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Quantum computation and quantum computational logics give rise to some non-standard

probability spaces that are interesting from a formal point of view. In this framework, events

represent quantum pieces of information (qubits , quregisters , mixtures of quregisters), while

operations on events are identified with quantum logic gates (which correspond to dynamic

reversible quantum processes). We investigate the notion of Shi–Aharonov quantum

computational algebra . This structure plays the role for quantum computation that is played

by σ-complete Boolean algebras in classical probability theory.

1. Introduction

The strong parallelism that represents the characteristic feature of quantum computation

(QC) is essentially based on a probabilistic behaviour. Intuitively, a quantum computation

can be regarded as a tree consisting of branches that represent possible computational

paths, each associated with a well-determined probability value. A quantum measurement

performed at the end of the process determines the ‘real’ computational result. Some

general questions that are currently discussed in this connection are:

(i) What kind of probability is quantum computational probability?

(ii) To what extent can the parallel structures that arise in QC be assimilated into the

behaviour of a classical Probabilistic Turing Machine?

The second question represents a crucial open problem, which is obviously connected

with the validity of the Church thesis . The first question has been investigated math-

ematically. In this article we will sum up some results that have a bearing on quantum

computational logics (new forms of quantum logic inspired by QC).

2. Probabilistic quantum information

The basic concept in QC is the notion of a qubit . Intuitively, a qubit can be regarded as a

unit of probabilistic quantum information: a ‘quantum perhaps’ that assigns a probability
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value to the two classical answers YES and NO (corresponding to the two classical bits

1 and 0, respectively). Consider the two-dimensional Hilbert space C2, where any vector

is represented by a pair of complex numbers. Let

B(1) = {|0〉 , |1〉}

be the canonical orthonormal basis for C2, where

|0〉 = (1, 0)

|1〉 = (0, 1).

Definition 2.1 (qubit). A qubit is a unit vector

|ψ〉 = c0|0〉 + c1|1〉

of the Hilbert space C2.

We may also regard the basis elements |0〉 and |1〉 as the two classical truth values

false and true ‘wedged’ by the complex numbers c0 and c1. Accordingly, a qubit is a

probabilistic superposition of the two classical truth values, where Falsity has probability

|c0|2 and Truth has probability |c1|2. If the qubit represents the quantum counterpart of

the classical bit (describing the pure state of a single particle), the quantum homologue

of the classical register (corresponding to a system of n particles), is the n-quregister , a

unit vector of the n-fold tensor product of the space C2:

n⊗
C2 := C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

n−times

where
⊗1 C2 := C2. We will use x, y, . . . as variables ranging over the set {0, 1}, and

|x〉, |y〉, . . . to range over the basis B(1). Any factorised unit vector |x1〉 ⊗ · · · ⊗ |xn〉 of the

space
⊗nC2 will represent in this framework a classical register , that is, a sequence of n

bits. We will also abbreviate |x1〉 ⊗ · · · ⊗ |xn〉 to |x1, . . . , xn〉. The set

B(n) = {|x1, . . . , xn〉 : xi ∈ {0, 1}}

of all n-registers is an orthonormal basis for the space
⊗nC2, which is also called the

computational basis for the n-quregisters.

Quregisters are pure states, and thus maximal pieces of information , that cannot be

consistently extended to richer knowledge. In quantum computation, we must also refer

to non-maximal pieces of information; these correspond to mixtures of quregisters , which

are also called qumixes , and which are mathematically represented by density operators.

Definition 2.2 (qumix). A qumix is a density operator of a Hilbert space
⊗nC2.
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We will write D
(⊗nC2

)
to denote the set of all qumixes of

⊗nC2, and

D :=

∞⋃
n=1

(
n⊗

C2

)
to denote the set of all possible qumixes. It can be seen that quregisters are special cases

of qumixes.

As in the qubit case, we can define a probability function p assigning a probability value

p(ρ) to any qumix ρ. Intuitively, p(ρ) is the probability that the quantum information

stored by ρ corresponds to true information. To define the function p, we will first identify

in any space
⊗nC2 two special projections P (n)

0 and P
(n)
1 that will represent the Falsity

and Truth properties, respectively.

In this way, Falsity and Truth are dealt with as special cases of physical properties to

which any density operator assigns a well-determined probability value according to the

quantum theoretic formalism. Before defining P (n)
0 and P

(n)
1 , we will first distinguish the

true from the false registers in any space
⊗nC2:

|x1, . . . , xn〉 is said to be true if and only if xn = 1

|x1, . . . , xn〉 is said to be false if and only if xn = 0.

In other words, the last bit of a given register determines its truth value. We can now

define Falsity and Truth naturally as follows.

Definition 2.3 (Falsity and Truth).

(i) The Falsity of the space
⊗nC2 is the projection P

(n)
0 onto the span of the set of all

false registers.

(ii) The Truth of the space
⊗nC2 is the projection P

(n)
1 onto the span of the set of all

true registers.

By applying the Born rule, the probability function p can be defined as follows.

Definition 2.4 (probability p of a qumix). For any qumix ρ ∈ D
(⊗nC2

)
,

p(ρ) := tr
(
P

(n)
1 ρ

)
,

where tr is the trace functional.

Clearly, p(ρ) represents the probability of the truth property for state ρ. We will see how

the function p induces a preorder relation on the set D of all qumixes.

3. Quantum logic gates as probabilistic processes

Since the probabilistic function p is defined for any qumix, the set D of all possible

qumixes can also be regarded as the set of all possible quantum computational events .

What about the algebraic structure of this set? Unlike classical probability theory, the

operations defined on quantum computational events have an intrinsic dynamic character

and are represented by quantum logic gates .
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What exactly are quantum logic gates? It is well known that in quantum theory

the dynamic evolution of quantum systems is governed by the Schrödinger equation.

Accordingly, for any times t0 and t1, a pure state |ψ(t0)〉 of an object at time t0 is

transformed into another pure state of the same object at time t1 by means of a unitary

operator U, which represents a reversible transformation:

|ψ(t1)〉 = U(|ψ(t0)〉).

Quantum logic gates (which we shall just call gates from now on) are special examples of

unitary operators that transform quregisters into quregisters in a reversible way. Hence,

intuitively, the application of a sequence of gates to an input quregister can be regarded as

the dynamic evolution of a quantum object that is processing a given amount of quantum

information. By definition, gates are unitary operators whose domains consist of vectors

of convenient Hilbert spaces. We will see, however, that they can also be generalised

naturally to qumixes.

Intuitively, a quantum information process can be represented naturally as a kind of

quantum epistemic tree from an initial state of knowledge ρ(to) to a final state of knowledge

ρ(t1):

ρ(t1)

⇑

...

⇑

ρ(t0)

Although the superficial form of a quantum epistemic tree is that of a linear process , the

deep structure is essentially parallel since any qubit |ψ〉 generally gives rise to a branching.

A state of knowledge represented by a quantum superposition |ψ〉 reflects, at the same

time, two parallel epistemic paths: the first leads to the answer YES , while the second

leads to the answer NO.

Classical computation theory satisfies a highly desirable property: it can be formulated

in terms of a very small set of classical logic gates (Boolean functions), called a

(functionally) universal set of gates . Generally, classical gates are presented as irreversible

operations: the same output bits may correspond to different input bits. However, we

know that such an irreversible form does not represent an essential feature of classical

computation: as shown by Toffoli (Toffoli 1980), every Boolean gate has its own reversible

counterpart. The main idea is to consider the input bits of a reversible gate as composed

by two parts: a control component, which carries over the ‘actual’ input value, and a

target component (ancilla), whose final value (after the application of the gate) represents

the ‘actual’ output. The price to pay for this is an increase in the computational space

due to the number of extra ancilla bits needed to make the circuit reversible.

In the irreversible formulation of the gate system, the single gate NAND, or the set

consisting of the two gates AND and NOT represent a universal set of gates. In the
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reversible version, this role is played by a single gate, the Toffoli gate T, which is also

called a controlled-controlled-not gate.

In quantum computation, gates are identified with unitary operators acting on pure

states of a Hilbert space. Since there are uncountably many unitary operators, there is

no hope of finding any finite functionally universal set of quantum gates. In other words,

there is no finite set of quantum gates such that the behaviour of any quantum gate G can

be exactly reproduced by means of a convenient composition of gates belonging to the

set. In spite of this, there are finite sets S of quantum gates such that each S satisfies the

following condition: the action of any quantum gate can be mathematically approximated,

up to an arbitrary accuracy, through appropriate compositions of gates that belong to

S (Kitaev 1997). Sets of gates that satisfy such a property are said to be approximately

universal.

Finding simpler and simpler approximate universal sets of gates represents a crucial

step in the attempt to realise concrete quantum computers. An important result obtained

by Shi (Shi 2002), and further investigated by Aharonov (Aharonov 2003), has shown that

the set whose elements are the (three-qubit) Toffoli gate and the (one-qubit) Hadamard

gate (also called the squareroot of the identity) is approximately universal. Unlike the

classical reversible case, the Toffoli gate is not sufficient to reproduce the behaviour of

all quantum gates. A gate exhibiting a ‘genuine’ quantum character should be added: the

squareroot of the identity comes into play here.

We will now present the mathematical definitions of our gates.

Definition 3.1 (the Toffoli gate). For any n, m, p � 1, the Toffoli gate is the linear operator

T(n,m,p) defined on
⊗n+m+pC2 such that for every element

|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp〉

of the computational basis B(n+m+p),

T(n,m,p)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp〉)
= |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z1, . . . , zp−1, xnym+̂zp〉,

where +̂ represents addition modulo 2.

It is clear that T(n,m,p) is a unitary operator. On this basis, the Boolean functions AND,

NAND, NOT can be defined using Toffoli gates.

Definition 3.2.

— For any |ψ〉 ∈
⊗nC2 and for any |ϕ〉 ∈

⊗mC2,

AND(|ψ〉, |ϕ〉) := T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |0〉).

— For any |ψ〉 ∈
⊗nC2 and for any |ϕ〉 ∈

⊗mC2,

NAND(|ψ〉, |ϕ〉) := T(n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |1〉).
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— For any |ψ〉 ∈
⊗nC2,

NOT(|ψ〉) := T(1,1,n)(|1〉, |1〉, |ψ〉).

However, defining the Boolean negation NOT in terms of the Toffoli gate has the

shortcoming that it increases the dimension of the Hilbert space. Specifically, if |ψ〉
belongs to

⊗nC2, its negation NOT(|ψ〉) belongs to
⊗n+2 C2.

For computational purposes, the following independent definition of the negation gate

is more economical.

Definition 3.3 (negation). For any n � 1, the negation on
⊗nC2 is the linear operator

Not(n) such that for every element |x1, . . . , xn〉 of the computational basis B(n),

Not(n)(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ |1 − xn〉.

For classical bits, we immediately get the standard negation truth table:

Not(1)(|0〉) = |1〉
Not(1)(|1〉) = |0〉.

The Toffoli gate represents a classical reversible gate: whenever the input is a classical

register, the output will also be a classical register. In other words, the gate cannot

‘create’ superpositions. The ‘genuine’ quantum component of the Shi–Aharonov system is

represented by the Hadamard gate.

Definition 3.4 (the Hadamard gate). For any n � 1, the Hadamard gate on
⊗nC2 is the

linear operator
√

I
(n)

such that for every element |x1, . . . , xn〉 of the computational basis

B(n),
√

I
(n)

(|x1, . . . , xn〉) = |x1, . . . , xn−1〉 ⊗ 1√
2

(
(−1)xn |xn〉 + |1 − xn〉

)
.

The basic property of
√

I
(n)

is given by

for any |ψ〉 ∈
n⊗

C2,
√

I
(n)

(√
I
(n)

(|ψ〉)
)

= |ψ〉.

For classical bits, we immediately get

√
I
(1)

(|0〉) =
1√
2
(|0〉 + |1〉)

√
I
(1)

(|1〉) =
1√
2
(|0〉 − |1〉).

In other words, the Hadamard gate transforms maximal certainties into maximal uncer-

tainties, and vice versa.

By definition, gates are unitary operators whose domains consist of vectors of convenient

Hilbert spaces. At the same time, gates can also be generalised naturally to qumixes. Such

generalisations transforming qumixes into qumixes in a reversible way are called qumix

gates , or unitary quantum operations (Aharonov et al. 1998).
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Let G be a gate of
⊗nC2. Then the corresponding qumix gate DG is defined by

DG(ρ) := GρG∗,

where ρ is a density operator of
⊗nC2 and G∗ is the adjoint of G. Accordingly, we will

use DT
(m,n,p)

and D√
I
(n)

to denote the Toffoli and Hadamard qumix gates, respectively.

Some basic probabilistic properties of our classical gates are listed in the following

theorem.

Theorem 3.1 (Gudder 2003; Dalla Chiara et al. 2005).

p
(
DNot

(n)
(ρ)

)
= 1 − p(ρ)

p
(DAND(ρ, σ)

)
= p(ρ)p(σ)

p
(DNAND(ρ, σ)

)
= 1 − p(ρ)p(σ).

While negation has a standard probabilistic behaviour, somewhat surprisingly, the

conjunction DAND and its negation DNAND turn out to behave as probability functions:

the probability of a conjunction is always the product of the probabilities of the two

members. In other words, any pair of quantum computational events seems to behave

like a classical pair of independent events. As expected, such non-standard properties give

rise to important consequences for the algebraic structure of all quantum computational

events.

Theorem 3.2 (Dalla Chiara et al. 2009). Let ρ ∈ D(
⊗nC2), σ ∈ D(

⊗mC2) and τ ∈
D(

⊗pC2). Then,

p
(
DT

(n,m,p)
(ρ⊗ σ ⊗ τ)

)
= (1 − p(τ))p(ρ)p(σ) + p(τ)(1 − p(ρ)p(σ)).

As a consequence of Theorems 3.2 and 3.1, the probability value

p(DT
(n,m,p)

(ρ⊗ σ ⊗ τ))

can be regarded as a kind of weighted sum of p(DAND(ρ, σ)) and p(DNAND(ρ, σ)), with

weights p(DNot(p)(τ)) and p(τ), respectively.

Theorem 3.3. Let ρ ∈ D(
⊗nC), σ ∈ D(

⊗mC) and τ ∈ D(
⊗pC2). Then,

p
(
D√

I
(n+m+p)

(
DT

(n,m,p)
(ρ⊗ σ ⊗ τ)

))
= p

(
D√

I
(p)

(τ)
)
.

4. Probabilistic quantum computational structures

We can now introduce the notion of a Shi–Aharonov quantum computational algebra ,

whose domain is the set of all possible qumixes and whose operations are defined in terms

of the Toffoli, negation and Hadamard gates (Dalla Chiara et al. 2009). We can say that

such a structure plays for quantum computation the role played by σ-complete Boolean

algebras in classical probability theory.
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Definition 4.1 (the Shi–Aharonov quantum computational algebra). The Shi–Aharonov

quantum computational algebra is the structure

SA =

(
D ,T ,N ,

√
I, P (1)

0 , P
(1)
1 ,

1

2
I (1)

)
,

where:

— D is the set of all qumixes.

— T is a ternary operation defined for any ρ ∈ D(
⊗nC2), any σ ∈ D(

⊗mC2) and any

τ ∈ D(
⊗pC2) by

T (ρ, σ, τ) := DT
(n,m,p)

(ρ⊗ σ ⊗ τ).

— N is a unary operation defined for any ρ ∈ D(
⊗nC2) by

N(ρ) := DNot
(n)

(ρ).

—
√
I is a unary operation defined for any ρ ∈ D(

⊗nC2) by

√
I(ρ) := D√

I
(n)

(ρ).

— P
(1)
0 , P

(1)
1 , 1

2
I (1) (where I (1) is the identity operator of C2) are three special elements of

D(C2) that represent the privileged true, false and indeterminate qumix, respectively.

The set D of all qumixes can be preordered by the relation 
 defined as follows.

Definition 4.2 (the qumix preorder). For any ρ, σ ∈ D,

ρ 
 σ iff p(ρ) � p(σ) and p
(√

I(ρ)
)

� p
(√

I(σ)
)
.

It is easy to see that 
 is reflexive and transitive. This allows us to define an equivalence

relation ≡ on the set D in the expected way.

Definition 4.3. ρ ≡ σ if and only if ρ 
 σ and σ 
 ρ.

Now consider the set

[D]≡ := {[ρ]≡ : ρ ∈ D} .
For brevity, we will write [ρ] instead of [ρ]≡. Unlike qumixes, which are only preordered

by 
, the equivalence classes of [D]≡ can be partially ordered in a natural way:

[ρ] 
 [σ] iff ρ 
 σ.

We can now consider a quotient structure based on the quotient set [D]≡.

Theorem 4.1. ≡ is a congruence relation with respect to T , N and
√
I.

Thanks to Theorem 4.1, we can define the operations T , N and
√
I on [D]≡ in the

expected way. Hence, we obtain the following quotient structure:

SA≡ =

(
[D]≡ ,T ,N ,

√
I ,

[
P

(1)
0

]
,
[
P

(1)
1

]
,

[
1

2
I (1)

])
.

While SA is a reversible quantum computational structure, its quotient SA≡ is clearly

irreversible.
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Fig. 1. The Bloch–Poincaré sphere

Interestingly enough, the quotient structure SA≡ turns out to be isomorphic to a

structure based on a particular set of complex numbers: the closed disc with centre
(

1
2
, 1

2

)
and radius 1

2
(Dalla Chiara et al. 2009).

It is well known that D
(
C2

)
is in one-to-one correspondence with the set of all points

of the Bloch–Poincaré sphere (of radius 1) – see Figure 1. Consider a qumix τ of D
(
C2

)
and let (t1, t2, t3) be the point of the Bloch-Poincaré sphere that is uniquely associated to

τ. We then have

τ =
1

2

(
1 + t3 t1 − it2
t1 + it2 1 − t3

)
.

It is easy to see that

p (τ) =
1 − t3

2

p
(√

I(τ)
)

=
1 − t1

2
.

It is clear that the coordinate t2 has no effect on p (τ) and p
(√

I(τ)
)
. This suggests

a shift down by one dimension. Accordingly, we define the following set of complex

numbers:

C1 :=
{(

p(τ), p
(√

I(τ)
))

: τ ∈ D
(
C2

)}
.

It is easy to show that

C1 :=
{
(a, b) : a, b ∈ R and (1 − 2a)2 + (1 − 2b)2 � 1

}
.

On this basis, recalling Theorem 3.2, a Toffoli-like operation (TC1 ), a negation NC1 and

a Hadamard-like operation (
√
I
C1

) can be defined naturally on the set C1.
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Definition 4.4 (the pair-Toffoli and the pair-Hadamard).

TC1 ((a1, a2) , (b1, b2) (c1, c2)) = ((1 − c1) a1b1 + c1 (1 − a1b1) , c2)

NC1 (a1, a2) = (1 − a1, 1 − a2)
√
I
C1

(a1, a2) = (a2, a1) .

We now consider the structure

C1 =
(
C1 ,T

C1 ,NC1 ,
√
I
C1
, 0 , 1 , 1/2

)
, (1)

where

0 :=

(
0,

1

2

)
1 :=

(
1,

1

2

)
1/2 :=

(
1

2
,
1

2

)
.

We will call C1 the complex Shi–Aharonov quantum computational algebra .

Theorem 4.2 (Dalla Chiara et al. 2009). The complex Shi–Aharonov quantum computa-

tional algebra is isomorphic to the quotient of the Shi–Aharonov quantum computational

algebra.

It is interesting to compare the quotient structure SA≡ of all quantum computational

events (or its isomorphic image C1) with the Boolean event algebras of classical probability

spaces. To this end, consider the following reduct structure of SA≡:

SA≡ =
(
[D]≡ ,AND ,N ,

[
P

(1)
0

]
,
[
P

(1)
1

])
,

where the conjunction AND is defined on the set [D]≡ in the expected way. We then

consider the substructure SAR
≡ of SA≡ whose domain consists of all equivalence classes

of registers. It is easy to show that SAR
≡ is a two-valued Boolean algebra. Hence, classical

quantum computational events have the standard Kolmogorovian behaviour.

What kind of structure is SA≡? To sum up, the most significant Boolean properties

that are either preserved or possibly violated in this particular case are:

— The conjunction AND is commutative and associative.

— The conjunction AND is not idempotent. Generally,

AND ([ρ] , [ρ]) �= [ρ] .

As happens in fuzzy logics, a non-idempotent conjunction seems to be compatible

with concrete situations that may be disturbed by a noise (where repetita iuvant! ).

Consequently, SA≡ is not a lattice.

— Although P
(1)
0 represents a (privileged) impossible event such that p(P (1)

0 ) = 0, the

element
[
P

(1)
0

]
is not the minimum of SA≡. In fact, there are some qumixes ρ such that
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P
(1)
0 � ρ. In other words, SA≡ does not satisfy the Duns Scotus principle (ex absurdo

sequitur quodlibet!).

—
[
P

(1)
1

]
is not a neutral element of SA≡. Generally,

AND
(
[ρ] ,

[
P

(1)
1

])
�= [ρ] .

— The non-contradiction principle can be violated. Generally,

AND([ρ] ,N([ρ])) �=
[
P

(1)
0

]
.

In other words, quantum computational events may be unsharp since contradictions

are not necessarily impossible!

It is easy to see that our quotient structure SA≡ represents a weak example of a product

algebra (
A , . , ′ , 0 , 1

)
whose standard model is the concrete numerical structure

(
[0, 1] , . , ′ , 0, , 1

)
, where . is

the real-number product and x′ = 1 − x. While 1 is a neutral element in any product

algebra, we have just seen that in the case of SA≡, the element
[
P

(1)
1

]
does not satisfy

this property.

5. A logical abstraction: quantum computational logics

Quantum computation has recently suggested some new forms of quantum logic, called

quantum computational logics (QCL’s), where meanings of sentences are identified with

quantum information quantities. This provides a mathematical formalism for an abstract

theory of meanings that can be applied to investigate different kinds of semantic phenom-

ena where holistic, contextual and gestaltic patterns play an essential role (from natural

languages to musical compositions).

It is well known that human perception, like thinking, seems to be essentially synthetic.

We never perceive an object by scanning it point by point. Instead, we immediately

form a Gestalt, that is, a global idea of it. Rational activity also seems to be essentially

based on gestaltic patterns. Now, Gestalt thinking cannot be adequately represented in

the framework of classical semantics, which is basically analytical and compositional : the

meaning of a compound expression is always determined by the meanings of its parts .

At the same time, meanings are non-ambiguous and sharp. All this means that classical

semantics is not very applicable to an adequate analysis of natural languages or artistic

contexts, where holistic and ambiguous features seem to play a relevant role.

In the semantics of QCL’s the following conditions are satisfied:

(1) Global meanings (which may correspond to a Gestalt) are intrinsically vague because

they leave many relevant properties of the objects under investigation semantically

undecided.

(2) Any global meaning determines some partial meanings , which are generally vaguer

than the global one.
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(3) Meanings (Gestalten) can be generally represented as superpositions of other meanings,

possibly associated with probability values.

(4) Meanings (in the same way as Gestalten), are dealt with as intrinsically dynamic

objects.

In this framework, the meaning of any sentence is identified with a quantum information

quantity: a quregister or, more generally, a qumix. We will just sketch here the basic

intuitive ideas of this semantics†. The starting point can be described as a natural

generalisation of classical logic. We will refer to an ‘information-theoretic’ presentation of

classical semantics (and classical circuit theory). In this framework, sentences are supposed

to denote classical bits (either 1 or 0), while the Boolean connectives (not, and, or)

represent classical logic gates: functions that allow us to process information. By contrast,

the sentences of QCL′s are supposed to represent quantum pieces of information that are

generally uncertain (qumixes). At the same time, the logical connectives are interpreted

as quantum logic gates . One can use, for instance, a system of logical connectives that

corresponds to the Shi–Aharonov system of gates (negation, Toffoli and Hadamard),

which is approximately universal.

In the holistic semantics of QCL′s, a model (or interpretation) of the language is a map

Hol that assigns to any sentence α a qumix that represents the informational meaning

of α:

α �→ Hol(α).

As expected, any model Hol preserves the logical form of the sentences, by interpreting

any connective ◦ of the language as a corresponding gate G◦. Furthermore, the qumix

Hol(α) lives in a Hilbert space whose dimension depends on the logical form of α. The

simplest examples of sentences are atomic sentences, which cannot be decomposed into

more elementary sentences (say ‘2 is prime’). Accordingly, the meanings of such sentences

live in the simplest Hilbert space: the two-dimensional space C2. A molecular sentence

with n occurrences of atomic sentences can be regarded as a linguistic description of a

compound physical system consisting of n particles. In fact, we need n particles to carry

the information that is expressed by our molecular sentence. On this basis, it is natural to

assume that the meaning of such a sentence lives in the n-fold tensor product of C2.

The holistic features of our semantics depend on the fact that any model Hol assigns

to any sentence α a global meaning that cannot be generally inferred from the meanings

assigned by Hol to the atomic parts of α. What happens here is just the opposite to the

standard behaviour of compositional semantics: Hol(α) determines the meanings of all its

parts, which turn out to be essentially context-dependent . As a consequence, any sentence

may receive different meanings in different contexts. Going from the whole to the parts

is possible here because all logical operations are reversible: we can go back and forth

without any dissipation of information!

† For technical details, see Dalla Chiara et al. (2010).
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A fundamental role in this semantic game is played by the notion of entanglement , which

is mathematically based on the characteristic properties of tensor products. Intuitively,

the basic features of an entangled state |ψ〉 can be sketched as follows:

— |ψ〉 is a maximal information (a pure state) that describes a compound physical system

S (say, a two-electron system);

— the information determined by |ψ〉 about the parts of S is non-maximal. Hence,

the states of the whole system is a pure state, while the states of the parts (which

are determined by the state of the whole and are usually called reduced states) are

proper mixtures. It may also happen that the state of the compound system (although

representing a maximum of information) describes the parts as essentially indiscernible

objects, which cannot satisfy any characteristic individual property. In this way, we

get an apparent violation of Leibniz’ indiscernibility principle.

Entanglement phenomena can be used naturally to model some typical holistic semantic

situations in the framework of our quantum computational semantics. We can consider

entangled quregisters that are meanings of molecular sentences. As an example, consider

a conjunctive sentence having the form

γ = α ∧ β.

The following situation is possible:

— The meaning Hol(γ) of the conjunction γ is a quregister, which represents a maximal

information (a pure state).

— The meanings of the parts (α, β) are quantum-entangled and cannot be represented

by two pure states (two quregisters).

We can say that the sharp meaning of the conjunction determines two ambiguous

meanings for the parts (α, β), which are represented by two mixed states. In other

words, the meaning of the whole determines the meanings of the parts, but not the other

way around . In fact, we cannot go back from the two ambiguous meanings of the parts

to the quregister representing the meaning of the whole. The mixed state (that is, the

reduced state) representing the ambiguous meaning of α (respectively, β) can be regarded

as a kind of contextual meaning of α (respectively, β), determined by the global context ,

which corresponds to the quregister Hol(α ∧ β) (the meaning of the conjunction α ∧ β).

The quantum computational semantics is strongly Hilbert-space dependent. As a

consequence, applications to fields far from the quantum world, where Hilbert spaces

do not play any significant role, seem to be somewhat unnatural. However, by abstracting

from the Hilbert-space formalism, we can develop an abstract version of quantum holistic

semantics that is Hilbert space free (Dalla Chiara et al. 2010). In this framework,

quregisters and qumixes (representing maximal and non-maximal pieces of information,

respectively) are dealt with as special kinds of intensional objects with growing complexity,

which reflects the logical form of possible sentences. Accordingly, an abstract notion of

reduced information allows us to define contextual meanings in an appropriate way (like

in the concrete quantum case). This abstract quantum-like semantics seems to represent

a flexible tool that might be naturally applied to a number of different fields, including a

formal analysis of natural languages and of the languages of art.
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