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Abstract. A theoretical investigation of the interaction between a charged-particle
beam and ordinarily polarized surface waves at the first two harmonics of ion
and electron cyclotron frequencies propagating across an external steady magnetic
field is carried out. The case of weak plasma spatial dispersion when the Larmor
radii of plasma particles are much less than the penetration depth of these waves
into the plasma is considered. The indicated waves are eigenmodes of the planar
plasma–vacuum–metal waveguide structure, which is exposed to a steady magnetic
field oriented parallel to the plasma surface. It is supposed that a cold charged-
particle beam propagates over the plasma surface in the vacuum region. The beam
density is less than the plasma density. Excitation of these O modes at the first
and second harmonics of electron and ion cyclotron frequencies caused by the both
resonant beam and dissipative instabilities is studied analytically. The dependence
of their growth rates on parameters of the considered waveguide structures is also
examined.

1. Introduction
It is known that two types of bulk cyclotron waves (X and O modes) can propa-
gate in unbounded plasmas (see e.g. [1]). Their theoretical description is quite well
developed [2]. That is why bulk cyclotron waves are actively utilized in practice.
For example, ion cyclotron resonance heating (CRH) [3] and electron CRH [4] are
widely used methods for additional heating of magnetically confined fusion plasmas.
Cyclotron resonance is also applied to the generation of powerful electromagnetic
emission [5].

The study of surface waves is of great importance in various branches of plasma
physics [6] and solid state physics [7,8] because of their numerous applications. For
instance, surface waves are widely used in radiofrequency and microwave gas dis-
charges, which can be utilized for processing of solids, plasma production, etc. [9,10].
Nevertheless, until now, there has only been a theory of surface cyclotron X modes,
which can propagate along such interfaces as magnetoactive plasma–dielectric and
magnetoactive plasma–metal interfaces. The dispersion properties of these surface
X modes (STXM) in a nonuniform plasma-filled metal waveguide with dielectric
coating have been studied in [11]. It was found that ion and electron STXM have
different dispersion properties and, in the case of a plasma–metal interface, they
can propagate only in mutually opposed directions [12]. The directions of their
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propagation are determined by the orientation of the Larmor rotation of the cor-
responding charged plasma particles near the metal interface. Interaction between
charged-particle beams and STXM has been studied in [13]. Parametric instability
of the STXM caused by a nonmonochromatic pumping electric field was exam-
ined in [14]. However, up to the present time, there has been no theory of surface
cyclotron O-mode (SCOM) propagation and excitation. The first work devoted to
study of their dispersion is reported in [15]. Therefore investigation of SCOM exci-
tation caused by beam–plasma interaction is relevant.

The principles of beam–plasma interaction are described in [16–18]. The phys-
ical aspects of technical applications of charged-particle beams are studied, for
example, in [5, 18, 19]. The possibility of transfer of charged-particle beam energy
into electromagnetic power emission is investigated there for various types of high-
frequency electron devices. The features of their operation are also examined there.
The monograph [20] is devoted mostly to theoretical analysis of surface wave ex-
citation by charged-particle beams. However, there is no theoretical description of
the interaction between surface cyclotron waves and charged-particle beams. That
is why this paper is devoted to examining the possibility of SCOM excitation by
charged-particle beams under the regimes of resonant beam and dissipative insta-
bilities and also for studying the effect of the considered waveguide parameters on
the values of their growth rates.

The paper is organized as follows. Section 2 presents the formulation of the prob-
lem and the basic assumptions and equations. Section 3 presents results of the
analytical investigation of the interaction between the SCOM and charged-particle
beams. A summary of the results obtained is presented in the Section 4.

2. Basic assumptions and equations
Let us consider a semibounded plasma that occupies the half-space x > 0 and is
bounded by vacuum in the region−a < x < 0. A metal wall is situated in the region
x 6 −a. An external steady magnetic field B0 is parallel to the plasma boundary and
is oriented along the Z axis. The electromagnetic fields of the waves are described by
the Maxwell equations. Their dependence on the Y coordinate and time t is chosen
in the form E,H ∼ f (x) exp[i(k2Y − ωt)], where ω is the frequency and k2 is the
component of the SCOM wavevector along the Y axis. There is no dependence on
the Z coordinate. Then the Maxwell equations can be divided into two independent
sets. One of them describes the STXM with components Ex, Ey, and Hz. The
other describes ordinarily polarized waves with components Hx, Hy, and Ez. Their
eigenfrequency depends weakly on the value of the external magnetic field. These
are the SCOM.

Plasma-particle motion is governed by the kinetic Vlasov–Boltzmann equation
in a nonrelativistic approach. Their unperturbed state is described by a Maxwell ion
distribution function. The spatial plasma dispersion along theX axis, perpendicular
to the plasma interface, is supposed to be weak, i.e. the inequality k1ρα� 1 is valid,
where ρα = vTα(|ωα|)−1 is the Larmor radius of electrons (α = e) or ions (α = i),
vTα is the mean value of thermal velocity, k1 is the perpendicular component of the
SCOM wavevector, and ωα is the cyclotron frequency.

Using the Fourier method, in which

E3(k1) =
1

2π

∫ ∞
−∞

exp(−ik1x)Ez(x) dx, (1)
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one can write down the following expressions for the SCOM fields:

kH1 = k2E3, (2a)

kH2 = −k1E3, (2b)

E3(k2
2 − k2ε33) = kk1H2 + ikHy(0)π−1, (2c)

where Hy(0) is the magnitude of the SCOM tangential component of magnetic field
on the plasma interface, kc = ω, c is the speed of light, and ε33 is the component
of the plasma permittivity tensor obtained in the nonrelativistic approach for the
case of an unbounded magnetoactive plasma with finite temperature [1].

In fact, under the indicated conditions, the relation between the Fourier co-
efficients of the Z component of the electron current density and the corresponding
component of the electric field differs from that in the case of an unbounded plasma
(i.e. from the relation j3(k1) = σ33(k1)E3(k1), where σ33 is the component of the
plasma conductivity tensor obtained in the kinetic approach for a magnetoactive
unbounded plasma). This is explained by the necessity to take into account the
interaction between a definite group of plasma particles and the plasma boundary
(see e.g. [21]). That is why the additional contribution caused by this interaction
can be included in this relation. The value of this contribution is determined by
the nondifferential part of the integration kernel of the plasma conductivity tensor
σ33. Therefore it determines the collisionless damping rate of the considered surface
modes. It should also be pointed out that this damping is analogous to collisionless
Landau damping and that there is no damping caused by the Doppler mechanism
of wave–particle interaction, because we have taken a nonrelativistic approach and
supposed that SCOM propagate strictly across the external magnetic field. In any
case, the problem of SCOM damping is outside the scope of the paper; thus we do
not take this contribution into account. Thus the expression for the component
ε33 of plasma permittivity tensor coincides with that in the case of an unbounded
magnetoactive plasma.

Solving the set of equations (2), one can find the following expression for the
SCOM Ez field in the plasma region with the aid of the inverse Fourier transform:

Ez(x) =
∫ ∞
−∞

ikHy(0) exp(ik1x) dk1

π[k2
1 + k2

2 − k2ε33(k1)]
. (3)

Under the adopted approach of weak plasma spatial dispersion along the X direc-
tion, one can employ in (3) the following approximate expression for ε33:

ε33(k1) ≈ 1−
∑
α

Ω2
α

ω2

[
1 +

∞∑
S=−∞

(k1ρα)2S

2Sh(α, S)S!

]
, (4)

where h(α, S) = 1− Sωαω−1, Ωα is the plasma frequency of species α, and S is the
number of the cyclotron harmonic.

When studying waves at harmonics of the corresponding cyclotron frequency,
one can take into account only those contributions in the sum over the numbers of
cyclotron harmonics that have resonant denominators, i.e. those h(α, S = S0) that
are much less than unity just for the chosen value of the cyclotron harmonic number
S0 (see e.g. [1]). Considering the sum of terms over the plasma species (subscript
α), one can see that the ion and electron contributions appear in the expression
for the ε33 symmetrically. That is why, from a mathematical point of view, there is
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no difference in principle between the cases of ion and electron SCOM, unlike the
case of the STXM excitation studied in [11]. One can use the obtained analytical
expressions for both cases, simply changing the subscript α = i to α = e, with an
accuracy of their mass ratio me/mi.

Let us consider here the case of SCOM excitation at the first and second cy-
clotron harmonics, because it is these cases that are of the most practical interest.
The dispersion relation that describes the interaction between the SCOM and the
charged-particle beam can be obtained using the method of impedance relations. To
find the ratio Ez(0)/Hy(0) for the plasma region, one can calculate the integral ex-
pression (3). This integral over the wavenumber k1 from−∞ to∞ can be changed to
a contour integral in the upper half-space of the complex plane of the wavenumber
k1. It can be calculated using the theory of residues. In the case of cyclotron waves
propagating at the S0 harmonic of the cyclotron frequency, the integral equation
(3) for Ez(x) has just S0 poles in this half-space. They are determined as complex
roots of the following equation in the upper half-space:

k2
1 + k2

2 + δ2 +
(ραk1)2S0

2S0δ2hS0!
= 0, (5)

where δ = cΩ−1
α for ion and electron terms, respectively. Thus it is necessary to

calculate the residues for these values of k1. To describe the SCOM field in the
region −a < x < 0, one can use (2) but with the following change:

ε33 → εb = 1− Ω2
b

ω(ω − k2V0)
,

where Ω2
b = θΩ2

α, θ = nb/npl is the ratio of beam and plasma concentrations, and
V0 is the beam velocity. In this region, the SCOM fields decrease with distance from
the plasma surface according to the exponential law: exp(|k2|x). Thus it is easy
to find the relation between the tangential components of the SCOM fields in this
region:

Ez(0)
Hy(0)

≈ ik

k2
tanh(k2a). (6)

To obtain the SCOM dispersion equation, one can equate the impedance of the
plasma and the impedance of the region 0 > x > −a where the charged-particle
beam is moving. Then one can write down the SCOM dispersion equation for the
considered plasma-beam structure:

D0 = Db. (7)

Here Db describes the beam properties; it can be written as

Db =
θω

k2
2δ

2(ω − k2V0)
;

the left-hand side D0 describes the contribution from the plasma region. In the
absence of the beam (θ = 0), the equation D0 = 0 is the SCOM dispersion relation
for the considered plasma–vacuum–metal structure. Let us write it down for the
case of SCOM at the first (ion or electron) harmonic:

D0 ≈ (1 + k−2
2 δ−2)

[
1 +

0.25δ−2ρ2
α

h(α, S = 1)

]
tanh2(ak2)− 1. (8)

It is convenient to find the solution of the dispersion equation (8) for the parameter
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h(α, S). Thus one can find from (8) the following expression:

h(α, S = 1) =
ρ2
α(1 + k2

2δ
2) sinh2(ak2)

4δ2[k2
2δ

2 − sinh2(ak2)]
. (9)

Unfortunately, the expression forD0 has a more cumbersome form in the case of the
second cyclotron harmonics, which is why we do not give it here. The approximate
solution of the SCOM dispersion equation in the case of a thick dielectric layer
(ak2� 1) can be found for the wavenumber range determined by the inequality
ak2� δk2 > 1. Then the parameter h(α, S = 2) can be written in the form

h(α, S = 2) ≈ 1
2ρ

4
αk

4
2(1 + δ2k2

2). (10)

3. Analytical study of interaction between the SCOM and the
charged-particle beam
The SCOM are characterized by only one component of the electric field that is
oriented along the applied external magnetic field. As a result, the SCOM can in-
teract with a charged-particle beam only by the Cherenkov mechanism, but not
by the Doppler one, in spite of the fact that they are waves at cyclotron harmon-
ics. Let us study (7) first of all in the case of the fundamental (S0 = 1) cyclotron
harmonic. The beam density is supposed to be relatively small (which means that
the inequality θ� 1 is satisfied); then the right-hand side of (7) can be significant
only under the condition for Cherenkov resonance: ω− k2V0 = γ, |γ|� ω. It should
be pointed out that this condition is contrary to that made in the case of surface
X-mode excitation [13]. The value of the parameter Db is inversely proportional to
the value of γ:

Db ≈ θω

γδ2k2
2
. (11)

Using the assumption of the resonant character of SCOM excitation at the funda-
mental cyclotron harmonic, one can transform (7) into the following:

γ(γ + iνα)
(1 + k2

2δ
2)ρ2

α|ωα|
4k2

2δ
4ω2h2 coth2(ak2)

=
θω

k2
2δ

2
, (12)

where να is the effective collision frequency between plasma particles. Considering
the left-hand side of (12), one can see that it has different values in the cases of
two possible types of beam–plasma instabilities: resonant beam instability (when
the inequality |γ|� να is satisfied) and dissipative instability (when the opposite
inequality |γ|� να is valid). Let us consider both cases for the SCOM at the first and
second cyclotron harmonics. If S0 = 1, then one can find the following expression
for the SCOM growth rate in the case of resonant beam instability:

Im(γ) ≈ 2
√
θωδ|h(S = 1)|

ρα
√

1 + δ2k2
2 tanh(ak2)

. (13)

In the case of dissipative instability, Im(γ) can be written as

Im(γ) ≈ 4ω2θ
δ2h2(S = 1) coth2(ak2)

ναρ2
α(1 + k2

2δ
2)

. (14)
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In the case of SCOM excitation at the second (S0 = 2) cyclotron harmonic (for ions
or electrons), one can find from (7) the following expressions for Im(γ):

Im(γ) ≈
√
θω[8h3(S = 2)]1/4k2δ

2

(k2
2δ

2 + 1)1/4ρα tanh(ak2)
(15)

Im(γ) ≈ θω2
√

8h3(S = 2)k2
2δ

4

να
√

1 + k2
2δ

2ρ2
α tanh2(ak2)

, (16)

in the cases of resonant beam and dissipative instabilities, respectively. On analysing
(13)–(16), one can see that decreasing the transverse size of the region occupied
by the beam (i.e. ak2 → 0) leads to a decrease in the SCOM growth rates. This
is explained by the fact that the magnitude of the SCOM electromagnetic field
decreases with decreasing ak2 (see (2) for the plasma region and (6) for the vacuum
region). Thus the SCOM cannot exist in a plasma–metal structure.

As was found in [11], STXM dispersion depends on the plasma transverse size
very weakly. That is why there is approximately no influence of this parameter
on the STXM growth rates [13]. However, the SCOM dispersion properties differ
sufficiently from the STXM dispersion properties. Thus let us consider briefly the
influence of finite transverse size of the plasma region on the SCOM growth rates.
Then, instead of the expression (7) that is valid for the SCOM at the first cyclotron
harmonic in the case of a semibounded plasma, one can write down the following
expression for D0 in the case of a plane plasma layer model:

D0 ≈ (1 + k−2
2 δ−2)

[
1 +

ρ2
α

4δ2h(S = 1)

]
tanh2(ak2)

tanh2(κapl)
− 1, (17)

where apl is the thickness of the plasma layer, and the SCOM penetration depth
into the plasma region κ−1 is determined by the following expression:

κ =
δ2k2 coth(ak2)
k2

2δ
2 + 1

.

From a comparison of (8) and (17), one can draw the following conclusion: a decrease
in the plasma-layer thickness leads to a decrease in the SCOM growth rates. On
analysing (13)–(16), one can see that there is no dependence of the SCOM growth
rates on the applied external magnetic field. This can be explained as follows. SCOM
dispersion depends weakly on the external magnetic field, and interaction between
these modes and charged-particle beams can occur only due to Cherenkov reson-
ance, unlike the case of the STXM. The growth rate of the resonant beam instability
is larger than that in the case of dissipative instability.

Let us make some estimates of the SCOM growth rate at the first (S0 = 1) cyclo-
tron harmonics. To calculate the growth rate in the case of resonant beam insta-
bility, one can apply the formula

Im(γ) ≈
√
θΩαvTα

2c
. (18)

Thus Im(γ) increases with increasing concentration and thermal velocity of plasma
particles. In the case of npl = 1012 cm−3, one finds Im(γ) ≈ √θvTα.

Comparing the SCOM growth rate under the condition of resonant beam insta-
bility with that for the surface cyclotron X modes [13], one finds the following ratio
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for the case of the second (S0 = 2) electron cyclotron harmonic:

Im(γ)STXM
Im(γ)SCOM

∼ 0.2
δ3k5

2ρ
3
e

. (19)

Therefore, under the condition k2δ > 1, the SCOM growth rate is greater than the
STXM growth rate.

4. Conclusions
The results of a theoretical study of interaction between charged-particle beams and
SCOM have been presented. The possibility of SCOM excitation by cold charged-
particle beams propagating over the plasma surface has been shown. The SCOM
growth rate under the conditions of resonant beam and dissipative instabilities
has been calculated. It is found that it does not depend on the applied external
magnetic field.

Unlike the case of STXM excitation, SCOM can be excited only through the
Cherenkov mechanism of beam–wave interaction. In the case of resonant beam
instability, the SCOM growth rate is proportional to the small factor

√
θ� 1. In

the case of dissipative instability, the SCOM growth rate is less than the collision
frequency να. Therefore it decreases as compared with the case of resonant beam
instability, and proportional to the first power of the small factor mentioned above.

It is found that the SCOM growth rate is greater than it is for the case of STXM
excitation. Decreasing both the transverse size of the plasma and the thickness of
the dielectric coating at the waveguide metal wall leads to a decrease in the SCOM
growth rate.
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