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Abstract. Logicians and philosophers of science have proposed various formal criteria for the-
oretical equivalence. In this paper, we examine two such proposals: definitional equivalence and
categorical equivalence. In order to show precisely how these two well-known criteria are related to
one another, we investigate an intermediate criterion called Morita equivalence.

§1. Introduction. Many theories admit different formulations, and these formulations
often bear interesting relationships to one another. One relationship that has received sig-
nificant attention from logicians and philosophers of science is theoretical equivalence.1

In this paper we will examine two formal criteria for theoretical equivalence. The first
criterion, called definitional equivalence, has been known to logicians since the middle of
the twentieth century.2 It was introduced into philosophy of science by Glymour (1971,
1977, 1980). The second criterion is called categorical equivalence. It was first described
by Eilenberg & Mac Lane (1942, 1945), but was only recently introduced into philosophy
of science by Halvorson (2012, 2015) and Weatherall (2015a).

In order to illustrate the relationship between these two criteria, we will consider a
third criterion for theoretical equivalence called Morita equivalence. We will show that
these three criteria form the following hierarchy, where the arrows in the figure mean
“implies.”

Our discussion will allow us to evaluate definitional equivalence against categorical
equivalence. Indeed, it will demonstrate a precise sense in which definitional equivalence
is too strict a criterion for theoretical equivalence, while categorical equivalence is too
liberal. There are theories that are not definitionally equivalent that one nonetheless has
good reason to consider equivalent. And on the other hand, there are theories that are
categorically equivalent that one has good reason to consider inequivalent.

Received: June 15, 2015.
1 See Quine (1975), Sklar (1982), Halvorson (2012, 2013, 2015), Glymour (2013), Van Fraassen

(2014), and Coffey (2014) for discussion of theoretical equivalence in philosophy of science.
2 Artigue, Isambert, Perrin, & Zalc (1978) and de Bouvére (1965) attribute the concept of

definitional equivalence to Montague (1957). Definitional equivalence was certainly familiar to
logicians by the late 1960s, as is evident from the work of de Bouvére (1965), Shoenfield (1967),
and Kanger (1968).
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§2. Many-sorted logic. All of these criteria for theoretical equivalence are most nat-
urally understood in the framework of first-order many-sorted logic. We begin with some
preliminaries about this framework.3

2.1. Syntax. A signature � is a set of sort symbols, predicate symbols, function sym-
bols, and constant symbols. � must have at least one sort symbol. Each predicate symbol
p ∈ � has an arity σ1 × · · · × σn , where σ1, . . . , σn ∈ � are (not necessarily distinct) sort
symbols.4 Likewise, each function symbol f ∈ � has an arity σ1 × · · · × σn → σ , where
σ1, . . . , σn, σ ∈ � are again (not necessarily distinct) sort symbols. Lastly, each constant
symbol c ∈ � is assigned a sort σ ∈ �. In addition to the elements of � we also have a
stock of variables. We use the letters x , y, and z to denote these variables, adding subscripts
when necessary. Each variable has a sort σ ∈ �.

A���-term can be thought of as a “naming expression” in the signature �. Each �-term
has a sort σ ∈ �. The �-terms of sort σ are recursively defined as follows. Every variable
of sort σ is a �-term of sort σ , and every constant symbol c ∈ � of sort σ is also a �-term
of sort σ . Furthermore, if f ∈ � is a function symbol with arity σ1 × · · · × σn → σ and
t1, . . . , tn are�-terms of sorts σ1, . . . , σn , then f (t1, . . . , tn) is a�-term of sort σ . We will
use the notation t (x1, . . . , xn) to denote a �-term in which all of the variables that appear
in t are in the sequence x1, . . . , xn , but we leave open the possibility that some of the xi do
not appear in the term t .

A ���-atom is an expression either of the form s(x1, . . . , xn) = t (x1, . . . , xn), where s
and t are �-terms of the same sort σ ∈ �, or of the form p(t1, . . . , tn), where t1, . . . , tn
are �-terms of sorts σ1, . . . , σn and p ∈ � is a predicate of arity σ1 × · · · × σn . The
���-formulas are then defined recursively as follows.

• Every �-atom is a �-formula.
• If φ is a �-formula, then ¬φ is a �-formula.
• If φ and ψ are�-formulas, then φ → ψ , φ∧ψ , φ∨ψ and φ ↔ ψ are�-formulas.
• If φ is a �-formula and x is a variable of sort σ ∈ �, then ∀σ xφ and ∃σ xφ are

�-formulas.

In addition to the above formulas, we will use the notation ∃σ=1 yφ(x1, . . . , xn, y) to
abbreviate the formula ∃σ y(φ(x1, . . . , xn, y) ∧ ∀σ z(φ(x1, . . . , xn, z) → y = z)). As
above, the notation φ(x1, . . . , xn) will denote a �-formula φ in which all of the free
variables appearing in φ are in the sequence x1, . . . , xn , but we again leave open the
possibility that some of the xi do not appear as free variables in φ. A ���-sentence is a
�-formula that has no free variables.

2.2. Semantics. A���-structure A is an “interpretation” of the symbols in �. In partic-
ular, A satisfies the following conditions.

• Every sort symbol σ ∈ � is assigned a nonempty set Aσ . The sets Aσ are required
to be pairwise disjoint.

• Every predicate symbol p ∈ � of arity σ1 × · · · × σn is interpreted as a subset
pA ⊂ Aσ1 × · · · × Aσn .

3 Our notation follows Hodges (2008). We present the more general case of many-sorted logic,
however, while Hodges only presents single-sorted logic.

4 The symbol σ1 × · · · × σn has no intrinsic meaning. To say that, “p has arity σ1 × · · · × σn”
is simply an abbreviated way of saying that p can be combined with n terms, whose sorts must
respectively be σ1, . . . , σn .
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• Every function symbol f ∈ � of arity σ1 × · · · × σn → σ is interpreted as a
function f A : Aσ1 × · · · × Aσn → Aσ .

• Every constant symbol c ∈ � of sort σ ∈ � is interpreted as an element cA ∈ Aσ .

Given a �-structure A, we will often refer to an element a ∈ Aσ as “an element of sort σ .”
Let A be a �-structure with a1, . . . , an ∈ A elements of sorts σ1, . . . , σn . We let

t (x1, . . . , xn) be a �-term of sort σ , with x1, . . . , xn variables of sorts σ1, . . . , σn , and we
recursively define the element t A[a1, . . . , an] ∈ Aσ . If t is the variable xi , then
t A[a1, . . . , an] = ai , and if t is the constant symbol c ∈ �, then t A[a1, . . . , an] = cA.
Furthermore, if t is of the form f (t1, . . . , tm) where each ti is a �-term of sort τi ∈ � and
f ∈ � is a function symbol of arity τ1 × · · · × τm → σ , then

t A[a1, . . . , an] = f A(
t A
1 [a1, . . . , an], . . . , t A

m [a1, . . . , an]
)
.

One can think of the element t A[a1, . . . , an] ∈ Aσ as the element of the�-structure A that
is denoted by the �-term t (x1, . . . , xn) when a1, . . . , an are substituted for the variables
x1, . . . , xn .

Our next aim is to define when a sequence of elements a1, . . . , an ∈ A satisfy
a �-formula φ(x1, . . . , xn) in the �-structure A. When this is the case we write A �
φ[a1, . . . , an]. We begin by considering �-atoms. Let φ(x1, . . . , xn) be a �-atom with
x1, . . . , xn variables of sorts σ1, . . . , σn and let a1, . . . , an ∈ A be elements of sorts
σ1, . . . , σn . There are two cases to consider. First, if φ(x1, . . . , xn) is the formula
s(x1, . . . , xn) = t (x1, . . . , xn), where s and t are�-terms of sort σ , then A � φ[a1, . . . , an]
if and only if

s A[a1, . . . , an] = t A[a1, . . . , an].

Second, if φ(x1, . . . , xn) is the formula p(t1, . . . , tm), where each ti is a �-term of sort
τi and p ∈ � is a predicate symbol of arity τ1 × · · · × τm , then A � φ[a1, . . . , an] if and
only if

(
t A
1 [a1, . . . , an], . . . , t A

m [a1, . . . , an]
) ∈ pA.

This definition is extended to all �-formulas in the following standard way.

• A � ¬φ[a1, . . . , an] if and only if it is not the case that A � φ[a1, . . . , an].
• A � φ ∧ ψ[a1, . . . , an] if and only if A � φ[a1, . . . , an] and A � ψ[a1, . . . , an].

The cases of ∨, →, and ↔ are defined analogously.
• Suppose that φ(x1, . . . , xn) is ∀σ yψ(x1, . . . , xn, y), where σ ∈ � is a sort symbol.

Then A � φ[a1, . . . , an] if and only if A � ψ[a1, . . . , an, b] for every element
b ∈ Aσ . The case of ∃σ is defined analogously.

If φ is a �-sentence, then A � φ just in case A � φ[], i.e., the empty sequence satisfies φ
in A.

2.3. Relationships between structures. There are different relationships that
�-structures can bear to one another. An isomorphism h : A → B between �-structures
A and B is a family of bijections hσ : Aσ → Bσ for each sort symbol σ ∈ � that satisfies
the following conditions.

• For every predicate symbol p ∈ � of arity σ1 × · · · × σn and all elements
a1, . . . , an ∈ A of sorts σ1, . . . , σn , (a1, . . . , an) ∈ pA if and only if (hσ1(a1), . . . ,
hσn (an)) ∈ pB .
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• For every function symbol f ∈ � of arity σ1 × · · · × σn → σ and all elements
a1, . . . , an ∈ A of sorts σ1, . . . , σn ,

hσ
(

f A(a1, . . . , an)
) = f B(

hσ1(a1), . . . , hσn (an)
)
.

• For every constant symbol c ∈ � of sort σ , hσ (cA) = cB .

When there is an isomorphism h : A → B one says that A and B are isomorphic and
writes A ∼= B.

There is another important relationship that �-structures can bear to one another. An
elementary embedding h : A → B between �-structures A and B is a family of injective
maps hσ : Aσ → Bσ for each sort symbol σ ∈ � that satisfies

A � φ[a1, . . . , an] if and only if B � φ[hσ1(a1), . . . , hσn (an)]

for all �-formulas φ(x1, . . . , xn) and elements a1, . . . , an ∈ A of sorts σ1, . . . , σn .
Given an isomorphism or elementary embedding h : A → B, we will often use
the notation h(a1, . . . , an) to denote the sequence of elements hσ1(a1), . . . , hσn (an).
Every isomorphism is an elementary embedding, but in general the converse does
not hold.

There is an important relationship that can hold between structures of different signa-
tures. Let � ⊂ �+ be signatures and suppose that A is a �+-structure. One obtains a
�-structure A|� by “forgetting” the interpretations of symbols in �+ − �. We call A|�
the reduct of A to the signature �, and we call A an expansion of A|� to the signature
�+. Note that in general a �-structure will have more than one expansion to the signa-
ture �+.

We can now discuss first-order theories in many-sorted logic. A ���-theory T is a set of
�-sentences. The sentences φ ∈ T are called the axioms of T . A�-structure M is a model
of a �-theory T if M � φ for all φ ∈ T . A theory T entails a sentence φ, written T � φ,
if M � φ for every model M of T .

We begin our discussion of theoretical equivalence with the following preliminary
criterion.

DEFINITION. Theories T1 and T2 are logically equivalent if they have the same class of
models.

One can easily verify that T1 and T2 are logically equivalent if and only if {φ : T1 �
φ} = {ψ : T2 � ψ}.

§3. Definitional equivalence. Logical equivalence is a particularly strict criterion for
theoretical equivalence. Indeed, theories can only be logically equivalent if they are for-
mulated in the same signature. There are many cases, however, of theories in different
signatures that are nonetheless intuitively equivalent. For example, the theory of groups
can be formulated in a signature with a binary operation · and a constant symbol e, or it
can be formulated in a signature with a binary operation · and a unary function −1 (Barrett
& Halvorson, 2015a). Similarly, the theory of linear orders can be formulated in a signature
with the binary relation<, or it can be formulated in a signature with the binary relation ≤.
Since logical equivalence does not capture any sense in which these theories are equivalent,
logicians and philosophers of science have proposed more general criteria for theoretical
equivalence.
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One such criterion is definitional equivalence. This criterion is well known among
logicians, and many results about it have been proven.5 The basic idea behind definitional
equivalence is simple. Theories T1 and T2 are definitionally equivalent if T1 can define all
of the symbols that T2 uses, and in a compatible way, T2 can define all of the symbols that
T1 uses. In order to state this criterion precisely, we need to do some work.

3.1. Definitional extensions. We first need to formalize the concept of a definition. Let
� ⊂ �+ be signatures and let p ∈ �+ −� be a predicate symbol of arity σ1 × · · · × σn .
An explicit definition of p in terms of��� is a �+-sentence of the form

∀σ1 x1 . . .∀σn xn
(

p(x1, . . . , xn) ↔ φ(x1, . . . , xn)
)
,

where φ(x1, . . . , xn) is a �-formula, and the variables x1, . . . , xn are pairwise disjoint.
Note that an explicit definition of p in terms of � can only exist if σ1, . . . , σn ∈ �. An
explicit definition of a function symbol f ∈ �+ − � of arity σ1 × · · · × σn → σ is a
�+-sentence of the form

∀σ1 x1 . . .∀σn xn∀σ y
(

f (x1, . . . , xn) = y ↔ φ(x1, . . . , xn, y)
)

(1)

and an explicit definition of a constant symbol c ∈ �+ −� of sort σ is a �+-sentence of
the form

∀σ y
(
y = c ↔ ψ(y)

)
, (2)

where φ(x1, . . . , xn, y) and ψ(y) are both �-formulas. Note again that these explicit
definitions of f and c can only exist if σ1, . . . , σn, σ ∈ �.

Although they are �+-sentences, (1) and (2) have consequences in the signature �. In
particular, (1) and (2) imply the following sentences, respectively:

∀σ1 x1 . . .∀σn xn∃σ=1 yφ(x1, . . . , xn, y)

∃σ=1 yψ(y).

These two sentences are called the admissibility conditions for the explicit definitions (1)
and (2).

A definitional extension of a �-theory T to the signature �+ is a theory

T + = T ∪ {δs : s ∈ �+ −�}
that satisfies the following two conditions. First, for each symbol s ∈ �+ −� the sentence
δs is an explicit definition of s in terms of �, and second, if s is a constant symbol or a
function symbol and αs is the admissibility condition for δs , then T � αs .

3.2. Three results. A definitional extension of a theory “says no more” than the origi-
nal theory. There are a number of ways to make this idea precise. Of particular interest to us
will be the following three. The reader is encouraged to consult Hodges (2008, pp. 58–62)
for proofs of these results.

The first result captures a sense in which the models of a definitional extension T + are
“determined” by the models of the original theory T . In order to specify a model of T +, one
needs to interpret all of the symbols in �+. The interpretation of the symbols in �+ −�,
however, “comes for free” given an interpretation of the symbols in �.

5 For example, see de Bouvére (1965), Kanger (1968), Pinter (1978), Pelletier & Urquhart (2003),
Andréka, Madarász, & Németi (2005), Friedman & Visser (2014), and Barrett & Halvorson
(2015a).
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THEOREM 3.1. Let � ⊂ �+ be signatures and T a �-theory. If T + is a definitional
extension of T to �+, then every model M of T has a unique expansion M+ that is a
model of T +.

Theorem 3.1 provides a semantic sense in which a definitional extension T + “says no
more” than the original theory T . The models of T + are completely determined by the
models of T .

In order to state the second result, we need to introduce some terminology. Let � ⊂ �+
be signatures. A �+-theory T + is an extension of a �-theory T if T � φ implies that
T + � φ for every�-sentence φ. A�+-theory T + is a conservative extension of a�-theory
T if T � φ if and only if T + � φ for every �-sentence φ. All conservative extensions are
extensions, but in general the converse does not hold. We have the following simple result
about definitional extensions.

THEOREM 3.2. If T + is a definitional extension of T, then T + is a conservative extension
of T .

If T + is a conservative extension of T , then T + entails precisely the same �-sentences
as T . Theorem 3.2 therefore shows that a definitional extension T + “says no more” in the
signature � than the original theory T does.

The third result shows something stronger. If T + is a definitional extension of T , then
every �+-formula φ(x1, . . . , xn) can be “translated” into an equivalent �-formula φ∗
(x1, . . . , xn). The theory T + might use some new language that T did not use, but every-
thing that T + says with this new language can be “translated” back into the old language
of T . This result captures another robust sense in which the theory T + “says no more” than
the theory T .

THEOREM 3.3. Let � ⊂ �+ be signatures and T a �-theory. If T + is a definitional
extension of T to �+ then for every �+-formula φ(x1, . . . , xn) there is a �-formula
φ∗(x1, . . . , xn) such that T + � ∀σ1 x1 . . .∀σn xn(φ(x1, . . . , xn) ↔ φ∗(x1, . . . , xn)).

These results capture three different senses in which a definitional extension has the
same expressive power as the original theory. With this in mind, we have the resources
necessary to state definitional equivalence.

DEFINITION. Let T1 be a �1-theory and T2 be a �2-theory. T1 and T2 are definitionally
equivalent if there are theories T +

1 and T +
2 that satisfy the following three conditions:

• T +
1 is a definitional extension of T1,

• T +
2 is a definitional extension of T2,

• T +
1 and T +

2 are logically equivalent �1 ∪�2-theories.

One often says that T1 and T2 are definitionally equivalent if they have a “common
definitional extension.” Theorems 3.1, 3.2, and 3.3 demonstrate a robust sense in which
theories with a common definitional extension “say the same thing,” even though they
might be formulated in different signatures.

One trivially sees that if two theories are logically equivalent, then they are definitionally
equivalent. But there are many examples of theories that are definitionally equivalent
and not logically equivalent. The theory of groups formulated in the signature {·, e} is
definitionally equivalent to the theory of groups formulated in the signature {·,−1}. And
likewise, the theory of linear orders formulated in the signature {<} is definitionally equiva-
lent to the theory of linear orders formulated in the signature {≤}. Definitional equivalence
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is therefore a weaker criterion for theoretical equivalence than logical equivalence. It is
capable of capturing a sense in which theories formulated in different signatures might
nonetheless be equivalent.

§4. Morita equivalence. Glymour (1971) claims that definitional equivalence is a
necessary condition on the equivalence of scientific theories. However, there are several
reasons to believe that this criterion is too strict.

First, it is frequently argued that many-sorted logic is reducible to single-sorted logic
(see Schmidt, 1951; Manzano, 1996). What is actually shown in these arguments is that for
any many-sorted theory T , a corresponding single-sorted theory T ′ can be constructed. But
what is the relation between T and T ′? Obviously, the two theories T and T ′ cannot be def-
initionally equivalent, since that criterion applies only to single-sorted theories. Therefore,
to make sense of the claim that many-sorted logic can be reduced to single-sorted logic,
we need a generalization of definitional equivalence (see Barrett & Halvorson, 2015b).

Second, there are well-known examples of theories that could naturally be formulated
either within a single-sorted framework, or within a many-sorted framework—and we need
a generalization of definitional equivalence to explain in what sense these two formulations
are equivalent. For example, category theory can be formulated as a many-sorted theory,
using both a sort of “objects” and a sort of “arrows” (Eilenberg & Mac Lane, 1942,
1945); and category theory can also be formulated as a single-sorted theory using only
“arrows” (Mac Lane, 1948).6 These two formulations of category theory are in some sense
equivalent, and we would like an account of this more general notion of equivalence.

Third, definitional equivalence is too restrictive even for single-sorted theories. For
example, affine geometry can be formalized in a way that quantifies over points; or it can
be formalized in a way that quantifies over lines (see Schwabhäuser, Szmielew, & Tarski,
1983). But saying that the point theory (Tp) and the line theory (T	) both are formulations
of the same theory indicates again that Tp and T	 are in some sense equivalent—although
Tp and T	 are not definitionally equivalent. Indeed, the smallest model of Tp has five
elements, which we can think of as the four corners of a square, and its center point. On the
other hand, the smallest model of T	 has six elements. But if Tp and T	 were definitionally
equivalent, then every model M of T	 would be the reduct of an expansion of a model M ′
of Tp (de Bouvére, 1965). In particular, we would have |M | = |M ′|, which entails that T	
has a model of cardinality five—a contradiction. Therefore, Tp and T	 are not definitionally
equivalent.

Finally, even if we ignore the complications mentioned above, and even if we assume
that each many-sorted theory T can be replaced by a single-sorted variant T ′ (by the stan-
dard procedure of unifying sorts), definitional equivalence is still inadequate. For example,
let T1 be the objects-and-arrows formulation of category theory, and let T2 be the arrows-
only formulation of category theory. Intuitively, T1 and T2 are equivalent theories; but, as
we will now show, their single-sorted versions T ′

1 and T ′
2 are not definitionally equivalent.

Indeed, T ′
2 = T2, since T2 is single-sorted. However, T ′

1 has a single sort that includes both
objects and arrows. Thus, while T ′

2 has a model with one element (i.e., the category with a
single arrow), T ′

1 has no models with one element (since every model of T ′
1 has at least one

object and at least one arrow). Therefore, T ′
1 and T ′

2 are not definitionally equivalent.
These examples all show that definitional equivalence does not capture the sense in

which some theories are equivalent. If one wants to capture this sense, one needs a more

6 Freyd (1964, p. 5) and Mac Lane (1971, p. 9) also describe this alternative formulation.
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general criterion for theoretical equivalence than definitional equivalence. Our aim here
is to introduce one such criterion. We will call it Morita equivalence.7 This criterion is
a natural generalization of definitional equivalence. In fact, Morita equivalence is essen-
tially the same as definitional equivalence, except that it allows one to define new sort
symbols in addition to new predicate symbols, function symbols, and constant symbols.
In order to state the criterion precisely, we again need to do some work. We begin by
defining the concept of a Morita extension. We then make precise the sense in which Morita
equivalence is a natural generalization of definitional equivalence by proving analogues of
Theorems 3.1, 3.2, and 3.3.

4.1. Morita extensions. As we did for predicates, functions, and constants, we need
to say how to define new sorts. Let � ⊂ �+ be signatures and consider a sort symbol
σ ∈ �+ − �. One can define the sort σ as a product sort, a coproduct sort, a subsort, or
a quotient sort. In each case, one defines σ using old sorts in � and new function symbols
in �+ − �. These new function symbols specify how the new sort σ is related to the old
sorts in �. We describe these four cases in detail.

In order to define σ as a product sort, one needs two function symbols π1, π2 ∈ �+ −�
with π1 of arity σ → σ1, π2 of arity σ → σ2, and σ1, σ2 ∈ �. The function symbols
π1 and π2 serve as the “canonical projections” associated with the product sort σ . A sort
definition of the symbols σ, π1, and π2 as a product sort in terms of � is a �+-sentence of
the form

∀σ1 x∀σ2 y∃σ=1z(π1(z) = x ∧ π2(z) = y).

One should think of a product sort σ as the sort whose elements are ordered pairs, where
the first element of each pair is of sort σ1 and the second is of sort σ2.

One can also define σ as a coproduct sort. One again needs two function symbols
ρ1, ρ2 ∈ �+ − � with ρ1 of arity σ1 → σ , ρ2 of arity σ2 → σ , and σ1, σ2 ∈ �. The
function symbols ρ1 and ρ2 are the “canonical injections” associated with the coproduct
sort σ . A sort definition of the symbols σ, ρ1, and ρ2 as a coproduct sort in terms of � is a
�+-sentence of the form

∀σ z
(∃σ1=1x(ρ1(x) = z) ∨ ∃σ2=1 y(ρ2(y) = z)

) ∧ ∀σ1 x∀σ2 y¬(
ρ1(x) = ρ2(y)

)
.

One should think of a coproduct sort σ as the disjoint union of the elements of sorts σ1
and σ2.

When defining a new sort σ as a product sort or a coproduct sort, one uses two sort
symbols in � and two function symbols in �+ −�. The next two ways of defining a new
sort σ only require one sort symbol in � and one function symbol in �+ −�.

In order to define σ as a subsort, one needs a function symbol i ∈ �+ − � of arity
σ → σ1 with σ1 ∈ �. The function symbol i is the “canonical inclusion” associated with

7 This criterion is already familiar in certain circles of logicians. See Andréka, Madarász, & Németi
(2008) and Mere & Veloso (1992). The name “Morita equivalence” descends from Kiiti Morita’s
work on rings with equivalent categories of modules. Two rings R and S are called Morita
equivalent just in case there is an equivalence Mod(R) ∼= Mod(S) between their categories of
modules. The notion was generalized from rings to algebraic theories by Dukarm (1988). See
also Adámek, Sobral, & Sousa (2006). More recently, topos theorists have defined theories to
be Morita equivalent just in case their classifying toposes are equivalent (Johnstone, 2003). See
Tsementzis (2015) for a comparison of the topos-theoretic notion of Morita equivalence with
ours.
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the subsort σ . A sort definition of the symbols σ and i as a subsort in terms of � is a
�+-sentence of the form

∀σ1 x
(
φ(x) ↔ ∃σ z(i(z) = x)

) ∧ ∀σ z1∀σ z2
(
i(z1) = i(z2) → z1 = z2

)
, (3)

where φ(x) is a �-formula. One can think of the subsort σ as consisting of “the elements
of sort σ1 that are φ.” The sentence (3) entails the �-sentence ∃σ1 xφ(x). As before, we
will call this �-sentence the admissibility condition for the definition (3).

Lastly, in order to define σ as a quotient sort one needs a function symbol ε ∈ �+ −�
of arity σ1 → σ with σ1 ∈ �. A sort definition of the symbols σ and ε as a quotient sort
in terms of � is a �+-sentence of the form

∀σ1 x1∀σ1 x2
(
ε(x1) = ε(x2) ↔ φ(x1, x2)

) ∧ ∀σ z∃σ1 x(ε(x) = z), (4)

where φ(x1, x2) is a �-formula. This sentence defines σ as a quotient sort that is obtained
by “quotienting out” the sort σ1 with respect to the formula φ(x1, x2). The sort σ should be
thought of as the set of “equivalence classes of elements of σ1 with respect to the relation
φ(x1, x2).” The function symbol ε is the “canonical projection” that maps an element to
its equivalence class. One can verify that the sentence (4) implies that φ(x1, x2) is an
equivalence relation. In particular, it entails the following �-sentences:

∀σ1 x(φ(x, x))

∀σ1 x1∀σ1 x2(φ(x1, x2) → φ(x2, x1))

∀σ1 x1∀σ1 x2∀σ1 x3
(
(φ(x1, x2) ∧ φ(x2, x3)) → φ(x1, x3)

)
.

These �-sentences are the admissibility conditions for the definition (4).
Now that we have presented the four ways of defining new sort symbols, we can define

the concept of a Morita extension. A Morita extension is a natural generalization of a
definitional extension. The only difference is that now one is allowed to define new sort
symbols. Let � ⊂ �+ be signatures and T a �-theory. A Morita extension of T to the
signature �+ is a �+-theory

T + = T ∪ {δs : s ∈ �+ −�}
that satisfies the following conditions. First, for each symbol s ∈ �+ − � the sentence δs

is an explicit definition of s in terms of �. Second, if σ ∈ �+ − � is a sort symbol and
f ∈ �+−� is a function symbol that is used in the sort definition of σ , then δ f = δσ . (For
example, if σ is defined as a product sort with projections π1 and π2, then δσ = δπ1 = δπ2 .)
And third, if αs is an admissibility condition for a definition δs , then T � αs .

Note that unlike a definitional extension of a theory, a Morita extension can have more
sort symbols than the original theory.8 The following is a particularly simple example of a
Morita extension.

8 Also note that if T + is a Morita extension of T to �+, then there are restrictions on the arities of
predicates, functions, and constants in �+ − �. If p ∈ �+ − � is a predicate symbol of arity
σ1 × · · · × σn , we immediately see that σ1, . . . , σn ∈ �. Taking a single Morita extension does
not allow one to define predicate symbols that apply to sorts that are not in �. One must take
multiple Morita extensions to do this. Likewise, any constant symbol c ∈ �+ − � must be of
sort σ ∈ �. And a function symbol f ∈ �+ −� must either have arity σ1 × · · · × σn → σ with
σ1, . . . , σn, σ ∈ �, or f must be one of the function symbols that appears in the definition of a
new sort symbol σ ∈ �+ −�.
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EXAMPLE 4.1. Let � = {σ, p} and �+ = {σ, σ+, p, i} be a signatures with σ and σ+
sort symbols, p a predicate symbol of arity σ , and i a function symbol of arity σ+ → σ .
Consider the�-theory T = {∃σ xp(x)}. The following�+-sentence defines the sort symbol
σ+ as the subsort consisting of “the elements that are p.”

∀σ x
(

p(x) ↔ ∃σ+ z(i(z) = x)
) ∧ ∀σ+ z1∀σ+ z2

(
i(z1) = i(z2) → z1 = z2

)
(δσ+ )

The�+-theory T + = T ∪{δσ+} is a Morita extension of T to the signature�+. The theory
T + adds to the theory T the ability to quantify over the set of “things that are p.”

4.2. Three results. As with a definitional extension, a Morita extension “says no
more” than the original theory. We will make this idea precise by proving analogues of
Theorems 3.1, 3.2, and 3.3. These three results also demonstrate how closely related the
concept of a Morita extension is to that of a definitional extension.

Theorem 3.1 generalizes in a perfectly natural way. When T + is a Morita extension of
T , the models of T + are “determined” by the models of T .

THEOREM 4.2. Let � ⊂ �+ be signatures and T a �-theory. If T + is a Morita extension
of T to �+, then every model M of T has a unique expansion (up to isomorphism) M+
that is a model of T +.

Before proving Theorem 4.2, we introduce some notation and prove a lemma. Suppose
that a �+-theory T + is a Morita extension of a �-theory T . Let M and N be models of
T + with h : M |� → N |� an elementary embedding between the �-structures M |� and
N |� . The elementary embedding h naturally induces a map h+ : M → N between the
�+-structures M and N .

We know that h is a family of maps hσ : Mσ → Nσ for each sort σ ∈ �. In order to
describe h+, we need to describe the map h+

σ : Mσ → Nσ for each sort σ ∈ �+. If σ ∈ �,
we simply let h+

σ = hσ . On the other hand, when σ ∈ �+ − �, there are four cases to
consider. We describe h+

σ in the cases where the theory T + defines σ as a product sort or a
subsort. The coproduct and quotient sort cases are described analogously.

First, suppose that T + defines σ as a product sort. Let π1, π2 ∈ �+ be the projections of
arity σ → σ1 and σ → σ2 with σ1, σ2 ∈ �. The definition of the function h+

σ is suggested
by the following diagram.

Mσ

Mσ1 Nσ1

Nσ

Mσ2 Nσ2

h+
σ

πM
1

h+
σ1 π N

1

πM
2

h+
σ2

π N
2

Let m ∈ Mσ . We define h+
σ (m) to be the unique n ∈ Nσ that satisfies both π N

1 (n) =
h+
σ1

◦ πM
1 (m) and π N

2 (n) = h+
σ2

◦ πM
2 (m). We know that such an n exists and is unique

because N is a model of T + and T + defines the symbols σ , π1, and π2 to be a product
sort. One can verify that this definition of h+

σ makes the above diagram commute.
Suppose, on the other hand, that T + defines σ as the subsort of “elements of sort σ1 that

are φ.” Let i ∈ �+ be the inclusion map of arity σ → σ1 with σ1 ∈ �. As above, the
definition of h+

σ is suggested by the following diagram.
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Mσ

Mσ1 Nσ1

Nσ
h+
σ

i M h+
σ1 i N

Let m ∈ Mσ . We see that following implications hold:

M � φ[i M (m)] ⇒ M |� � φ[i M (m)]

⇒ N |� � φ[h+
σ1
(i M (m))] ⇒ N � φ[h+

σ1
(i M (m))].

The first and third implications hold since φ(x) is a �-formula, and the second holds
because hσ1 = h+

σ1
and h is an elementary embedding. T + defines the symbols i and σ

as a subsort and M is a model of T +, so it must be that M � φ[i M (m)]. By the above
implications, we see that N � φ[h+

σ1
(i M (m))]. Since N is also a model of T +, there is a

unique n ∈ Nσ that satisfies i N (n) = h+
σ1
(i M (m)). We define h+

σ (m) = n. This definition
of h+

σ again makes the above diagram commute.
When T + defines σ as a coproduct sort or a quotient sort one describes the map h+

σ

analogously. For the purposes of proving Theorem 4.2, we need the following simple
lemma about this map h+.

LEMMA 4.3. If h : M |� → N |� is an isomorphism, then h+ : M → N is an
isomorphism.

Proof. We know that hσ : Mσ → Nσ is a bijection for each σ ∈ �. Using this fact
and the definition of h+, one can verify that h+

σ : Mσ → Nσ is a bijection for each
sort σ ∈ �+. So h+ is a family of bijections. And furthermore, the commutativity of the
above diagrams implies that h+ preserves any function symbols that are used to define
new sorts.

It only remains to check that h+ preserves predicates, functions, and constants that
have arities and sorts in �. Since h : M |� → N |� is a isomorphism, we know that
h+ preserves the symbols in �. So let p ∈ �+ − � be a predicate symbol of arity
σ1 × · · · × σn with σ1, . . . , σn ∈ �. There must be a �-formula φ(x1, . . . , xn) such that
T + � ∀σ1 x1 . . .∀σn xn(p(x1, . . . , xn) ↔ φ(x1, . . . , xn)). We know that h : M |� → N |�
is an elementary embedding, so in particular it preserves the formula φ(x1, . . . , xn). This
implies that (m1, . . . ,mn) ∈ pM if and only if (hσ1(m1), . . . , hσn (mn)) ∈ pN . Since
h+
σi

= hσi for each i = 1, . . . , n, it must be that h+ also preserves the predicate p. An
analogous argument demonstrates that h+ preserves functions and constants. �

We now turn to the proof of Theorem 4.2.

Proof of Theorem 4.2. Let M be a model of T . First note that if M+ exists, then it is
unique up to isomorphism. For if N is a model of T + with N |� = M , then by letting h be
the identity map (which is an isomorphism) Lemma 4.3 implies that M+ ∼= N . We need
only define the�+-structure M+. To guarantee that M+ is an expansion of M we interpret
every symbol in � the same way that M does. We need to say how the symbols in �+ −�
are interpreted. There are a number of cases to consider.

Suppose that p ∈ �+ −� is a predicate symbol of arity σ1 ×· · ·×σn with σ1, . . . , σn ∈
�. There must be a �-formula φ(x1, . . . , xn) such that T + � ∀σ1 x1 . . .∀σn xn

(p(x1, . . . , xn) ↔ φ(x1, . . . , xn)). We define the interpretation of the symbol p in M+
by letting (a1, . . . , an) ∈ pM+

if and only if M � φ[a1, . . . , an]. It is easy to see that this
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definition of pA implies that M+ � δp. The cases of function and constant symbols are
handled similarly.

Let σ ∈ �+−� be a sort symbol. We describe the cases where T + defines σ as a product
sort or a subsort. The coproduct and quotient sort cases follow analogously. Suppose first
that σ is defined as a product sort with π1 and π2 the projections of arity σ → σ1 and
σ → σ2, respectively. We define M+

σ = M+
σ1

× M+
σ2

with πM+
1 : M+

σ → M+
σ1

and πM+
2 :

M+
σ → M+

σ2
the canonical projections. One can easily verify that M+ � δσ . On the other

hand, suppose that σ is defined as a subsort with defining �-formula φ(x) and inclusion i
of arity σ → σ1. We define M+

σ = {a ∈ Mσ1 : M � φ[a]} with i M+
: M+

σ → M+
σ1

the
inclusion map. One can again verify that M+ � δσ . �

We have shown that the exact analogue of Theorem 3.1 holds for Morita extensions.
Theorem 3.2 also generalizes in a perfectly natural way. Indeed, the generalization follows
as a simple corollary to Theorem 4.2.

THEOREM 4.4. If T + is a Morita extension of T, then T + is a conservative extension of T .

Proof. Suppose that T + is not a conservative extension of T . One can easily see that
T � φ implies that T + � φ for every �-sentence φ. So there must be some �-sentence φ
such that T + � φ, but T �� φ. This implies that there is a model M of T such that M �
¬φ. This model M has no expansion that is a model of T + since T + � φ, contradicting
Theorem 4.2. �

Theorems 3.1 and 3.2 therefore generalize naturally from definitional extensions to
Morita extensions. In order to generalize Theorem 3.3, however, we need to do some work.
Theorem 3.3 said that if T + is a definitional extension of T to �+, then for every �+-
formula φ(x1, . . . , xn) there is a corresponding �-formula φ∗(x1, . . . , xn) that is equiva-
lent to φ(x1, . . . , xn) according to the theory T +. The following example demonstrates that
this result does not generalize to the case of Morita extensions in a perfectly straightforward
manner.

EXAMPLE 4.5. Recall the theories T and T + from Example 4.1 and consider the �+-
formula φ(x, z) defined by i(z) = x. One can easily see that there is no�-formula φ∗(x, z)
that is equivalent to φ(x, z) according to the theory T +. Indeed, the variable z cannot
appear in any �-formula since it is of sort σ+ ∈ �+ −�. A �-formula simply cannot say
how variables with sorts in � relate to variables with sorts in �+.

In order to generalize Theorem 3.3, therefore, we need a way of specifying how variables
with sorts in�+ −� relate to variables with sorts in�. We do this by defining the concept
of a “code.”9 Let� ⊂ �+ be signatures with T a�-theory and T + a Morita extension of T
to �+. A code for the variables x1, . . . , xn of sorts σ1, . . . , σn ∈ �+ −� is a �+-formula

ξ1(x1, y11, y12) ∧ · · · ∧ ξn(xn, yn1, yn2),

where the conjuncts ξi are defined as follows. Suppose that T + defines σi as a product
sort with π1 and π2 the projections of arity σi → σi1 and σi → σi2. The conjunct
ξi (xi , yi1, yi2) is then the �+-formula π1(xi ) = yi1 ∧ π2(xi ) = yi2, where yi1 and yi2
are variables of sorts σi1, σi2 ∈ �. On the other hand, suppose that T + defines σi as
a coproduct sort with injections ρ1 and ρ2 of arity σi1 → σi and σi2 → σi . Then the

9 One can compare this concept with the one employed by Szczerba (1977).
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conjunct ξi is either the �+-formula ρ1(yi1) = xi or the �+-formula ρ2(yi2) = xi , where
yi1 and yi2 are again variables of sorts σi1, σi2 ∈ �.

The subsort and quotient sort cases are handled analogously. Suppose that T + defines
σi as a subsort with i the inclusion map of arity σi → σi1. Then the conjunct ξi is the
�+-formula i(xi ) = yi1, where yi1 is a variable of sort σi1 ∈ �. And finally, suppose that
T + defines σi as a quotient sort with ε the projection of arity σi1 → σi . The conjunct ξi is
then the �+-formula ε(yi1) = xi , where yi1 is again a variable of sort σi1 ∈ �. Given the
empty sequence of variables, we let the empty code be the tautology ∃σ x(x = x), where
σ ∈ � is a sort symbol.

Given the conjuncts ξ1, . . . , ξn , we will use the notation ξ(x1, . . . , yn2) to denote the
code ξ1(x1, y11, y12) ∧ · · · ∧ ξn(xn, yn1, yn2) for the variables x1, . . . , xn . Note that the
variables yi1 and yi2 have sorts in � for each i = 1, . . . , n. One should think of a code
ξ(x1, . . . , yn2) for x1, . . . , xn as encoding one way that the variables x1, . . . , xn with sorts
in �+ − � might be related to variables y11, . . . , yn2 that have sorts in �. One additional
piece of notation will be useful in what follows. Given a �+-formula φ, we will write
φ(x1, . . . , xn, x1, . . . , xm) to indicate that the variables x1, . . . , xn have sorts σ1, . . . , σn ∈
�+ −� and that the variables x1, . . . , xm have sorts σ 1, . . . , σm ∈ �.

We can now state our generalization of Theorem 3.3. One proves this result by induction
on the complexity of φ(x1, . . . , xn). The proof has been placed in an appendix.

THEOREM 4.6. Let� ⊂ �+ be signatures and T a�-theory. Suppose that T + is a Morita
extension of T to �+ and that φ(x1, . . . , xn, x1, . . . , xm) is a �+-formula. Then for every
code ξ(x1, . . . , yn2) for the variables x1, . . . , xn there is a �-formula φ∗(x1, . . . , xm,
y11, . . . , yn2) such that

T + � ∀σ1 x1 . . .∀σn xn∀σ 1 x1 . . .∀σm xm∀σ11 y11 . . .∀σn2 yn2
(
ξ(x1, . . . , yn2) →

(φ(x1, . . . xn, x1, . . . , xm) ↔ φ∗(x1, . . . , xm, y11, . . . , yn2))
)
.

The idea behind Theorem 4.6 is simple. Although one might not initially be able to
translate a �+-formula φ into an equivalent �-formula φ∗, such a translation is possible
after one specifies how the variables in φ with sorts in�+ −� are related to variables with
sorts in �. Theorem 4.6 has the following immediate corollary.

COROLLARY 4.7. Let � ⊂ �+ be signatures and T a �-theory. If T + is a Morita
extension of T to �+, then for every �+-sentence φ there is a �-sentence φ∗ such that
T + � φ ↔ φ∗.

Proof. Let φ be a �+-sentence and consider the empty code ξ . Theorem 4.6 implies
that there is a �-sentence φ∗ such that T + � ξ → (φ ↔ φ∗). Since ξ is a tautology we
trivially have that T + � φ ↔ φ∗. �

Theorems 4.2, 4.4, and 4.5 capture different senses in which a Morita extension of a
theory “says no more” than the original theory. The definition of Morita equivalence is
analogous to definitional equivalence.

DEFINITION. Let T1 be a�1-theory and T2 a�2-theory. T1 and T2 are Morita equivalent if
there are theories T 1

1 , . . . , T n
1 and T 1

2 , . . . , T m
2 that satisfy the following three conditions:

• Each theory T i+1
1 is a Morita extension of T i

1 ,

• Each theory T i+1
2 is a Morita extension of T i

2 ,
• T n

1 and T m
2 are logically equivalent �-theories with �1 ∪�2 ⊂ �.
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Two theories are Morita equivalent if they have a “common Morita extension.” The
situation can be pictured as follows, where each arrow in the figure indicates a Morita
extension.

At first glance, Morita equivalence might strike one as different from definitional equiv-
alence in an important way. To show that theories are Morita equivalent, one is allowed to
take any finite number of Morita extensions of the theories. On the other hand, to show that
two theories are definitionally equivalent, it appears that one is only allowed to take one
definitional extension of each theory. One might worry that Morita equivalence is therefore
not perfectly analogous to definitional equivalence.

Fortunately, this is not the case. Theorem 3.3 implies that if theories T1, . . . , Tn are such
that each Ti+1 is a definitional extension of Ti , then Tn is in fact a definitional extension
of T1. (One can easily verify that this is not true of Morita extensions.) To show that two
theories are definitionally equivalent, therefore, one actually is allowed to take any finite
number of definitional extensions of each theory.

If two theories are definitionally equivalent, then they are trivially Morita equivalent.
Unlike definitional equivalence, however, Morita equivalence is capable of capturing a
sense in which theories with different sort symbols are equivalent. The following example
demonstrates that Morita equivalence is a more liberal criterion for theoretical equivalence.

EXAMPLE 4.8. Let �1 = {σ1, p, q} and �2 = {σ2, σ3} be signatures with σi sort
symbols, and p and q predicate symbols of arity σ1. Let T1 be the �1-theory that says: p
and q are nonempty, mutually exclusive, and exhaustive. Let T2 be the empty theory in �2.
Since the signatures �1 and �2 have different sort symbols, T1 and T2 can’t possibly be
definitionally equivalent. Nonetheless, it’s easy to see that T1 and T2 are Morita equivalent.
Let� = �1 ∪�2 ∪{i2, i3} be a signature with i2 and i3 function symbols of arity σ2 → σ1
and σ3 → σ1. Consider the following �-sentences.

∀σ1 x
(

p(x) ↔ ∃σ2 y(i2(y) = x)
)

∧ ∀σ2 y1∀σ2 y2
(
i2(y1) = i2(y2) → y1 = y2

) (δσ2 )

∀σ1 x
(
q(x) ↔ ∃σ3 z(i3(z) = x)

)

∧ ∀σ3 z1∀σ3 z2
(
i3(z1) = i3(z2) → z1 = z2

) (δσ3 )

∀σ1 x
(∃σ2=1 y(i2(y) = x) ∨ ∃σ3=1z(i3(z) = x)

)

∧ ∀σ2 y∀σ3 z¬(
i2(y) = i3(z)

) (δσ1 )

∀σ1 x
(

p(x) ↔ ∃σ2 y(i2(y) = x)
)

(δp)

∀σ1 x
(
q(x) ↔ ∃σ3 z(i3(z) = x)

)
(δq )

The�-theory T 1
1 = T1 ∪{δσ2 , δσ3} is a Morita extension of T1 to the signature�. It defines

σ2 to be the subsort of “elements that are p” and σ3 to be the subsort of “elements that are
q.” The theory T 1

2 = T2 ∪{δσ1} is a Morita extension of T2 to the signature�2 ∪{σ1, i2, i3}.
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It defines σ1 to be the coproduct sort of σ2 and σ3. Lastly, the�-theory T 2
2 = T 1

2 ∪{δp, δq}
is a Morita extension of T 1

2 to the signature �. It defines the predicates p and q to apply
to elements in the “images” of i2 and i3, respectively. One can verify that T 1

1 and T 2
2 are

logically equivalent, so T1 and T2 are Morita equivalent.

§5. Categorical equivalence. Morita equivalence captures a clear and robust sense
in which theories might be equivalent, but it is a difficult criterion to apply outside of
the framework of first-order logic. Indeed, without a formal language one does not have
the resources to say what an explicit definition is. Questions of equivalence and inequiv-
alence of theories, however, still come up outside of this framework. It is well known,
for example, that there are different ways of formulating the theory of smooth manifolds
(Nestruev, 2002). There are also different formulations of the theory of topological spaces
(Kuratowski, 1966). None of these formulations are first-order theories. Physical theories
too are rarely formulated in first-order logic, and there are many pairs of physical theories
that are often considered equivalent.10

Morita equivalence is incapable of capturing any sense in which these theories are
equivalent. We need a criterion for theoretical equivalence that is applicable outside the
framework of first-order logic. Categorical equivalence is one such criterion.11 It was first
described by Eilenberg & Mac Lane (1942, 1945), but was only recently introduced into
philosophy of science by Halvorson (2012, 2015) and Weatherall (2015a). In this section,
we describe categorical equivalence and then show how it is related to Morita equivalence.

Categorical equivalence is motivated by the following simple observation: First-order
theories have categories of models. A category C is a collection of objects with arrows
between the objects that satisfy two basic properties. First, there is an associative com-
position operation ◦ defined on the arrows of C , and second, every object c in C has an
identity arrow 1c : c → c. If T is a �-theory, we will use the notation Mod(T ) to denote
the category of models of T . An object in Mod(T ) is a model M of T . For the arrows of
Mod(T ), we have a couple of salient choices. On the one hand, we could choose arrows to
be homomorphisms, i.e., f : M → N is a function (or family of functions) that preserves
the extensions of the terms in the signature �. On the other hand, we could choose arrows
to be elementary embeddings, i.e., f : M → N is an injective function (or family of
functions) that preserves the extensions of all � formulas.

Let Mod(T ) denote the category with elementary embeddings as arrows, and let
Modh(T ) denote the category with homomorphisms as arrows. But which of these two
categories, Mod(T ) or Modh(T ) should we think of as representing the theory T ? We will
choose the category Mod(T ), with elementary embeddings as arrows, for the following
reasons.

First, the image of a model of T under a homomorphism f is not necessarily a model
of T . For example, let T be the theory (in a single-sorted signature) that says there are
exactly two things. Then a model M of T is a set with two elements. However, the mapping

10 For example, see Glymour (1977), Knox (2014), and Weatherall (2015a) for discussion of
whether or not Newtonian gravitation and geometrized Newtonian gravitation are equivalent.
See North (2009), Halvorson (2011), Swanson & Halvorson (2012), Curiel (2014), and Barrett
(2015) for discussion of whether or not Hamiltonian and Lagrangian mechanics are equivalent.
See Rosenstock, Barrett, & Weatherall (2015) for a discussion of general relativity and the theory
of Einstein algebras and Weatherall (2015b) for a summary of many of these results.

11 The reader is encouraged to consult Mac Lane (1971), Borceux (1994), or Awodey (2010) for
preliminaries.
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f : M → M that takes both elements to a single element is a homomorphism, and its
image f (M) is not a model of T . Such a situation is not necessarily a disaster, but it shows
that homomorphisms do not mesh well with full first-order logic.

Second, Modh( · ) does not even preserve definitional equivalence, i.e., there are defini-
tionally equivalent theories T1 and T2 such that Modh(T1) is not categorically equivalent
to Modh(T2).

EXAMPLE 5.1. Let �1 = {σ }, where σ is a sort symbol, and let T1 be the theory
in �1 that says there are exactly two things. Let �2 = {σ, θ} where θ is a relation of
arity σ × σ , and let T2 be the theory in �2 that says there are exactly two things, and
T2 � θ(x, y) ↔ (x �= y). Obviously T2 is a definitional extension of T1. Now, every
arrow of Modh(T2) is an injection, since it preserves θ and hence �=. But arrows of
Modh(T1) need not be injections. Therefore, Modh(T1) and Modh(T2) are not categorically
equivalent.

Because of these issues with homomorphisms, we will henceforth associate a theory T
with the category Mod(T ) of its models and elementary embeddings.

Before describing categorical equivalence, we need some additional terminology. Let C
and D be categories. A functor F : C → D is a map from objects and arrows of C to
objects and arrows of D that satisfies

F( f : a → b) = F f : Fa → Fb F(1c) = 1Fc F(g ◦ h) = Fg ◦ Fh

for every arrow f : a → b in C , every object c in C , and every composable pair of
arrows g and h in C . Functors are the “structure-preserving maps” between categories; they
preserve domains, codomains, identity arrows, and the composition operation. A functor
F : C → D is full if for all objects c1, c2 in C and arrows g : Fc1 → Fc2 in D there
exists an arrow f : c1 → c2 in C with F f = g. F is faithful if F f = Fg implies that
f = g for all arrows f : c1 → c2 and g : c1 → c2 in C . F is essentially surjective if for
every object d in D there exists an object c in C such that Fc ∼= d. A functor F : C → D
that is full, faithful, and essentially surjective is called an equivalence of categories. The
categories C and D are equivalent if there exists an equivalence between them.12

A first-order theory T has a category of models Mod(T ). This categorical structure,
however, is not particular to first-order theories. Indeed, one can easily define categories
of models for the different formulations of the theory of smooth manifolds and for the
different formulations of the theory of topological spaces. The arrows in these categories
are simply the structure-preserving maps between the objects in the categories. One can
also define categories of models for physical theories.13 This means that the following
criterion for theoretical equivalence is applicable in a more general setting than defini-
tional equivalence and Morita equivalence. In particular, it can be applied outside of the
framework of first-order logic.

DEFINITION. Theories T1 and T2 are categorically equivalent if their categories of models
Mod(T1) and Mod(T2) are equivalent.

12 The concept of a “natural transformation” is often used to define when two categories are
equivalent. C and D are equivalent if there are functors F : C → D and G : D → C such
that FG is naturally isomorphic to the identity functor 1D and G F is naturally isomorphic to 1C .
See Mac Lane (1971) for the definition of a natural transformation and for proof that these two
characterizations of equivalence are the same.

13 See the examples in (Weatherall, 2015a,b,c) and Rosenstock, Barrett, & Weatherall (2015).
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Categorical equivalence captures a sense in which theories have “isomorphic semantic
structure.” If T1 and T2 are categorically equivalent, then the relationships that models of
T1 bear to one another are “isomorphic” to the relationships that models of T2 bear to one
another.

In order to show how categorical equivalence relates to Morita equivalence, we focus on
first-order theories. We will show that categorical equivalence is a strictly weaker criterion
for theoretical equivalence than Morita equivalence is. We first need some preliminaries
about the category of models Mod(T ) for a first-order theory T . Suppose that � ⊂ �+ are
signatures and that the �+-theory T + is an extension of the �-theory T . There is a natural
“projection” functor � : Mod(T +) → Mod(T ) from the category of models of T + to the
category of models of T . The functor � is defined as follows.

• �(M) = M |� for every object M in Mod(T +).
• �(h) = h|� for every arrow h : M → N in Mod(T +), where the family of maps

h|� is defined to be h|� = {hσ : Mσ → Nσ such that σ ∈ �}.
Since T + is an extension of T , the �-structure �(M) is guaranteed to be a model of T .
Likewise, the map �(h) : M |� → N |� is guaranteed to be an elementary embedding.
One can easily verify that � : Mod(T +) → Mod(T ) is a functor.

The following three propositions will together establish the relationship between
Mod(T +) and Mod(T ) when T + is a Morita extension of T . They imply that when T +
is a Morita extension of T , the functor � : Mod(T +) → Mod(T ) is full, faithful, and
essentially surjective. The categories Mod(T +) and Mod(T ) are therefore equivalent.

PROPOSITION 5.2. Let � ⊂ �+ be signatures and T a �-theory. If T + is a Morita
extension of T to �+, then � is essentially surjective.

Proof. If M is a model of T , then Theorem 4.2 implies that there is a model M+ of
T + that is an expansion of M . Since �(M+) = M+|� = M the functor � is essentially
surjective. �

PROPOSITION 5.3. Let � ⊂ �+ be signatures and T a �-theory. If T + is a Morita
extension of T to �+, then � is faithful.

Proof. Let h : M → N and g : M → N be arrows in Mod(T +) and suppose that
�(h) = �(g). We show that h = g. By assumption hσ = gσ for every sort symbol
σ ∈ �. We show that hσ = gσ also for σ ∈ �+ − �. We consider the cases where
T + defines σ as a product sort or a subsort. The coproduct and quotient sort cases follow
analogously.

Suppose that T + defines σ as a product sort with projections π1 and π2 of arity σ → σ1
and σ → σ2. Then the following equalities hold:

π N
1 ◦ hσ = hσ1 ◦ πM

1 = gσ1 ◦ πM
1 = π N

1 ◦ gσ .

The first and third equalities hold since h and g are elementary embeddings and the sec-
ond since hσ1 = gσ1 . One can verify in the same manner that π N

2 ◦ hσ = π N
2 ◦ gσ .

Since N is a model of T + and T + defines σ as a product sort, we know that N �
∀σ1 x∀σ2 y∃σ=1z(π1(z) = x ∧ π2(z) = y). This implies that hσ = gσ .

On the other hand, if T + defines σ as a subsort with injection i of arity σ → σ1, then
the following equalities hold:

i N ◦ hσ = hσ1 ◦ i M = gσ1 ◦ i M = i N ◦ gσ .
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These equalities follow in the same manner as above. Since i N is an injection it must be
that hσ = gσ . �

Before proving that � is full, we need the following simple lemma.

LEMMA 5.4. Let M be a model of T + with a1, . . . , an elements of M of sorts
σ1, . . . , σn ∈ �+ − �. If x1, . . . , xn are variables sorts σ1, . . . , σn, then there is a code
ξ(x1, . . . , xn, y11, . . . , yn2) and elements b11, . . . , bn2 of M such that M � ξ [a1, . . . , an,
b11, . . . , bn2].

Proof. We define the code ξ(x1, . . . , yn2). If T + defines σi as a product sort, quotient
sort, or subsort then we have no choice about what the conjunct ξi (xi , yi1, yi2) is. If T +
defines σi as a coproduct sort, then we know that either there is an element bi1 of M
such that ρ1(bi1) = ai or there is an element bi2 of M such that ρ2(bi2) = ai . If the
former, we let ξi be ρ1(yi1) = xi and if the latter, we let ξi be ρ2(yi2) = xi . One
defines the elements b11, . . . , bn2 in the obvious way. For example, if σi is a product
sort, then we let bi1 = πM

1 (ai ) and bi2 = πM
2 (ai ). By construction, we have that M �

ξ [a1, . . . , an, b11, . . . , bn2]. �
We now use this lemma to show that � is full.

PROPOSITION 5.5. Let � ⊂ �+ be signatures and T a �-theory. If T + is a Morita
extension of T to �+, then � is full.

Proof. Let M and N be models of T + with h : �(M) → �(N ) an arrow in Mod(T ).
This means that h : M |� → N |� is an elementary embedding. We show that the map
h+ : M → N is an elementary embedding and therefore an arrow in Mod(T +). Since
�(h+) = h this will imply that � is full.

Let φ(x1, . . . , xn, x1, . . . , xm) be a �+-formula and let a1, . . . , an, a1, . . . , am be el-
ements of M of the same sorts as the variables x1, . . . , xn, x1, . . . , xm . Lemma 5.4 im-
plies that there is a code ξ(x1, . . . , xn, y11, . . . , yn2) and elements b11, . . . , bn2 of M such
that M � ξ [a1, . . . , an, b11, . . . , bn2]. The definition of the map h+ implies that N �
ξ [h+(a1, . . . , an, b11, . . . , bn2)]. We now show that M � φ[a1, . . . , an, a1, . . . , am] if
and only if N � φ[h+(a1, . . . , an, a1, . . . , am)]. By Theorem 4.6 there is a �-formula
φ∗(x1, . . . , xm, y11, . . . , yn2) such that

T + � ∀σ1 x1 . . .∀σn xn∀σ 1 x1 . . .∀σm xm∀σ11 y11 . . .∀σn2 yn2
(
ξ(x1, . . . , yn2) →

(
φ(x1, . . . xn, x1, . . . , xm) ↔ φ∗(x1, . . . , xm, y11, . . . , yn2)

))
.

(5)

We then see that the following string of equivalences holds.

M � φ[a1, . . . , an, a1, . . . , am] ⇐⇒M � φ∗[a1, . . . , am, b11, . . . , bn2]

⇐⇒M |� � φ∗[a1, . . . , am, b11, . . . , bn2]

⇐⇒N |� � φ∗[h(a1, . . . , am, b11, . . . , bn2)]

⇐⇒N � φ∗[h(a1, . . . , am, b11, . . . , bn2)]

⇐⇒N � φ∗[h+(a1, . . . , am, b11, . . . , bn2)]

⇐⇒N � φ[h+(a1, . . . , an, a1, . . . , am)]

The first and sixth equivalences hold by (5) and the fact that M and N are models of T +,
the second and fourth hold since φ∗ is a �-formula, the third since h : M |� → N |� is an
elementary embedding, and the fifth by the definition of h+ and the fact that the elements
a1, . . . , am, b11, . . . , bn2 have sorts in �. �
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These three propositions provide us with the resources to show how categorical equiva-
lence is related to Morita equivalence. Our first result follows as an immediate corollary.

THEOREM 5.6. Morita equivalence entails categorical equivalence.

Proof. Suppose that T1 and T2 are Morita equivalent. Then there are theories T 1
1 , . . . , T n

1
and T 1

2 , . . . , T m
2 that satisfy the three conditions in the definition of Morita equivalence.

Propositions 5.2, 5.3, and 5.5 imply that the� functors between these theories, represented
by the arrows in the following figure, are all equivalences.

This implies that Mod(T1) is equivalent to Mod(T2), and so T1 and T2 are categorically
equivalent. �

The converse to Theorem 5.6, however, does not hold. There are theories that are cate-
gorically equivalent but not Morita equivalent.14 In order to show this, we need one piece
of terminology. A category C is discrete if it is equivalent to a category whose only arrows
are identity arrows.

THEOREM 5.7. Categorical equivalence does not entail Morita equivalence.

Proof. Let �1 = {σ1, p0, p1, p2, . . .} be a signature with a single sort symbol σ1 and a
countable infinity of predicate symbols pi of arity σ1. Let �2 = {σ2, q0, q1, q2, . . .} be a
signature with a single sort symbol σ2 and a countable infinity of predicate symbols qi of
arity σ2. Define the �1-theory T1 and �2-theory T2 as follows:

T1 = {∃σ1=1x(x = x)}
T2 = {∃σ2=1 y(y = y), ∀σ2 y(q0(y) → q1(y)), ∀σ2 y(q0(y) → q2(y)), . . .}.

The theory T2 has the sentence ∀σ2 y(q0(y) → qi (y)) as an axiom for each i ∈ N.
We first show that T1 and T2 are categorically equivalent. It is easy to see that Mod(T1)

and Mod(T2) both have 2ℵ0 (nonisomorphic) objects. Furthermore, Mod(T1) and Mod(T2)
are both discrete categories. We show here that Mod(T1) is discrete. Suppose that there
is an elementary embedding f : M → N between models M and N of T1. It must be
that f maps the unique element m ∈ M to the unique element n ∈ N . Furthermore,
since f is an elementary embedding, M � pi [m] if and only if N � pi [n] for every
predicate pi ∈ �1. This implies that f : M → N is actually an isomorphism. Every arrow
f : M → N in Mod(T1) is therefore an isomorphism, and there is at most one arrow
between any two objects of Mod(T1). This immediately implies that Mod(T1) is discrete.
An analogous argument demonstrates that Mod(T2) is discrete. Any bijection between the
objects of Mod(T1) and Mod(T2) is therefore an equivalence of categories.

14 Halvorson (2012) mentions the following example to illustrate a different point.
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But T1 and T2 are not Morita equivalent. Suppose for contradiction that T is a “common
Morita extension” of T1 and T2. Corollary 4.7 implies that there is a �1-sentence φ such
that T � ∀σ2 yq0(y) ↔ φ. One can verify using Theorem 4.4 and Corollary 4.7 that the
sentence φ has the following property: If ψ is a �1-sentence and T1 � ψ → φ, then
either (i) T1 � ¬ψ or (ii) T1 � φ → ψ . But φ cannot have this property. Consider the
�1-sentence

ψ := φ ∧ ∀σ1 xpi (x),

where pi is a predicate symbol that does not occur in φ. We trivially see that T1 �
ψ → φ, but neither (i) nor (ii) hold of ψ . This implies that T1 and T2 are not Morita
equivalent. �

§6. Conclusions and open questions. We have discussed three formal criteria for
theoretical equivalence, and we have shown that they form the following hierarchy.

This hierarchy suggests that definitional equivalence is too strict a criterion for theoretical
equivalence. One often has good reason to consider two theories equivalent even if they
make use of different quantifiers—as in the case of point-based versus line-based formu-
lations of geometry. But definitional equivalence does not allow this flexibility. Morita
equivalence, on the other hand, explains the precise sense in which such theories are
equivalent.

The hierarchy also suggests that categorical equivalence is too liberal a criterion for
theoretical equivalence. Indeed, the example from Theorem 5.7 captures the general fact
that any two theories with discrete categories of models are categorically equivalent, as
long as they have the same number of models. But one often has good reason to consider
two such theories inequivalent. For example, there is a sense in which the two theories
from Theorem 5.7 do not “say the same thing.” According to the theory T2, there is a
special predicate q0: in any model of T2, if q0 holds of the unique element, then so do all
the other qi . The theory T1, however, singles out no such predicate. If one takes categorical
equivalence as the standard for theoretical equivalence, then one is forced to consider T1
and T2 equivalent. Morita equivalence, on the other hand, allows one to consider them
inequivalent.

It would be interesting to know whether there are special cases where the implications
in the above diagram are reversible. To this end, we conclude with a few conjectures and
open questions.

First, the two categorically equivalent theories from Theorem 5.7 have infinite signa-
tures. We conjecture that among theories with finite signatures, categorical equivalence
implies Morita equivalence.

QUESTION 6.1. For theories with finite signatures, does categorical equivalence imply
Morita equivalence?

It is obvious that at least for propositional theories, this question has an affirmative answer.
(Indeed, finite propositional theories are definitionally equivalent iff they have the same
number of models.) But even if this question turns out to have a negative answer in general,
it would nonetheless be interesting to describe some subclasses of theories for which
categorical equivalence implies Morita equivalence.
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Second, considering the examples we gave of Morita equivalent theories that are not
definitionally equivalent, we see that they are all relatively weak theories.15 Indeed, it
seems that stronger first-order theories—such as Peano arithmetic or ZF set theory—are in
a sense “Morita complete,” since they can explicitly define new sorts. For example, since
Peano Arithmetic (PA) allows sequences of integers to be coded as single integers, product
sorts in PA can be identified with subsorts of the original sort. Furthermore, since PA has
uniform elimination of imaginaries, quotient sorts can be identified with subsorts of the
original sort. Thus, we raise the following question:

QUESTION 6.2. Suppose T is a single-sorted theory that is Morita equivalent to PA
(respectively ZF). Then is T definitionally equivalent to PA (respectively ZF)?

And more generally:

QUESTION 6.3. For sufficiently strong single-sorted theories, does Morita equivalence
imply definitional equivalence?

Of course, the really interesting question here is what “sufficiently strong” could mean in
this context. Could a theory’s ability to explicitly define product and quotient sorts provide
an interesting new measure of that theory’s strength?

Third, it would be interesting to know whether categories of models naturally carry
additional structure such that categorical equivalence plus preservation of this additional
structure entails Morita equivalence. Such a possibility is suggested by the Stone duality
theorem for propositional logic: in that case, the set Mod(T ) of models of T is naturally
equipped with the Stone topology, and Mod(T1) is homeomorphic to Mod(T2) iff T1 and
T2 are definitionally equivalent. A partial generalization of Stone duality for first-order
logic has already been obtained by Makkai (1991), and in a different manner by Awodey
& Forssell (2010). Makkai shows that if the ultracategories Mod(T1) and Mod(T2) are
equivalent, then T1 and T2 are Morita equivalent. Awodey and Forssell show that if the
topological groupoids Mod(T1) and Mod(T2) are equivalent, then T1 and T2 are Morita
equivalent. But there is still more work to be done before we completely understand the
relationship between Morita equivalence and categorical equivalence.

Finally, our proof of Theorem 4.6 shows that if T + is a Morita extension of T , then there
is a sort of interpretation J : T + → T .We conjecture that this map J : T + → T is, in fact,
a generalized interpretation in the sense of van Benthem & Pearce (1984). What’s more,
there is a natural interpretation I : T → T +, and we conjecture that I and J are inverses
of each other—which would strengthen the case that T and T + should be considered to be
equivalent theories.∗

Appendix. This appendix contains a proof of Theorem 4.6, which we restate here for
convenience.

THEOREM 4.6. Let� ⊂ �+ be signatures and T a�-theory. Suppose that T + is a Morita
extension of T to �+ and that φ(x1, . . . , xn, x1, . . . , xm) is a �+-formula. Then for every

15 By “weak” here, we are thinking in terms of relative interpretability. So, for example, affine
geometry is weaker than ZF set theory since the former can be interpreted in the latter, but not
vice versa.∗ This material is based upon work supported by the National Science Foundation under Grant
No. DGE 1148900.
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code ξ(x1, . . . , yn2) for the variables x1, . . . , xn there is a �-formula φ∗(x1, . . . , xm,
y11, . . . , yn2) such that

T + � ∀σ1 x1 . . .∀σn xn∀σ 1 x1 . . .∀σm xm∀σ11 y11 . . .∀σn2 yn2
(
ξ(x1, . . . , yn2) →

(
φ(x1, . . . xn, x1, . . . , xm) ↔ φ∗(x1, . . . , xm, y11, . . . , yn2)

))
.

We first prove the following lemma. Given a�+-term t , we will again write t (x1, . . . , xn,
x1, . . . , xm) to indicate that the variables x1, . . . , xn have sorts σ1, . . . , σn ∈ �+ −� and
that the variables x1, . . . , xm have sorts σ 1, . . . , σm ∈ �.

LEMMA A.1. Let t (x1, . . . , xn, x1, . . . , xm) be a �+-term of sort σ and x a variable of
sort σ . Let ξ(x, x1, . . . , xn, y1, y2, y11, . . . , yn2) be a code for the variables x, x1, . . . , xn,
where the variables y1 and y2 are used for coding the variable x. Then there is a�-formula
φt (x, x1, . . . , xm, y01, . . . , yn2) such that

T + � ∀σ x∀σ1 x1 . . .∀σn xn∀σ 1 x1 . . .∀σm xm∀σ11 y11 . . .∀σn2 yn2
(
ξ(x, . . . , yn2) →

(
t (x1, . . . , xm) = x ↔ φt (x, x1, . . . , xm, y1, . . . , yn2)

))
.

If σ ∈ �, then x will not appear in the code ξ . If σ ∈ �+ − �, then x will not appear in
the �-formula φt .

Proof. We induct on the complexity of t . First, suppose that t is a variable xi of sort
σ . If σ ∈ �, then there are no variables in t with sorts in �+ − �. So ξ must be the
empty code. Let φt (x, xi ) be the �-formula x = xi . This choice of φt trivially satisfies
the desired property. If σ ∈ �+ − �, then there are four cases to consider. We consider
the cases where σ is a product sort and a subsort. The coproduct and quotient cases follow
analogously. Suppose that T + defines σ as a product sort with projections π1 and π2 of
arity σ → σ1 and σ → σ2. A code ξ for the variables x and xi must therefore be the
formula

π1(x) = y1 ∧ π2(x) = y2 ∧ π1(xi ) = yi1 ∧ π2(xi ) = yi2.

One defines the �-formula φt to be y1 = yi1 ∧ y2 = yi2 and verifies that it satisfies the
desired property. On the other hand, suppose that T + defines σ as a subsort with injection
i of arity σ → σ1. A code ξ for the variables x and xi is therefore the formula

i(x) = y ∧ i(xi ) = yi1.

Let φt be the �-formula y = yi1. The desired property again holds.
Second, suppose that t is the constant symbol c. Note that it must be the case that c is

of sort σ ∈ �. If c ∈ �, then letting φt be the �-formula x = c trivially yields the result.
If c ∈ �+ − �, then there is some �-formula ψ(x) that T + uses to explicitly define c.
Letting φt = ψ yields the desired result.

For the third (and final) step of the induction, we suppose that t is a term of the form

f
(
t1(x1, . . . , xn, x1, . . . , xm), . . . , tk(x1, . . . , xn, x1, . . . , xm)

)
,

where f ∈ �+ is a function symbol. We show that the result holds for t if it holds for all of
the terms t1, . . . , tk . There are three cases to consider. First, if f ∈ �, then it must be that
f has arity σ1 × · · · × σk → σ , where σ, σ1, . . . , σk ∈ �. Let ξ be a code for x1, . . . , xn .
We define φt to be the �-formula

∃σ1 z1 . . . ∃σk zk
(
φt1(z1, x1, . . . , yn2) ∧ · · · ∧ φtk (zk, x1, . . . yn2) ∧ f (z1, . . . , zk) = x

)
,
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where each of the φti exists by our inductive hypothesis. One can verify that φt satisfies
the desired property. Second, if f ∈ �+ − � is defined by a �-formula ψ(z1, . . . , zk, x)
then one defines φt in an analogous manner to above. (Note that in this case the arity of f
is again σ1 × · · · × σk → σ with σ1, . . . , σk, σ ∈ �.)

Third, we need to verify that the result holds if f is a function symbol that is used in the
definition of a new sort. We discuss the cases where f is π1 and where f is ε. Suppose that
f is π1 with arity σ → σ1. Then it must be that the term t1 is a variable xi of sort σ since
there are no other �+-terms of sort σ . So the term t is π1(xi ). Let ξ(xi , yi1, yi2) be a code
for xi . It must be that ξ is the formula

π1(xi ) = yi1 ∧ π2(xi ) = yi2.

Letting φt be the formula yi1 = x yields the desired result. On the other hand, suppose that
f is the function symbol ε of arity σ1 → σ , where σ is a quotient sort defined by the �-
formula ψ(z1, z2). The term t in this case is ε(t1(x1, . . . , xn, x1, . . . , xm)) and we assume
that the result holds for the �+-term t1 of sort σ1 ∈ �. Let ξ be a code for the variables
x, x1, . . . , xn . This code determines a code ξ for the variables x1, . . . , xn by “forgetting”
the conjunct ε(y) = x that involves the variable x . We use the code ξ and the inductive
hypothesis to obtain the formula φt1 . Then we define φt to be the �-formula

∃σ1 z
(
φt1(z, x1, . . . , xm, y11, . . . , yn2) ∧ ψ(y, z)

)
.

Considering the original code ξ , one verifies that the result holds for φt1 . �
We now turn to the proof of the main result.

Proof of Theorem 4.6. We induct on the complexity of φ. Suppose that φ is the formula
t (x1, . . . , xn, x1, . . . , xm) = s(x1, . . . , xn, x1, . . . , xm) where t and s are �+-terms of
sort σ . Let ξ(x1, . . . , yn2) be a code for x1, . . . , xn and let x be a variable of sort σ .
By Lemma A.1, there are corresponding �-formulas φt (x, x1, . . . , xm, y11, . . . , yn2) and
φs(x, x1, . . . , xm, y11, . . . , yn2). The �-formula φ∗ is then defined to be

∃σ x
(
φt (x, x1, . . . , xm, y11, . . . , yn2) ∧ φs(x, x1, . . . , xm, y11, . . . , yn2)

)
.

One can verify that this definition of φ∗ satisfies the desired result.
If t and s are of sort σ ∈ �+ − �, then there are four cases to consider. We show that

the result holds when T + defines σ as a product sort or a quotient sort. The coproduct and
subsort cases follow analogously. If T + defines σ as a product sort with projections π1 and
π2 of arity σ → σ1 and σ → σ2, then we define a code ξ(x, x1, . . . , yn2, v1, v2) for the
variables x, x1, . . . , xn by

ξ(x1, . . . , yn2) ∧ π1(x) = v1 ∧ π2(x) = v2.

Lemma A.1 and the code ξ for the variables x, x1, . . . , xn generate the �-formulas
φt (x1, . . . , xm, y11, . . . , yn2, v1, v2) and φs(x1, . . . , xm, y11, . . . , yn2, v1, v2). We then
define the �-formula φ∗ to be

∃σ1v1∃σ2v2
(
φt (x1, . . . , xm, y11, . . . , yn2, v1, v2)

∧ φs(x1, . . . , xm, y11, . . . , yn2, v1, v2)
)
.

One can verify that φ∗ again satisfies the desired result.
If T + defines σ as a quotient sort with projection ε of arity σ1 → σ , then we again

define a new code ξ(x, x1, . . . , yn2, v) for the variables x, x1, . . . , xn by

ξ(x1, . . . , yn2) ∧ ε(v) = x .
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Lemma A.1 and the code ξ for the variables x, x1, . . . , xn again generate the �-formulas
φt (x1, . . . , xm, y11, . . . , yn2, v) and φs(x1, . . . , xm, y11, . . . , yn2, v). We define the
�-formula φ∗ to be

∃σ1v
(
φt (x1, . . . , xm, y11, . . . , yn2, v) ∧ φs(x1, . . . , xm, y11, . . . , yn2, v)

)
.

One again verifies that this φ∗ satisfies the desired property. So the result holds when φ is
of the form t = s for �+-terms t and s.

Now suppose that φ(x1, . . . , xn, x1, . . . , xm) is a �+-formula of the form

p(t1(x1, . . . , xn, x1, . . . , xm), . . . , tk(x1, . . . , xn, x1, . . . , xm)),

where p has arity σ1 × · · · × σk . Note that it must be that σ1, . . . , σk ∈ �. Either p ∈ �
or p ∈ �+ − �. We consider the second case. (The first is analogous.) Let ψ(z1, . . . , zk)
be the �-formula that T + uses to explicitly define p and let ξ(x1, . . . , yn2) be a code for
x1, . . . , xn . Lemma A.1 and ξ generate the �-formulas φti (zi , x1, . . . , xm, y11, . . . , yn2)
for each i = 1, . . . , k. We define φ∗ to be the �-formula

∃σ1 z1 . . . ∃σk zk
(
φt1(z1, x1, . . . , xm, y11, . . . , yn2) ∧ · · ·
∧ φtk (zk, x1, . . . , xm, y11, . . . , yn2) ∧ ψ(z1, . . . , zk)

)
.

One can again verify that the result holds for this choice of φ∗.
We have covered the “base cases” for our induction. We now turn to the inductive step.

We consider the cases of ¬,∧, and ∀. Suppose that the result holds for �+-formulas φ1
and φ2. Then it trivially holds for ¬φ1 by letting (¬φ)∗ be ¬(φ∗). It also trivially holds for
φ1 ∧ φ2 by letting (φ1 ∧ φ2)

∗ be φ∗
1 ∧ φ∗

2 .
The ∀σi case requires more work. If xi is a variable of sort σi ∈ �, we let (∀σi xiφ1)

∗
be ∀σi xi (φ

∗
1 ). The only nontrivial part of the inductive step is when one quantifies over

variables with sorts in �+ − �. Suppose that φ(x1, . . . , xn, x1, . . . , xm) is a �+-formula
and that the result holds for it. We let xi be a variable of sort σi ∈ �+−� and we show that
the result also holds for the �-formula ∀σi xiφ(x1, . . . , xn, x1, . . . , xm). There are again
four cases. We show that the result holds when σi is a product sort and a coproduct sort.
The cases of subsorts and quotient sorts follow analogously.

Suppose that T + defines σi as a product sort with projections π1 and π2 of arity σi → σi1
and σi → σi2. Quantifying over a variable xi of product sort σi can be thought of as “quan-
tifying over pairs of elements of sorts σi1 and σi2.” Indeed, let ξ(x1, . . . , yn2) be a code for
the variables x1, . . . , xi−1, xi+1, . . . , xn (these are all of the free variables in ∀σi xiφ with
sorts in �+ −�). We define a code ξ for the variables x1, . . . , xi−1, xi , xi+1, . . . , xn by

ξ(x1, . . . , yn2) ∧ π1(xi ) = v1 ∧ π2(xi ) = v2.

One uses the code ξ and the inductive hypothesis to generate the�-formula φ∗(x1, . . . , xm,
y11, . . . , yn2, v1, v2). We then define the �-formula (∀σi xiφ)

∗ to be

∀σi1v1∀σi2v2φ
∗(x1, . . . , xm, y11, . . . , yn2, v1, v2).

And one verifies that the desired result holds for this choice of (∀σi xiφ)
∗.

Suppose that T + defines σi as a coproduct sort with injections ρ1 and ρ2 of arity σi1 →
σi and σi2 → σi . Quantifying over a variable xi of coproduct sort σi can be thought
of as “quantifying over both elements of sort σi1 and elements of sort σi2.” Indeed, let
ξ(x1, . . . , yn2) be a code for the variables x1, . . . , xi−1, xi+1, . . . , xn (these are again all
of the free variables in ∀σi xiφ with sorts in �+ −�). We define two different codes ξ for
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the variables x1, . . . , xi−1, xi , xi+1, . . . , xn by

ξ(x1, . . . , yn2) ∧ ρ1(v1) = xi

ξ(x1, . . . , yn2) ∧ ρ2(v2) = xi .

We will call the first code ξ ′(x1, . . . , yn2, v1) and the second ξ ′′(x1, . . . , yn2, v2). We use
these two codes and the inductive hypothesis to generate �-formulas φ∗′

and φ∗′′
. We then

define the �-formula (∀σi xiφ)
∗ to be

∀σi1v1∀σi2v2
(
φ∗′
(x1, . . . , xm, y11, . . . , yn2, v2)

∧ φ∗′′
(x1, . . . , xm, y11, . . . , yn2, v2)

)
.

One can verify that the desired result holds again for this definition of (∀σi xiφ)
∗. �
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