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Abstract

Abduction, first proposed in the setting of classical logics, has been studied with growing

interest in the logic programming area during the last years. In this paper we study abduction

with penalization in the logic programming framework. This form of abductive reasoning,

which has not been previously analyzed in logic programming, turns out to represent several

relevant problems, including optimization problems, very naturally. We define a formal

model for abduction with penalization over logic programs, which extends the abductive

framework proposed by Kakas and Mancarella. We address knowledge representation issues,

encoding a number of problems in our abductive framework. In particular, we consider

some relevant problems, taken from different domains, ranging from optimization theory to

diagnosis and planning; their encodings turn out to be simple and elegant in our formalism.

We thoroughly analyze the computational complexity of the main problems arising in the

context of abduction with penalization from logic programs. Finally, we implement a system

supporting the proposed abductive framework on top of the DLV engine. To this end, we

design a translation from abduction problems with penalties into logic programs with weak

constraints. We prove that this approach is sound and complete.

KEYWORDS: knowledge representation, nonmonotonic reasoning, abduction, logic programs,

computational complexity, stable models, optimization problems, penalization

1 Introduction

Abduction is an important form of reasoning, first studied in depth by Peirce (1955).

Given the observation of some facts, abduction aims at concluding the presence of

other facts, from which, together with an underlying theory, the observed facts can

be explained, i.e. deductively derived. Thus, roughly speaking, abduction amounts

to an inverse of modus ponens.
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For example, medical diagnosis is a typical abductive reasoning process: from

the symptoms and the medical knowledge, a diagnosis about a possible disease is

abduced. Notice that this form of reasoning is not sound (a diagnosis may turn out

to be wrong), and that in general several abductive explanations (i.e. diagnoses) for

the observed symptoms may be possible.

It has been recognized that abduction is an important principle of common-

sense reasoning, and that abduction has fruitful applications in a number of areas

such diverse as model-based diagnosis (Poole 1989), speech recognition (Hobbs and

M. E. Stickel 1993), model checking (Buccafurri et al. 1999), maintenance of database

views (Kakas and Mancarella 1990a), and vision (Charniak and McDermott 1985).

Most research on abduction concerned abduction from classical logic theories.

However, there are several application domains where the use of logic programming

to perform abductive reasoning seems more appropriate and natural (Eiter et al.

1997).

For instance, consider the following scenario. Assume that it is Sunday and is

known that Fabrizio plays soccer on Sundays if it’s not raining. This may be

represented by the following theory T :

play soccer ← is sunday ∧ not rains is sunday ←

Now you observe that Fabrizio is not out playing soccer (rather, he is writing a

paper). Intuitively, from this observation we conclude that it rains (i.e. we abduce

rains), for otherwise Fabrizio would be out playing soccer. Nevertheless, under

classical inference, the fact rains is not an explanation of not play soccer, as T ∪
{rains} �|= not play soccer (neither can one find any explanation). On the contrary, if

we adopt the semantics of logic programming (interpreting not as the nonmonotonic

negation operator), then, according with the intuition, we obtain that rains is an

explanation of not play soccer, as it is entailed by T ∪ {rains}.
In the context of logic programming, abduction has been first proposed by Kakas

and Mancarella (1990b) and, during the recent years, the interest in this subject has

been growing rapidly (Console et al. 1991; Konolige 1992; Kakas et al. 1992; Dung

1991; Denecker and De Schreye 1995; Sakama and Inoue 2000; Brena 1998; Kakas

et al. 2000; Denecker and Kakas 2002; Lin and You 2002). This is also due to some

advantages in dealing with incomplete information that this kind of reasoning has

over deduction (Denecker and De Schreye 1995; Baral and Gelfond 1994).

Unlike most of these previous works on abduction in the logic programming

framework, in this paper we study abduction with penalization from logic programs.

This form of abductive reasoning, well studied in the setting of classical logics (Eiter

and Gottlob 1995), has not been previously analyzed in logic programming.

Note that dealing with weights or penalties has been recognized as a very

important feature of knowledge representation systems. In fact, even at the very

recent Workshop on Nonmonotonic Reasoning, Answer Set Programming and

Constraints (Dagstuhl, Germany, 2002), many talks and system demonstrations

pointed out that a lot of problems arising in real applications requires the ability to

discriminate over different candidate solutions, by means of some suitable preference

relationship. Note that this is not just an esthetic issue, for representing such problems
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in a more natural and declarative way. Rather, a proper use of preferences may

have a dramatic impact even on the efficiency of solving these problems.

In this paper, we define a formal model for abduction with penalization from

logic programs, which extends the abductive framework proposed by Kakas and

Mancarella (1990b). Roughly, a problem of abduction with penalization P consists

of a logic program P , a set of hypotheses, a set of observations, and a function that

assigns a penalty to each hypothesis. An admissible solution is a set of hypotheses

such that all observations can be derived from P assuming that these hypotheses

are true. Each solution is weighted by the sum of the penalties associated with its

hypotheses. The optimal solutions are those with the minimum weight, which are

considered more likely to occur, and thus are preferred over other solutions with

higher penalties.

We face knowledge representation issues, by showing how abduction with penal-

ization from logic programming can be used for encoding easily and in a natural

way relevant problems belonging to different domains. In particular, we consider the

classical Travelling Salesman Problem from optimization theory, (a new version of)

the Strategic Companies Problem, the planning problem Blocks World, from artificial

intelligence. It is worthwhile noting that these problems cannot be encoded at all

in (function-free) normal logic programming, even under the powerful stable model

semantics.

We analyze the computational complexity of the main problems arising in this

framework, namely, given a problem P of abduction with penalization over logic

programs,

• decide whether P is consistent, i.e. there exists a solution for P;

• decide whether a given set of hypotheses is an admissible solution for P;

• decide whether a given set of hypotheses is an optimal solution for P;

• decide whether a given hypothesis h is relevant for P, i.e. h occurs in some

optimal solution of P;

• decide whether a given hypothesis h is necessary for P, i.e. h is contained in

all optimal solutions of P;

• compute an optimal solution of P.

Table 1 shows the complexity of all these problems, both in the general case and

in the restricted setting where the use of unstratified negation is forbidden in the

logic program of the abduction problem. Note that a complexity class C in any

entry of this table means that the corresponding problem is C-complete, that is, we

prove both membership and hardness of the problem for the complexity class C .

An interesting result in this course is that “negation comes for free” in most cases.

That is, the addition of negation does not cause any further increase to the complexity

of the main abductive reasoning tasks (which remains the same as for not-free pro-

grams). Thus, the user can enjoy the knowledge representation power of nonmono-

tonic negation without paying additional costs in terms of computational overhead.

More precisely, it turns out that abduction with penalization over general logic pro-

grams has exactly the same complexity as abduction with penalization over definite

Horn theories of classical logics in the three main computational abductive-reasoning

https://doi.org/10.1017/S1471068404002224 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002224


126 S. Perri et al.

Table 1. Overview of the complexity results

General programs Positive or stratified programs

Consistency NP NP

Solution Admissibility NP P

Solution Optimality DP
2 co-NP

Hypothesis Relevancy ∆P
2 ∆P

2

Hypothesis Necessity ∆P
2 ∆P

2

Optimal Solution Computation FPNP FPNP

tasks (deciding relevancy and necessity of an hypothesis, and computing an optimal

solution). While unstratified negation brings a relevant complexity gap in deductive

reasoning (from P to NP for brave reasoning), in this case, the use of negation does

not lead to any increase in the complexity, as shown in Table 1.

We have implemented the proposed framework for abduction with penalization

over logic programs as a front-end for the DLV system. Our implementation is based

on an algorithm that translates an abduction problem with penalties into a logic

program with weak constraints (Buccafurri et al. 2000), which is then evaluated by

DLV. We prove that our approach is sound and complete. Our abductive system

is available in the current release of the DLV system (www.dlvsystem.com), and

can be freely retrieved for experiments. It is worthwhile noting that our rewriting

approach can be adapted for other ASP systems with suitable constructs for dealing

with weighted preferences. For instance, our algorithm can be modified easily in

order to compute programs with weight literals to be evaluated by the Smodels

system (Simons et al. 2002).

In sum, the main contribution of the paper is the following.

• We define a formal model of abduction with penalization over logic programs.

• We carry out a thorough analysis of the complexity of the main computational

problems arising in the context of abduction with penalization over logic

programs.

• We address knowledge representation issues, showing how some relevant

problems can be encoded in our framework in a simple and fully declarative

way.

• We provide an implementation of the proposed abductive framework on top

of the DLV system.

Our work is evidently related to previous studies on semantic and knowledge

representation aspects of abduction over logic programs. In section 7, we discuss the

relationships of this paper with such previous studies and with some further related

issues.

The rest of the paper is organized as follows. In section 2, we recall the syntax of

(function-free) logic programs and the stable model semantics. In section 3, we define

our model of abduction with penalization from logic programs, and in section 4 we

give some examples of applications of this form of abduction in different domains. In
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section 5, we analyze the computational complexity of the main problems arising in

this framework. In section 6, we describe our prototype that implements abduction

with penalization from logic programs, and makes it available as a front end of the

system DLV. Section 7 is devoted to related works. Finally, in section 8, we draw

our conclusions.

2 Preliminaries on logic programming

We next give the syntax of function-free logic programs, possibly containing

nonmonotonic negation (negation as failure) and constraints. Then, we recall the

stable model semantics (Gelfond and Lifschitz 1988) for such logic programs.

2.1 Syntax

A term is either a constant or a variable.1 An atom has the form a(t1, . . . , tn), where

a is a predicate of arity n and t1, . . . , tn are terms. A literal is either a positive literal

a or a negative literal not a, where a is an atom.

A rule r has the form

a :−b1, . . . , bk, not bk+1, . . . , not bm. k � 0, m � k

where a, b1, . . . , bm are atoms.

Atom a is the head of r, while the conjunction b1, . . . , bk, not bk+1, . . . , not bm
is the body of r. We denote by H(r) the head atom a, and by B(r) the set

{b1, . . . , bk, not bk+1, . . . , not bm} of the body literals. Moreover, B+(r) and B−(r)

denote the set of positive and negative literals occurring in B(r), respectively. If

B(r) = ∅, i.e. m = 0, then r is a fact.

A strong constraint (integrity constraint) has the form :−L1, . . . , Lm., where each

Li, 1 � i � m , is a literal; thus, a strong constraint is a rule with empty head.

A (logic) program P is a finite set of rules and constraints. A negation-free

program is called positive program. A positive program where no strong constraint

occurs is a constraint-free program.

A term, an atom, a literal, a rule or a program is ground if no variable appears in

it. A ground program is also called a propositional program.

2.2 Stable model semantics

Let P be a program. The Herbrand Universe UP of P is the set of all constants

appearing in P . The Herbrand Base BP of P is the set of all possible ground atoms

constructible from the predicates appearing in the rules of P and the constants

occurring in UP (clearly, both UP and BP are finite). Given a rule r occurring in

a program P , a ground instance of r is a rule obtained from r by replacing every

variable X in r by σ(X), where σ is a mapping from the variables occurring in r

1 Note that function symbols are not considered in this paper.
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to the constants in UP . We denote by ground(P ) the (finite) set of all the ground

instances of the rules occurring in P . An interpretation for P is a subset I of BP

(i.e. it is a set of ground atoms). A positive literal a (resp. a negative literal not a) is

true with respect to an interpretation I if a ∈ I (resp. a /∈ I); otherwise it is false.

A ground rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its body is

false w.r.t. I .

A model for P is an interpretation M for P such that every rule r ∈ ground(P) is

true w.r.t. M. If P is a positive program and has some model, then P has a (unique)

least model (i.e. a model included in every model), denoted by lm(P ).

Given a logic program P and an interpretation I , the Gelfond-Lifschitz trans-

formation of P with respect to I is the logic program P I consisting of all rules

a :−b1, . . . , bk such that (1) a :−b1, . . . , bk, not bk+1, . . . , not bm ∈ P and (2) bi /∈
I, for all k < i � m.

Notice that not does not occur in P I , i.e. it is a positive program.

An interpretation I is a stable model of P if it is the least model of its Gelfond–

Lifschitz w.r.t. I , i.e. if I = lm(P I ) (Gelfond and Lifschitz 1988). The collection of

all stable models of P is denoted by SM (P ) (i.e. SM (P ) = {I | I = lm(P I )}).

Example 2.1

Consider the following (ground) program P :

a :−not b. b :−not a. c :−a. c :−b.

The stable models of P are M1 = {a, c} and M2 = {b, c}. Indeed, by definition of

Gelfond-Lifschitz transformation,

PM1 = {a :−, c :−a, c :−b} and PM2 = {b :−, c :−a, c :−b}

and it can be immediately recognized that lm(PM1 ) = M1 and lm(PM2 ) = M2.

We say that an atom p depends on an atom q if there is a rule r in P such

that p = H(r) and either q ∈ B+(r) or not q ∈ B−(r). Let � denote the transitive

closure of this dependency relationship. The program P is a recursive program if

there are p, q ∈ BP such that p � q and q � p. We say that P is unstratified, or

that unstratified negation occurs in P , if there is a rule r in P such that p = H(r),

not q ∈ B−(r), and q � p. A program where no unstratified negation occurs is called

stratified.

Observe that every stratified program P has at most one stable model. The

existence of a stable model is guaranteed if no strong constraint occurs in the

stratified program P . Moreover, every stratified program can be evaluated in

polynomial time. In particular, deciding whether there is a stable model, computing

such a model, or deciding whether some literal is entailed (either bravely or

cautiously) by the program are all polynomial-time feasible tasks.

For a set of atoms X, we denote by facts(X) the set of facts {p. | p ∈ X}. Clearly,

for any program P and set of atoms S , all stable models of P ∪ facts(S) include the

atoms in S .

https://doi.org/10.1017/S1471068404002224 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002224


Abductive logic programs with penalization 129

a

b

c d

e

f

Fig. 1. Computer networkN in Example 3.2.

3 A model of abduction with penalization

First, we give the formal definition of a problem of abduction from logic programs

under the stable model semantics, and we provide an example on network diagnosis,

that we use as a running example throughout the paper. Then, we extend this

framework by introducing the notion of penalization.

Definition 3.1

(Abduction From Logic Programs) A problem of abduction from logic programs P
is a triple 〈H,P ,O〉, where H is a finite set of ground atoms called hypotheses, P is

a logic program whose rules do not contain any hypothesis in their heads, and O is

a finite set of ground literals, called observations, or manifestations.

A set of hypotheses S ⊆ H is an admissible solution (or explanation) to P if there

exists a stable model M of P ∪ facts(S) such that, ∀o ∈ O, o is true w.r.t. M.

The set of all admissible solutions to P is denoted by Adm(P).

Example 3.2

(Network Diagnosis) Suppose that we are working on machine a (and we therefore

know that machine a is online) of the computer network N in Figure 1, but

we observe machine e is not reachable from a, even if we are aware that e is

online. We would like to know which machines could be offline. This can be

easily modelled in our abduction framework defining a problem of abduction

P1 = 〈H,P ,O〉, where the set of hypotheses is H = {offline(a), offline(b),
offline(c), offline(d), offline(e), offline(f)}, the set of observations is O =

{not offline(a), not offline(e), not reaches(a, e)}, and the program P consists

of the set of facts encoding the network, facts({connected(X, Y) | {X,Y } is an edge

of N}), and of the following rules:

reaches(X, X) :− node(X), not offline(X).

reaches(X, Z) :− reaches(X, Y), connected(Y, Z), not offline(Z).

Note that the admissible solutions for P1 corresponds to the network configura-

tions that may explain the observations in O. In this example, Adm(P) contains five
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solutions

S1 = {offline(f), offline(b)},
S2 = {offline(f), offline(c), offline(d)},
S3 = {offline(f), offline(b), offline(c)},
S4 = {offline(f), offline(b), offline(d)},
S5 = {offline(f), offline(b), offline(c), offline(d)}.

Note that Definition 3.1 concerns only the logical properties of the hypotheses,

and it does not take into account any kind of minimality criterion. We next define the

problem of abduction with penalization, which allows us to make finer abductive

reasonings, by expressing preferences on different sets of hypotheses, in order to

single out the most plausible abductive explanations.

Definition 3.3

(Abduction with Penalization from Logic Programs)

A problem of abduction with penalization (PAP) P is a tuple 〈H,P ,O, γ〉, where

〈H,P ,O〉 is a problem of abduction, and γ is a polynomial-time computable function

from H to the set of non-negative reals (the penalty function). The set of admissible

solutions for P is the same as the set of solutions of the embedded abduction

problem 〈H,P ,O〉, i.e. we define Adm(P) = Adm(〈H,P ,O〉).
For a set of atoms A, let sumγ(A) =

∑
h∈A γ(h). Then, S is an (optimal) solution (or

explanation) for P if (i) S ∈ Adm(P) and (ii) sumγ(S) � sumγ(S
′), for all S ′ ∈ Adm(P).

The set of all (optimal) solutions for P is denoted by Opt(P).

Example 3.4

(Minimum-cardinality criterion) Consider again the network N and the problem of

abduction P1 = 〈H,P ,O〉 in Example 3.2. Again, we want to explain why the online

machine e is not reachable from a. However, we do not consider any more plausible

all the explanations provided byP1. Rather, our domain knowledge suggests that it is

unlikely that many machines are offline at the same time, and thus we are interested

in explanations with the minimum number of offline machines. This problem is

easily represented by the problem of abduction with penalization P2 = 〈H,P ,O, γ〉,
where H , P and O are the same as in P1, and, for each h ∈ H , γ(h) = 1.

Indeed, consider the admissible solutions of P2 and observe that

sumγ(S1) = 2, sumγ(S2) = sumγ(S3) = sumγ(S4) = 3, sumγ(S5) = 4

It follows that S1 is the unique optimal explanation for P2, and in fact corresponds

to the unique solution of our diagnosis problem with a minimum number of offline

machines.

The following properties of a hypothesis in a PAP P are of natural interest with

respect to computing abductive solutions.

Definition 3.5

Let P = 〈H,P ,O, γ〉 be a PAP and h ∈ H . Then, h is relevant for P if h ∈ S for

some S ∈ Opt(P), and h is necessary for P if h ∈ S for every S ∈ Opt(P).

https://doi.org/10.1017/S1471068404002224 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002224


Abductive logic programs with penalization 131

Example 3.6

In example 3.4, offline(b), and offline(f) are the relevant hypotheses; they are

also necessary since S1 is the only optimal solution.

4 Knowledge representation

In this section, we show how abduction with penalization from logic programming

can be used for encoding easily and in a natural way relevant problems from

different domains.

A nice discussion of how abduction can be used for representing knowledge

declaratively can be found in Denecker and Kakas (2002), where this setting is also

related to other nonmonotonic reasoning paradigms. It also recalled that abduction

has been defined broadly as any form of “inference to the best explanation”

(Josephson and Josephson 1994), where best refers to the fact that usually hypotheses

can be compared according to some criterion.

In our framework, this optimality criterion is the sum of the penalties associated

to the hypotheses, which has to be minimized.

In particular, in order to represent a problem, we have to identify:

• the hypotheses, that represent all the possible entities that are candidates for

belonging to solutions;

• for each hypothesis h, the penalty associated to h, that represents the cost of

including h in a solution;

• the logic program P , that encodes a representation of the reality of interest

and, in particular, of the way any given set of hypotheses changes this reality

and leads to some consequences;

• the observations, or manifestations, that are distinguished logical consequences,

often encoding some desiderata. For any given set of hypotheses H , the fact that

these observations are consequences of the logic program (plus H) witnesses

that H is a “good” set of hypotheses, i.e. it encodes a feasible solution for the

problem at hand.

For instance, in the network diagnosis problem described in Example 3.4, the

hypotheses are the possible offline machines and the logic program P is able to

determine, for any given set of offline machines encoding a network status, which

machines are unreachable. In this case, and usually in diagnosis problems, these

observations are in fact pictures of the reality of interest: we see that some machines

are not reachable in the network and that some machines are not offline, and we

would like to infer, via abductive reasoning, what are the explanations for such a

situation. Moreover, in this example, we are interested only in solutions that consist

of the minimum number of offline machines, leading to the observed network status,

because they are believed more likely to occur. This is obtained easily, by assigning

a unitary penalty to each hypothesis.

We next show the encodings of other kind of problems that can be represented in

a natural way trough abduction with penalization from logic programs, even though

they are quite different from the above simple cause-effect scheme.
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For the sake of presentation, we assume in this section that logic programs are

equipped with the built-in predicates �=, <, >, and +, with the usual meaning.

Clearly, for any given program P , these predicates may be encoded by suitable finite

sets of facts, because we have to deal only with the (finite) set of constants actually

occurring in P . Moreover, observe that most available systems for evaluating logic

programs (e.g. DLV (Eiter et al. 1998; Leone et al. 2002) and smodels (Niemelä and

Simons 1997; Simons et al. 2002)) provide in fact such operators.

4.1 The travelling salesman problem

An instance I of the Travelling Salesman Problem (TSP) consists of a number of

cities c1, . . . , cn, and a function w that assigns to any pair of cities ci, cj a positive

integer value, which represents the cost of travelling from ci to cj . A solution to I

is a round trip that visits all cities in sequence and has minimal travelling cost, i.e.

a permutation τ of 1, . . . , n such that the overall cost

w(τ) =

n−1∑

i=1

w(τ(i), τ(i + 1)) + w(τ(n), τ(1))

is minimum.

Let us see how we can represent this problem in our framework. Intuitively,

any solution consists of pair of cities encoding a tour of the salesman, while the

observations must witness that this tour is correct, i.e. that all cities are visited

exactly once. Thus, we have a hypothesis for each pair of cities ci, cj , because any

such a pair is candidate for belonging to the trip of the salesman. The penalty

associated to each hypothesis is clearly the cost of travelling from ci to cj , because

we want to obtain the minimum-cost tour. Moreover, for any given trip encoded by

a set of hypotheses, the logic program determines the cities reached by the salesman,

and also whether the salesman has travelled in a correct way. The observations are

possible consequences of the program, which encode that all cities are visited and

no visiting rule has been violated.

Formally, we represent the TSP instance I as a PAP P = 〈H,P ,O, γ〉 defined as

follows. The set of hypotheses is H = {c(i, j) | 1 � i, j � n}, where c(i, j) encodes

the fact that the salesman visits city j immediately after city i. The penalty function

γ(c(i, j)) = w(i, j) encodes the cost of travelling from i to j. The cities are encoded

through a set of atoms {city(i) | 1 � i � n}. The program P contains the following

rules:

(1) city(i). for each i, 1 � i � n

(2) visited(I) :− visited(J), c(J, I).

(3) visited(1) :− c(J, 1).

(4) missedCity :− city(I), not visited(I).

(5) badTour :− c(I, J), c(I, K), J �= K.

(6) badTour :− c(J, I), c(K, I), J �= K.

The observations are O = {not missedCity, not badTour}.
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It is easy to see that every optimal solution S ∈ Opt(P) corresponds to an optimal

tour and viceversa. The facts (1) of P encode the cities to be visited. Rule (2) states

that a city i has been visited if the salesman goes to city i after an already visited

city j. Rule (3) concerns the first city that, w.l.o.g., is the first and the last city of

the tour. In particular, it is considered visited, if it is reached by some other city j,

which is turn forced to be visited, by the other rule of P . Rule (4) says that there is

a missed city if at least one of the cities has not been visited. Atom badTour, defined

by rules (4) and (5), is true if some city is in two or more connection endpoints

or connection startpoints. The observations not missedCity, not badTour enforce

that admissible solutions correspond to salesman tours that are complete (no city is

missed) and legal (no city is visited twice).

Moreover, since optimal solutions minimize the sum of the connection costs,

abductive solutions in Opt(P ) correspond one-to-one to the optimal tours.

Eiter et al. (1997) show that Disjunctive Logic Programming (function-free logic

programming with disjunction in the heads and negation in the bodies of the rules)

is highly expressive. Moreover, the authors strength the theoretical analysis of the

expressiveness by proving that problems relevant in practice, such as the Travelling

Salesman Problem and Eigenvector, can be programmed in DLP, while they cannot

be expressed by disjunction-free programs. Indeed, recall that computing an optimal

tour is both NP-hard and co-NP-hard. Moreover, in Papadimitriou (1984) it is

shown that deciding whether the cost of an optimal tour is even, as well as

deciding whether there exists a unique optimal tour, are ∆P
2 -complete problems.

Hence, it is not possible to express this problem in disjunction-free logic program-

ming, even if unstratified negation is allowed (unless the polynomial hierarchy

collapses).

Nevertheless, the logic programs implementing these problems in DLP highlight,

in our opinion, a weakness of the language for the representation of optimization

problems. The programs are very complex and tricky, the language does not provide

a clean and declarative way to implement these problems.2 For a comparison, we

report in Appendix B the encoding of this problem in (plain) DLP, as described in

Eiter et al. (1997). Evidently, abduction with penalization provides a simpler, more

compact, and more elegant encoding of TSP. Moreover, note that, using this form of

abduction, even normal (disjunction-free) programs are sufficient for encoding such

optimization problems.

4.2 Strategic companies

We present a new version of the strategic companies problem (Cadoli et al. 1997). A

manager of a holding identifies a set of crucial goods, and she wants these goods

to be produced by the companies controlled by her holding. In order to meet this

2 We refer to standard Disjunctive Logic Programming here. As shown in Buccafurri et al. (2000), the
addition of weak constraints, implemented in the DLV system (Eiter et al. 2000), is another way to
enhance DLP to naturally express optimization problems.
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goal, she can decide to buy some companies, that is to buy enough shares to get the

full control of these companies. Note that, in this scenario, each company may own

some quantity of shares of another company. Thus, any company may be controlled

either directly, if it is bought by the holding, or indirectly, through the control over

companies that own more than 50% of its shares. Of course, it is prescribed to

minimize the quantity of money spent for achieving the goal, i.e. for buying new

companies.

For the sake of simplicity, we will assume that, if a company X can be controlled

indirectly, than there are either one or two companies that together own more than

50% of the shares of X. Thus, controlling these companies is sufficient to take the

control over X.

We next describe a problem of abduction from logic programs with penalization

P whose optimal solutions correspond to the optimal choices for the manager. In

this case, the observations are the crucial goods that we want to produce, while the

hypotheses are the acquisitions of the holding and their associated penalties are the

costs of making these financial operations. The logic program determines, for any

given set of acquisitions, all the companies controlled by the holding and all the

goods produced by these companies.

Companies configurations are encoded by the set of atoms Market defined as

follows: if a company y owns n% of the shares of a company x then share(x, y, n)

belongs to Market, and if a company x produces a good a then producedBy(a, x)

belongs to Market. No more atoms belong to this set.

Then, let P = 〈H,P ,O, γ〉, where the set of hypotheses H = {bought(x1), . . . ,
bought(xn)} encodes the companies that can be bought, and the set of observations

O = {produced(y1), . . . , produced(yn)} encodes the set of goods to be produced.

Moreover, for each atom bought(x̄) ∈ H , γ(bought(x̄)) is the cost of buying the

company x̄. The program P consists of the facts encoding the state of the market

facts(Market) and of the following rules:

(1) produced(X) :− producedBy(X, Y), controlled(Y).

(2) controlled(X) :− bought(X).

(3) controlled(X) :− share(X, Y, N), controlled(Y), N > 50.

(4) controlled(X) :− share(X, Y, N), share(X, Z, M),

controlled(Y), controlled(Z), M + N > 50, Y �= Z.

Example 4.1

Consider the following sets of companies and goods:

Companies={barilla, saiwa, frutto, panino, budweiser, heineken, parmalat, candia}
Goods= {wine, pasta, beer, tomatoes, bread, milk}.
Figure 2 depicts the relationships share and producedBy among companies, and

among products and companies, respectively. A solid arrow from a company C to a

good G represents that G is produced by C . A dashed arrow from a company C1 to

a company C2 labelled by n means that C1 owns n% of the shares of C2. The cost

(in millions of dollars) for buying directly a company is shown below:

barilla 500 saiwa 400 frutto 350 panino 150

budweiser 300 heineken 300 parmalat 300 candia 150
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Fig. 2. Strategic companies.

Accordingly, the hypotheses and their respective penalties are

bought(barilla) γ(bought(barilla)) = 500

bought(saiwa) γ(bought(saiwa)) = 400

· · ·
bought(candia) γ(bought(candia)) = 150.

The set of observations is

O= {produced(pasta), produced(wine), produced(tomatoes),
produced(bread), produced(beer), produced(milk)}

This problem has the only optimal solution S1 = {barilla, frutto, heineken}, whose

cost is 1150 millions of dollars. Note that all goods in G can be produced also

by buying the set of companies S2 = {barilla, frutto, saiwa}. However, since saiwa is

more expensive than heineken, S1 is preferred to S2.

4.3 Blocks world with penalization

Planning is another scenario where abduction proves to be useful in encoding hard

problems in an easy way.

The topic of logic-based languages for planning has recently received a renewed

great deal of interest, and many approaches based on answer set semantics, situation

calculus, event calculus, and causal knowledge have been proposed (Gelfond and

Lifschitz 1998; Eiter et al. 2003; Shanahan 2000; Turner 1999).

We consider here the Blocks World Problem (Lifschitz 1999): given a set of blocks

B in some initial configuration Start , a desired final configuration Goal , and a

maximum amount of time lastTime, find a sequence of moves leading the blocks
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from state Start , to state Goal within the prescribed time bound. Legal moves and

configurations obey the following rules: A block can be either on the top of another

block, or on the table. A block has at most one block over it, and is said to be clear

if there is no block over it. At each step (time unit), one or more clear blocks can be

moved either on the table, or on the top of other blocks. Note that in this version

of the Blocks World Problem more than one move can be performed in parallel,

at each step. Thus, we additionally require that a block B1 cannot be moved on a

block B2 at time T if also B2 is moved at time T .

Assume that we want to compute legal sequences of moves – also called plans –

that leads to the desired final state within the lastTime bound and that consists of

the minimum possible number of moves. We next describe a problem of abduction

from logic programs with penalization P whose optimal solutions correspond to

such good plans. In this case, the observations encode the desired final configuration,

while the hypotheses correspond to all possible moves. Since we are interested in

minimum-length plans, we assign a unitary penalty to each move (hypothesis).

Finally, the logic program has to determine the state of the system after each move

and detect possible illegal moves.

Consider an instance BWP of the Blocks World Problem. Let B = {b1, · · · , bn} be

the set of blocks and L = B ∪ {table} the set of possible locations.

The BWP blocks are encoded by the set of atoms Blocks = {block(b1), . . . ,
block(bn)}, and the initial configuration is encoded by a set Start containing atoms

of the form on(b, �, 0), meaning that, at time 0, the block b is on the location �.

Then, let P = 〈H,P ,O, γ〉. The set of hypotheses H = {move(b, �, t) | b ∈ B, � ∈
L, 0 � t < lastTime} encodes all the possible moves, where an atom move(b̄, �̄, t̄)

means that, at time t̄, the block b̄ is moved to the location �̄. The set of observations

O contains atoms of the form on(b, �, lastTime), encoding the final desired state

Goal. The penalty function γ assigns 1 to each atom move(b, �, t) ∈ H . Moreover,

P = facts(Blocks) ∪ facts(Start) ∪ R, where R is the following set of rules:

on(B, L, T1) :− move(B, L, T), T1 = T + 1. (1)

on(B, L, T1) :− on(B, L, T), T1 = T + 1, not moved(B, T). (2)

moved(B, T) :− move(B, , T). (3)

:− on(B, L, T), on(B, L1, T), L �= L1. (4)

:− on(B1, B, T), on(B2, B, T), B2 �= B1, block(B). (5)

:− on(B, B, T). (6)

:− move(B, B1, T), move(B1, L, T). (7)

:− move(B, L, T), on(B1, B, T), B �= B1. (8)

Note that the strong constraints in R discards models encoding invalid states and

illegal moves. For instance, Constraint 8 says that it is forbidden to move a block

B, if B is not clear.

Rule 1 says that moving a block B on a location L at time T causes B to be on

L at time T + 1. Rule 2 represents the inertia of blocks, as it asserts that all blocks

that are not moved at some time T remain in the same position at time T + 1.
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Fig. 3. Blocks world.

It is worthwhile noting that expressing such inertia rules is an important issue

in knowledge representation, and clearly shows the advantage of using logic

programming, when nonmotononic negation is needed.

For instance, observe that Rule 2 is very natural and intuitive, thanks to the use

of negation in literal not moved(B, T). However, it is not clear how to express this

simple rule – and inertia rules in general – by using classical theories.3

Example 4.2

Consider a Blocks World instance where the initial configuration and the final

desired state are shown in Figure 3, and the maximum number of allowed steps is

6. Therefore, the set of observations of our abduction problem is {on(a, table, 6),
on(b, a, 6), on(c, b, 6), on(d, c, 6), on(e, d, 6), on(f, e, 6)}. The set of hypotheses

contains all the possible moves, that is

H = {move(a, table, 0), move(a, table, 1), · · · , move(f, d, 6), move(f, e, 6)}
Each move has cost 1. In this case, the minimum number of moves needed for

reaching the final configuration is six. An optimal solution is {move(a, table, 0),
move(b, a, 1), move(c, b, 2), move(d, c, 3), move(e, d, 4), move(f, e, 5)}. Note that the

plan

{move(a, table, 0), move(c, table, 0), move(b, a, 1),
move(c, b, 2), move(d, c, 3), move(e, d, 4), move(f, e, 5)}

though legal, is discarded by the minimality criterion, because it consists of seven

moves.

Finally, observe that the proposed framework of abduction from logic programs

with penalties allows us to represent easily different plan-optimization strategies.

For instance, assume that each block has a weight, and we want to minimize

the total effort made for reaching the goal. Then, it is sufficient to modify the

penalty function in the PAP P above as follows: for each hypothesis move(b, �, t),

let γ(move(b, �, t)) = w, where w is the weight of the block b.

3 In fact, there are some solutions to this problem for interesting special cases, such as settings where all
actions on all fluents can be specified (Reiter 1991). Also, in McCain and Turner (1997), it is defined
a nonmonotonic formalism based on causal laws that is powerful enough to represent inertia rules
(unlike previous approaches based on inference rules only). A comprehensive discussion of the frame
problem can be found in the Shanahan (1997).
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5 Computational complexity

In this section, we study the computational complexity of the main problems arising

in the framework of abduction with penalization from logic programs, both in the

general case and when some syntactical restrictions are placed on logic programs.

5.1 Preliminaries on complexity theory

For NP-completeness and complexity theory, the reader is referred to Papadimitriou

(1994). The classes ΣP
k ,Π

P
k and ∆P

k of the Polynomial Hierarchy (PH) (cf. Stockmeyer

1987) are defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P and for all k � 1,

∆P
k = PΣP

k−1 , ΣP
k = NPΣP

k−1 , ΠP
k = co-ΣP

k .

In particular, NP = ΣP
1 , co-NP = ΠP

1 , and ∆P
2 = PNP. Here PC and NPC denote the

classes of problems that are solvable in polynomial time on a deterministic (resp.

nondeterministic) Turing machine with an oracle for any problem π in the class

C . The oracle replies to a query in unit time, and thus, roughly speaking, models

a call to a subroutine for π that is evaluated in unit time. The class DP
k contains

all problems that consist of the conjunction of two (independent) problems from

ΣP
k and ΠP

k , respectively. In particular, DP
2 is the class of problems that are the

conjunction of an NP and a co-NP problem.

Notice that for all k � 1,

ΣP
k ⊆ DP

k+1 ⊆ ∆P
k+1 ⊆ ΣP

k+1 ⊆ PSPACE,

where each inclusion is widely conjectured to be strict.

We are also interested in the complexity of computing solutions, and thus in

classes of functions. In particular, we consider the class FPNP, which is the class

of functions corresponding to PNP (∆P
2 ), and characterizing the complexity of many

relevant optimization problems, such as the TSP problem (Papadimitriou 1984, 1994).

Formally, this is the class of all functions that can be computed by a polynomial-

time deterministic Turing transducer with an oracle in NP. Note that the only

difference with the corresponding class of decision problems is that deterministic

Turing transducers are equipped with an output tape, for writing the result of the

computation.

5.2 Complexity results

Throughout this section, we consider problems P = 〈H,P ,O, γ〉 such that P is a

ground program, unless stated otherwise.

Let Φ = {C1, . . . , Cn} be a CNF propositional formula over variables X1, . . . , Xr ,

denoted by var(Φ). With each Xi ∈ var(Φ), 1 � i � r, we associate two atoms xi, x̄i
(denoted by lowercase characters), and an auxiliary atom assigned i, representing the

propositional variable Xi, its negation not Xi, and the fact that some truth value has

been assigned to it, respectively. Moreover, with each clause C : �1 ∨ · · · ∨ �m in Φ,
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we associate a rule r(C) : contr :−negate(�1), . . . , negate(�m), where negate(�) = x̄, if

� = X, and negate(�) = x, if � = not X.

Define P (Φ) as the constraint-free positive program containing the following rules:

r(Ci). 1 � i � n

inconsistent :−xj, x̄j . 1 � j � r

assigned j :−xj. 1 � j � r

assigned j :−x̄j . 1 � j � r

allAssigned :−assigned1, . . . , assigned r.

Let R be any set of rules whose heads are from
⋃r

i=1{xi, x̄i}. Note that, for any

stable model M of P (Φ) ∪ R, allAssigned ∈ M and inconsistent /∈ M hold if and

only if, for each X ∈ var(Φ), exactly one atom from {x, x̄} belongs to M. That is,

M encodes a truth-value assignment for Φ. Moreover, contr /∈ M only if such a

truth-value assignment satisfies all clauses of the formula Φ. In this case, we say that

Φ is satisfied by M.

On the other hand, given any truth-value assignment T : var(Φ) → {true, false},
we denote by at(T ) the set of atoms {x | X ∈ var(Φ) and T (X) = true} ∪ {x̄ |
X ∈ var(Φ) and T (X) = false}. It can be verified easily that, if T satisfies Φ, then

P (Φ)∪facts(at(T )) has a unique stable model that contains allAssigned and contains

neither contr nor inconsistent.

The first problem we analyze is the consistency problem. That is the problem of

deciding whether a PAP has some solution.

Theorem 5.1

Deciding whether a PAP P = 〈H,P ,O, γ〉 is consistent is NP-complete. Hardness

holds even if P is a constraint-free positive program.

Proof

(Membership). We guess a set of hypotheses S ⊆ H and a set of ground atoms M,

and then check that (i) M is a stable model of P ∪ facts(S), and (ii) O is true w.r.t.

M. Both these tasks are clearly feasible in polynomial time, and thus the problem is

in NP.

(Hardness). We reduce SAT to the consistency problem. Let Φ be a CNF formula and

P (Φ) its corresponding logic program, as described above. Consider the PAP problem

〈H,P (Φ), O, γ〉, where H = {x, x̄ | X ∈ var(Φ)}, O = {not contr , not inconsistent ,

allAssigned}, and γ is the constant function 0.

Let S be an admissible solution for P , that is, there is a stable model M for

P (Φ) such that allAssigned belongs to M, and neither contr nor inconsistent belongs

to M. As observed above, this entails that Φ is satisfied by the truth-assignment

corresponding to M, and in fact encoded by the set of hypotheses S . Moreover, if

Φ is satisfiable, there is a truth-assignment T that satisfies it. Then, it is easy to

check that at(T ) is an admissible solution for P , since the unique stable model of

P (Φ) ∪ facts(at(T )) contains allAssigned and no atom in {contr , inconsistent}. Thus,

Φ is satisfiable if and only if P is consistent. Finally, note that P can be computed
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in polynomial time from Φ, and that P does not contain negation or strong

constraints. �

We next focus on the problem of checking whether a given set of atoms S is an

admissible solution for a PAP P= 〈H,P ,O, γ〉. Observe that this task is clearly

feasible in polynomial time if P is stratified, because in this case the (unique) stable

model of P ∪ facts(S) (if any, remember that strong constraints may occur in P )

can be computed in polynomial time. It follows that this problem is easier than the

consistency problem in this restricted setting. However, we next show that it remains

NP-complete, in the general case.

Theorem 5.2

Deciding whether a set of atoms is an admissible solution for a PAP is NP-complete.

Proof

(Membership). Let P = 〈H,P ,O, γ〉 be a PAP and S a set of atoms. We guess a set

of ground atoms M, and then check that (i) M is a stable model of P ∪ facts(S),

and (ii) O is true w.r.t. M. Both these tasks are clearly feasible in polynomial time,

and thus the problem is in NP.

(Hardness). We reduce SAT to the admissible solution problem. Let Φ be a CNF for-

mula over variables {X1, . . . , Xr}, and P (Φ) its corresponding logic program. Consider

the PAP problem P = 〈∅, P (Φ)∪G(Φ), O, γ〉, where O = {not contr , not inconsistent},
γ is the constant function 0, and G(Φ) contains two rules x :−not x̄ and x̄ :−not x,

for each X ∈ var(Φ).

Let M be a stable model of P (Φ) ∪ G(Φ). Because of the rules in G(Φ), for

each pair of atoms x, x̄ occurring in it, either x or x̄ belongs M, and hence

allAssigned, too. Thus, these atoms encode a truth-assignment T for Φ. Moreover,

it is easy to check that contr , inconsistent /∈ M only if this assignment T satisfies

Φ. On the other hand, let T ′ be a satisfying truth-assignment for Φ, and let

M ′ = at(T ′) ∪ allAssigned ∪ {assigned j | 1 � j � r}. Then, M ′ is a stable model of

P (Φ), and contr , inconsistent /∈M ′, that is, all observations are true w.r.t. M ′.

Therefore, ∅ is an admissible solution for P if and only if Φ is satisfiable. Note

that unstratified negation occurs in G(Φ). �

It turns out that deciding whether a solution is optimal is both NP-hard and

co-NP-hard. However, this problem is not much more difficult than problems in

these classes, as we need to solve just an NP and a co-NP-problem, independent of

each other.

Theorem 5.3

Deciding whether a set of atoms is an optimal solution for a PAP is DP
2 -complete.

Proof

(Membership). Let P = 〈H,P ,O, γ〉 be a PAP and let S be a set of atoms. To prove

that S is an optimal solution for P first check that S is an admissible solution, and

then check there is no better admissible solution. The former task is feasible in NP,

by Theorem 5.2. The latter is feasible in co-NP. Indeed, to prove that there is an
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admissible solution better than S , we guess a set of atoms S ′ ⊆ H and a model M

for P , and then check in polynomial time that sumγ(S
′) < sumγ(S), M is a stable

model of P ∪ facts(S ′), and O is true w.r.t. M.

(Hardness). Let Φ1 and Φ2 be two CNF formulas, over disjoint sets of variables

{X1, . . . , Xr} and {X ′1, . . . , X ′v}. Deciding whether Φ1 is satisfiable and Φ2 is not

satisfiable is a DP
2 -complete problem (Papadimitriou and Yannakakis 1984). Let

P (Φ1) be the logic program associated with Φ1, and Gs(Φ1) a set of rules that

contains, for each x ∈ var(Φ1), two rules x :−not x̄, s and x̄ :−not x, s. Let P ′(Φ2)

be the logic program associated with Φ2, but for the atoms contr, inconsistent, and

allAssigned, which are uniformly replaced in this program by contr ′, inconsistent ′,

and allAssigned ′, respectively. Moreover, let R be the set containing two rules

ok :−not contr , not inconsistent , allAssigned and ok :−not contr ′, not inconsistent ′,

allAssigned ′. Then, define P (Φ1,Φ2) as the PAP problem 〈H,P ,O, γ〉, where P =

P (Φ1) ∪ Gs(Φ1) ∪ P ′(Φ2) ∪ R, H = {s} ∪ {x′, x̄′ | X ′ ∈ var(Φ2)}, O = {ok}, and

the penalty function γ is defined as follows: γ(s) = 1 and γ(h) = 0, for any other

hypothesis h ∈ H − {s}.
We claim that Φ1 is satisfiable and Φ2 is not satisfiable if and only if {s} is an

optimal solution for P (Φ1,Φ2).

(Only if). Assume that Φ1 is satisfiable and Φ2 is not satisfiable, and let T1 be a

satisfying truth-value assignment for Φ1. Moreover, let M = {at(T1) ∪ {assigned j |
1 � j � r} ∪ {s, allAssigned , ok}. Then, M is a stable model of P ∪ facts({s}) and

thus {s} is an admissible solution for P (Φ1,Φ2), and its cost is 1, as γ(s) = 1, by

definition. Note that the only way to reduce the cost to 0 is by finding a set of

hypotheses that do not contain s, and is able to derive the observation ok. From the

rules in R, this means that we have to find a subset of {x′, x̄′ | X ′ ∈ var(Φ2)}, which

encodes a satisfying truth assignment for Φ2. However, this is impossible, because

Φ2 is not satisfiable, and thus {s} is optimal.

(If). Assume that {s} is an optimal solution for P (Φ1,Φ2). Its cost is 1, because

γ(s) = 1. Note that any set of hypotheses S ′ that encodes a satisfying truth-value

assignment for Φ2 and does not contain s is an admissible solution for P (Φ1,Φ2),

and has cost 0. It follows that Φ2 is not satisfiable, as we assumed {s} is an optimal

solution. Therefore, by definition of R, the only way to derive the atom ok is through

the rule ok :−not contr , not inconsistent , allAssigned . Since {s} is also an admissible

solution, we conclude that there is a stable model M that contains allAssigned, and

no atom from {inconsistent , contr}. That is, M encodes a satisfying truth assignment

for Φ1. �

If unstratified negation does not occur in logic programs, we lose a source of

complexity, as checking whether a solution is admissible is easy. In fact, we show

below that, in this case, the optimality problem becomes co-NP-complete.

Theorem 5.4

Let P = 〈H,P ,O, γ〉 be a PAP, where P is a stratified program. Deciding whether

a set of atoms S is an optimal solution for P is co-NP-complete. Hardness holds

even if P is a constraint-free positive program.
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Proof

(Membership). Recall that checking whether a solution S is admissible is feasible

in polynomial time if P is stratified. Thus, we have to check only that there is no

admissible solution better than S , and this task is in co-NP, as shown in the proof

of Theorem 5.3.

(Hardness). Let Φ be a CNF formula, P (Φ) its corresponding logic program, and R

be the set containing two rules ok :−s and ok :−allAssigned . Then, define P (Φ) as

the PAP problem 〈H,P ,O, γ〉, where P = P (Φ) ∪ R, H = {s} ∪ {x, x̄ | X ∈ var(Φ)},
O = {ok , not contr , not inconsistent}, and the penalty function γ is defined as follows:

γ(s) = 1 and γ(h) = 0, for any other hypothesis h ∈ H − {s}.
We claim that Φ is not satisfiable if and only if {s} is an optimal solution for

P (Φ).

(Only if). Assume φ is not satisfiable. Then, there is no way of choosing a set of

hypotheses that contains neither contr nor inconsistent and, furthermore, contains

allAssigned and hence ok, but not s. It follows that the minimum cost for admissible

solutions is 1. Moreover, note that {s} is an admissible solution for P (Φ), its cost is

1, and thus it is also optimal.

(If). Let {s} be an optimal solution for P (Φ) and assume, by contradiction, that Φ

is satisfiable. Then there is a set of hypotheses S ⊆ H −{s} that encodes a satisfying

truth-value assignment for Φ and has cost 0. However, this contradicts the fact that

the solution {s}, which has cost 1, is optimal. �

We next determine the complexity of deciding the relevance of an hypothesis.

Theorem 5.5

Deciding whether an hypothesis is relevant for a PAPP= 〈H,P ,O, γ〉 is ∆P
2 -complete.

Hardness holds even if P is a constraint-free positive program.

Proof

(Membership). Let P = 〈H,P ,O, γ〉 be a PAP and let h ∈ H be a hypothesis. First

we compute the maximum value max that the function sumγ may return over all

sets H ′ ⊆ H . Note that max is polynomial-time computable from P, because γ is

a polynomial-time computable function. It follows that its size |max | = log max

is O(|P|k), for some constant k � 0, because the output size of a polynomial-time

computable function is polynomially-bounded, as well.

Then, by a binary search on [0,max ], we compute the cost c of the optimal

solutions for P: at each step of this search, we are given a threshold s and we call

an NP oracle to know whether there exists an admissible solution below s. After,

log max steps at most, this procedure ends, and we get the value c. Finally, we ask

another NP oracle whether there exists an admissible solution containing h and

whose cost is c. Note that the number of steps and hence the number of oracle calls

is polynomial in the input size, and thus deciding whether h is relevant is in ∆P
2 .

(Hardness). We reduce the ∆P
2 -complete problem of deciding whether a TSP instance

I has a unique optimal tour (Papadimitriou 1984) to the relevance problem for the

PAP P = 〈H, γ, P , O〉, defined below, whose optimal solutions encode, intuitively,
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pairs of optimal tours. The set of hypotheses is H = {c(i, j), c′(i, j) | 1 � i, j � n} ∪
{heq, hdiff }, where c(i, j) (resp., c′(i, j)) says that the salesman visits city j immediately

after city i, according to the tour encoded by the atoms with predicate c (resp., c′).

Moreover, the special atoms heq and hdiff encode the hypotheses that such a pair of

tours represents in fact a unique optimal tour, or two distinct tours.

For each pair of cities ci, cj , the penalty function γ encodes the cost function w of

travelling from ci to cj , that is, γ(c(i, j)) = w(i, j) and γ(c′(i, j)) = w(i, j). Moreover,

for the special atoms, define γ(heq) = 1 and γ(hdiff ) = 0.5.

The program P , shown below, is similar to the TSP encoding described in sec-

tion 4.1:

(1) visited(I) :− visited(J), c(J, I).

(2) visited(1) :− c(J, 1).

(3) badTour :− c(I, J), c(I, K), J �= K.

(4) badTour :− c(J, I), c(K, I), J �= K.

(1′) visited′(I) :− visited′(J), c′(J, I).

(2′) visited′(1) :− c′(J, 1).

(3′) badTour :− c′(I, J), c′(I, K), J �= K.

(4′) badTour :− c′(J, I), c′(K, I), J �= K.

(5) diff :− c(I, J), c′(I, K), J �= K.

(6) ok :− heq.

(7) ok :− hdiff , diff .

The observations are O = {ok , not badTour} ∪ {visited (i), visited ′(i) | 1 � i � n}.
Note that every admissible solution S for P encodes two legal tours for I , through

atoms with predicates c and c′. Moreover, S contains either heq or hdiff , in order

to derive the observation ok . Furthermore, if S is optimal, then at most one of

these special atoms belongs to S , because one is sufficient to get ok . However, if the

chosen atom is hdiff , ok is derivable only if diff is true, i.e. the two encoded tours

are different, by rule (5).

Let tmin be the cost of an optimal tour of I . Then, the best admissible solution

S such that heq ∈ S has cost 2tmin + 1, because it should contain the hypotheses

encoding two (possibly identical) optimal tours of I , and the atom heq .

We show that there is a unique optimal tour for I if and only if heq is a relevant

hypothesis for P.

(Only if ). Let T be the unique optimal tour T for I , and S the admissible

solution for P such that heq ∈ S and both the atoms with predicate c and those

with predicate c′ encode the tour T . Then, S is an optimal solution, because any

admissible solution S ′ that does not contain heq should contain both hdiff and diff .

Since T is the unique optimal tour, any other legal tour T ′ has cost tmin + 1, at

least. Hence, sumγ(S
′) � tmin + (tmin + 1) + 0.5 > sumγ(S). Thus, heq is relevant for P,

because belongs to the optimal solution S .

(If ). If heq is relevant for P, there is an optimal solution S such that heq ∈ S .

Recall that sumγ(S) = 2tmin + 1. Assume by contradiction that there are two distinct

optimal tours T and T ′ for I , and let S ′ be an admissible solution such that: its
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atoms with predicates c and c′ encode the distinct tours T and T ′, and both diff

and hdiff belong to S ′. Then, sumγ(S
′) = 2tmin + 0.5 < sumγ(S), a contradiction.

Finally, note that P is constraint-free positive program, and both P and its ground

instantiation can be computed in polynomial time from the instance I . �

Not surprisingly, the necessity problem has the same complexity as the relevance

problem.

Theorem 5.6

Deciding whether an hypothesis is necessary for a PAP P= 〈H,P ,O, γ〉 is ∆P
2 -

complete. Hardness holds even if P is a constraint-free positive program.

Proof

(Membership). Let P= 〈H,P ,O, γ〉 be a PAP and let h ∈ H be a hypothesis. We

compute the cost c of the optimal solutions for P, as shown in the proof of

Theorem 5.5. Finally, we ask an NP oracle whether there exists an admissible

solution whose cost is c, and does not contain h. If the answer is no, then h is a

necessary hypothesis. Clearly, even in this case, a polynomial number of calls to NP

oracle suffices, and thus the problem is in ∆P
2 .

(Hardness). Let I be a TSP instance and P the PAP defined in the proof of

Theorem 5.5. Note that the same reasoning as in the above proof shows that I has

a unique optimal tour if and only if heq is a necessary hypothesis for P. �

Theorem 5.7

Computing an optimal solution for a PAP P = 〈H,P ,O, γ〉 is FPNP-complete.

Hardness holds even if P is a constraint-free positive program.

Proof

(Membership). Let M be a deterministic Turing transducer M with oracles in NP

that act as follows. First, M checks in NP whether P is consistent, as shown in the

proof of Theorem 5.1. If this not the case, then M halts and writes on its output

tape some special symbol encoding the fact that P is inconsistent. Otherwise, M

computes with a polynomial number of steps the value c of the optimal solutions

for P, as shown in the proof of Theorem 5.5. Now, consider the following oracle O:

given a set of hypotheses S , decide whether there is an admissible solution for P
whose cost is c. It is easy to see that O is in NP (we describe a very similar proof

in the membership part of the proof of Theorem 5.2).

The transducer M maintains in its worktape (the encoding of) a set of hypotheses

S , which is initialized with ∅. Then, for each hypotheses h ∈ H , M calls the oracle

O with input S ∪ {h}. If the answer is yes, then M writes h on the output tape and

adds h to the set S . Otherwise, S is not changed, and M proceeds with the next

candidate hypothesis. It follows that, after |H | of these steps, the output tape encodes

an optimal solution of P.

(Hardness). Immediately follows from our encoding of the TSP problem shown

in section 4.1, and the fact that this problem is FPNP-complete (Papadimitriou

1994). �
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Fig. 4. System architecture.

6 Implementation issues

In this section, we describe the implementation of a system supporting our formal

model of abduction with penalties over logic programs. The system has been

implemented as a front-end for the DLV system. Our implementation is based on a

translation from such abduction problems to logic programs with weak constraints

(Buccafurri et al. 2000), that we show to be both sound and complete. We next

describe the architecture of the prototype. We then briefly recall Logic Programming

with Weak Constraints (the target language of our translation), define precisely our

translation algorithm and prove its correctness.

6.1 Architecture

Figure 4 shows the architecture of the new abduction front-end for the DLV

system, which implements the framework of abduction with penalization from

logic programs, and is already incorporated in the current release of DLV (available

at the DLV homepage www.dlvsystem.com).

A problem of abduction in DLV consists of three separate files encoding the

hypotheses, the observations, and the logic program. The first two files have ex-

tensions .hyp and .obs, respectively, while no special extension is required for the

logic-program file. The abduction with penalization front-end is enabled through the

option -FDmincost. In this case, from the three files above, the Abduction-Rewriting

module builds a logic program with weak constraints, and run DLV for computing a

best model M of this logic program. Then, the Stable-Models-to-Abductive-Solutions

module extracts an optimal solution from the model M.

For instance, consider the network problem in Example 3.2, and assume that the

facts encoding the hypotheses are stored in the file network.hyp, the facts encoding

the observations are stored in the file network.obs, and the logic program is stored

in the file netwok.dl. Then, the user may obtain an optimal solution for this problem

by running:

dlv -FDmincost network.dl network.hyp network.obs

By adding option -wctrace the system prints also the (possibly not optimal)

solutions that are found during the computation. This option is useful to provide

some solution to the user as soon as possible. Note that the “quality” of the solutions

increases monotonically (i.e. the cost decreases), and the system gradually converges

to optimal solutions.

Note that the current release deals with integer penalties only; however, it can be

extended easily to real penalties.
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6.2 Logic programming with weak constraints

We first provide an informal description of the LP
w language by examples, and we

then supply a formal definition of the syntax and semantics of LP
w .

6.2.1 LP
w by Examples

Consider the problem SCHEDULING, consisting in the scheduling of course

examinations. We want to assign course exams to time slots in such a way that

no couple of exams are assigned to the same time slot if the corresponding courses

have some student in common – we call such courses “incompatible”. Supposing

that there are three time slots available, ts1, ts2 and ts3, we express the problem

in LP
w by the following program Psch:

r1 : assign(X, ts1) :− course(X), not assign(X, ts2), not assign(X, ts3).

r2 : assign(X, ts2) :− course(X), not assign(X, ts1), not assign(X, ts3).

r3 : assign(X, ts3) :− course(X), not assign(X, ts1), not assign(X, ts2).

s1 : :− assign(X, S), assign(Y, S), commonStudents(X, Y, N).

Here we assumed that the courses and the pair of courses with common students

are specified by input facts with predicate course and commonStudents, respectively.

In particular, commonSudents(a, b, k) means that there are k > 0 students who should

attend both course a and course b. Rules r1, r2 and r3 say that each course is assigned

to one of the three time slots ts1, ts2 or ts3; the strong constraint s1 expresses

that no two courses with some student in common can be assigned to the same

time slot. In general, the presence of strong constraints modifies the semantics of a

program by discarding all models which do not satisfy some of them. Clearly, it may

happen that no model satisfies all constraints. For instance, in a specific instance

of above problem, there could be no way to assign courses to time slots without

having some overlapping between incompatible courses. In this case, the problem

does not admit any solution. However, in real life, one is often satisfied with an

approximate solution, in which constraints are satisfied as much as possible. In this

light, the problem at hand can be restated as follows (APPROX SCHEDULING):

“assign courses to time slots trying to avoid overlapping courses having students

in common.” In order to express this problem we introduce the notion of weak

constraint, as shown by the following program Pa sch:

r1 : assign(X, ts1) :− course(X), not assign(X, ts2), not assign(X, ts3).

r2 : assign(X, ts2) :− course(X), not assign(X, ts1), not assign(X, ts3).

r3 : assign(X, ts3) :− course(X), not assign(X, ts1), not assign(X, ts2).

w1 : :∼ assign(X, S), assign(Y, S), commonStudents(X, Y, N).

From a syntactical point of view, a weak constraint is like a strong one where

the implication symbol :− is replaced by :∼. The semantics of weak constraints

minimizes the number of violated instances of constraints. An informal reading

of the above weak constraint w1 is: “preferably, do not assign the courses X

and Y to the same time slot if they are incompatible”. Note that the above two
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programs Psch and Pa sch have exactly the same preferred models if all incompatible

courses can be assigned to different time slots (i.e. if the problem admits an “exact”

solution).

In general, the informal meaning of a weak constraint, say, :∼ B., is “try to falsify

B” or “B is preferably false”, etc. Weak constraints are very powerful for capturing

the concept of “preference” in commonsense reasoning.

Since preferences may have, in real life, different “importance”, weak constraints

in LP
w can be supplied with different weights, as well.4 For instance, consider the

course scheduling problem: if overlapping is unavoidable, it would be useful to

schedule courses by trying to reduce the overlapping “as much as possible”, i.e.

the number of students having some courses in common should be minimized. We

can formally represent this problem (SCHEDULING WITH WEIGHTS) by the

following program Pw sch:

r1 : assign(X, ts1) :− course(X), not assign(X, ts2), not assign(X, ts3).

r2 : assign(X, ts2) :− course(X), not assign(X, ts1), not assign(X, ts3).

r3 : assign(X, ts3) :− course(X), not assign(X, ts1), not assign(X, ts2).

w1 : :∼ assign(X, S), assign(Y, S), commonStudents(X, Y, N). [N :]

The preferred models (called best models) of the above program are the assign-

ments of courses to time slots that minimize the total number of “lost” lectures.

6.2.2 Syntax and semantics

A weak constraint has the form

:∼ L1, · · · , Lm. [w :]

where each Li, 1 � i � m, is a literal and w is a term that represents the weight.5 In

a ground (or instantiated) weak constraint, w is a nonnegative integer. If the weight

w is omitted, then its value is 1, by default.

An LP
w program P is a finite set of rules and constraints (strong and weak). If P

does not contain weak constraints, it is called a normal logic program.

Informally, the semantics of an LP
w program P is given by the stable models of

the set of the rules of P satisfying all strong constraints and minimizing the sum of

weights of violated weak constraints.

Let R, S , and W be the set of ground instances of rules, strong constraints, and

weak constraints of an LP
w program P , respectively. A candidate model of P is a

stable model of R which satisfies all strong constraints in S . A weak constraint c is

satisfied in I if some literal of c is false w.r.t. I .

We are interested in those candidate models that minimize the sum of weights

of violated weak constraints. More precisely, given a candidate model M and a

4 Note that weights are meaningless for strong constraints, since all of them must be satisfied.
5 In their general form, weak constraints are labelled by pairs [w : �], where w is a weight and � is a

priority level. However, in this paper we are not interested in priorities and we thus describe a simplified
setting, where we only deal with weights.
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program P , we introduce an objective function HP(M), defined as:

HP(M) =
∑

c∈ViolatedP
M

weight(c)

where ViolatedP
M = {c ∈ W | c is a weak constraint violated by M} and weight(c)

denotes the weight of the weak constraint c. A candidate model M of P is a best

model of P if HP(M) is the minimum over all candidate models of P.

As an example, consider the following program Ps:

a :− c, not b. :∼ a, c. [1 :]

c. :∼ b. [2 :]

b :− c, not a. :∼ a. [1 :]

:∼ b, c. [1 :]

The stable models for the set {c. a :− c, not b. b :− c, not a.} of ground rules

of this example are HPs
(M1) = {a, c} and HPs

(M2) = {b, c}, they are also the

candidate models, since there is no strong constraint. In this case, HPs
(M1) = 2,

and HPs
(M2) = 3. So M1 is preferred over M2 (M1 is a best model of Ps).

6.3 From abduction with penalization to logic programming with weak constraints

Our implementation of abduction from logic programs with penalization is based

on the algorithm shown in Figure 5, which transforms a PAP P into a logic program

LP
w(P) whose stable models correspond one-to-one to abductive solutions of P.

We illustrate this algorithm by an example.

Example 6.1

Consider again the Network Diagnosis problem described in Example 3.2. The

translation algorithm constructs an LP
w program Q. First, Q is initialized with

the logic program P . Therefore, after Step 1, Q consists of the set of facts encoding

the network and of the following rules:

reaches(X, X) :− node(X), not offline(X).

reaches(X, Z) :− reaches(X, Y), connected(Y, Z), not offline(Z).

Then, in the loop 3-5, the following groups of rules and weak constraints are added

to Q.

At Step 4.a:

offline(a) :− sol(1). offline(b) :− sol(2). · · · offline(f) :− sol(6).

At Step 4.b:

sol(1) :−not nsol(1). sol(2) :−not nsol(2). · · · sol(6) :−not nsol(6).

nsol(1) :−not sol(1). nsol(2) :−not sol(2). · · · nsol(6) :−not sol(6).

At Step 4.c:

:∼ offline(a). [γ(offline(a)) :]

:∼ offline(b). [γ(offline(b)) :]

· · ·
:∼ offline(f). [γ(offline(f)) :]
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Input: A PAP P=〈H, P , O, γ〉.
Output: A logic program with weak constraints LP

w(P).

Function AbductionToLP
w(P : PAP) : LP

w

var i, j: Integer;

Q : LP
w;

begin

(1) Q:= P ;

(2) Let H = 〈h1, . . . , hn〉;
(3) for i := 1 to n do

(4) add to Q the following three clauses

(4.a) hi :− sol(i) .

(4.b) sol(i) :−not nsol(i) .

nsol(i) :−not sol(i) .

(4.c) :∼ hi [γ(hi) :].

(5) end for

(6) Let O = {o1, . . . , om};
(7) for j := 1 to m do

(8) if oj is a positive literal “a”

(9) then add to Q the constraint :−¬ a .

(10) else (∗ oj is a negative literal “¬ a” ∗)
(11) add to Q the constraint :−a .

(12) end for

(13) return Q;

end

Fig. 5. Translating a PAP P into a logic program LP
w(P).

The above rules select a set of hypotheses as a candidate solution, and the

weak constraints are weighted according to the hypotheses penalties. Thus, weak

constraints allow us to compute the abductive solutions minimizing the sum of the

hypotheses penalties, that is, the optimal solutions.

Finally, to take into account the observations, the following constraints are added

to Q in the loop 7-12:

:− not offline(a).

:− not offline(e).

:− not reaches(a, e).

This group of (strong) constraints is added to Q in order to discard stable models

that do not entail the observations.

Note that, since in this example all observations are positive literals, Step 11 is

never executed.

The logic program LP
w(P) computed by this algorithm is then evaluated by the

DLV kernel, which computes its stable models. For each model M found by the

kernel, the ModelToAbductiveSolution function (shown in Figure 6) is called in

order to extract the abductive solution corresponding to M.

The next theorem states that our strategy is sound and complete. For the sake of

presentation, its proof is reported in Appendix A.
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Input: A stable model M of LP
w(P), where P is 〈H,P , O, γ〉.

Output: A solution of P.

Function ModelToAbductiveSolution(M : AtomsSet): AtomsSet

var S : AtomsSet;

begin

return H ∩M;

end

Fig. 6. Extracting a solution of P from a stable model of LP
w(P).

Theorem 6.2

(Soundness) For each best model M of LP
w(P), there exists an optimal solution A

for P such that M ∩H = A.

(Completeness) For each optimal solution A of P, there exists a best model M of

LP
w(P) such that M ∩H = A.

7 Related work

Our work is evidently related to previous studies on semantic and knowledge

representation aspects of abduction over logic programs (Kakas and Mancarella

1990b; Lifschitz and Turner 1994; Kakas et al. 2000; Denecker and De Schreye

1998; Lin and You 2002), that faced the main issues concerning this form of non-

monotonic reasoning, including detailed discussions on how such a formalism may

be used effectively for knowledge representation – for a nice survey, see Deneker

and Kakas (2002).

However, all these works concerning abduction from logic programs do not deal

with penalties. The present paper focuses on this kind of abductive reasoning

from logic programs, and our computational complexity analysis extends and

complements the previous studies on the complexity of abductive reasoning tasks

(Eiter and Gottlob 1995; Eiter et al. 1997).

The optimality criterion we use in this paper for identifying the best solutions

(or explanations) is the minimization of the sum of the penalties associated to the

chosen hypotheses. Note that this is not the only way of preferring some abductive

solutions over others. In fact, the traditional approach, also considered in the above

mentioned papers, is to look for minimal solutions (according to standard set-

containment). From our complexity results and from the results presented in Eiter

et al. (1997), it follows that the (set) minimal explanation criterion is more expensive

than the one based on penalties, from the computational point of view. Moreover,

this kind of weighted preferences has been recognized as a very important feature

in real applications. Indeed, in many cases where quantitative information plays an

important role, using penalties can be more natural than using plain atoms and

then studying some clever program such that minimal solutions correspond to the

intended best solutions. As a counterpart, if necessary, in the minimal-explanations

framework we can represent some problems belonging to high complexity classes
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that cannot be represented in the penalties framework. It follows that the two

approaches are not comparable, and the choice should depend on the kind of

problem we have to solve.

Another possible variation concerns the semantics for logic programs, which

should not be necessarily the stable model semantics. For instance, in Alferes

et al. (2004), abductive reasoning from ground logic programs is based on the

well-founded semantics with explicit negation. In some proposals, the semantics is

naturally associated to a particular optimality criterion, as for Inoue and Sakama

(1999), where the authors consider prioritized programs under the preferred answer

set semantics.

A similar optimization criterion is proposed for the logic programs with con-

sistency-restoring rules (cr-rules) described in Balduccini and Gelfond (2003). Such

rules may contain preferences and are used for making a given program consistent,

if no answer set can be found. Firing some of these rules and hence deriving

some atoms from their heads corresponds in some way to the hypotheses selection

in abductive frameworks. Indeed, the semantics of this language is based on a

transformation of the given program with cr-rules into abductive programs.

Such optimization criteria induce partial orders among solutions, while we have

a total order, determined by the sum of penalties. We always have the minimum

cost and the solutions with this cost constitute the equivalence class of optimal

solutions. Note that even these frameworks are incomparable with our approach

based on penalties, and which approach is better just depends on the application

one is interested in.

Since we provide also an implementation of the proposed framework, our paper is

also related to previous work on abductive logic programming systems (Van Nuffelen

and Kakas 2001; Kakas et al. 2001). More links to systems and to some interesting

applications of abduction-based frameworks to real-world problems can be found

at the web page (Toni 2003).

We remark that we are not proposing an algorithm for solving optimizations

problems. Rather, our approach is very general and aims at the representation of

problems, even of optimization problems, in an easy and natural way through the

combination of abduction, logic programming, and penalties. It is worthwhile noting

that our rewriting procedure into logic programs with weak constraints (or similar

kind of logic programs) is just a way for having a ready-to-use implementation of

our language, by exploiting existing systems, such as DLV (Eiter et al. 1998; Leone

et al. 2002) or smodels (Niemelä and Simons 1997; Simons et al. 2002). Differently,

operations research is completely focused on finding solutions to optimization

problems, regardless of representational issue. In this respect, it is worthwhile noting

that, in principle, one can also use techniques borrowed from operations research

for computing our abductive solutions (e.g. by using integer programming).

A second point is that in the operations research field one can find algorithms

specifically designed for solving, for instance, only TSP instances, or even only

some particular TSP instances (Gutin and Punnen 2002). It follows that our general

approach is not in competition with operations research algorithms. Rather, such

techniques can be exploited profitably for computing abductive solutions, if we know

https://doi.org/10.1017/S1471068404002224 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002224


152 S. Perri et al.

that the programs under consideration are used for representing some restricted class

of problems.

8 Conclusion

We have defined a formal model for abduction with penalization from logic

programs. We have shown that the proposed formalism is highly expressive and

it allows to encode relevant problems in an elegant and natural way. We have

carefully analyzed the computational complexity of the main problems arising in

this abductive framework. The complexity analysis shows an interesting property

of the formalism: “negation comes for free” in most cases, that is, the addition of

negation does not cause any further increase to the complexity of the abductive

reasoning tasks (which is the same as for positive programs). Consequently, the user

can enjoy the knowledge representation power of nonmonotonic negation without

paying high costs in terms of computational overhead.

We have also implemented the proposed language on top of the DLV system. The

implemented system is already included in the current DLV distribution, and can be

freely retrieved from DLV homepage www.dlvsystem.com for experiments.

It is worthwhile noting that our system is not intended to be a specialized tool

for solving optimization problems. Rather, it is to be seen as a general system for

solving knowledge-based problems in a fully declarative way. The main strength

of the system is its high-level language, which, by combining logic programming

with the power of cost-based abduction, allows us to encode many knowledge-

based problems in a simple and natural way. Evidently, our system cannot compete

with special purpose algorithms for, for example, the Travelling Salesman Problem;

but it could be used for experimenting with nonmonotonic declarative languages.

Preliminary results of experiments on the Travelling Salesman Problem and on

the Strategic Companies Problem (see section 4) show that the system can solve

also instances of a practical interest (with more than 100 companies for Strategic

Companies and 30 cities for Travelling Salesman).
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Appendix A Proof of Theorem 6.2

In this appendix, we prove that the rewriting approach described in section 6 is

sound and complete.

First, we recall an important result on the modularity property of logic programs

under the stable model semantics, proved in (Eiter et al. 1997).

Let P1 and P2 be two logic programs. We say that P2 potentially uses P1 (P2 �P1)

iff each predicate that occurs in some rule head of P2 does not occur in P1.

Moreover, given a set of atoms M and a program P , we denote by M|P the set of

all atoms from M that occur in P , i.e. M|P = M ∩ BP .

Proposition 1

(Eiter et al. 1997) Let P = P1 ∪ P2 be a logic program such that P2 potentially uses

P1. Then,

(i) for every M ∈ SM (P ), M|P1
∈ SM (P1);

(ii) SM (P ) =
⋃

M∈SM (P1)
SM (P2 ∪ facts(M)).

Lemma 2

Let P = P1 ∪ P2 be a logic program such that P = P1 ∪ P2 and P2 � P1. Then, for

every M ∈ SM (P ), M|P2
is a stable model for P2 ∪ facts(M|P1

∩ BP2
).

Proof

From Proposition 1 (ii), it follows that there exists M1 ∈ SM (P1) such that M ∈
SM (P2 ∪ facts(M1)). We claim that M1 = M|P1

.

(M1 ⊆ M|P1
). Immediately follows from the fact that M1 ⊆ M, because M ∈

SM (P2 ∪ facts(M1)).
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(M|P1
⊆ M1). Suppose by contradiction that there exists an atom a ∈ M such that

a ∈ M|P1
but a /∈ M1. It follows that a is not defined in P1 and thus there exists

some rule r of P2 having a in its head. However, this is impossible, as we assumed

that P2 � P1. Contradiction.

Thus, M is a stable model of P2 ∪ facts(M|P1
). Let A=M|P1

∩BP2
and X =

M|P1
−A; hence, facts(M|P1

) = facts(A)∪ facts(X). Note that X contains all and

only the atoms of M not occurring in P2. Therefore, it is easy to see that M − X

is a stable model for P2 ∪ (facts(M|P1
)− facts(X)), which is equal to P2 ∪ facts(A).

Moreover, observe that M−X =M|P2
, and thus we get M|P2

∈ SM (P2 ∪ facts(A)).

�

For the sake of presentation, we assume hereafter a given PAP problem P =

〈H,P ,O, γ〉 is fixed, and let LP
w(P) = P ∪ Phyp ∪ Pobs be the program computed by

the function AbductionToLP
w(P), where Phyp is the set of rules and weak constraints

obtained by applying steps (3)–(5), and Pobs is the set of strong constraints obtained

by applying steps (7)–(12).

Lemma 3

For each stable model M of LP
w(P),

(a) there exists an admissible solution A for P such that M ∩H = A, and

(b) sumγ(A) =HP(M).

Proof

(Part a). To show that M ∩ H is an admissible solution for P we have to prove

that there exists a stable model M ′ of P ∪ facts(M ∩H) such that, ∀o ∈ O, o is true

w.r.t M ′.

Let M ′ = M|P . Note that M ′ is the set of literals obtained from M by eliminating

all the literals with predicate symbol sol and nsol, i.e. M ′ is the set of literals

without all atoms which were introduced by the translation algorithm.

Note that P potentially uses Phyp. Thus, from Lemma 2, M|P is a stable model for

P ∪ facts(C), where C = M|Phyp
∩BP and hence C = M∩H , because only hypothesis

atoms from Phyp occur in BP .

Finally, observe that each observation in O is true w.r.t M ′. Indeed, since M is a

stable model for LP
w(P), all the constraints contained in P |obs must be satisfied by

M. Moreover, M and M ′ coincide on all atoms occurring in these constraints. Thus,

all constraints contained in Pobs are satisfied by M ′, too.

(Part b). By construction of LP
w(P), all weak constraints occurring in this program

involve hypotheses ofP. In particular, observe that any weak constraint :∼ h [γ(h) :]

is violated by M iff h belongs to M. Since A = M ∩ H , h belongs to A, as well,

and its penalty is equal to the weight of the weak constraint. It follows that

sumγ(A) =HP(M). �

Lemma 4

For each admissible solution A of P,

(a) there exists a stable model M of LP
w(P) such that M ∩H = A, and

(b) HP(M) = sumγ(A).
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Proof

(Part a). By Definition 3.1, there exists a stable model M ′ = M ′′ ∪A of P ∪ facts(A),

where M ′′ ∩ A = ∅, such that, ∀o ∈ O, o is true w.r.t. M.

Let MH = { sol(i) | hi ∈ A} ∪ { nsol(j) | hj /∈ A}.
Moreover, let P ′ = P ∪ facts(MH ∪ A). Note that P ′ can also be written as the

union of the programs P ∪ facts(A) and facts(MH ). Since these two programs are

completely disjoint, i.e. the intersection of their Herbrand bases is the empty set,

then the union of their stable models M ′ and MH , say M, is a stable model of P ′.

Now, consider the program P ∪Phyp, and observe that P �Phyp, and that MH ∪A
is a stable model for Phyp. Then, by Proposition 1, any stable model of the program

P ′ is a stable model of P ∪Phyp. Thus, in particular, M = M ′ ∪MH is a stable model

of P ∪ Phyp.

Moreover, it is easy to see that all constraints in Pobs are satisfied by M, and

thus M ∈ SM (LP
w(P)), too. Finally, M can be written as M ′′ ∪ A ∪MH , and hence

M ∩H = A holds, by definitions of M ′′ and MH .

(Part b). Let h be any hypothesis belonging to A and hence contributing to the

cost of this solution. Note that LP
w(P) contains the weak constraint :∼ h [γ(h) :],

weighted by γ(h) and violated by M, as h ∈ M. It follows that HP(M) = sumγ(A).

�

Theorem 6.2

(Soundness) For each best model M of LP
w(P), there exists an optimal solution A

for P such that M ∩H = A.

(Completeness) For each optimal solution A of P, there exists a best model M of

LP
w(P) such that M ∩H = A.

Proof

(Soundness). Let M be a best model of LP
w(P). From Lemma 3, A = M ∩ H is

an admissible solution for P, and sumγ(A) =HP(M). It remains to show that A is

optimal.

By contradiction, assume that A is not optimal. Then, there exists an admissible

solution A′ for P such that sumγ(A
′) < sumγ(A). By virtue of Lemma 4, we have

that there exists a stable model M ′ for LP
w(P) such that M ′ ∩ H = A′ and

HP(M ′) = sumγ(A
′). However, this contradicts the hypothesis that M is a best

model for LP
w(P).

(Completeness). Let A be an optimal solution for P. By virtue of Lemma 4, there

exists a stable model M for LP
w(P) such that M ∩H = A and HP(M) = sumγ(A).

We have to show that M is a best model.

Assume that M is not a best model. Then, there exists a stable model M ′ for

LP
w(P) such that HP(M ′) < HP(M). By Lemma 3, there exists an admissible

solution A′ for P such that M ′ ∩ H = A′ and sumγ(A
′) = HP(M ′). However, this

contradicts the hypothesis that A is an optimal solution for P. �

Appendix B A logic program for the TSP

In this section we describe how to represent the Travelling Salesman Problem in

logic programming.
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Suppose that the cities are encoded by a set of atoms {city(i) | 1 � i � n} and

that the intercity traveling costs are stored in a relation C(i, j, v) where v = w(i, j).

In abuse of notation, we simply refer to the number n of cities (which is provided

by an input relation) by itself.

The following program π1 computes legal tours and their costs in its stable models:

(1) T(I, J) ∨ ~T(I, J) :− c(I, J, ).

(2) :− T(I, J), T(I, K), J �= K.

(3) :− T(I, K), T(J, K), I �= J.

(4) visited(1) :− T(J, 1).

(5) visited(I) :− T(J, I), visited(J).

(6) :− not visited(I), city(I).

(7) P Value(1, X) :− T(1, J), C(1, J, X).

(8) P Value(K, X) :− P Value(K-1, Y), T(K, I), C(K, I, Z), X = Y + Z.

(9) Cost(x) :− P Value(n, x).

The first clause guesses a tour, where T(I, J) intuitively means that the I-th stop

of the tour is city J and ~T(I, J) that it’s not. By the minimality of a stable model,

exactly one of T(I, J) and ~T(I, J) is true in it, for each I and J such that 1 � I, J � n;

in all other cases, both are false.

The subsequent clauses (2)–(6) check that the guess is proper: each stop has

attached at most one city, each city can be attached to at most one stop, and every

stop must have attached some city. The rules (7)–(9) compute the cost of the chosen

tour, which is given by the (unique) atom Cost(X) contained in the model.

It holds that the stable models of π1 correspond one-to-one to the legal tours.

To reach our goal, we have to eliminate from them those which do not correspond

to optimal tours. That is, we have to eliminate all tours T such that there exists a

tour T ′ which has lower cost. This is performed by a logic program, which basically

tests all choices for a tour T ′ and rules out each choice that is not a cheaper tour,

which is indicated by a propositional atom NotCheaper. The following program,

which is similar to π1, generates all possible choices for T ′:

(1′) T′(I, J) ∨ ~T′(I, J) :−c(I, J, ).

(2′) NotCheaper :−T′(I, J), T′(I, K), J �= K.

(3′) NotCheaper :−T′(I, K), T′(J, K), I �= J.

(4′) NotChosen Stop(I, 1) :−~T′(I, 1).
(5′) NotChosen Stop(I, J) :−~T′(I, J), NotChosen Stop(I, J - 1).

(6′) NotCheaper :−NotChosen Stop(I, n).

(7′) cnt(1, 1) .

(8′) cnt(K + 1, J) :−cnt(K, I), T′(I, J), J �= 1.

(9′) NotCheaper :−cnt(K, I), T′(I, 1), K �= n.

(10′) P Value′(1, X) :−T′(1, J), C(1, J, X).
(11′) P Value′(K, X) :−P Value′(K - 1, Y), T′(K, I), c(K, I, Z), X = Y + Z.

(12′) Cost′(X) :−P Value′(n, X).
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The predicates T′, ~T′, P Value′ and Cost′ have the rôle of the predicates T, ~T,

P Value and Cost in π1. Since we do not allow negation, the test that for each stop

a city has been chosen (rules (4)–(6) in π1) has to be implemented differently (rules

(4′)–(9′) ). NotChosen Stop(I, J) tells whether no city � J has been chosen for stop

I . Thus, if NotChosen Stop(I, n) is true, then no city has been chosen for stop I ,

and the choice for T′ does not correspond to a legal tour.

The minimal models of (1′)–(12′) which do not contain NotCheaper correspond

one-to-one to all legal tours. By adding the following rule, each of them is eliminated

which does not have smaller cost than the tour given by T:

(13′) NotCheaper :− Cost(X), Cost′(Y), X � Y.

Thus, if for a legal tour T, each choice for T′ leads to the derivation of NotCheaper,

then T is an optimal tour.

For the desired program, we add the following rules:

(14′) :− not NotCheaper.

(15′) P(X1, . . . , Xn) :− NotCheaper. ,

for any predicate P that occurs in a rule head of (1′)–(12′) except NotCheaper.

The first rule enforces that NotCheaper must be contained in the stable model;

consequently, it must be derivable. The other rules derive the maximal extension for

each predicate P if NotCheaper is true, which is a trivial model for (1′)–(12′). In fact,

it is for some given tour T the only model if no choice for T′ leads to a tour with

cost smaller than the cost of T; otherwise, there exists another model, which does

not contain NotCheaper.

Let π2 be the program consisting of the rules (1′)–(15′). Then, it holds that the

stable models of π = π1 ∪ π2 on any instance of TSP correspond to the optimal

tours.6 In particular, the optimal cost value, described by Cost(X), is contained in

each stable model. Thus, the program π computes on any instance of TSP under

the possibility (as well as certainty) stable model semantics in Cost the cost of an

optimal tour.

6 Here, we suppose that the provided universe U of the database storing the instance is sufficiently large
for computing the tour values.
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