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SUMMARY
This paper describes a landmark detection and localization
using an integrated laser-camera sensor. Laser range finder
can be used to detect landmarks that are direction invariant
in the laser data such as protruding edges in walls, edges
of tables, and chairs. When such features are unavailable,
the dependant processes will fail to function. However,
in many instances, larger number of landmarks can be
detected using computer vision. In the proposed method,
camera is used to detect landmarks while the location of the
landmark is measured by the laser range finder using laser-
camera calibration information. Thus, the proposed method
exploits the beneficial aspects of each sensor to overcome
the disadvantages of the other sensor. While highlighting the
drawbacks and limitations of single sensor based methods,
an experimental results and important statistics are provided
for the verification of the affectiveness sensor fusion method
using Extended Kalman Filter (EKF) based simultaneous
localization and mapping (SLAM) as an example application.

KEYWORDS: Sensor fusion; Landmark detection; Land-
mark localization; Simultaneous localization and mapping;
Mobile robotics.

1. Introduction
Among various sensors used in solving the simultaneous
localization and mapping (SLAM) problem in robotics, laser
range scanners has received most attention, mainly due to its
response behavior and ability to accurately scan a wider field
of view. Laser range finders can precisely locate landmarks
in environments having directional variant features, such as
protruding edges in walls, edges of objects located in the field
of view such as chairs or tables, and also moving objects such
as humans.1 However, when such features are unavailable, in
such environments such as corridors having flat walls, long
empty rooms and halls, the laser data will contain a minimum
number of features that can be detected as landmarks.

Recently, computer vision received much attention in
SLAM2−4 and has the ability to extract visually salient fea-
tures even in flat walls. However, there are many drawbacks
in vision based sensors. Monocular SLAM implementations
require the features to be present in the field of view for a
longer duration to facilitate the proper convergence of the
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feature position estimate. However, stereo vision has the
ability to overcome this issue in single camera systems, but
requires a heavy computational overhead, particularly for
calibration and 3D estimates. Thus, it is possible to use the
features of both sensors, laser, and camera, to overcome
the drawbacks of the other. Hence this work demonstrates a
novel application of a single sensor based on a laser-vision
model. Early work of the laser-vision model use two
sensor readings separately and fuses the SLAM data in the
postprocessing stage to estimate robot pose. In contrast, the
method proposed in this paper performs feature extraction
at the sensor level while using laser-vision model as a single
sensor for detecting and locating landmarks. Therefore this
paper presents the following key contributions. First, the
work demonstrates effective integration of laser and camera
as a single sensor for general purpose robot navigation.
Second, the work demonstrates how the integrated laser-
camera model can be used effectively to solve the SLAM
problem. The integrated sensor also retains its ability to
work as either a laser only sensor or a vision only sensor.

1.1. Related work
The research in computer vision based SLAM can be broadly
categorized into two areas. They are: appearance based
methods and feature based methods. In appearance based
localization and mapping, image features are collectively
used to describe a scene. These feature based descriptions
are used to compare and contrast the images that the robot
acquires along the way. Hence when a robot revisits an
environment, the localization algorithm will be able to
measure the similarity between the images of the current
scene and the images that are registered in a database. In most
cases this type of qualitative localization and mapping can
only generate topological representations of the environment.
Although it provides a viable and more natural mapping
and localization procedure, the qualitative algorithms do
not provide detailed information about the environment.
Details in such a map may be inadequate, especially when
robots require accurate information about the structure of
the environment for tasks such as path planning. Although
appearance based methods have been used in SLAM,5−7 they
are mostly used in the relocalization of the robots.8−10

In contrast to the appearance based methods, feature based
methods uniquely identify visually salient landmarks in the
environment and calculate their position with respect to the
robot. Such measurements can be used in estimators to build
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Fig. 1. Block diagram of (a) the proposed multisensor based SLAM process and (b) the multisensor based SLAM process presented in
ref. [20]. The proposed method performs a sensor level fusion of information whereas the method in (b) fuses the information at map level.

the map of the visual landmarks while localizing the robot.
The primary advantage of using feature based methods is
the higher fidelity of the map. The feature based methods
can be classified based on the method that they use to
calculate the range and bearing to the features. The most
common method is the use of stereo cameras.11−15 Other
methods used to calculate the feature position include: single
camera based feature position estimation16,17 and optical flow
based calculation.18 Although computer vision based SLAM
methods have shown significant advances, they exhibit one
or more of the following drawbacks with respect to general
SLAM applications:

(1) The methods were only demonstrated to work in small-
scale environments.11,16,17

(2) It is necessary to have a large number of features in
the environment for the SLAM algorithms to properly
converge.13,18

These issues can be primarily attributed to the large
uncertainties associated with the vision based feature position
calculation. Further, in stereo and other vision based feature
position calculation methods, uncertainty of the feature
position increases with increased distance. Additionally, a
regular camera lens provides only a limited field of view.
This severely limits the amount of time that a feature is
actively observed in the SLAM process, especially if the
robot is moving at relatively higher speed.

On the contrary, the laser range finder provides excellent
range measuring capabilities and has been widely used
in SLAM implementations. Landmarks that are generally
invariant to the direction of scanning (such as chair and table
legs, corners, tree trunks, poles, etc.) can be identified in
laser range data. However, typical indoor environments with
corridors, walls and other structured shapes either do not
have any features or have only very few features. During
the estimation process, when landmarks are absent in the
environment, uncertainty of the estimator rapidly grows.
The landmarks that will be encountered with a higher robot
uncertainty will have a higher uncertainty bound (Theorem 3

in ref. [19]). This will lead to possible inconsistent data
associations when the robot revisits the same area. Hence
frequent featurelessness in the environment will lead to a
highly unstable SLAM process. However, computer vision
can be used to detect visually salient features on walls and
other places where it is not possible to use a laser range finder
to detect landmarks, and the laser range finder can be used
to measure the range to the visually salient landmarks. On
multi sensor SLAM, Castellanos et al.20 have presented a
laser-camera based method that fuses landmark information
from laser range finder data with image data at map level.
The method presented in ref. [20] detects landmarks using
data from each sensor and calculates the individual and
joint compatibility between them. From the laser range
finder it locates the line segments, corners, and semiplanes.
Using camera data it obtains redundant information about
the landmarks that were observed by the laser range finder.
Thus this method only provides the laser based landmarks
with additional redundant information about the corners
and semiplanes from vision data. In contrast, the proposed
method uses vision as the primary sensor to obtain vertical
edge features and then uses data from the laser range finder
to measure the range to those landmarks. Therefore, there is
no dependency on the geometrical structure of the landmarks
between the laser and the vision data. Figure 1 compares and
contrasts the similarities and difference between the proposed
method and ref. [20].

1.2. Objective
The main objective of this paper is to introduce a
novel integrated laser-camera sensor that can be readily
used in landmark based simultaneous localization and
mapping algorithms. In contrast to the other notable works
in multisensor SLAM20 the proposed method fuses the
information in the sensor domain, rather than fusing map
information that is being built using each sensor, as shown in
Fig. 1. In the proposed work a camera is mounted on a laser
range finder and the coordinate transformations are obtained
through an experimental calibration process.21 The vertical
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lines in the environment are detected using the image data
(bearing information) and the range to the vertical lines can be
then interpolated using the laser readings and the coordinate
transformation between the laser and the camera.

1.3. Outline
The rest of the paper is organized as follows: the single
sensor methods proposed to calculate the feature position
with respect to the robot are provided in Section 2. Sec-
tion 3 provides details of the integrated sensor. Finally,
Section 4 provides the experiments conducted to verify the
algorithm and the results. Section 5 provides a discussion on
the proposed method along with the conclusions.

2. Landmark Detection and Position Estimation Using a
Single Sensor
This section explores the applicability of each sensor for
landmark detection and position estimation. In robotics, the
camera and the laser range finder are the most commonly
used sensors for environment sensing. Computer vision based
solutions have long been proposed for detection and in many
cases for position estimation of visually salient landmarks.
The most important advantage of using computer vision
for landmark detection is that it can detect visually salient
landmarks with a high degree of details that can later be
used for tracking or association. For example, scale invariant
feature transform (SIFT) uses rich visual information to
derive a multidimensional descriptor of visual features.22

This type of rich description is useful for associating features
in stereo vision23 and for homography estimation.24 Due to
the inherent sensor model, computer vision can only capture
the bearing to a feature. Therefore, in computer vision,
stereo vision is the most popular method for direct landmark
position estimation. On the contrary, a laser range finder
scans its field of view to measure the distances to closest
object. Usually, the measurements are taken at very small
angular resolution and a higher range accuracy than any of
the other range sensors, providing a high-resolution depth
plan of the field of view of the scanner. Next, the issues
relating to the landmark detection and position measurement
using a single sensor are addressed.

Monocular vision has been widely used in visual landmark
detection in bearing only SLAM. Starting from the initial
works of Andrew Davison,12 the research in vision based
SLAM has moved to realtime monocular SLAM16,25,26

implementations. In refs. [16, 25, 26] the position (depth) of
the visual landmarks is estimated using repeated observation
of the landmark, and when the estimation converges it is
initialized into the map. This type of feature initialization
requires landmarks to be present in the field of view of the
camera until the depth estimates converge to an acceptable
accuracy level. Although these are pioneering methods in
vision based SLAM, in typical application scenarios the
landmarks cannot be guaranteed to remain in the field of
view for a specific duration. In other methods the optical
flow of a landmark, along with the robot velocities, can
be used to calculate its position with respect to the robot
frame. However, due to the high sensitivity to noise in
robot velocity measurements, the uncertainty of the final
calculated values can be extremely large and the resulting

position calculations will be of limited use. This uncertainty
problem in the position calculation is magnified at low robot
velocities. Further, the optical flow based method cannot
directly calculate the object position when the robot is
making pure translational motion.

In the detection of landmarks based on the laser range
finder data, the corner and line (planes in the real world)
features are the mostly used features.20,27 The landmarks that
can be represented by a point in the map are often preferred
over the line features, which can only be localized with a
higher degree of freedom when the complete line segment is
in the field of view of the scanner. The corner features that
are invariant to the direction of the laser scan arise in the laser
data due to objects such as corners in walls and other objects
that have protrusions similar to legs of tables. However, in
some cases these types of corner features may not be available
in environments such as long corridors. Nevertheless, in most
cases there are patterns on walls and other features that can
be easily detected using computer vision. In addition, due to
the differences in the appearance of surfaces under lighting,
the regular corner features would usually appear as visually
salient features. In the rest of this section, two attempts in
localizing features using computer vision and laser range
data are discussed with their limitations.

2.1. Landmark localization using computer vision
Landmark localization using only monocular vision has been
achieved using two main methods: bearing only localization
and optical flow based localization. Bearing only localization
requires multiple wide baseline frames to infer the 2D
position of a landmark. Therefore, the position estimation and
the accuracy of the estimation of a landmark using bearing
only readings are highly dependant on the movement of
the camera and the number of sensor frames. In contrast,
the optical flow based feature localization can be used
to calculate the landmark position as soon as accurate
optical flow data becomes available. Thus, in this work
for monocular vision based landmark localization, only the
optical flow based method was investigated.

From the six degree of freedom general motion model, the
horizontal velocity of features (optical flow) (ṗ) on the image
plane can be derived from the horizontal feature position (p),
heading velocity (v), rotational velocity (ω), of the robot and
focal length of the camera (λ) as follows:28

ṗ = pv

Xc

− ω

λ
(λ2 + p2), (1)

where Xc is the distance to the feature in the direction of the
heading velocity as shown in Fig. 2. Using the above equation
and the camera model shown in Fig. 2 (p/λ = Yc/Xc) the
feature position with respect to the robot can be calculated
by

Xc = pv

ṗλ + (λ2 + p2)ω
,

Yc = p2vλ

ṗλ + (λ2 + p2)ω
.

(2)

The covariance of the calculated position can be found
using the first-order Taylor expansion of the feature position
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Fig. 2. The coordinate system and the imaging model of the camera.

[Xc, Yc]T . The covariance matrix of the position calculation
can be obtained from

�Xc,Yc
= J · diag[σp, σṗ, σv, σω] · J T , (3)

where

J =

⎡
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∂ṗ
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⎤
⎥⎥⎦ ,

and σp, σṗ, σv, and σω are the standard deviations of the
horizonal feature position on the image, horizontal optical
flow, heading velocity, and rotational velocity of the robot,
respectively. The uncertainty of the calculated locations can
be evaluated by comparing the area of the ellipsoid defined
by the 95% confidence interval. The uncertainty comparison
for varying optical flow and feature positions is shown in
Fig. 3. From Fig. 3 it is evident that at low optical flows
the uncertainty increases regardless of the feature position

Fig. 3. Sensitivity of the uncertainty of the feature localization.
The uncertainty is quantified by the area of the ellipse representing
95% confidence. pmax = 1.75 mm, v = 0.092 m/s and ω = 4 ×
10−3 rad/s. (σp = 10.9 × 10−6 m, σṗ = 0.3 × 10−4 m/s, σv =
7.8 mm/s, σω = 10−6 rad/s).

Fig. 4. A typical laser reading in an indoor environment where there
is only one (*) direction invariant (corner) feature.

on the image. Moreover, as the feature moves closer to
the edge of the image, the uncertainty increases even for
the same optical flow value. Generally, a robot encounters
many combinations of robot velocities and feature positions
that could give rise to high covariance values in the feature
position calculations. The limitations in the usable range of
optical flow and feature position make the optical flow based
feature position calculation method unsuitable for SLAM
applications.

2.2. Landmark localization using laser data
The direction invariant features in the laser data can be
identified as unique landmarks using the minimum points in
the laser data plot.29 These landmarks generally remain in the
laser data regardless of the direction of scan. In addition to the
convex features that appear as minimum points in the laser
data, concave points such as sharp corners can be reliably
detected in the laser data. However, as shown in Fig. 4,
certain environments such as long corridors might have only
few or no directional invariant features. In such cases, reliable
feature based, laser only SLAM implementations will not be
possible unless higher level features such as lines are used.

3. Calibrated Laser-Vision Sensor
A camera is mounted on the laser range finder using a
custom made bracket as shown in Fig. 5. The camera is
mounted at the center of the laser range finder to maintain the
coordinate transformation between the laser scanning plane
and the camera coordinate system as simple as possible. The
coordinate frames are defined as shown in Fig. 6. In our real
setup the axes zl and zc coincide with each other (i.e., a = 0
and b = 19 cm). The laser range scanner is mounted on the
center of the robot frame, thus the coordinate frame of the
laser is also considered as that of the robot.

3.1. Visual landmark detection
Landmarks in the camera images can take several forms.
The most common landmarks are the visually distinct corner
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Fig. 5. The camera and the laser range sensor used in the
experiments.

Fig. 6. Coordinate frames of calibrated laser-vision sensor.

features. Other visually salient landmarks include lines, arcs,
and user-defined objects. In the proposed method visually
salient vertical line features were detected in the captured
images. Line features are the most robust in terms of detection
accuracy and repeatability. In this work two algorithms have
been evaluated for the detection of vertical lines in the
images:

(1) Hough transform based method.
(2) Artificial corner feature based method.

Line detection algorithms based on the Hough trans-
formation are most popular in computer vision and pattern
recognition. Hough transformation typically accumulates the
votes for line configurations based on their support in the
binary image. Since it is of interest to detect only the vertical
(or close to vertical) lines, the search space can be restricted to
compute the angle values in the vicinity of zero, thus reducing
the computational cost. In addition to the Hough transform
based method, a simpler and computationally efficient corner
based method was tested for vertical line detection. Initially,

Fig. 8. Detected line features using Hough transformation and the
corner based method.

a set of horizontal lines were superimposed on the original
image as shown in Fig. 7. Then, all the resulting corner
features were detected using a Harris corner detector30 and
are indicated by the white circles in Fig. 7.

This list of corner features is then searched for sets of
features that are vertically aligned. If the number of features
in a set is greater than the threshold value, then the average
horizontal position of the features is identified as a consistent
vertical line. Identified lines are marked with white line
stubs at the bottom of the image frame shown in Fig. 7.
A comparison of the two methods is shown in the Fig. 8
for three typical images that are taken during a robot run.
The lines in the top part of the image are the ones detected
using Hough transformation and the lines in the bottom part
are detected using the corner based method. It is evident
from the images that on average Hough transform returns
more line images than the corner based method. This can
be attributed to the fact that it accumulates the evidence
for lines in the whole region rather than for some sampled
points in the image, as in the case with the corner based
method.

3.2. Sensor calibration
In order to measure the distances to the visual landmarks
using the laser range finder, the coordinate transformations
of the two sensors have to be accurately calibrated. There are
two possible sources for errors in the calibration information:
the errors in the alignment of the frames of the sensors
(parameters a and b in Fig. 6) and the errors in camera
calibration. Although the camera is calibrated using standard

Fig. 7. Line feature detection using artificially generated corner features.
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Fig. 9. Calibration curve for mapping between the field of view of
the camera and the field of view of the laser range finder.

camera calibration techniques1, the distortions especially
at the edge of the images, contribute significantly to the
errors.

The main objective of the sensor calibration method is to
accurately map the field of view of the camera to that of the
laser range finder. In order to achieve that objective, a “v”
shaped target with black and white faces is placed in front
of the robot. In a series of image and laser data with the “v”
shaped object placed to span the field of view of the camera
(since the field of view of the camera is less than that of the
laser range finder), the angle to the tip of “v” is measured
from the center of each sensor. In the camera images it is
measured in degrees from the optical axis (θc) and in the
laser range finder it is measured from the central laser scan
(θl). Thus, the error in the calibration can be calculated from
e = θl − θc. As shown in Fig. 9, the error e is approximated
using a higher order polynomial e(θc) with respect to θc. Thus
for any new measurement in the image θc, the corresponding
mapping angle in the laser range finder can be calculated
from θc + e(θc). Similarly, the reverse mapping, the mapping
of a reading in laser data onto the image, is also possible
with the same data with a new calibration curve of e(θl)
versus θl .

3.3. Measurement model
The goal of defining a measurement model is to calculate the
range to the landmark that has been detected by computer
vision and then define its uncertainty. The bearing angle (θc)
of the detected landmarks (line features) can be calculated
using a camera model with subpixel accuracy. A laser ranger
provides a set of scanned readings that provides the range
to the objects in the laser scan plane. The scanner is able
to operate in a field of view of 180◦ with a half a degree
resolution. Therefore, using the coordinate transformation
between the camera and the laser range finder along with
the calibration information, the range to the line features can
be calculated. Due to the resolution constraints in the laser
data, the range value has to be interpolated from the data
to increase its accuracy. This process of range interpolation
is shown in Fig. 10. It should be noted that the coordinate

1 MATLAB toolbox for camera calibration, http://www.vision.
caltech.edu/bouguetj/calibdoc/.

Fig. 10. Interpolation of the range to the line feature.

frame of the laser range data and the camera coincide with
each other as the calibration is already applied to the bearing
angle of the camera. Thus, in Fig. 10 bearing angle can be
explicitly expressed as in the laser coordinate frame.

Assuming the resolution of the laser range scanner is at
0.5◦, the range to the line feature can be calculated using the
following interpolation:

rθl
= ri+1 cos(θl − α) + ri cos(0.50 − α + θl)

2 cos(θl)
. (4)

Since the bearing to the feature is measured using
the camera model, and the range is measured using the
interpolated range data, the uncertainty of the measurements
also have to be calculated using the characteristics of each
sensor. In the camera model, the incident angle for the same
image area increases with the distance from the optical axis.
Hence the bearing uncertainty increases when the distance
to the line feature from the optical axis increases. But, since
the camera lens used has only a narrow field of view, bearing
uncertainty can be assumed to be a constant. For the range,
usual constant uncertainty of the laser range finder is used.
Thus, the covariance matrix of the measurements can be
expressed as

R = diag
[
σ 2

r σ 2
θ

]
, (5)

where σr and σθ are the standard deviations of the range and
bearing measurement errors, respectively.

4. Experiments and Results
This section provides information about experiments that
have been carried out to validate the suitability of the
integrated sensor. Before the description of the experiments
and their results, a key step in the selection of the detected
visual landmarks has to be explained. In some cases, the
visual landmark (the vertical line) would not cross the plane
of the scanning laser. As an example, there could be visual
features on protruding (or retracted) walls or objects on top
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Fig. 11. The curve constructed on the image plane by connecting the laser readings mapped from the laser coordinate frame to image
frame.

of tables. In such cases the range to those landmarks cannot
be guaranteed to be accurate. Thus the landmarks that do
not intersect with the laser plane have to be removed from
the list of detected landmarks before the calculation of the
range to the landmarks. After the visual landmarks have been
detected, the first step in the detection of such landmarks is
the reverse mapping of the laser points onto the image using
reverse sensor calibration (as described in the section 3.2)
and coordinate transformation. Once the field of view of the
two sensors is calibrated, the horizontal and vertical position
(p and q) of the laser point in the image can be calculated by
using

p = λri tan(θl),

q = λb

ri cos(θl)
,

where θl is the angle to the laser point from the vertical plane
through the optical axis, b is the vertical displacement of the
camera and laser coordinates, and ri is the laser reading that
is being mapped. Figure 11 shows the curve constructed from
mapped laser readings.

In the next step the intersecting points between the vertical
lines and the curve of the mapped laser readings are found.
The vertical gradient in the neighborhood of each intersecting
point can be calculated by a suitable gradient detector. Then
the vertical landmarks corresponding to points with weak
vertical total vertical gradients can be dropped. Although
this method is able to remove most of the landmarks that do
not intersect the laser plane, in rare cases two vertical aligned
landmarks that belong to objects with different ranges could
yield erroneous range information.

Two SLAM experiments were carried out to evaluate
the fitness of the multisensor landmark detection and
measurement method. In the first experiment the robot
was driven through a regular office environment where it
encountered narrow corridors, open office areas, and regular
object clutter that are typical to an office environment.
The robot travelled approximately 67 m making two loops
through the office environment. In the second, longer
experiment the robot was driven through the main corridors in
a university building where the corridors were considerably
wider compared to the first experiment. The robot traveled
approximately 148 m while looping one and half times in the
same environment. The experiments were carried out using
a Pioneer 3AT robot equipped with a SICK R© laser range
finder and a camera with a regular off-the-shelf lens. During
this experiment the laser range data, images from the camera
and odometry data were logged at regular spatial intervals
(20 cm or 2◦ apart, whichever occurs first). The noise levels

that have been used in the map estimation and localization
are listed in Table I.

Figure 12 shows process feature detection and localization
using an integrated sensor for a typical set of image and
laser scan data. As can be seen from Fig. 12 the laser range
finder can only detect the landmark at location C (using
the intersection of two lines) while computer vision can be
effectively used to detect other landmarks that can only be
detected using a camera (at locations A and B).

Fig. 12. The landmarks detected by the camera and their bearing
angle superimposed on laser readings.

Fig. 13. Number of landmark features detected by vision and laser
system.
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Table 1. The measurement of noise levels of the respective sensors
that is used in the SLAM.

Quantity Measurement noise
Range to the landmark (cm), σr 5.0
Bearing to the landmark (degrees), σθ 1.0
Robot heading velocity (cm/s), σv 0.5
Robot rotational velocity (degrees/s), σω 0.025

Fig. 14. Results of a localization and mapping of the first robot run:
(a) with odometry, and (b) using EKF and vision-laser landmark
localization (see the attached video file for incremental map
building along with the current image frame).

As discussed previously, the protruding features in the laser
data can be detected as landmarks in the laser data. Figure 13
shows a comparison between the number of landmarks that
can be detected in laser data and in image data during the
first experiment. It is clearly evident that there are significant

Fig. 15. Results of a localization and mapping of the second
robot run: (a) with odometry, and (b) using EKF and vision-laser
landmark localization (see the attached video file for incremental
map building along with the current image frame).

Fig. 16. 3σ bounds of the localization errors of the first experiment.

periods when image features outnumber the laser based
landmarks. Further it should be noted that when there is
a low number of visual features there is a significantly higher
number of laser based landmarks. Although the results are
purely specific to a given environment, the total number of
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Fig. 17. 3σ bounds of the localization errors of the second
experiment.

landmarks can be improved using the proposed method in
addition to the laser based landmarks.

After the landmarks are detected and located using laser
data and images, the data is processed off-line using the
EKF method. The global nearest neighbor (GNN) algorithm
was used for the data association. In the first experiment a
map consisting of 71 landmarks has been built at the end
of the run (Fig. 14(b)). Figure 14(a) shows the robot path
using pure odometry data. The 95% confidence bounds of
the errors in the robot pose estimate are shown in Fig. 16.
In Fig. 16 it is possible to observe the effects in the robot
position estimation around the midway point of the robot
run. In the second experiment the robot constructed a map
(as shown in Fig. 15) that contains 271 landmarks. Although
the robot travels a considerably longer distance in a different
environment compared to the first experiment, a similar
pattern can be observed in robot position uncertainty when
loop closing as shown in Fig. 17. The accuracy of the EKF
based SLAM algorithm was enough to robustly close the
loop in the long run, but during the initial steps of the loop
closing there were erroneous data associations. The ability
of the algorithm to recover from the initial errors data
association can be mainly attributed to the large size of the
map compared to the number of erroneous data associations.
The data from these experiments were processed off-line
using MATLAB software. The EKF SLAM algorithm is
known to have a time complexity of O(N2) where N is the

Fig. 18 The processing time for EKF (solid line) and the GNN data association (dashed line) of second experiment.

Fig. 19 Visual features detected in SLAM overlayed on the laser
data from the same area of the environment. This further illustrates
the fact that computer vision can be used to detect greater number
of landmarks compared to laser data.

number of landmarks in the map.31 Figure 18 shows the
processing time for the second experiment. As shown, the
processing time EKF algorithm increases with the increase
in the number of landmarks in the map and levels of when
the number of landmarks becomes constant when the robot
closes a loop in the environment. The processing time for data
association depend of the number of landmarks in the current
observation as well as the overall number of landmarks in
the map. Initially, data association time increases with the
increase in the number of landmarks in the map but after
loop closing the variances are mainly govern by the number
of landmarks in each observation.

5. Conclusion
In this paper it is shown that computer vision and a laser range
scanner can be used to accurately detect and measure the
visually salient landmarks in the environment. Further, such
measurements can be readily integrated into the EKF based
SLAM method to build maps of typical indoor environments.
Through the detection of greater number of landmarks the
integrated sensor increases the reliability of the SLAM
process. In typical indoor environments cameras can be used
to detect significantly higher number of landmarks as shown
in the Fig. 19 compared to laser data. Thus the proposed
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method minimizes the risk of robot running without any
observable landmarks and also improves the quality of the
data of the landmarks by using the appropriate sensor for
detection and position calculation. However, when robot is in
a featureless environment, in adverse lighting conditions or in
smoke or dust filled environment, the proposed method will
have a very low reliability due to the limitations in the vision
system. Future extensions of this work include the use of
more accurate sensor uncertainty modeling especially in the
case of bearing angle to the landmark and experimentation in
large looping environments with possible submapping. Some
visual landmarks are present in the form of wide vertical
strips, in which two side edges are detected as vertical lines.
Thus they are recognized as two landmarks and the SLAM
algorithm will attempt to initialize them as such in the map.
But since they are often physically close together only one
of them will be initialized into the map. Further, when the
robot is away from visual features as described above, the
line detection algorithm will often detect a single line due to
the limitation in the resolution of the camera. However, as the
robot gets closer to the object, it will appear as two landmarks
and the data association algorithm will have to decide the
best edge to be assigned to the feature that is already in the
map. Thus a better sensor model that can handle this type of
composite objects is required.
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