and
the beach (Melville 1982; Tulin & Waseda 1999). Such ‘unseeded’ experiments are
similar to the experiments conducted by Bliven et al. (1986) and Li, Hui & Donelan
(1988). In disagreement with these earlier works, the sideband growth was observed to
be not necessarily suppressed by the wind. However, the natural sideband frequencies
varied with the wind speed. Changes in the growth rate would therefore seem at
least partially due to the resulting differences in modulational frequency between the
Bliven et al. (1986) and the present results.

For the largest wave steepnesses here (ε = 0.20 and 0.24), the case ε = 0.24
displayed a three-dimensional instability, so-called type II instability (McLean 1982).
The sideband frequency was in this case close to that observed by Su (1982). Although
the sideband growth was affected at the higher wind speed, the growth rates were not
suppressed.

Section 2 briefly describes the theoretical background. In § 3, the experimental
procedure and the analysis method are discussed in detail. The results are presented
in § 4. A discussion is given in § 5 and the conclusions follow.
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Stability of wave trains 57

2. Instability theory

The water surface elevation of the sideband system can be approximated as

ζ(x, t) = a eiα ei(k0x−ω0t) + b+ eiβ+ ei(k+x−ω+t) + b− eiβ− ei(k−x−ω−t), (2.1)

where a, b+, and b− are the real amplitudes; α, β+, and β− are the real phases of the
wave modes; k0, k+, and k− are the wavenumbers and ω0, ω+, and ω− are the wave
frequencies satisfying

2ω0 − ω+ − ω− = 0,

2k0 − k+ − k− = ∆k,

ω± = ω0(1± δ).

 (2.2)

Here, the sideband amplitudes b+ and b− are much smaller than the carrier wave
amplitude a. The steepness ε is defined as (ak)0. The wave system described by (2.1) is
a simplified representation of a three-component wave train with moderate steepness
undergoing two-dimensional modulation. The detuning parameter is ∆k = −2δ2k0 for
waves satisfying the linear dispersion relation ω2 = gk.

Because of nonlinear interaction among wave modes, the sideband waves will
grow exponentially. The initial growth rate, βx = d(ln b±)/d(kx), is predicted by the
perturbation analysis of Benjamin & Feir (1967):

βBF = ε2 δ̂ (2.0− δ̂2)1/2, (2.3)

where δ̂ = δ/ε, with the condition for the instability, 0 < δ̂ 6
√

2. Thus, the
normalized growth rate βBF/ε

2 does not explicitly depend on ε.

Phillips (1967) derived the Benjamin–Feir instability within the framework of
the nonlinear wave–wave interaction theory. He has shown, to the first order in
amplitudes, that the combination of resonant de-tuning and amplitude dispersion
is the essential ingredient in the Benjamin–Feir instability of the Stokes’ wave, and
has derived the exponential growth rate starting from the Benney (1962) interaction
equation. A similar approach has been taken by Yuen & Lake (1982), deriving the
initial growth rate of the sideband instability starting from the Zakharov interaction
equation. Such studies showed that the normalized growth rate βx/ε

2 depends on

both ε and δ̂, and the instability range depends on ε.

We have derived the evolution equation for the sideband system by using Krasitskii’s
(1994) reduced four-wave equation (see the Appendix for the derivation). To the
leading order and neglecting higher-order terms such as b2

+, b2−, and b+b−, we obtain

da

dx̃
= 0,

db+

dx̃
= C+ ε

2b− sinφ,
db−
dx̃

= C− ε2b+ sinφ,

dφ

dx̃
= 2

(
ω0

2k0

(
ω+

2k+

)−1

T1212 +
ω0

2k0

(
ω−
2k−

)−1

T1313 − T1111

)
ε2

+2(C+C−)1/2 ε2 cosφ− ∆k/k,


(2.4)

where x̃ ≡ kx, φ ≡ 2α− β+ − β− − ∆kx, C+ ≡ (ω0/2k0)(ω−/2k−)1/2(ω+/2k+)−3/2T1123

and C− ≡ (ω0/2k0)(ω+/2k+)1/2(ω−/2k−)−3/2T1123; the T are the interaction coefficients
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Longuet-Higgins
Benjamin–Feir
Krasitskii
Dysthe
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Figure 1. The most unstable modulational frequency as a function of ε. Theories from
Longuet-Higgins (1980), Benjamin & Feir (1968) and Dysthe (1979) are compared with (2.5)
derived from Krasitskii (1994).

derived by Krasitskii (1994), where subscripts 1, 2 and 3 stand for the carrier, the
lower and the upper sidebands respectively. Solutions of (2.4) yield a set of equations
to determine the initial growth rate and related quantities:

b+ = (C+/C−)1/2 b− = b+(0) exp [βKx̃] = (C+/C−)1/2b−(0) exp [βKx̃],

cosφ = 0.5

[
∆k/k

ε2
−
(
ω0

2k0

(
ω+

k+

)−1

T1212 +
ω0

2k0

(
ω−
k−

)−1

T1313 − 2T1111

)]
×(C+C−)−1/2,

βK = ε2(C+C−)1/2 sinφ,


(2.5)

which may easily be computed. In figure 1, we compare the prediction of the most
unstable modulational frequency as a function of ε with various different theories
(Benjamin & Feir 1967; Dysthe 1979; Longuet-Higgins 1980; Krasitskii 1994). From
this, we see that the computation using (2.5) agrees very well with the exact theory
of Longuet-Higgins (1980) and provides strong support for the validity of the present
Krasitskii type calculation.

Equation (2.4) can be rewritten using normalized variables, b̃+ ≡ b+/a and b̃− ≡
b−/a:

db̃+

dx̃
= C+ε

2b̃− sinφ = C βK b̃−,

db̃−
dx̃

= C−ε2b̃+ sinφ =
1

C
βK b̃+,

 (2.6)
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Stability of wave trains 59

where C ≡ (C+/C−)1/2 and βK are given by (2.5). Now we further define a new
variable, the mean normalized sideband amplitude:

b ≡ 0.5(b̃+ + C b̃−). (2.7)

Using this new variable, the evolution equations (2.6) may be combined to give

db

dx̃
= βK b. (2.8)

We finally define the growth rate of the sideband as

βx ≡ db/dx̃

b
, (2.9)

which can be used directly when estimating the growth rate from experimental data.
The effect of wind may in principle be added to the instability analysis, since a

linear wind-wave growth has been deduced in the field by Snyder et al. (1981):

βs = Cs

(
U

Cp
− 1.0

)
, (2.10)

where U is the mean wind speed, Cp is the wave celerity, and Cs = 0.000942 is an
empirical constant.

Adding (2.10) to (2.4) and rewriting (2.4) using normalized variables, b̃+ ≡ b+/a

and b̃− ≡ b−/a, as in (2.6), we obtain

db̃+

dx̃
= C βK b̃− + Csδ

(
U

Cp

)
b̃+,

db̃−
dx̃

=
1

C
βK b̃+ − Csδ

(
U

Cp

)
b̃−.

 (2.11)

For ε ∼ δ ∼ 10−1, the first term is O(10−2) and the second term is O(10−4) for U/Cp ∼
O(1); therefore, the second term is small, indicating the weak effect of wind on the
growth of normalized variables. Oshri (1996) obtained a more rigorous derivation
of the effect of the wind input on the instability by extending the wave interaction
theory of Krasitskii (1994) and also showed that the effect of wind on the normalized
sideband is nearly negligible; in his analysis, the effect of wind was introduced to
the wave system through application of a suitable normal pressure distribution along
the wave. He has shown that the effect of wind will not change the higher-order
terms that are responsible for the instability. This justifies the linear superposition
of the wind input term in (2.11), as far as the initial instability is concerned. As
the waves grow as a result of wind–wave interactions, the terms neglected in the
initial instability analysis become significant. Also, strong wind–wave interactions as
observed in various experimental studies may become important as well (Phillips &
Banner 1974; Toba et al. 1986). The linear superposition of the wind input term is
no longer valid, but such cases are beyond the scope of our study since our main
concern is the initial instability.

Using the new mean sideband variable, (2.7), the evolution equations (2.11) may be
combined as before:

db

dx̃
= βx b+ 0.5

U

Cp
δCs(b̃+ − C b̃−). (2.12)
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Hydraulics

Wavemaker

Inlet Wind tunnel

100
175

U

Test section
Beach

58

Figure 2. Ocean Engineering Laboratory (UCSB) wind-wave tank. Wavemaker: computer-
driven bi-modal plunger; λ ∼ 0.6−10 m. Wind tunnel: maximum flow rate of 13 m s−1. Dimen-
sions are in feet.

Again the second term of (2.12) is nearly negligible, since b̃+ − C b̃− = O(δ), and
therefore (2.9) should provide a good estimate from experiments of the sideband
growth rate due to nonlinear interactions, excluding the effect of the wave growth by
wind.

3. Experiments and analyses
3.1. Facility and instrumentation

The experiment was conducted at the large wind-wave facility at the University of
California, Santa Barbara (Tulin & Waseda 1999); see figure 2. The tank is 50 m long,
4.2 m wide, 2.1 m deep; the open circuit tunnel section starts at around 8 m fetch and
ends at 38 m fetch, and the air passage height is 1.5 m. The waves were generated
by a hydraulically actuated plunger, controlled by a computer-generated signal. The
maximum wind speed is 13 m s−1 at the end of the wind tunnel section. The wave
reflection from the beach is typically less than 3% in amplitude; less than 1% in
energy.

Waves that can be generated range from about 60 cm to 4 m wavelength. Typically,
for the study of unstable wave trains, we have used waves over 1.5 m or so. Those
waves tend to be planar due to the wave guide effect as discussed in Tulin & Waseda
(1999). We can generate seeded unstable wave trains in the range of 1–4 m wavelength
and steepness 0.12–0.28.

Surface elevation time series were obtained using an array of wave wires placed
along the tank (a total of 11 wires placed at fetches 1.2, 12.64, 15.64, 18.64, 21.64,
24.64, 27.64, 30.64, 33.64, 36.64 and 41.14 m). The capacitance-type wave wires (0.4 mm
diameter anodized tantalum wire), the sensing circuitry, and the digitizing circuitry
were made at the OEL. Each wire had a dynamic range of ∼ 60 cm at 12 bits
digitization, with noise typically less than 4 counts (∼ 0.5 mm). The linearity of the
wires was ensured by static calibration.

The wind speeds were monitored at the end of the tunnel section, at 1 m above
mean water level (U1m). The anemometer was vertically traversed above the mean
water level in order to obtain the mean wind velocity profile. The velocity profile was
used to estimate the friction velocity u∗. These measured wind-related parameters are
used to define wave ages: Cp/U1m and Cp/u∗. Their inverse values are presented in
table 1. The more commonly used wave age defined as Cp/U10m can easily be obtained
by extending the logarithmic profile, and in the current experiment, the correction
gave Cp/U10m ∼ 1.3× Cp/U1m.

The data acquisition was PC based, and the software was developed by National
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λ fc δf f+ f−
(m) (Hz) ε (Hz) (Hz) (Hz) b+/a δ̂

Sideband system without wind

SB1NW01 1.56 1.0 0.175 0.06 1.06 0.94 0.01 0.343
SB1NW02 1.56 1.0 0.175 0.09 1.09 0.91 0.01 0.514
SB1NW03 1.56 1.0 0.175 0.12 1.12 0.88 0.01 0.686
SB1NW04 1.56 1.0 0.175 0.15 1.15 0.85 0.01 0.857
SB1NW05 1.56 1.0 0.175 0.18 1.18 0.82 0.01 1.029

SB2NW01 1.56 1.0 0.133 0.112 1.112 0.888 0.01 0.842

λ fc U1m u∗
(m) (Hz) ε b+/a δ̂ (m s−1) (cm s−1) U1m/Cp u∗/Cp Ω

Sideband system with wind

SB1W01 1.56 1.0 0.175 0.01 0.857 1.8 — 1.15 — 26.6
SB1W02 1.56 1.0 0.175 0.01 0.857 4.1 29.3 2.63 0.188 11.6
SB1W03 1.56 1.0 0.175 0.01 0.857 6.3 37.1 4.04 0.238 7.6
SB1W04 1.56 1.0 0.175 0.01 0.857 8.5 41.3 5.45 0.265 5.6
SB1W05 1.56 1.0 0.175 0.01 0.857 10.8 47.6 6.92 0.305 4.4
SB1W06 1.56 1.0 0.175 0.01 0.857 13.1 64.4 8.4 0.413 3.6

SB2W01 1.56 1.0 0.133 0.01 0.842 1.8 — 1.15 — 15.4
SB2W02 1.56 1.0 0.133 0.01 0.842 4.1 21.9 2.63 0.135 6.7
SB2W03 1.56 1.0 0.133 0.01 0.842 6.3 35.6 4.04 0.228 4.4
SB2W04 1.56 1.0 0.133 0.01 0.842 8.5 39.2 5.45 0.251 3.2
SB2W05 1.56 1.0 0.133 0.01 0.842 10.8 50.3 6.92 0.322 2.6
SB2W06 1.56 1.0 0.133 0.01 0.842 13.1 60.8 8.4 0.390 2.1

Monochromatic wave with and without wind

M1W01 1.56 1.0 0.24 — (1.104) 0 0 0 0 —
M1W02 1.56 1.0 0.24 — (1.104) 4.1 — 2.63 — —
M1W03 1.56 1.0 0.24 — (1.188) 8.5 — 5.45 — —
M1W04 1.56 1.0 0.24 — — 13.1 — 8.4 — —

M2W01 1.56 1.0 0.20 — (0.679) 0 0 0 0 —
M2W02 1.56 1.0 0.20 — (0.679) 1.8 — 1.15 — 34.8
M2W03 1.56 1.0 0.20 — (0.763) 4.1 30.9 2.63 0.198 15.2
M2W04 1.56 1.0 0.20 — (0.810) 6.3 35.2 4.04 0.226 9.9
M2W05 1.56 1.0 0.20 — (0.894) 8.5 37.8 5.45 0.242 7.3
M2W06 1.56 1.0 0.20 — (0.965) 10.8 50.6 6.92 0.324 5.8
M2W07 1.56 1.0 0.20 — — 13.1 85.4 8.4 0.547 4.8

Table 1. Experimental conditions summary.

Instrument LabVIEW. The water surface-elevation time series were acquired at a
41 Hz data rate and stored.

3.2. Wave-generator signal

The generation of the unstable Stokes’ wave train was discussed in detail in Tulin &
Waseda (1999), and therefore we will only report a short summary here. The wave
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form signal used to control the wave generator is

Y (t) = e(t)
s

2

[
a

a0

cos(ω0t) +
b+

a0

cos(ω+t+ φ+) +
b−
a0

cos(ω−t+ φ−)

]
, (3.1)

where the ramp used to start and terminate the wave-generator motion is

e(t) =


1
2

(
1− cos(πt/τ)

)
, 0 6 t 6 τ

1, τ < t < T − τ
1
2

(
1− cos(π (t− T )/τ)

)
, T − τ 6 t 6 T ,

(3.2)

where T = 240 s is the total length of the data, and s is the stroke in arbitrary units.
Here a, b+, and b− satisfy

a2
0 = a2 + b2

+ + b2
−, (3.3)

where a0 is the amplitude of the unmodulated wave train. In all runs, the initial
phases φ+ and φ− were set to −π/4, satisfying the maximum growth condition
(φ+ + φ− = −π/2) predicted by Benjamin & Feir (1967). Furthermore, b+ and b−
were set equal. Then, for a given wavelength, the choice of parameters is

ε, b±/a0, and δ̂. (3.4)

The disturbances in the tank cause amplification of selective wave modes in a
resonant wave interaction experiment (Hammack & Henderson 1993). The sources
of disturbance and their effect on the evolution of the modulational wave train was
reported in detail in Tulin & Waseda (1999). They showed that the selection of the
naturally grown sidebands comes from the multiple reflection of the wave train front
within the tank. In the current experiment, we have limited the duration of the run
in order to minimize influences of such disturbances for the seeded case. For the
unseeded case, the measurement was initiated after these naturally grown sidebands
have been selected.

Once the parameters were set, the time series of the wave-generator signal was
computed and stored as digital data, which were transmitted to the wave-generator
controller at 200 Hz. The communication between the computer and the controller
was fully digital, which makes the transfer noise immune.

3.3. Experimental procedure

The experimental procedure for the seeded test with wind was as follows: first the wind
was started over still water; once the wind waves in the tank were fully developed,
the wave generator was initiated; the data were acquired, and then both the fan and
the wave generator were stopped. For the case without wind, the wave generator was
initiated with still water.

The run was repeated five times. After each run, both the wind and the wave
generator were stopped and the tank was left undisturbed until the residual waves
from the previous run had disappeared; the surface-elevation spectrum was observed
in real time.

The case of monochromatic wave with wind, the unseeded test, was conducted
differently. First, the wave generator was started to generate a monochromatic wave
train. Then, after about two to three minutes, the wind was initiated. Whether with or
without wind, it took about 10 minutes until the waves started to naturally modulate.
Therefore, of the total data length of about 60 min, the first 10 min were not used for
the computation of the spectrum.
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3.4. Analysis techniques

The growth rate βx was estimated from the surface elevation time series in the
following steps: (i) a spectral estimate was obtained from the time series; (ii) the
amplitude of each mode was estimated from the spectrum; (iii) the normalized
sideband amplitudes were plotted against fetch, and the model equation was fitted to
estimate the growth rate.

The spectral estimate was obtained from the surface-elevation time series using
a discrete Fourier transformation with the Hanning window applied. The frequency
resolution of the spectrum was around 0.01 Hz, small enough to distinguish differ-
ent wave modes; the separation between the carrier wave and the sideband waves
δf ranged from 0.06 to 0.18 Hz. From the spectrum the amplitudes of the wave
modes were estimated: the amplitudes of each wave mode were estimated as the
square root of the total energy of the spectral peaks, integrating the contributions
from the neighbouring frequency bins; by doing so, we may compensate for the
leakage of the spectral energy due to the effect of finite data length. The resulting
sideband amplitudes were then normalized by the carrier wave amplitude. The mean
normalized amplitudes b were computed using (2.7), and those were averaged over
five independent yet identical-condition runs in order to obtain the mean normalized
amplitude estimates and the standard deviation. Then, the average mean normalized
sideband amplitudes were plotted versus non-dimensional fetch, and the growth rate
was estimated fitting a model equation to the data:

b(x̃) = b(0) exp (βx x̃), (3.5)

using the Levenberg–Marquardt method, where b(0) and βx are the parameters to be
estimated.

The analysis method described here is slightly different from the technique first
suggested by Lake et al. (1977), which was later adopted by Melville (1982). They
treated the upper and the lower sidebands independently, and the actual growth rate
was computed by fitting the model equation to one of them. Both Lake et al.’s (1977)
and Melville’s (1982) data included a strongly modulated stage, and therefore the
resulting growth is no longer in the initial stage. Thus, for this study, we have chosen
a small initial sideband amplitude (b±/a = 0.01); the modulation at the end of the
tank was still small (b±/a ∼ 0.1). This allows us to better estimate the initial growth
rate of the sideband wave modes.

The use of the normalized sideband amplitude removes the first-order effect of
dissipation (Lake et al. 1977). Furthermore, the normalization of the sideband helps
allow removal of the experimental uncertainties caused by uncalibrated wave wires,
and the cross-tank bias.

As a final remark, we should mention that the qualitative picture as a whole will
not change even if the growth rates are estimated using different analysis schemes.
Therefore, the conclusions of this paper would not change even if we used the method
suggested by Lake et al. (1977).

4. Results
4.1. Experimental conditions

Experiments were conducted for the following wave systems: (i) sideband system
without wind (SB1NW, SB2NW); (ii) sideband system with wind (SB1W, SB2W); (iii)
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monochromatic wave with and without wind (M1W, M2W). Experiments (i) and (ii)
are the seeded experiments and (iii) is the unseeded experiment.

For all the experiments, the carrier wave frequencies were fixed at 1.0 Hz (1.56 m)
and for the seeded cases the initial sideband amplitudes were fixed at b±/a =
0.01. The parameters ε, δ̂, and U1m varied and are summarized in table 1. For the
seeded sideband systems without wind, we chose two moderate steepnesses close
to that of a typical ocean wave, ε = 0.175 and 0.133; for ε = 0.175 (SB1NW),

we varied the normalized modulational frequency δ̂ from 0.343 to 1.029 in five
steps, well within the instability condition, and for ε = 0.133 (SB2NW), we fixed

the normalized modulational frequency δ̂ at 0.842. The case SB1NW04 (δ̂ = 0.857)
roughly corresponds to the maximum growth condition for ε = 0.175, and the case
SB2NW01 (δ̂ = 0.842) roughly corresponds to the maximum growth condition for
ε = 0.133, as expected from the theory. These two cases, SB1NW04 and SB2NW01,
were used to study the influence of wind. For each case, the wind speeds were varied
in six steps between 1.8 m s−1 and 13.1 m s−1. The wave ages, Cp/U1m, ranged from
O(0.1) to O(1.0), corresponding to moderately old to old sea.

The unseeded experiments were carried out for steepnesses ε = 0.24 (M1W) and
0.20 (M2W); the wind was added at six speeds between 1.8 m s−1 and 13.1 m s−1. A
steepness slightly larger than the seeded case was used in order to observe sufficiently
large sideband evolution in the tank. For steepness ε = 0.175, the naturally selected
sidebands were not observed. The initial amplitudes of the naturally emerging side-
bands and their modulational frequencies varied among experiments and the latter are
summarized in table 1, indicated by parentheses. The ε = 0.2 cases (M2W) displayed
a type I (two-dimensional) instability whereas the larger steepness cases, ε = 0.24,
(M1W) displayed type II (three-dimensional). This natural selection of the sideband
in the tank will be further discussed later.

4.2. Seeded cases, with and without wind

4.2.1. Spectrum

We first describe the spectrum of the seeded cases. Spectra at fetch 41.14 m are

shown for wind speeds 4.1, 8.5, and 13.1 m s−1 for ε = 0.175, δ̂ = 0.857, figure 3, and

for ε = 0.133, δ̂ = 0.842, figure 4. The wind-free seeded case (middle curves) as well as
the wind-alone case (bottom curves) are plotted together as a reference. The spectral
evolution without wind was described in detail in Tulin & Waseda (1999) for a long
time evolution, and some of the features described there are found in the spectrum
shown here for a much earlier stage. For example, the discrete energy peaks at high
frequencies that are bound to the three main waves around 1 Hz, are found here for
the 0 m s−1 cases (SB1NW04, SB2NW01). These spectral peaks are very narrow and
the energy is usually confined to a single frequency bin. The peaks grow in magnitude
as the modulation increases and play an important role in the longer time evolution
of the three main waves as described in Tulin & Waseda. Particularly, the asymmetry
of the upper and the lower sideband evolution is due to the generation of these
high-frequency peaks. At the early stage evolution studied here, the asymmetry of the
upper and the lower sidebands is not yet obvious.

For the cases with wind, the gaps between these spectral peaks tend to be filled
in as the wind speed increases. However, some of the main spectral peaks such as
the second and the third harmonics of the carrier wave and their sidebands are still
visible. In fact, their energy levels have not reduced, rather they have increased with
wind speed. The wind-wave spectrum was obtained without mechanically generated
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Figure 3. Spectrum of the seeded sideband wave system (1.0 Hz, ε = 0.175) with wind (SB1W02,
SB1W04 and SB1W06), plotted together with the no-wind case (SB1NW04) and the wind-wave
spectrum. The spectral estimates are approximately 10 degrees of freedom, frequency resolution
0.01 Hz, and Hanning window was applied. The spectra have an offset of five decades. Wind speeds
are (a) 4.1, (b) 8.5, (c) 13.1 m s−1. Fetch is 41.14 m.

background waves. These wind-wave spectral peaks are not visible in figures 3 and
4 (top curves), indicating that they were suppressed in the presence of mechanically
generated sideband waves. The suppressed wind-wave energy is much larger than the
wind-wave energy that filled the gaps between the high-frequency peaks. In general
the suppressed wind-wave energy due to background waves ranges between 60% and
80%. It is important to point out here that, for all the wind speeds we tested, the wind-
wave spectral peaks are much larger than 1.0 Hz. Therefore, for all the runs we made,
these peaks never reached the mechanically generated wave frequency. Therefore, the
main three waves, 0.85 Hz, 1.00 Hz and 1.15 Hz for ε = 0.175, and 0.888 Hz, 1.00 Hz
and 1.112 Hz for ε = 0.133, are far from merging into the wind-wave spectrum; thus
the peaks are narrow and frequencies fixed even when the wind is present.

4.2.2. Growth versus fetch

The sideband energy was computed from the spectrum, and the variable b (2.7)
thus obtained is plotted in the fetch evolution diagrams (figures 5, 6 and 7). The error
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Figure 4. As figure 3 but for system (1.0 Hz, ε = 0.133) with wind (SB2W02, SB2W04 and SB2W06),
plotted together with the no-wind case (SB2NW01) and the wind-wave spectrum. Wind speeds are
(a) 4.1, (b) 8.5, (c) 13.1 m s−1. Fetch is 41.14 m.

bars denote the standard deviation of b obtained from five independent runs, and
the straight line is the best fit exponential growth curve (3.5). The model equation
was fitted to the data excluding that from the first wire (1.2 m fetch) since it was not
located within the wind tunnel section. Therefore, the first fetch that appears in these
figures is about 8 wavelengths away from the wave generator (12.64 m fetch), and the
last fetch is about 26 wavelengths away (41.14 m fetch).

Figure 5 summarizes the evolution of the sidebands without wind (SB1NW). For

all δ̂, the evolution is an exponential growth with some random variation of data

from it, the variation quite large for the δ̂ = 1.029 case. This exponential growth
character is still maintained even when the wind is added to the sideband system;

figure 6 shows the growth of SB1NW04 (ε = 0.175 and δ̂ = 0.857) with wind (SB1W).
For all the cases, the initial sideband amplitude remains more or less unchanged as
expected for the seeded runs. The same features, exponential growth and the large
scatter of data points at higher wind speeds, are commonly observed in the smaller
steepness cases, ε = 0.133, and those are all summarized in figure 7 (SB2NW, SB2W).

The scatter of data points as indicated by an error bar comes from the real effects
in the tank. For the no-wind case, the interval between successive measurements was
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Figure 5. Growth of the mean normalized sideband amplitude versus non-dimensional fetch, for
seeded sideband waves without wind (SB1NW). The error bar denotes the standard deviation
from five independent runs. The straight line is an exponential growth fit. The waves were 1.0 Hz,

ε = 0.175, and δ̂ = 0.343, 0.514, 0.686, 0.857, 1.029 (a–e).

about 10 minutes, and for the with-wind case, the interval between runs was 15 to
20 minutes. The interval is normally considered long enough for the residual wave
energy to dissipate, since the reflected energy from the beach is typically less than 1%.
Furthermore, no breaking was observed in any of the seeded runs. Therefore, it is not
apparent why the previous run can affect the successive run, but as indicated by the
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Figure 6. As figure 5 but for seeded sideband waves with wind (SB1W). The waves were 1.0 Hz,

ε = 0.175, δ̂ = 0.857. The wind speeds were U1m = 1.8, 4.1, 6.3, 8.5, 10.8, 13.1 m s−1 (a–f), and the
corresponding U1m/Cp were 1.15, 2.63, 4.04, 5.45, 6.92, 8.40.

variability of each of five identical runs, these small residues in the tank from previous
runs seem to influence the wave generation, and they should not be disregarded.

For the high wind speed cases, say higher than 10 m s−1, the effect of wind became
large enough to distort the mechanically generated waves, such that sometimes the
waves appeared to propagate at an angle. Particularly for the highest wind speed,
there was an obvious signature of an asymmetry across the tank. These real effects
will introduce a large scatter in the data, particularly for the large wind speeds, and
the computed error bar for each data point is large (figures 6 and 7).
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Figure 7. As figure 5 but for seeded sideband waves with and without wind (SB2NW, SB2W). The

waves were 1.0 Hz ε = 0.133, δ̂ = 0.842. The wind speeds were U1m = 0, 1.8, 4.1, 6.3, 8.5, 10.8,
13.1 m s−1 (a–g) and the corresponding U1m/Cp were as figure 6.
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Figure 8. Growth rate of the sidebands without wind (seeded run). For waves 1.0 Hz, ε = 0.175,

δ̂ = 0.343, 0.514, 0.686, 0.857, 1.03, and 1.0 Hz, ε = 0.133, δ̂ = 0.842. The curves are theoretical
predictions from Benjamin & Feir (1967), and from (2.5) based on Krasitskii (1994).

4.2.3. Growth rate

Figure 8 summarizes the normalized growth rates βx/ε
2 estimated from the fetch

diagrams for the no-wind cases (SB1NW, SB2NW) plotted against δ̂. The error
bar denotes the 68% confidence interval of the estimated growth rate. The solid
lines are the theoretical prediction of the growth rate computed using theories by
Benjami & Feir (1967) and (2.5). It is clear from this figure that Benjamin–Feir’s
theory overestimates the growth rate, but the Krasitskii (1994) theory (2.5) predicts
the growth rate fairly well. There is a variety of theories that take into account the
finite-amplitude effect, but few experimental data are available for validation. The
current study, we believe, provides new data, spanning the parameter space for both

ε and δ̂.

For ε = 0.175, we can observe that the maximum growth rate is achieved for

δ̂ = 0.857, roughly corresponding to the maxima of the growth rate curve as predicted

by (2.5). The ε = 0.133, δ̂ = 0.842 (SB2NW) case lies roughly at the maxima of the
predicted growth curve. Those two cases that correspond to the maximum growth
condition for each steepness were used to study the effect of wind. The obtained
growth rates are summarized in figure 9. Here, the normalized estimated growth rates
βx/ε

2 are plotted versus normalized wind speeds U1m/Cp or the inverse of the wave
ages. For both ε = 0.175 and 0.133, the growth rate showed a slight decrease and then
an increase with increasing wind speed. The growth rate seems to have a minimum
around moderate wind speeds (2–4 m s−1); the initial reduction is only about 10%.
The highest growth is obtained for both steepnesses at the maximum wind speed, but
the estimation error becomes quite large. Neither case indicates strong reduction in
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Figure 9. Growth rate of the sidebands with wind (seeded run). The waves were 1.0 Hz, ε = 0.175,

δ̂ = 0.857, and 1.0 Hz, ε = 0.133, δ̂ = 0.842, for wind speeds U1m = 1.8, 4.1, 6.3, 8.5, 10.8, 13.1 m s−1.

the growth rate with wind as reported in the earlier works on unseeded experiments
(Bliven et al. 1986; Li et al. 1988).

4.3. Monochromatic wave with wind (unseeded run)

4.3.1. ε = 0.20, type I instability

The seeded runs as described in the previous section indicated that the effect of
wind on the growth of the sidebands was not necessarily suppression. This turns out
to be the case for the unseeded runs conducted in our tank as well, which we will
describe below. First we will present the spectra of ε = 0.20 waves at 41.14 m fetch
for wind speeds 0, 1.8, 4.1, 6.3, 8.5, 10.8 and 13.1 m s−1 (figure 10). Except for the high
wind speed runs, 10.8 and 13.1 m s−1 run, the naturally evolved sidebands are confined
to a narrow energy band, somewhat similar to the seeded runs. The high-frequency
peaks are also observed, and there is no significant filling of energy between these
narrow peaks.

Unlike the seeded experiments, the spectrum was computed as an average of
the data from about 50 minutes of a continuous run. As described earlier in the
experimental procedure, the run was made for about 60 minutes and the first 10
minutes were excluded from the averaging. Tulin & Waseda (1999) described in detail
that the natural selection of the sideband disturbance in a closed tank is associated
with the multiple reflection of the wave front between the beach and the wave
generator, and therefore the modulation becomes significant only after some delay.
In our experiment, it typically took about 10 to 15 minutes or so till the modulation
became visible at fetches, say, around 35 m or so. Since the perturbation propagates
at the group velocity of the carrier wave back and forth between the beach and the
wave generator, it is observed that the modulation cyclically strengthens and weakens
as the wave front passes the observation point. The perturbation energy builds up
with time, and occasionally the modulation becomes large enough at about 35 m fetch
to cause breaking near the group peak. The breaking, however, is moderate and did
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Figure 10. Specta of the monochromatic wave (1.0 Hz, ε = 0.20) plus wind (M2W) at fetch 41.14 m;
unseeded type I. The spectral estimates are 60 degrees of freedom, frequency resolution 0.01 Hz,
and Hanning window was applied. The spectra have an offset of five decades. Wind speeds are 0.0,
1.8, 4.1, 6.3, 8.5, 10.8, 13.1 m s−1.

not introduce any visible disturbance to the system. It was observed to occur earlier
in the run when wind was added, but the breaker location was always at fetches
35–40 m or so, such that most of the surface elevation recording along the fetch was
made prior to the breaker location.

As the wind speed increases, one can still observe a modulation, but the tendency
is to diminish the modulation. This can be seen from the broadening of the sideband
spectral peaks as the wind speed increases, and a complete disappearance of the
sideband is observed at the highest wind speed, 13.1 m s−1, see figure 10. At this
highest wind speed, there was no visible modulation but still crest breaking was
observed throughout the tank. There was more wind-wave-generated roughness on
the waves, and these wind waves were the likely cause of the observed breaking.
Such wind-wave breakers will introduce random perturbation to the system as can be
seen from the energy filling in the gaps between spectral harmonics. These random
perturbation may have caused the suppression of the sideband growth in the highest
wind speed case, and therefore this extreme wind forcing case was excluded from the
growth rate estimation since no sideband peaks were identified from the spectrum. For
the rest, we were able to identify the sideband spectral peaks, and their frequencies

ranged from δ̂ = 0.679 to 0.965, well within the instability regime but over a large
variation in wind speed, see table 1.

The broadening of the sideband peaks seems to come from the natural variability
of the selected sideband perturbation in the unseeded case. As a result of the wind-
induced disturbance in the tank, the sideband perturbation tends to vary randomly
in time, causing the recorded sideband frequencies to fluctuate in time. When all the
ensembles are averaged, this variability results in broadening of the sideband peaks.
Therefore, it would appear from the averaged spectrum, figure 10, as if the sideband
amplitudes decreased. But this does not necessarily imply the suppression of sideband
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Figure 11. Growth of the mean normalized sideband amplitude versus non-dimensional fetch, for
monochromatic waves (1.0 Hz, ε = 0.20) with wind (M2W); unseeded type I. The straight line is an
exponential growth fit. The wind speeds were U1m = 0, 1.8, 4.1, 6.3, 8.5, 10.8 m s−1 (a–f), and the

corresponding modulational frequencies were δ̂ = 0.6793, 0.6793, 0.7626, 0.8102, 0.8938, 0.9652.

growth, as can be seen from figure 11. For all wind speeds, an exponential growth
is still observed. Figure 11 also shows that the initial sideband amplitude tends to
be smaller for higher wind speeds, and as a result, it appears that the growth rate is
higher for higher wind speeds, quite contradictory to the previously reported unseeded
results.

Figure 12 summarizes the growth rate estimated from the fetch diagram, plotted
against non-dimensional wind speed. The growth rates are higher when wind is
present, and the largest increase is about 30%, much higher than those observed in
the seeded case, around 10% at most. One can also observe that the maximum growth
is achieved not at the highest wind speed plotted, 10.5 m s−1, but at a lower wind
speed, 8.5 m s−1. This observation is crucial for the understanding of the controversial
results of our measurements when compared with the earlier observations by Bliven
et al. (1986), and will be discussed in full later.

4.3.2. ε = 0.24, type II instability

The wave spectra at 41.14 m fetch for the unseeded steepness ε = 0.24 case are
plotted in figure 13. Comparing the spectra for different wind speeds, the highest
wind speed, 13.1 m s−1, appears radically different and was not used for further
comparisons. The modulational frequencies are around 0.27 to 0.29 Hz for 0, 4.1, and

8.5 m s−1 wind speeds and slightly increase with speed. The corresponding δ̂ is around
1.1 to 1.2, larger than the fastest growing condition as predicted by the theory (2.5),

δ̂ < 1.0.
From visual observation, the wave crest across the tank displayed a large amplitude

variation. Breaking waves were observed at 35–40 m fetch, but unlike the breaking
observed for the seeded ε = 0.20 case that occurs at the crest of the wave group,
the breaking occurs near the sidewall, where the breaker location alternated between
opposite sides of the tank from crest to crest. The crest amplitude reduced from
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Figure 12. Growth rate of the sidebands of monochromatic waves (1.0 Hz, ε = 0.20) with wind
(M2W); unseeded type I. Wind speeds are U1m = 0, 1.8, 4.1, 6.3, 8.5 and 10.8 m s−1.
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Figure 13. Spectrum of the monochromatic wave (1.0 Hz, ε = 0.24) plus wind (M1W); unseeded type
II. The spectral estimates are 60 degrees of freedom, frequency resolution 0.01 Hz, and Hanning
window was applied. The spectrum has an offset of five decades. Wind speeds are 0, 4.1, 8.5,
13.1 m s−1. Fetch 41.14 m.

one side of the tank to the other, and this pattern reversed in the next wave crest.
This alternating crest amplitude pattern across the tank indicates the presence of an
oblique wave perturbation or a three-dimensional instability.

The three-dimensional instability was studied extensively by Su (1982). He has
shown that for 0.25 < ε 6 0.33, a three-dimensional pattern was observed and the
sideband waves that propagate at an angle had a wavenumber about 1.2 times the
carrier wave. This corresponds to about 1.1 times the frequency of the carrier wave,
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Figure 14. Growth of the mean normalized sideband amplitude versus non-dimensional fetch, for
monochromatic waves (1.0 Hz, ε = 0.24) with wind (M1W); unseeded type II. Wind speeds are 0,
4.1, 8.5 m s−1.

which agrees quite well with our observation. This comparison indicates that the
sideband wave modes seen in figure 13 are not of Benjamin–Feir (type I) but a type
II instability. We observed in the same tank in a previous study that for unseeded high-
steepness runs, a three-dimensional modulation occurred, and at highest steepness,
say around ε = 0.30, the crescent shape breaking as described by Su (1982) was
observed. We have shown now that these three-dimensional instabilities will occur in
the presence of wind.

The growth of the sidebands with fetch is summarized in figure 14. Similarly to the
type I instability as described in the previous section, the initial sideband amplitude
reduces with wind but the growth is enhanced. The growth is exponential, indicating
that the cross-tank asymmetry observed in the tank was indeed due to the three-
dimensional instability. Although this instability itself is of great interest, most of the
energetic waves in the ocean are of much lower steepness, and we have therefore not
pursued further study of these in the current work.

5. Discussion
5.1. Unseeded experiments: comparison with previous studies

The unseeded experiments showed an increase of growth rates for all wind speeds.
The wind speed dependence was not monotonic, however, and above 8.5 m s−1, the
growth rate started to reduce, but was still larger than without wind, see figure 12.

This finding contrasts with that of Bliven et al. (1986) who conducted an unseeded
experiment in a tank of length 20 m; their mechanically generated wave was around
40 cm in length, steepness around ε = 0.1 to 0.24. There were four measuring stations
and the largest fetch corresponded to about 35 wavelengths from the wave generator.
The wind forcing was in the range u∗ = 16 to 35 cm s−1 (Cp/u∗ = 2.23 to 4.88, U1m

was not reported). In the current study, we have used waves 1.56 m long and steepness

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

65
27

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099006527


76 T. Waseda and M. P. Tulin

around ε = 0.20. The last measuring station was around 26 wavelengths from the
wave generator. The wind forcing was U1m = 1.8 to 13.1 m s−1 (Cp/Um = 0.12 to 0.87,
or Cp/u∗ = 2 to 8). Our experiments cover a broader and weaker wind forcing range
but the strongest wind forcing is about the same in both cases.

Although the use of short waves of less than 0.5 m is necessary in order to
reproduce the previous experiment by Bliven et al. (1986), it was impossible because
of experimental limitations (the wave maker is designed to have optimum performance
generating waves between 60 cm and 10 wavelength). However, we believe that the
scale of the previous experiment and that of this study are comparable, because the
conflicting effect of wind-wave interactions and the intrinsic wave nonlinearity can
be scaled by the wave age, as we discuss in § 5.2. As we show below, the apparently
contradictory result of the two experiments can be explained by the same effect of
the wind on the instability. This justifies our scaling argument.

Bliven et al. (1986) have shown that for ε = 0.24, the growth rate nearly halved
compared to the no-wind case when the strongest wind was applied. In contrast
to that, in our experiment at ε = 0.2 (figure 12) we found the growth rate larger
than in the no-wind case. Bliven et al. (1986) have computed the growth rates for
a limited number of cases, and those we will compare with our results. In most of
the other experimental results reported by them, the growth rates were not estimated.
However, they have reported a suppression of the sideband energy. In the current
study, although we have measured the growth rate to be larger than in the no-wind
case, we have also observed suppression of the initial sideband amplitudes in the
presence of wind as illustrated in figure 11. This clearly indicates that the wind will
reduce the naturally developed initial sideband energy but the growth rate is not
necessarily suppressed. This observation suggests that further study of the natural
selection process of the sideband in the tank is crucial for estimating what may
happen in the ocean.

One important factor not mentioned in the paper of Bliven et al. (1986) is the
effect of changes in modulational frequency on the growth rate. In figure 15, we
compare the modulational frequency measured by Bliven et al. (1986) with ours,
plotted against u∗/Cp. The data from case M2W are compared with data from Bliven
et al. (1986) and also from Melville (1982). These measurements seem consistent,
taking into account differences in ε, although Bliven et al.’s (1986) measurements
with wind are considerably higher than ours. As we saw earlier in figure 8, the growth
rate for a given ε depends strongly on the modulational frequency, especially when
the modulational frequency is larger than the fastest growing modulational frequency;
this is because of the cut-off bound in the instability predictions, (2.5). The change
in the growth rate with respect to the modulational frequency is moderate up to the
fastest growing modulational frequency, but beyond that the change becomes more
rapid and the growth rates decline. In order to study these effects, we have plotted the
sideband growth rate of our unseeded experimental result and the Bliven et al. (1986)
case P03 (0.226 ε 6 0.25) versus modulational frequency, figure 16. The growth rate
in the Bliven et al. (1986) case was estimated from the growth curve presented in
figure 6 of Hara & Mei (1991).

Surprisingly, the estimated growth rates are well predicted by the Krasitskii theor-
etical estimate of the initial growth rate. Qualitatively, both experimental results
agree reasonably with the respective theoretical predictions; compare the agreement
with the seeded case, figure 8. In particular, the diagram displays one of the major
differences in the two experiments: ours had modulational frequencies below the
fastest growing modulational frequency, whereas Bliven et al.’s (1986) were higher
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Figure 15. Modulational frequency plotted versus normalized friction velocity from the unseeded
type I runs. Case M2W is compared with Bliven et al. (1986) and Melville (1982). Symbols are:e, this study for u∗/Cp = 0, 0.100, 0.198, 0.226, 0.242, 0.324; +, Bliven et al. (1986) data for
u∗/Cp = 0, 0.217, 0.286, 0.316; �, Melville (1982) for u∗/Cp = 0. The horizontal dashed line indicates
the theoretically predicted maximum growth modulational frequency. The case u∗/Cp = 0.100 of
this study corresponds to wind speed 1.8 m s−1 where u∗/Cp was inferred since the actual friction
velocity was not measured.

eqn (2.5), ε = 0.2
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Figure 16. Growth rate of the sidebands of monochromatic waves (1.0 Hz, ε = 0.20) with wind;
unseeded type I. The curves are theoretical prediction by Benjamin–Feir and (2.5).

than or at the fastest growing modulational frequency. From this, we suggest that the
reason for such a large suppression of sideband growth in the results of Bliven et al.
(1986) is partially due to the deviation of the modulational frequency from the fastest
growing condition.
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Although Hara & Mei (1991) seem to have successfully reproduced the Bliven et
al. (1986) experimental result (see figure 6 of Hara & Mei 1991) their estimation
was made for a particular shape of the drift current profile (log-linear profile).
The choice of the exact shape of the velocity profile in the water was crucial for
their growth rate estimation, and when a linear profile was chosen, they saw an
enhancement of the sideband growth. As pointed out by them, a precise knowledge of
the induced turbulent current is essential to estimate the growth rate accurately. This
leaves some question as to the significance of their agreement with the experimental
observation. Furthermore, their theory is an extension of Dysthe’s and the validity
is limited to small steepness waves (ε < 0.1) as mentioned by them and as also
shown in figure 1 of this study. Finally, most important of all, Hara & Mei’s
choice of the modulational frequencies (δω/ω = 0.157−0.166) was made for the
maximum growth condition predicted by the theory and included viscous effects
which predicted a narrower range than the experimental finding of Bliven et al.
(1986) (δω/ω = 0.151−0.277).

When changes of the modulational frequency are taken into account, the growth
rate seems to change following the theoretical prediction as shown in figure 16, and
both the unseeded experiment of Bliven et al. (1986) and ours are well described
by an inviscid theory. This then suggests that the most important effect of wind is
to alter the selection of naturally evolving modulational frequency. In figure 15 we
compared the modulational frequency observed by Bliven et al. (1986) and ours. The
wind speed dependence seems to suggest the existence of a law that determines the
modulational frequency as a function of wave age. For young sea, i.e. large u∗/Cp,
the modulational frequency δ̂ exceeds 1 and approaches larger values outside the
instability region. But for moderate to old seas, say u∗/Cp < 0.2, the modulational
frequency is not altered by the wind. This suggests that, in nature, where the wave is
moderate to old, the sideband instability may not necessarily be suppressed by wind.
The sideband growth rate may, of course, change as a result of proposed viscous
effects as discussed by Hara & Mei (1991) and Li et al. (1988). However, such effects
need experimental verification, and the growth rate we saw in the seeded experiment
is within 10% of that in the no-wind case.

It is clear now that there are two wind effects on the modulation of the wave
train. One alters the selection of the naturally evolving sideband frequency or the
modulational frequency. The second modifies the inviscid growth by a viscous effect.
The former seems to have a significant effect for young waves since the modulational
frequency becomes large approaching the limit of the instability region, effectively
reducing the growth rate considerably. The viscous effect becomes important for
moderate to old waves and seems to have some wave-age dependence.

5.2. Background perturbation and wave-age effect

In order to understand the natural selection mechanism of the sidebands in the
unseeded runs, profound knowledge of the background perturbation is needed. Below
we summarize three possible sources of the background perturbations. First, the
perturbation can grow following the wave-front propagation as discussed by Tulin
& Waseda (1999). Such perturbation is necessary for the modulational instability
to occur for the unseeded run in a fetch-limited tank, as observed and utilized in
previous works (Melville 1982; Bliven et al. 1986). The perturbation, however, seems
to have a systematic tendency as one can see from figure 15 where the no-wind cases
of Melville, Bliven et al. and our result consistently had values of δω/εω smaller than
the theoretically predicted maximum growth perturbation denoted by a horizontal
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dashed line. Also, there seems to be a tendency for the increase of δω/εω with wind,
yet to be studied. A second source of perturbation is the wind-wave spectrum. Such
background wind waves may well serve as a seed for the sideband perturbation if their
frequencies lie well within the instability region. However, in the current study, they
were, even for the highest wind speed cases (13.1 m s−1), outside the instability region,
see figures 3 and 4, and the energy was suppressed in the presence of mechanically
generated waves. A third source of perturbation is the breaking events. Although
we have not studied in detail the frequency contents of such disturbances, they
seem to serve well as a source of broad spectral background noise. In the current
study, we have seen frequent breakers for the high steepness cases (ε = 0.2, 0.24)
with the highest wind speed (13.1 m s−1). For those cases, the wind waves riding
on top of the mechanically generated waves broke throughout the tank (M1W04,
M2W07).

It seems, therefore, unlikely that all the unseeded experiments conducted had
random background perturbation and only the cases M1W04 and M2W07 may have
had random perturbation within the instability region. Can such random background
perturbation prevent the growth of the sideband? Is there any wind speed dependence?
The answer to these questions seems to depend on the initial magnitude and the
frequency of the background perturbation as well as on how fast the perturbation
can grow by wind compared to the rate of nonlinear energy transfer. The latter
can be measured by comparing the magnitude of the corresponding growth rates.
For simplicity, we assume that the growth due to the nonlinear effect follows the
Benjamin–Feir prediction (2.3), and the growth due to wind input follows Snyder’s
law (2.10). Then, the ratio of the nonlinear effect to the wind input effect can be
approximately described as

Ω = ε2/

(
10−3 U

Cp

)
. (5.1)

The values of Ω, for the seeded cases with wind, range between 2 and 27, and for
the unseeded type I cases with wind, they range between 5 and 35, see table 1. Also,
the value of Ω for the strongest wind speed case of Bliven et al. (1986) is around 5.
Therefore, the coverage of the wind strength seems broad enough for both seeded and
unseeded runs: Ω ∼ O(1) to O(10). The sideband growth was not suppressed in the
seeded case despite large wind forcing at high wind speeds since the experiment was
conducted with special care not to introduce unknown background perturbations. In
the unseeded case, the broadening of the sideband peaks with increasing wind speed
was observed, see figure 10. It may appear, then, that the broadening of sideband
peaks is due to the enhanced growth of background perturbation by wind, but the lack
of knowledge of the background perturbation prevents us from further conjecture. As
discussed earlier, the characteristics of the background perturbations seem to depend
on the wind speed as well, but precise knowledge of them is not the focus of the
current experiment.

In order to study the effect of random perturbation on instability, inclusion of the
wind effect seems relevant, and a good measure of their significance seems to be Ω or
the wave age. The magnitude of Ω indicates how fast the non-interacting background
waves can grow by wind forcing. When the growth of those waves is as fast as the
sidebands, their amplitude will grow as large as the sidebands and the waves and the
sidebands will start interacting with each other, leading to an unpredictable evolution
of the wave modes, which may appear on average as a suppression of the sideband
growth. However, these are speculations and require further investigations. We suggest
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that in order to elucidate the effect of random perturbation on instability, a newly
designed experiment is needed. Such experiments should include the control of the
magnitude and the frequency of the random perturbation at the wave generator as
well as the wind variation. These are subjects for future research.

6. Conclusion
The success of experiments on nonlinear water wave evolution lies in a profound

knowledge of the facility and a good control of it. In the study of resonant free-surface
wave interaction, the wave generator plays the most important role in determining the
quality of the outcome of the experiment. Particularly for the experiment conducted
here, where a precise knowledge of the initial wave spectrum is needed, it is crucial
to control the exact motion of the wave generator.

With a carefully designed wave generator, we have successfully conducted seeded
experiments on the instability of the Stokes wave where the initial perturbation was
prescribed exactly by the control signal, both in frequency and in strength. With full
control of the initial perturbations, we were able to experimentally estimate the growth
rates of the perturbations through ranges of parameters, steepness and modulational
frequency. These results compared well with the theoretical estimates of the growth
rates as computed in this study based on the four-wave resonant interaction theory
of Krasitskii. Therefore, the seeded experiments served well as the validation of the
inviscid instability theory.

The Benjamin–Feir instability leads to the formation of wave groups but it was not
considered to exist under wind forcing as concluded from the unseeded experiments
of Bliven et al. (1986) and Li et al. (1988). Despite these experimental results, recent
reports on low-grazing-angle radar imaging of wind waves suggest the existence of
wind-driven wave groups (Werle 1995; Smith, Poulter & MaGregor 1996; Lamont-
Smith, Fuchs & Tulin 1998). Motivated by these fine observational works, we have
extended the pioneering experimental work of Bliven et al. (1986) and Li et al.
(1988).

We therefore added wind to the seeded runs and also conducted unseeded runs for
comparison with previous works. The results suggested two effects of wind: the first
is the viscous effect found from the seeded runs and would account for ± 10% change
in the growth rate; the second is the alteration of the selected sideband frequencies
found from the unseeded runs. For some cases the selected sideband perturbations
were far from the maximum growth condition as predicted from the instability theory.
The second effect may result in a large decrease in growth rate for some cases, and
it may successfully explain the Bliven et al. (1986) result where they have observed
nearly 50% reduction of the growth rate. We therefore conclude that the inviscid
change in the sideband frequency is dominant over the viscous effect, particularly for
younger waves. Further evolution processes of these wave groups involve the effect
of breaking energy losses and are described in Tulin & Waseda (1999).

Findings that were not discussed in detail in this study should be addressed in
future research. First, a type II instability was found for the unseeded high-steepness
runs with and without wind. Second, strong suppression of wind-wave energy was
found with a modulated wave train in the background. The second finding should
be compared with the wind-wave and regular-wave interaction as well. It is of great
interest for remote sensing in the ocean with microwave sensors and should also
provide increased knowledge on roughness and its relation to the wind stress as
well.
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Finally, the effect of random perturbation on instability seems relevant for the ocean
waves. The current study does not consider the control of the random perturbation
but it should be addressed in a separate experiment including the wind effect.
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done with support of the Frontier Research System for Global Change, which also
partly sponsors the International Pacific Research Center. This manuscript is SOEST
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Appendix. Derivation of the initial growth rate
The Krasitskii (1994) four-wave reduced equation reads

i
∂b0

∂t
= ω0b0 +

∫
Ṽ

(2)
0,1,2,3b

∗
1b2b3δ0+1−2−3 dk123. (A 1)

The full expressions for the complex variable bi and the interaction coefficient Ṽ0,1,2,3

are presented in Krasitskii (1994) and will be omitted here. To the lowest order in
amplitude, the complex variable bi can be expressed in terms of the Fourier component
of the free surface as

bi =
1

2

(
2ωi
ki

)1/2

aeiαe−iωit, (A 2)

where ω2
i (k) = g|k|, a(k) is the real amplitude, and α is the phase. For a discrete three-

wave system, (A 1) reduces to the following set of equations:

∂a

∂t
= 0,

∂α

∂t
= − ω0

2k0

k3
0a

2T1111,

∂b+

∂t
= k3

0a
2b−

ω0

2k0

(
ω−
2k−

)1/2(
ω+

2k+

)−1/2

T1123 sinφ,

∂β+

∂t
= −2

ω0

2k0

k3
0a

2T1212 − ω0

2k0

(
ω−
2k−

)1/2(
ω+

2k+

)−1/2

k3
0a

2 b−
b+

T1123 cosφ,

∂b−
∂t

= k3
0a

2b+

ω0

2k0

(
ω+

2k+

)1/2(
ω−
2k−

)−1/2

T1123 sinφ,

∂β−
∂t

= −2
ω0

2k0

k3
0a

2T1313 − ω0

2k0

(
ω+

2k+

)1/2(
ω−
2k−

)−1/2

k3
0a

2 b+

b−
T1123 cosφ,



(A 3)

where a, b+, and b− are the amplitudes of the carrier, the upper, and the lower
sidebands; α, β+, and β− are the phases of the carrier, the upper, and the lower
sidebands; φ ≡ 2α − β+ − β− − ∆ωt; Tijkl is the normalized interaction coefficient

defined as Ṽ (2)
ijkl ≡ k3

0Tijkl .

Equation (A 3) is an evolution in time rather than in space. In order to obtain an
evolution equation in space, we assume that the propagation speed of each mode is
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the linear group velocity, ω0/2k0, ω+/2k+, ω−/2k−. We get

∂a

∂x
= 0,

∂α

∂x
= −k3

0a
2T1111,

∂b+

∂x
= k3

0a
2b−

ω0

2k0

(
ω−
2k−

)1/2(
ω+

2k+

)−3/2

T1123 sinφ,

∂β+

∂x
= −2

ω0

2k0

(
ω+

2k+

)−1

k3
0a

2T1212 − ω0

2k0

(
ω−
2k−

)1/2(
ω+

2k+

)−3/2

k3
0a

2 b−
b+

T1123 cosφ,

∂b−
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ω0
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(
ω+

2k+

)1/2(
ω−
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)−3/2

T1123 sinφ,
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2k+

)1/2(
ω−
2k−

)−3/2

k3
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2 b+
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(A 4)

where terms higher than O(ak2) were dropped. The phase terms should be combined as

∂φ

∂x
= 2k3

0a
2

(
− T1111 +

ω0

2k0

(
ω+
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)−1
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2k−
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T1313

)
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0a
2 ω0
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×
(
b−
b+
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)1/2(
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)−3/2

+
b+

b−

(
ω+

2k+

)1/2(
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)−3/2
)
T1123 cosφ− ∆k

k
.

(A 5)

The solutions for (A 4) and (A 5) are

b+ = b+(0) cosh

[
ε2(C+C−)1/2

∫ x̃

0

sinφ dx̃

]
+

(
C+

C−

)1/2

b−(0) sinh

[
ε2(C+C−)1/2

∫ x̃

0

sinφ dx̃

]
,

b− = b−(0) cosh

[
ε2(C+C−)1/2

∫ x̃

0

sinφ dx̃

]
+

(
C−
C+

)1/2

b+(0) sinh

[
ε2(C+C−)1/2

∫ x̃

0

sinφdx̃

]
,


(A 6)

where ε ≡ k0a, x̃ ≡ k0x, C+ ≡ (ω0/2k0)(ω−/2k−)1/2(ω+/2k+)−3/2T1123 and C− ≡
(ω0/2k0)(ω+/2k+)1/2(ω−/2k−)−3/2T1123. For an instability to occur, the integral of
sinφ should be unbounded. The condition is satisfied when dφ/dx = 0, which gives

b+ = (C+/C−)1/2 b− = b+(0) exp[βKx̃] = (C+/C−)1/2b−(0) exp[βKx̃],

cosφ = 0.5

[
∆k/k

ε2
−
(
ω0

2k0

(
ω+

k+

)−1

T1212 +
ω0

2k0

(
ω−
k−

)−1

T1313−2T1111

)]
(C+C−)−1/2,

βK = ε2(C+C−)1/2 sinφ.


(A 7)
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