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ON MAXIMA OF STATIONARY FIELDS

N. SOJA-KUKIEŁA,∗ Nicolaus Copernicus University

Abstract

Let {Xn : n ∈Z
d} be a weakly dependent stationary random field with maxima

MA := sup{Xi : i ∈ A} for finite A ⊂Z
d and Mn := sup{Xi : 1 ≤ i ≤ n} for n ∈N

d .
In a general setting we prove that P(M(N1(n),N2(n),...,Nd(n)) ≤ vn) = exp (− nd

P(X0 >

vn, MAn ≤ vn)) + o(1) for some increasing sequence of sets An of size o(nd), where
(N1(n), N2(n), . . . , Nd(n)) → (∞, ∞, . . . , ∞) and N1(n)N2(n) · · · Nd(n) ∼ nd . The sets
An are determined by a translation-invariant total order � on Z

d . For a class of fields sat-
isfying a local mixing condition, including m-dependent ones, the main theorem holds
with a constant finite A replacing An. The above results lead to new formulas for the
extremal index for random fields. The new method for calculating limiting probabilities
for maxima is compared with some known results and applied to the moving maximum
field.
Keywords: stationary random fields; extremes; limit theorems; extremal index;
m-dependence; moving maxima
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1. Introduction

Let us consider a d-dimensional stationary random field {Xn : n ∈Z
d} with its partial

maxima

MA := sup{Xi : i ∈ A}
defined for finite A ⊂Z

d. We also put Mj,n := sup{Xi : j ≤ i ≤ n} and Mn := M1,n for j, n ∈Z
d.

The goal is to study the asymptotic behaviour of P(MN(n) ≤ vn) as n → ∞, for {vn} ⊂R and
N(n) →∞∞∞ coordinate-wise.

In the case d = 1, when {Xn : n ∈Z} is a stationary sequence, the well-known result of
O’Brien [17, Theorem 2.1] states that under a broad class of circumstances

P(Mn ≤ vn) = exp (− nP(X0 > vn, Mp(n) ≤ vn)) + o(1) (1.1)

holds for some p(n) → ∞ satisfying p(n) = o(n). For m-dependent {Xn} we can set p(n) := m
in formula (1.1), as Newell [16] shows. It follows that the extremal index θ for {Xn}, defined
by Leadbetter [14], equals

θ = lim
n→∞ P(Mp(n) ≤ vn | X0 > vn), (1.2)
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where p(n) = m in the m-dependent case. More generally, we can put p(n) = m in (1.2)
whenever condition D(m+1)(vn), introduced by Chernick, Hsing, and McCormick [5], is
satisfied.

We recall that the extremal index θ ∈ [0, 1] is interpreted as the reciprocal of the mean
number of high threshold exceedances in a cluster. Formula (1.2) for θ may be treated as an
answer to the question: Asymptotically, what is the probability that a given element of a cluster
of large values is its last element on the right?

Looking for formulas analogous to (1.1) and (1.2) for arbitrary d ∈N+, one can try to
answer the properly formulated d-dimensional version of the above question. This point is
realized in Sections 3 and 4. In Section 3 we prove the main result, Theorem 3.1. We establish
that in a general setting the approximation

P(MN(n) ≤ vn) = exp (− nd
P(X0 > vn, MA(p(n)) ≤ vn)) + o(1) (1.3)

holds with A(p(n)) ⊂ {j ∈Z
d : − p(n) ≤ j ≤ p(n)} defined by (2.6), N(n) fulfilling (2.1), and

p(n) →∞∞∞ satisfying p(n) = o(N(n)) and some other rate of growth conditions. For d = 1 we
have A(p(n)) = {1, 2, . . . , p(n)} and formula (1.3) simplifies to (1.1). Corollary 3 provides the
local mixing condition (3.7) equivalent to the fact that (1.3) holds with p(n) := (m, m, . . . , m).
Section 4 is devoted to considerations concerning the notion of the extremal index for random
fields. Formula (4.2), being a generalization of (1.2), and its simplified version (4.3) for fields
fulfilling (3.7) are proposed there. In Section 6 the results from Sections 3 and 4 are used to
describe the asymptotics of partial maxima for the moving maximum field.

In Section 5 we focus on m-dependent fields and present a corollary of the main theorem
generalizing the aforementioned Newell’s formula [16]. We also compare the obtained result
with the limit theorem for m-dependent fields proved by Jakubowski and Soja-Kukieła [12,
Theorem 2.1].

The present paper provides a d-dimensional generalization of O’Brien’s formula (1.1)
with a handy and immediate conclusion for m-dependent fields. Another general theorem
by Turkman [19, Theorem 1] is not really applicable in the m-dependent case. A recent
result obtained independently by Ling [15, Lemma 3.2] is a special case of Theorem 3.1.
Other theorems on the topic were given for some subclasses of weakly dependent fields:
in the two-dimensional Gaussian setting by French and Davis [9]; for two-dimensional
moving maxima and moving averages by Basrak and Tafro [3]; for m-dependent and max-m-
approximable fields by Jakubowski and Soja-Kukieła [12]; for regularly varying fields by Wu
and Samorodnitsky [20]. The proof of Theorem 3.1 presented in the paper, although achieved
independently, is similar to proofs of [9, Lemma 4] and [15, Lemma 3.2].

2. Preliminaries

An element n ∈Z
d is often denoted by (n1, n2, . . . , nd) and ‖n‖ is its sup norm. We write

i ≤ j and n →∞∞∞ whenever il ≤ jl and nl → ∞, respectively, for all l ∈ {1, 2, . . . , d}. We put
0 := (0, 0, . . . , 0), 1 := (1, 1, . . . , 1), and ∞∞∞ := (∞, ∞, . . . , ∞).

In our considerations {Xn : n ∈Z
d} is a d-dimensional stationary random field. We ask for

the asymptotics of P(MN(n) ≤ vn) as n → ∞, for N = {N(n) : n ∈N} ⊂N
d, such that

N(n) →∞∞∞ and N∗(n) := N1(n)N2(n) · · · Nd(n) ∼ nd (2.1)

and {vn : n ∈N} ⊂R.

https://doi.org/10.1017/jpr.2019.69 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.69


On maxima of stationary fields 1219

We are interested in weakly dependent fields. We assume that

P(MN(n) ≤ vn) = P(Mp(n) ≤ vn)kd
n + o(1) (2.2)

is satisfied for some rn → ∞ and all kn → ∞ such that kn = o(rn), with

p(n) := (
N1(n)/kn�, 
N2(n)/kn�, . . . , 
Nd(n)/kn�). (2.3)

Applying the classical fact (see e.g. O’Brien [17])

(an)n − exp (− n(1 − an)) → 0 as n → ∞ for an ∈ [0, 1], (2.4)

we obtain that (2.2) implies

P(MN(n) ≤ vn) = exp (− kd
nP(Mp(n) > vn)) + o(1). (2.5)

Above, pl(n) = o(Nl(n)) for l ∈ {1, 2, . . . , d}, which we denote by p(n) = o(N(n)).

Remark 2.1. For d = 1, weak dependence in the sense of (2.2) is ensured by any of the fol-
lowing conditions: Leadbetter’s D(vn), O’Brien’s AIM(vn), or Jakubowski’s B1(vn); see [14],
[17], and [10]. For d ∈N+ the considered property follows, for example, from condition BN

1 (vn)
introduced by Jakubowski and Soja-Kukieła [13]. In particular, m-dependent fields are weakly
dependent; see Section 5. A similar notion of weak dependence was investigated by Ling [15,
Lemma 3.1].

Let � be an arbitrary total order on Z
d which is translation-invariant, that is, i � j implies

i + k � j + k. An example of such an order is the lexicographic order:

i � j if and only if (i = j or il < jl for the first l where il and jl differ).

We will write i ≺ j whenever i � j and i 
= j. For technical requirements in further sections, we
define the set A(p) ⊂Z

d for each p ∈N
d as follows:

A(p) := {j ∈Z
d : − p ≤ j ≤ p and 0 ≺ j}. (2.6)

3. Main theorem

In the following the main result of the paper is presented. The asymptotic behaviour of
P(MN(n) ≤ vn) as n → ∞, for weakly dependent {Xn} and for {N(n)} and {vn} as in Section 2,
is described.

Theorem 3.1. Let {Xn} satisfy (2.2) for some rn → ∞ and all kn → ∞ such that kn = o(rn). If

lim inf
n→∞ P(MN(n) ≤ vn) > 0, (3.1)

then, for every {kn} as above, we obtain

P(MN(n) ≤ vn) = exp (− nd
P(X0 > vn, MA(p(n)) ≤ vn)) + o(1), (3.2)

with p(n) and A(p(n)) given by (2.3) and (2.6), respectively.

Remark 3.1. If (2.2) holds for some kn → ∞, then (3.1) is implied by the condition

lim sup
n→∞

nd
P(X0 > vn) < ∞. (3.3)
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This follows from (2.5) and the inequality

kd
nP(Mp(n) > vn) ≤ N∗(n)P(X0 > vn) ∼ nd

P(X0 > vn).

The proof of the theorem generalizes the reasoning proposed by O’Brien [17, Theorem
2.1] for sequences. A way of dividing the event {Mp(n) > vn} into p∗(n) := p1(n)p2(n) · · · pd(n)
mutually exclusive events determined by � (which are similar in some sense) plays a key role
in the proof. An analogous technique was used by French and Davis [9, Lemma 4] in the two-
dimensional Gaussian case. Recently, Ling [15, Lemma 3.1] expanded their result to some
non-Gaussian fields. In both papers the authors restrict themselves to the lexicographic order
on Z

2.

Proof of Theorem 3.1. Let the assumptions of the theorem be satisfied. Then (2.5) holds.
Dividing the set {Mp(n) > vn} into p∗(n) = p1(n)p2(n) · · · pd(n) disjoint sets and applying
monotonicity and stationarity, we obtain

P(Mp(n) > vn) =
∑

1≤j≤p(n)

P(Xj > vn, Xi ≤ vn for all i � j such that 1 ≤ i ≤ p(n))

≥
∑

1≤j≤p(n)

P(Xj > vn, Xi ≤ vn for all i ∈ A(p(n)) + j)

= p∗(n)P(X0 > vn, MA(p(n)) ≤ vn),

which, combined with (2.5) and the fact that kd
np∗(n) ∼ nd, gives

P(MN(n) ≤ vn) ≤ exp (− nd
P(X0 > vn, MA(p(n)) ≤ vn)) + o(1). (3.4)

In the second step of the proof we will show that the reverse inequality to (3.4) also holds. It
is sufficient to consider the case P(MN(n) ≤ vn) → γ for γ ∈ [0, 1], and we do so. Since γ = 0
is excluded by assumption (3.1) and for γ = 1 the proven inequality is obvious, we focus on
γ ∈ (0, 1). Let us choose {tn} ⊂N+ so that tn → ∞ and tn = o(kn). Put

s(n) := (
N1(n)/tn�, 
N2(n)/tn�, . . . , 
Nd(n)/tn�) and s∗(n) := s1(n)s2(n) · · · sd(n).

Since tn = o(rn), (2.5) holds with kn replaced by tn and p(n) replaced by s(n). Also, p(n) =
o(s(n)) and s(n) = o(N(n)). Moreover, for the sets

C(p(n), s(n)) := {j ∈Z
d : p(n) + 1 ≤ j ≤ s(n) − p(n)}

and
B(p(n), s(n)) := {j ∈Z

d : 1 ≤ j ≤ s(n)}\ C(p(n), s(n)),

we obtain

P(Ms(n) > vn, MB(p(n),s(n)) ≤ vn)

P(MB(p(n),s(n)) > vn)
= P(Ms(n) > vn) − P(MB(p(n),s(n)) > vn)

P(MB(p(n),s(n)) > vn)

= P(Ms(n) > vn)

P(MB(p(n),s(n)) > vn)
− 1

= P(Ms(n) > vn)

o(s∗(n)/p∗(n)) · P(Mp(n) > vn)
− 1

= 1 + o(1)

o(1)
· tdnP(Ms(n) > vn)

kd
nP(Mp(n) > vn)

− 1.
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Applying (2.5) twice, we get

tdnP(Ms(n) > vn)

kd
nP(Mp(n) > vn)

→ − log γ

− log γ
= 1 as n → ∞,

and consequently

P(MB(p(n),s(n)) > vn)

P(Ms(n) > vn, MB(p(n),s(n)) ≤ vn)
→ 0 as n → ∞. (3.5)

Now, observe that

P(Ms(n) > vn) = P(Ms(n) > vn, MB(p(n),s(n)) ≤ vn) + P(MB(p(n),s(n)) > vn)

= P(Ms(n) > vn, MB(p(n),s(n)) ≤ vn)(1 + o(1))

≤
∑

j∈C(p(n),s(n))

P(Xj > vn, MA(p(n))+j ≤ vn) · (1 + o(1))

≤ s∗(n)P(X0 > vn, MA(p(n)) ≤ vn)(1 + o(1)),

by property (3.5), subadditivity and monotonicity of probability, and by stationarity of the
field {Xn}. Applying (2.5) with (kn, p(n)) replaced by (tn, s(n)) and the fact that tdns∗(n) ∼ nd,
we conclude that

P(MN(n) ≤ vn) ≥ exp (− tdns∗(n)P(X0 > vn, MA(p(n)) ≤ vn)(1 + o(1))) + o(1)

= exp (− nd
P(X0 > vn, MA(p(n)) ≤ vn)) + o(1). (3.6)

Since inequalities (3.4) and (3.6) are both satisfied, the proof is complete. �
Theorem 3.1 immediately yields the following generalization of the result established by

Chernick, Hsing, and McCormick [5, Proposition 1.1] for d = 1. Assumption (3.7) given below
is a multidimensional counterpart of the local mixing condition D(m+1)(vn) defined in [5] for
sequences and it is satisfied by m-dependent fields, for example (see Section 5.1).

Corollary 3.1. Let the assumptions of Theorem 3.1 be satisfied. Then

P(MN(n) ≤ vn) = exp (− nd
P(X0 > vn, MA((m,m,...,m)) ≤ vn)) + o(1)

if and only if

nd
P(X0 > vn ≥ MA((m,m,...,m)), MA(p(n))\A((m,m,...,m)) > vn) −−−→

n→∞ 0, (3.7)

where kn → ∞ is such that kn = o(rn).

We point out that Corollary 3.1 reforms a faulty formula for m-dependent fields proposed
by Ferreira and Pereira [8, Proposition 2.1]; see [12, Example 5.5]. We also suggest comparing
the above condition (3.7) with assumption D′′(vn,Bn, V) proposed by Pereira, Martins, and
Ferreira [18, Definition 3.1].

Remark 3.2. There exists a close relationship between Theorem 3.1 and compound Poisson
approximations in the spirit of Arratia, Goldstein, and Gordon [1, Section 4.2.1]. The random
variable

�(1)
n :=

∑
1≤k≤N(n)

I{Xk>vn,Mk+A(p(n))≤vn},
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with the expectation λ
(1)
n := N∗(n)P(X0 > vn, MA(p(n)) ≤ vn), estimates the number of clusters

of exceedances over vn in the set {k : 1 ≤ k ≤ N(n)}, and we have

P(MN(n) ≤ vn) = exp (− λ(1)
n ) + o(1).

Remark 3.3. It is worth noting that translation-invariant linear orders on the set of indices Zd

play a significant role in considerations (by Basrak and Planinić [4], Wu and Samorodnitsky
[20]) on the extremes of regularly varying fields.

4. Extremal index

In this part we use the results given in Section 3 to establish formulas (4.2) and (4.3) for the
extremal index θ for random fields. We refer to Choi [6] or Jakubowski and Soja-Kukieła [12]
for definitions and some considerations on the extremal index in the multidimensional setting.

Here we present a method for calculating the number θ ∈ [0, 1] satisfying

P(MN(n) ≤ vn) − P(X0 ≤ vn)θnd → 0 as n → ∞, (4.1)

whenever such a θ exists. Let us observe that according to (2.4) we have

P(X0 ≤ vn)nd = exp (− nd
P(X0 > vn)) + o(1)

and, moreover, Theorem 3.1 yields

P(MN(n) ≤ vn) = exp (− nd
P(X0 > vn, MA(p(n)) ≤ vn)) + o(1)

for N(n), vn and p(n) satisfying appropriate assumptions. Hence, provided that

0 < lim inf
n→∞ nd

P(X0 > vn) ≤ lim sup
n→∞

nd
P(X0 > vn) < ∞,

condition (4.1) is satisfied if and only if

θ = lim
n→∞ P(MA(p(n)) ≤ vn | X0 > vn). (4.2)

Formula (4.2), allowing computation of extremal indices θ for random fields, is a multidimen-
sional generalization of (1.2). In the special case when assumption (3.7) is satisfied, it is easy
to show that formula (4.2) simplifies to the following:

θ = lim
n→∞ P(MA((m,m,...,m)) ≤ vn | X0 > vn). (4.3)

The above formulas are in line with the interpretation of θ as the reciprocal of the mean
number of high threshold exceedances in a cluster. Indeed, they answer the question: What is
the asymptotic probability that a given element of a cluster is the distinguished element of the
cluster?, where the distinguished element in a cluster is the greatest one with respect to the
order �. This identification of a unique representative for each cluster is called declustering,
declumping, or anchoring, and has much in common with compound Poisson approximations
(see e.g. [1], [2], and [4]).

Remark 4.1. Formula (4.2) justifies the following definition of the runs estimator θ̂R
N(n) for the

extremal index θ :

θ̂R
N(n) := S−1

n

∑
1+p(n) ≤ k ≤ N(n)−p(n)

I{Xk>vn,Mk+A(p(n))≤vn},

where Sn is the number of exceedances over vn in the set {k ∈Z
d : 1 ≤ k ≤ N(n)}.
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5. Maxima of m-dependent fields

In this section we focus on m-dependent fields. We recall that {Xn} is m-dependent for some
m ∈N if the families {Xi : i ∈ U} and {Xj : j ∈ V} are independent for all pairs of finite sets
U, V ⊂Z

d satisfying min{‖i − j‖ : i ∈ U, j ∈ V} > m.
Let us assume that {Xn} is m-dependent and satisfies (3.1) for some sequence {vn} ⊂R. Then

it is easy to show that condition (3.3) holds too (see [12, Remark 4.2]). Below, we present two
methods that can be used to calculate the limit of P(MN(n) ≤ vn). A direct connection between
them can be given and we illustrate it in the case d = 2.

5.1. First method

The first of the methods is a consequence of the main result presented in the paper. Since
the field {Xn} is m-dependent, it satisfies (2.2) for each kn → ∞ such that kn = o(rn), for some
rn → ∞ (see e.g. [12]). Moreover, the inequality

nd
P(X0 > vn ≥ MA((m,m,...,m)), MA(p(n))\A((m,m,...,m)) > vn)

≤ nd
∑

i∈A(p(n)),‖i‖>m

P(X0 > vn, Xi > vn)

= nd
∑

i∈A(p(n)),‖i‖>m

P(X0 > vn)P(Xi > vn)

≤ nd · nd

kd
n

· P(X0 > vn)2(1 + o(1))

holds with the right-hand side tending to zero by (3.3). From Corollary 3.1, we obtain

P(MN(n) ≤ vn) = exp ( − nd
P(X0 > vn, MA((m,m,...,m)) ≤ vn) + o(1). (5.1)

5.2. Second method

The second formula comes from Jakubowski and Soja-Kukieła [12, Theorem 2.1]. It states
that we have

P(MN(n) ≤ vn) = exp

(
−nd

∑
εεε∈{0,1}d

(− 1)ε1+ε2+...+εdP(Mεεε,(m,m,...,m) > vn)

)
+ o(1) (5.2)

under the above assumptions on {Xn}. This result is a consequence of the Bonferroni-type
inequality from Jakubowski and Rosiński [11, Theorem 2.1].

5.3. Comparison

For d = 1 both of the formulas simplify to the well-known result of Newell [16]:

P(Mn ≤ vn) = exp (− nP(X0 > vn, M1,m ≤ vn)) + o(1).

Each of them allows us to describe the asymptotic behaviour of maxima on the base of tail
properties of joint distribution of a fixed finite dimension. To apply the first method, one uses
the distribution of the (1 + ((2m + 1)d − 1)/2)-element family

{Xn : n ∈ {0} ∪ A((m, m, . . . , m))}.
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To involve the second method, we use the distribution of the (m + 1)d-element family {Xn : 0 ≤
n ≤ (m, m, . . . , m)}.

Below, a link between the two formulas is described in two ways: a more conceptual one,
and one that is shorter but perhaps less intuitive. To avoid annoying technicalities, we focus on
d = 2.

5.3.1 First approach: counting clusters. Our aim is to calculate the number of clusters of
exceedances over vn in the window W := {k ∈Z

2 : 1 ≤ k ≤ N(n)} in two different ways and
obtain, as a consequence, the equivalence of (5.1) and (5.2).

Let the random set Jn be given as Jn := {k ∈ W : Xk > vn} and let ↔ be the equivalence
relation on Jn, defined as follows:

i ↔ j whenever there exist l ∈N and k0, k1, . . . , kl, kl+1 ∈ Jn, k0 = i, kl+1 = j

such that max
0≤h≤l

‖kh+1 − kh‖ ≤ m,

for i, j ∈ Jn. We define a cluster as an equivalence class of ↔ and obtain the partition Cn :=
Jn/↔ of Jn into �n := #Cn clusters. We put

λn :=E(�n), C′
n :=

{
C ∈ Cn : max

i,j∈C
‖i − j‖ ≤ m

}
,

C′′
n := Cn\C′

n, �′
n := #C′

n, λ′
n :=E(�′

n).

Let �
(1)
n and λ

(1)
n , associated with the method presented in Section 5.1, be defined as in

Remark 3.2 with p(n) := (m, m). Recall that we have

A(m, m) = {j ∈Z
2 : (− m, −m) ≤ j ≤ (m, m) and (0, 0) ≺ j}.

Analogously (see [12, Remark 2.2]) we define �
(2)
n and λ

(2)
n related to the method from Section

5.2 as follows:

�(2)
n :=

∑
k∈W

∑
εεε∈{0,1}2

(− 1)ε1+ε2I{Mk+εεε,k+(m,m)>vn},

λ(2)
n :=E(�(2)

n ) = N∗(n)
∑

εεε∈{0,1}2

(− 1)ε1+ε2P(Mεεε,(m,m) > vn).

Assume that C ∈ C′
n. Let

B(C, m) := {j ∈Z
2 : ‖j − k‖ ≤ m for some k ∈ C}

and suppose we have MB(C,m)\C ≤ vn (which is obviously satisfied in the typical case B(C, m) ⊂
W). Observe that for such C we have

∑
k∈C

I{MA(m,m)+k≤vn} =
∑
k∈C

I{k is the largest element of C with respect to �} = 1 (5.3)

and ∑
k∈C̄

∑
εεε∈{0,1}2

(− 1)ε1+ε2I{Mk+εεε,k+(m,m)>vn} = I{Mk(C),k(C)+(m,m)>vn} = 1, (5.4)
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where
C̄ := {k ∈Z

2 : k + i ∈ C for some 0 ≤ i ≤ (m, m)}
and k(C) satisfies the condition

C ⊂ {k ∈Z
2 : k(C) ≤ k ≤ k(C) + (m, m)}.

We will show that each of the following equalities holds:

δn :=E|�n − �′
n| =E(�n − �′

n) = o(1), (5.5)

δ(1)
n :=E|�(1)

n − �′
n| = o(1), (5.6)

δ(2)
n :=E|�(2)

n − �′
n| = o(1). (5.7)

This will entail the condition λn = λ′
n + o(1) = λ

(1)
n + o(1) = λ

(2)
n + o(1) and complete this

section.
To show (5.5), observe that the event {#C′′

n = l}, for l ∈N+, implies that there exist pairs
j(i, a), j(i, b) ∈ Jn, for i ∈ {1, 2, . . . , l}, such that m < ‖j(i, a) − j(i, b)‖ ≤ 2m holds for each i
and ‖j(i1, c1) − j(i2, c2)‖ > m is satisfied for i1 
= i2 and c1, c2 ∈ {a, b}. Thus we have

δn =
∞∑

l=1

lP(#C′′
n = l) ≤

∞∑
l=1

l(N∗(n)((4m + 1)2 − (2m + 1)2)P(X0 > vn)2)l.

Since
qn := N∗(n)((4m + 1)2 − (2m + 1)2)P(X0 > vn)2 = o(1)

by (3.3), we obtain

δn ≤
∞∑

l=1

l(qn)l = qn(1 − qn)−2 for all large n

and finally δn = o(1).
Before we establish (5.6) and (5.7), we will give an upper bound for the probability that a

fixed k ∈ W belongs to a large cluster. Note that we have

P(k ∈ C for some C ∈ C′′
n )

= P(k ∈ C and ‖j − k‖ ≤ m for all j ∈ C, for some C ∈ C′′
n )

+ P(k ∈ C and ‖j − k‖ > m for some j ∈ C, for some C ∈ C′′
n )

≤ P(‖i − k‖ ≤ m and ‖j − k‖ ≤ m and ‖i − j‖ > m, for some i, j ∈ Jn)

+ P(k ∈ Jn and m < ‖k − j‖ ≤ 2m for some j ∈ Jn)

≤ ((2m + 1)4 + ((4m + 1)2 − (2m + 1)2))P(X0 > vn)2 = a(m)P(X0 > vn)2 (5.8)

with a(m) := (2m + 1)4 + 4m(3m + 1).
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Applying observation (5.3), property (5.8) and taking into account estimation errors for
clusters situated near the edges of the window W, we obtain

δ(1)
n =E

∣∣∣∣
∑
k∈W

(
I{k∈⋃ C′

n,Mk+A(m,m)≤vn} + I{k∈⋃ C′′
n ,Mk+A(m,m)≤vn}

) − �′
n

∣∣∣∣
≤E

∣∣∣∣
∑

C∈C′
n

∑
k∈C

I{Mk+A(m,m)≤vn} − �′
n

∣∣∣∣ +E

(∑
k∈W

I{k∈⋃ C′′
n }

)

≤ 2m(N1(n) + N2(n))P(X0 > vn) + a(m)N∗(n)P(X0 > vn)2,

which combined with assumption (3.3) implies (5.6). Quite similarly, using (5.4) instead of
(5.3) and writing W̄ := {k ∈Z

2 : 1 − (m, m) ≤ k ≤ N(n)}, we conclude that

δ(2)
n ≤E

∣∣∣∣
∑
k∈W̄

I{k∈C̄ for some C∈C′
n}

∑
εεε∈{0,1}2

(− 1)ε1+ε2I{Mk+εεε,k+(m,m)>vn} − �′
n

∣∣∣∣

+E

( ∑
k∈W̄\W

∑
εεε∈{0,1}2

∣∣(− 1)ε1+ε2I{Mk+εεε,k+(m,m)>vn}
∣∣)

+ 2E

(∑
k∈W

I{k∈C̄ for some C∈C′′
n }

)

≤E

∣∣∣∣
∑

C∈C′
n

∑
k∈C̄

∑
εεε∈{0,1}2

(− 1)ε1+ε2I{Mk+εεε,k+(m,m)>vn} − �′
n

∣∣∣∣
+

∑
k∈W̄\W

(2m + 1)P(X0 > vn) + 2N∗(n)P(k ∈ C̄ for some C ∈ C′′
n )

≤ 2m(2m + 1)(N1(n) + N2(n))P(X0 > vn)

+ m(2m + 1)(N1(n) + N2(n) + m)P(X0 > vn) + 2(m + 1)2a(m)N∗(n)P(X0 > vn)2.

Since the right-hand side tends to zero by (3.3), property (5.7) follows.

5.3.2. Second approach: direct verification. In this part we assume that � is the lexicographic
order on Z

2. Let us note that

P(M(0,0),(m,m) > vn) − P(M(1,0),(m,m) > vn) − P(M(0,1),(m,m) > vn) + P(M(1,1),(m,m) > vn)

= P(X(0,0) > vn, MR((m,m)) ≤ vn)

− P(M(0,1),(0,m) > vn, M(1,0),(m,0) > vn, M(1,1),(m,m) ≤ vn)

is true with R((p1, p2)) := A((p1, p2)) ∩N
2, where on the left-hand side of the equation the

sum of probabilities from (5.2) for d = 2 appears. Next, let us look at the exponent in (5.1) and
observe that

P(X(0,0) > vn, MA((m,m)) ≤ vn)

= P(X(0,0) > vn, MR((m,m)) ≤ vn)

− P(X(0,0) > vn, MR((m,m)) ≤ vn, M(1,−m),(m,−1) > vn)
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and, moreover, the second summand of the right-hand side satisfies

P(X(0,0) > vn, MR((m,m)) ≤ vn, M(1,−m),(m,−1) > vn)

=
m∑

l=1

P(X(0,0) > vn, MR((m,m)) ≤ vn, M(1,−l),(m,−l) > vn, M(1,−l+1),(m,−1) ≤ vn)

=
m∑

l=1

P(X(0,0) >vn, MR((m,m−l)) ≤ vn, M(1,−l),(m,−l) > vn, M(1,−l+1),(m,−1) ≤ vn) + o(n−2)

=
m∑

l=1

P(X(0,l) > vn, M(0,l)+R((m,m−l)) ≤ vn, M(1,0),(m,0) > vn, M(1,1),(m,l−1) ≤ vn) + o(n−2)

= P(M(0,1),(0,m) > vn, M(1,0),(m,0) > vn, M(1,1),(m,m) ≤ vn) + o(n−2).

In the above statement, probabilities of mutually exclusive events are summed up, and
m-dependence, assumption (3.3), and stationarity are applied. Finally, we obtain

P(M(0,0),(m,m) > vn) − P(M(1,0),(m,m) > vn) − P(M(0,1),(m,m) > vn) + P(M(1,1),(m,m) > vn)

= P(X(0,0) > vn, MA((m,m)) ≤ vn) + o(n−2).

Summarizing, we have confirmed that both presented methods lead to the same result.

Remark 5.1. The above reasoning for m-dependent fields can also be applied in the gen-
eral setting. Suppose that formula (1.3), with � the lexicographic order on Z

2, describes the
asymptotics of partial maxima of the stationary field {Xn : n ∈Z

2}. Then

P(MN(n) ≤ vn) = exp

(
−n2

∑
εεε∈{0,1}2

(− 1)ε1+ε2P(Mεεε,p(n) > vn)

)
+ o(1) (5.9)

holds if and only if {Xn} satisfies the following condition:

p2(n)∑
l=1

P(X0 > vn, MUl(p(n)) > vn, MVl(p(n)) > vn, MWl(p(n)) ≤ vn) = o(n−2), (5.10)

where
Ul(p) := {0, . . . , p1} × {p2 − l + 1, . . . , p2},
Vl(p) := {1, . . . , p1} × {−l},
Wl(p) := A(p) ∩ (Z× {−l + 1, . . . , p2 − l}).

Formula (5.9) generalizes (5.2). In the present section we have used the fact that m-dependent
fields satisfy (5.10) with p(n) := (m, m).

6. Example: moving maxima

Below, we use the results from Sections 3 and 4 to describe the asymptotics of partial
maxima for the moving maximum field. We note that approaches to the problem using different
methods can be found in Basrak and Tafro [3] or Jakubowski and Soja-Kukieła [12]. In the first
paper compound Poisson point process approximation is applied, while in the second paper the
authors combine a Bonferroni-like inequality and max-m-approximability.
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In the following, {Zn} is an array of independent, identically distributed random variables
satisfying

P(|Z0| > x) = x−αL(x)

for some index α > 0 and slowly varying function L, and

P(Z0 > x)

P(|Z0| > x)
= p as x → ∞ for some p ∈ [0, 1].

We define
an := inf{y > 0: P(|Z0| > y) ≤ n−d}

and vn := anv with fixed v > 0. Then

nd
P(|Z0| > vn) → v−α as n → ∞.

Let us consider the moving maximum field {Xn} defined as

Xn = sup
j∈Zd

cjZn+j,

where cj ∈R, not all equal to zero, satisfy∑
j∈Zd

|cj|β < ∞ for some 0 < β < α. (6.1)

From Cline [7, Lemma 2.2] it follows that the field {Xn} is well-defined and

lim
x→∞

P(X0 > x)

P(|Z0| > x)
= lim

x→∞
P( supj∈Zd cjZj > x)

P(|Z0| > x)

= lim
x→∞

∑
j∈Zd P(cjZj > x)

P(|Z0| > x)

= p
∑
cj>0

cα
j + q

∑
cj<0

|cj|α, (6.2)

with q := 1 − p.
Since the moving maximum field is max-m-approximable, there exists a phantom distribu-

tion function for {Xn} (see Jakubowski and Soja-Kukieła [12]) and hence the field is weakly
dependent in the sense of (2.2). We will apply Theorem 3.1, with � being the lexicographic
order on Z

d, to describe the asymptotics of partial maxima. Let us observe that the exponent
in (3.2) satisfies

nd
P(X0 > vn, MA(p(n)) ≤ vn)

= nd
P

( ⋃
j∈Zd

{cjZj > vn},
⋂

k∈Zd

{
max

i∈A(p(n))
(ck−iZk) ≤ vn

})

= nd
∑
j∈Zd

P

(
cjZj > vn,

⋂
k∈Zd

{
max

i∈A(p(n))
(ck−iZk) ≤ vn

})
+ o(1)

= nd
∑
j∈Zd

P

(
cjZj > vn ≥ max

i∈A(p(n))
(cj−iZj),

⋂
k 
=j

{
max

i∈A(p(n))
(ck−iZk) ≤ vn

})
+ o(1)

= nd
∑
j∈Zd

P

(
cjZj > vn ≥ max

i∈A(p(n))
(cj−iZj)

)
P

(⋂
k 
=j

{
max

i∈A(p(n))
(ck−iZk) ≤ vn

})
+ o(1),

https://doi.org/10.1017/jpr.2019.69 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.69


On maxima of stationary fields 1229

as n → ∞, where the second equality follows from (6.2) combined with the choice of {vn} and
the last equality is a consequence of the independence of Zj for j ∈Z

d. Note that we have

P

(⋂
k 
=j

{
max

i∈A(p(n))
(ck−iZk) ≤ vn

})
≥ P

( ⋂
k∈Zd

{
max

i∈A(p(n))
(ck−iZk) ≤ vn

})

≥ P(MA(p(n)) ≤ vn)

≥ 1 − o(nd)P(X0 > vn)

= 1 + o(1).

Moreover, for pmin(n) := min{pl(n) : 1 ≤ l ≤ d} and for q(n) ∈N chosen so that

q(n) → ∞, q(n) ≤ pmin(n)/2 and q(n)dnd
P( max{ciZ0 : ‖i‖ > pmin(n)/2} > vn) → 0,

it follows that∣∣∣∣nd
∑
j∈Zd

P

(
cjZj > vn ≥ max

i∈A(p(n))
(cj−iZj)

)
− nd

∑
j∈Zd

P

(
cjZj > vn ≥ sup

0≺i
(cj−iZj)

)∣∣∣∣
≤ nd

∑
j∈Zd

P

(
cjZj > vn, sup

0≺i/∈A(p(n))
(cj−iZj) > vn

)

≤ nd
∑
j∈Zd

P

(
cjZj > vn, sup

‖i‖>pmin(n)
(cj−iZj) > vn

)

≤ nd
∑

‖j‖≤q(n)

P

(
sup

‖i‖>pmin(n)
(cj−iZj) > vn

)
+ nd

∑
‖j‖>q(n)

P(cjZj > vn)

≤ nd(2q(n) + 1)d
P

(
sup

‖i‖>pmin(n)/2
(ciZ0) > vn

)
+ nd

∑
‖j‖>q(n)

P(cjZj > vn).

The first summand on the right-hand side tends to zero due to the choice of q(n) and the second
summand tends to zero by properties (6.1), (6.2), and the definition of vn. We conclude that

nd
P(X0 > vn, MA(p(n)) ≤ vn)

=
(

nd
∑
j∈Zd

P

(
cjZj > vn ≥ sup

0≺i
(cj−iZj)

)
+ o(1)

)
(1 + o(1)) + o(1).

To complete the above calculation, it is sufficient to observe that

nd
∑
j∈Zd

P

(
cjZj > vn ≥ sup

0≺i
(cj−iZj)

)
= nd

∑
j∈Zd

P

(
cjZ0 > vn ≥ sup

i≺j
(ciZ0)

)

= nd
P

(
sup
j∈Zd

(cjZ0) > vn

)

→ (p(c+)α + q(c−)α)v−α,

with c+ := maxi∈Zd max{ci, 0} and c− := maxi∈Zd max{−ci, 0}. By (3.2) we obtain

P(MN(n) ≤ vn) → exp (− (p(c+)α + q(c−)α)v−α) as n → ∞.
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Applying formula (4.2) and property (6.2), we calculate the extremal index of {Xn} as follows:

θ = p(c+)α + q(c−)α

p
∑

cj>0 cα
j + q

∑
cj<0 |cj|α ,

whenever the denominator is positive, which is the only interesting case.
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