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Abstract. Let k be a divisor of a finite group G and Lk(G) = {x ∈ G | xk = 1}.
Frobenius proved that the number |Lk(G)| is always divisible by k. The following
inverse problem is considered: for a given integer n, find all groups G such that
max{k−1|Lk(G)| | k ∈ Div(G)} = n, where Div(G) denotes the set of all divisors of |G|.
A procedure beginning with (in a sense) minimal members and deducing the remaining
ones is outlined and executed for n = 8.

2010 Mathematics Subject Classification. 20D10, 20D15, 20D60

1. Introduction and statement of the main results. The present paper deals with
finite groups and their layers of elements

Lk(G) = {x ∈ G | xk = 1},
where k ≥ 1. In 1895, Frobenius [3, Satz 1] proved that, for all divisors k of |G|, the number
|Lk(G)| is divisible by k. We consider the integers

bk(G) = k−1 |Lk(G)|,
called local breadth of G, and in particular groups satisfying

B(G) = max{bk(G) | k ∈ Div(G)} = n,

for some n ≥ 1, referring to B(G) as the global breadth of G. Denoting by exp(G) the expo-
nent of G and by Div(exp(G)) the set of divisors of exp(G), we note that bh(G) ≤ bk(G) if
k = gcd(h, exp(G)), so for finding B(G) only integers k ∈ Div(exp(G)) are relevant.

Certainly, B(G) is defined for every group G, and this gives rise for a classification.
Meng and Shi [9] characterized groups of global breadth at most two (see Theorem 2.1),
while Meng, Shi, and Chen [10] described all groups G with B(G) = 3. Successively Meng
[11] considered the case B(G) = 4, and a more recent work [12] shows that the groups G
with B(G) ≤ 7 must be solvable. These contributions belong to the line of research indi-
cated by Frobenius in [3, 4]. For a given integer n, the procedure outlined and executed
here considers first members which are minimal in the following sense:
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DEFINITION 1.1. Let B(G) = n. A group G is refined, if B(G) �= B(G/N) for all proper
normal subgroups N of G.

The second step is to deduce the remaining groups of same global breadth.

DEFINITION 1.2. If there is a proper normal subgroup N of G such that B(G) =
B(G/N), then G is deduced from G/N .

A table of refined groups for small global breadth was laid down in [6, pp. 220, 221]
with the exception of n = 8. In case of B(G) = 8, we have nonsoluble groups for the first
time and we execute the described method in this case as an example.

The notation will be mostly standard; see [1, 5, 6, 7]. In particular, Ck, Dk , and
Qk denote the cyclic, dihedral, and generalized quaternion groups, respectively, of order
k ≥ 1. With the symbols Alt(n) and Sym(n), we denote the alternating and the symmetric
group on n elements, respectively. The holomorph Hol(G) of a group G (see [1, 7]) is the
extension of G by its automorpshim group, and

L(Fq) = {φ : x ∈ Fq �→ ax + b ∈ Fq | a ∈ F×
q , b ∈ Fq}

is the group of affine mappings from Fq onto Fq, where q is a prime power and Fq the finite
field of order q (see [7, Kapitel V, Section 8]). Note that we indicate the special linear group
SL(2, q) of 2-by-2 matrices with coefficients in Fq by SL(2, Fq) and similarly PSL(2, q)

by PSL(2, Fq) for the projective special linear group with coefficients in Fq. The symbol
π(G) = Div(G) ∩ P denotes the set of all prime divisors of |G|.

The main results, continuing previous investigations in [5, 6, 11], are listed in the
following.

THEOREM 1.3 (Theorem of Deduction). Let G be a group with normal subgroup N.
Then

(i) B(G/N) ≤ B(G),
(ii) N is cyclic, if B(G/N) = B(G).

Notice that there is no restriction on G/N in Theorem 1.3.
We denote in Theorems 1.4 and 1.6

D = {T nilpotent group of B(T) = 2 without subgroups isomorphic to D8 or Q16},
which is contained in the class of all nilpotent groups. In fact D will be used for one of
the cases, where 2-groups G satisfying B(G) = 4 are involved. In [11, Main Theorem (ii)]
Meng has shown, among other facts, that |G| = 4 exp(G) for these groups. We will need a
closer look and show the following theorem.

THEOREM 1.4 (Classification of Refined 2-Groups of Global Breadth Four). Assume
that G is a 2-group satisfying B(G) = 4. If G is refined, then either

(a) G 
 C2 × C2 × C2; or
(b) G 
 C4 × C4; or
(c) G 
 〈a, b, c | a2 = b2 = c4 = b[c, a] = [b, c] = [a, b] = 1〉; or
(d) G 
 〈a, b | a4 = b4 = b2[a, b] = 1〉.

If H is deduced from a refined group G listed above, then either

(e) H 
 C2 × T, where T ∈D; or
(f) H 
 〈a, b | a4 = b4m = btm[a, b] = 1〉 with t ∈ {1, 2, 4}; or
(g) H 
 〈a, b, c | a2 = b2 = c4m = b[c, a] = 1〉; or
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(h) H 
 〈a, b, c | a4 = b4 = a2b2 = a2[a, b] = c4m = c2m[a, b] = 1〉; or
(i) H 
 〈a, b | a4m = b4 = b2[a, b] = 1〉.
The importance of classifying groups, restricting to refined groups, is explained by

the condition (ii) of Theorem 1.3. This motivates our third main theorem, which deals with
refined groups only.

THEOREM 1.5 (Main Theorem for Refined Groups). Assume that G is a refined group
of B(G) = 8.

(i) If G is nilpotent, then G is a 2-group.
(ii) If G possesses a noncyclic Sylow subgroup S of odd order, then |S| = 9 and either

G 
 L(F9) or G 
 D6 × D6.
(iii) If 5 ∈ π(G), then either G 
 D30, or G 
 Hol(C5) × C2, or G 
 Alt(5).
(iv) If 7 ∈ π(G), then either G 
 D14 × C2 or G 
 L(F8) × C2.
(v) If π(G) = {2, 3} and G is nonabelian with cyclic Sylow 3-subgroup S and with

Sylow 2-subgroup T, then |S| = 3 and one of the following conditions is satisfied:
(1) S is normal and either T 
 C2 × C2 × C2, or T 
 C4 × C4;
(2) T is normal and either T 
 C2 × C2 × C2 × C2, or T 
 Q8 × C4;
(3) neither S nor T are normal and G = HK with H 
 Alt(4), K 
 C4 and

G/Z(G) 
 Sym(4);
(vi) there is no G such that p ∈ π(G) and p ≥ 11.

The items (iii), (iv), and (v) above may be formulated in terms of homomorphic
images. This motivates the following result.

THEOREM 1.6 (Main Theorem for Deduced Groups). Assume that G is a nonabelian
group of B(G) = 8.

(j) If p ∈ π(G) is odd and G is deduced from one of the groups in Theorem 1.5 (ii),
then one of the following conditions is true:

(a) G is an extension of C3 × C3 by C8m with gcd(m, 3) = 1;
(b) G is an extension of C3 × C3 by a 3′-group T ∈D.

(jj) If 5 ∈ π(G) and G is deduced from one of the groups in Theorem 1.5 (iii), then one
of the following conditions is true:

(a) G is the extension of C5 by a 5′-group T ∈D;
(b) G is the extension of C5 by C2m with gcd(15, m) = 1;
(c) G 
 Alt(5) × Cm with gcd(30, m) = 1;
(d) G 
 SL(2, F5) × Cm with gcd(30, m) = 1.

(jjj) If 7 ∈ π(G) and G is deduced from one of the groups in Theorem 1.5 (iv), then one
of the following conditions is true:

(a) G is an extension of C2 × C2 × C2 by C14m;
(b) G is an extension of C7 by a 7′-group T ∈D.

(jv) If G = K × D, where D is cyclic of gcd(|K|, |D|) = 1 and K is a {2, 3}-group in
Theorem 1.5 (v), then one of the following conditions is satisfied:

(a) either G 
 Alt(4) × V, where B(V) = 2 and V is a 2-group, or G 

(SL(2, F3) × W)/Z, where Z is a suitable normal subgroup and either W 
 D16,
or B(W) = 2;

(b) G 
 SL(2, F3) × C with C a cyclic 2-group of |C| ≥ 4;
(c) G is a split extension of U 
 PSL(2, F3) by a cyclic 2-group T with |T | ≥ 4 and

G is as in (2);
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(d) G is a split extension of V 
 SL(2, F3) by a cyclic 2-group T of |T | > 4, T ∩ V =
Z(V) and G is as in (2);

(e) G is a split extension of S by C2 × W with B(W) = 2 and W �
 D8 but W is a
2-group;

(f) G is a split extension of S either by C4 × C22+n with n ≥ 0, or by 〈a, b|a4 = b8 =
[a, b]b4 = 1〉, or by any of 〈a, b|a4 = b4t = [a, b]b−st = 1〉 with t = 2k ≥ 2, s ∈
{1, 2, 4};

(g) G is a split extension of S by 〈a, b|a4 = b2k = [a, b]a2 = 1〉 with 2 ≤ k ≤ m + 1.

Preparations for the proof of the main results are executed in Sections 2 and 3. The
proof of the Theorem of Deduction is placed in Section 4, while the classification of
2-groups of global breadth four is placed in Section 5. The proof of Main Theorem, and of
its weak form, is done via a careful analysis on the prime divisors of the order of the group.
The role of odd primes smaller than 7 is discussed in Section 6, while Section 7 deals with
the case of {2, 3}-groups. The proofs of Theorems 1.5 and 1.6 are placed in Section 8,
along with open problems, which we encountered in the course of our investigations.

2. Some previous results and description of refined groups. The origin of our
investigations is due to a recent characterization of Meng and Shi [9] of groups with
|Le(G)| ≤ 2e for all e ∈ Div(exp(G)).

THEOREM 2.1 (See [9], Main Theorem and [6], list in Section 4). Let G be a group
and m ≥ 1. Then |Le(G)| ≤ 2e for all e ∈ Div(exp(G)) if and only if one of the following
statements holds:

(i) G is cyclic;
(ii) G 
 Cm × C2k−1 × C2 with m odd and k ≥ 2;

(iii) G 
 Cm × Q8 = Cm × 〈a, b | a4 = 1, a2 = b2, b−1ab = a−1〉 with m odd;
(iv) G 
 Cm × 〈a, b | a2t−1 = b2 = 1, b−1ab = a1+2t−2〉 with t ≥ 4 and m odd;
(v) G 
 Cm × 〈a, b | a3 = b2s = 1, b−1ab = a−1〉 with s ≥ 1 and gcd(m, 6) = 1.

An easy consequence is the following:

COROLLARY 2.2. If G is a nilpotent group of B(G) = 2, then D8 and Q16 cannot be
subgroups of G. Moreover |G| = 2 · exp(G).

Meng, Shi, and Chen [10, Theorems 1.1, 1.2] characterize groups satisfying a bound
of the form |Le(G)| = 3e with e ∈ Div(exp(G)) and so we have examples of groups of local
breadth at most three. More generally, we introduced the notion of Q-group in [5] (i.e.,
a group G is a Q-group if |Ln(G)| ≤ n2, whenever n ∈ Div(exp(G))), in order to classify
groups of local breadth at most n with n ≥ 4. Theorems 3.2, 3.5, 3.6, 3.8, 3.12, and 3.14
in [5] show a complete classification of these groups. Successively, we did the same in [6]
working on the global breadth, instead of the local breadth. Here we involved the aforemen-
tioned notion of refined group. The following statements give examples how refinements
may arise.

PROPOSITION 2.3. Let G be a group. If N is a central subgroup of G of prime order p
such that all elements of order p are contained in N, then B(G) = B(G/N).

Proof. We have |N | = p and N ⊆ Z(G). Let s ∈ Div(exp(G)). If gcd(s, p) �= 1 and
H 
 G/N , then p · |Ls(H)| = |Lps(G)| for all ps ∈ Div(exp(G)), so bps(G) = bs(H), hence
B(G) = B(H). If gcd(s, p) = 1, then bs(G) = bps(G) = bs(H). Since we have the same
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collection of local breadths both for G and for H , the maxima B(G) and B(H) are the
same. The result follows.

Proposition 2.3 gives a criterion for detecting refined groups and there is an interesting
consequence in terms of special linear groups.

COROLLARY 2.4. Let n ≥ 2 and q a prime power. Then B(SL(2, Fq)) = B(PSL(2, Fq))

and B(Q2n+1) = B(D2n).

Proof. Apply Proposition 2.3 for p = 2.

The next result provides a criterion for detecting nonrefined groups.

THEOREM 2.5 (See [6], Theorem 2.8). If a group G possesses some p ∈ π(Z(G)) such
that the Sylow p-subgroups of G are cyclic or quaternion, then B(G) = B(G/N), where N
is the Sylow p-subgroup of Z(G). Moreover, if N is nontrivial, then G is not refined.

More detailed information can be observed in presence of direct products.

PROPOSITION 2.6. Let A be a group and p prime. If G 
 A × Cpn and gcd(pn, exp(A))

< pn, then B(G) = B(A × Cpn−1).

Proof. For all m ∈ Div(exp(A)) with p �∈ Div(m) we have

bpnm(G) = bpn−1m(G) = bpn−1m(A × Cpn−1),

so the collection of numbers {bt(G)} and {bt(A × Cpn−1)} is the same and so is the global
breadth.

With this concept of refinement, we aim at making the set of all groups with the same
global breadth more transparent. For instance, Theorem 2.1 can now be formulated in the
following form.

COROLLARY 2.7. If G is a refined group of B(G) = 2, then either G 
 C2 × C2 or
G 
 D6.

It may be useful to recall here another relation between refined groups and global
breadth. This can be found in [6].

THEOREM 2.8 (See [6], Theorem 3.1). Let G be a refined group of B(G) = m ≥ 2. Then
the following is true:

(i) |G| is not divisible by primes p > 2m − 1.
(ii) If a prime p with m < p ≤ 2m − 1 divides |G|, then G is a subgroup of Hol(Cp) and

p − m ∈ Div(m − 1).
(iii) If m ∈ π(G), then one of the following conditions may happen:

(1) G 
 Cm × Cm;
(2) G 
 Cm × U, where U is a nonabelian subgroup of Hol(Cm);
(3) m + 1 is a prime power and G 
 L(Fm+1).

(iv) If G is abelian, then exp(G) ∈ Div(m). Furthermore, there exists an abelian
subgroup of G such that G/R 
 Ct × Ct, where t = exp(G).

3. Preliminaries. In order to formulate the result of the present section, we denote
by Sp the Sylow p-subgroup of G, where p ∈ π(G), and will omit the subscript “p” from
Sp when the meaning seems clear. Concerning classical results about Sylow’s Theory and
Hall’s Theory, we refer directly to [7, Kapitel I, Kapitel VI].
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The first lemma collects information about the local and global breadth of direct
products and subgroups. It turns out to be very useful for computational scopes.

LEMMA 3.1. Let X1 and X2 be two groups, e ∈ Div(exp(X1 × X2)) and ei =
gcd(e, exp(Xi)) for i = 1, 2.

(i) be(X1 × X2) = gcd(e1, e2) · be1(X1) · be2(X2);
(ii) B(X1 × X2) ≤ gcd(e1, e2) · B(X1) · B(X2);

(iii) if gcd(|X1|, |X2|) = 1, then B(X1 × X2) = B(X1) · B(X2), and B(X1 × X2) = B(X1)

if and only if X2 is cyclic;
(iv) if gcd(|X1|, |X2|) �= 1, then B(X1 × X2) > max{B(X1), B(X2)}.

Proof. See Lemmas 2.1 and 2.2 of [6] for (i) and (ii).
(iii). Assume gcd(|X1|, |X2|) = 1. Of course, B(X1 × X2) = B(X1) · B(X2) follows

from (i). In particular, if B(X1 × X2) = B(X1), then B(X2) = 1 implies that X2 is cyclic.
Vice versa, if X2 is cyclic, then even B(X2) = 1 is true, and so B(X1 × X2) = B(X1).

(iv). We claim that B(X1 × X2) > B(X1). Let p ∈ π(X1) ∩ π(X2) and B(X1) = bk(X1)

for some multiple k of p. Then

B(X1 × Cp) ≥ bk(X1 × Cp) = p bk(X1) = p B(X1).

Since X1 × Cp is isomorphic to a subgroup of X1 × X2, B(X1 × X2) ≥ B(X1 × Cp) =
p B(X1) > B(X1) and the claim is true. On the other hand, if k is not a multiple of p,
then

bpk(X1 × Cp) ≥ bk(X1) + p bp(X1) > bk(X1) = B(X1),

and again B(X1 × X2) ≥ B(X1 × Cp) > B(X1), as claimed. Symmetrically, we find that
B(X1 × X2) > B(X2), hence (iv) follows.

The importance of refined groups is emphasized by the previous lemma, because the
following logic applies, when we want to describe all groups of given global breadth

REMARK 3.2. In this article, we have mainly two types of refined groups:

(A) G such that G/G′ is cyclic, exp(G) = k|G/G′| and gcd(k, |G/G′|) = 1,
(B) G such that G/G′ is a 2-group, B(G/G′) = 2, and exp(G/G′) = exp(S) for some

Sylow 2-subgroup S of G.

In Case (A), for |G/G′| = d, we have firstly the extensions of G′ by C = Cdm with
m prime to k. If r divides the exponent of the Schur multiplier of G and r divides m, we
consider an element y ∈ C of order r and form the central extension H+ of H via an element
z of order r. Then also H+/〈yz〉 is deduced from G. This describes all deduced groups in
case (A).

In Case (B), we know that there are nilpotent 2-groups T with B(T) = 2 and quotient
group T/V isomorphic to G/G′. Then we form the extension H of G′ by T such that
H/V 
 G. If the Schur multiplier of G is of even order, then the procedure in Case (A)
may also lead to examples of deduced groups. There are no more deduced groups.

We will refer to these descriptions in the following statements whenever applicable.
On the other hand, we will find very often extensions of abelian groups when we will
compute the breadth of deduced groups, so it is useful to recall [6, Corollary 4.1] in this
perspective. This result helps with the computation of the global breadth of L(Fq), which
may be expressed in terms of extensions, but it is useful also for the computation of the
global breadth of semidirect products like G = A � B of two abelian groups A and B such
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that CG(B) = B and A isomorphic to a subgroup of Aut(B) (i.e., for instance, D2n = C2 �

Cn with n odd).

LEMMA 3.3 (See [6], Corollary 4.1). If s = pn1
1 ... pnr

r is a factorization in the product of
prime powers of the integer s ≥ 1 such that pni

i ≡ 1 mod k for all i = 1, 2, . . . , r, there is
an abelian group N of order s and a cyclic subgroup W ⊆ Aut(N) such that |W | = k and
nontrivial elements of W operate without fixed points on N. The extension G of N by W
satisfies the relation k · B(G) = (k − 1)s + 1; in particular 2 · B(G) > s.

A starting point for most of the proofs in Section 4 is the following.

LEMMA 3.4. Let G be a group with B(G) = n and p an odd prime such that pk ≥ n and
S a Sylow p-subgroup of G. If A ⊆ G is an elementary abelian p-subgroup of G of order pk

and S ⊇ A a Sylow p-subgroup of G, then

(i) pk−1 < n;
(ii) A and S are normal in G;

(iii) S/A is cyclic and S = 〈A, t〉 with |A ∩ 〈t〉| = p.

Proof. (i) follows from pk−1 = bp(A) ≤ bp(G) = n.
For (ii) we claim the following:

If A ⊆ U ⊆ G and A is subnormal in U , then A is normal in U .

Assume this is false and NU (A) �= A. We choose x ∈ NU (NU (A)) \ NU (A) and derive
that A �= Ax and both normalizes each other. So AxA is nilpotent of class 2 and of
exponent p. Also |AxA| ≥ pk+1 and B(AxA) > B(U), a contradiction. So A is a normal
subgroup of U and in particular of S. Let exp(S) = pm. Then

pm bpm(S) = |S| ≤ pm B(G),

and bpm(S) = pk−1. Put |S| = pm+k−1 = pw, where w = m + k − 1. Choose a Sylow
p-subgroup T �= S of G such that |T ∩ S| = pd is maximal. There are pw−d conjugates of T
with respect to S with pairwise intersection of order |T ∩ S| leading to

|S| + pw−d(pw − pd) = p2w−d,

p-elements at least in G, and

bpm(G) ≥ p2w−d−m = pm+2(k−1)−d > p2(k−1) > n.

This shows that S is a normal subgroup of G, and A is subnormal and normal in G.
For (iii), take t ∈ S of maximal order pl. Then

pl B(G) = pl n ≥ |S|,
and |S : 〈t〉| = pk−1, showing that 〈t, A〉 = S. Moreover |S : 〈t〉| = pk−1 implies A ∩ 〈t〉 �= 1
and so |A ∩ 〈t〉| = p.

When G has odd order, can we say that B(G) is odd as well? The answer is positive
and turns out to be a consequence of the next lemma.

LEMMA 3.5. Assume that G is a group, n ∈ Div(exp(G)), k ≥ 1, s ≥ 1,
p, p1, . . . , ps ∈ P.

(i) If n = pk, then we have p − 1 ∈ Div(bn(G) − 1).
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(ii) If n = pk1
1 . . . pks

s and t ∈ Div(pi − 1) for all i = 1, . . . , s, then we have t ∈
Div(bn(G) − 1).

Proof. (i) If y ∈ G and |〈y〉| = pk , then 〈y〉 contains (p − 1)pk−1 many elements of
(exact) order pk . Now it follows by induction on k, that the number a of all elements
satisfying yn = 1 �= y is divisible by p − 1, and the addition of 1 leads to

a + 1 = n · bn(G) ⇒ 1 ≡ bn(G) mod (p − 1).

From this, the result follows.
(ii) Let n = pm and ps ∈ Div(n) − Div(m) for some m ≥ 1. If y ∈ G and |〈y〉| = ps, then

〈y〉 contains (p − 1)s many elements of order not dividing s and this number is divisible
by t. In analogy to (i) above, we obtain

bn(G) ≡ 1 mod t.

COROLLARY 3.6. Let G be a group. If |G| is odd, so is B(G).

Proof. Application of Lemma 3.5 (ii) for t = 2.

We note that the converse of Corollary 3.6 is false, as shown in the following.

REMARK 3.7. B(G) is odd for G 
 D2n for all n ≥ 3, but here |G| is even.

The use of Corollary 3.6 allows us to say more on the nilpotent case.

PROPOSITION 3.8. If G is a refined nilpotent group of B(G) = 8, then G is a 2-group.

Proof. G is the direct product of its Sylow 2-subgroup S and a group W of odd
order, so B(W) is odd by Corollary 3.6 and B(G) = B(S) · B(W) by Lemma 3.1 (iii).
Now B(W) = 1; since G is refined, we have W = 1. Therefore, B(G) = B(S) and G is a
2-group.

Proposition 3.8 gives a strong arithmetic condition for refined nilpotent groups of
global breadth eight. In the next section, we will prove similar arithmetic conditions, but
removing the assumption of being nilpotent.

REMARK 3.9. Notice the necessity of being refined by Lemma 3.1(iii). In fact
Proposition 3.8 is not true if the group G is nonrefined. An example is B(G × Cq) = B(G)

by Lemma 3.1, when q is a prime not dividing |G|.
We end with a lemma, which will be very useful.

LEMMA 3.10. If S is a cyclic Sylow p-subgroup of a group G and |G : NG(S)| = p + 1,
then

(i) CG(S)p = Z(G),
(ii) for any conjugate T �= S of S, NG(S) ∩ NG(T) = Z(G) or

|G : NG(NG(S) ∩ NG(T))| = p(p + 1)

2
.

Proof. By conjugation, G operates as a group of permutations on the p + 1 Sylow
p-subgroups of G; therefore, we have a homomorphism σ : G → R ⊆ Sym(p + 1) and
R 
 G/ ker(σ ). Now ker(σ )consists of all elements fixing all Sylow p-subgroups. In
Sym(p + 1) and in R, all Sylow p-subgroups are self-centralizing, so CG(S) ∩ CG(T) ⊆
ker(σ ) = Z(G) and also Z(G) = CG(S)p. This shows (i).
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On the other hand, if NG(S) ∩ NG(T) �= Z(G) for some conjugate T , in particular
NG(S)/CG(S) is cyclic and, if 〈t, CG(S)〉 = NG(S), then (x−1〈t〉x) ∩ 〈t〉 ⊆ Z(G) for all
x ∈ CG(S) \ (CG(S))p. The intersections of any two different pairs of conjugates of nor-
malizers of Sylow p-subgroups are conjugate since for every third conjugate U we have
y−1Ty = U for some y ∈ S and NG(S) ∩ NG(T) = t−1(NG(S) ∩ NG(U))t, and the same can
be done for every other Sylow p-subgroup. Since we have p( p+1)

2 such pairs, (ii) is true.

4. Proof of the Theorem of Deduction. The present section is devoted to show
Theorem 1.3 and an instructive example, motivated by the argument that is illustrated in
the following.

Proof of Theorem 1.3. We begin with a special case.

(a) Let N be an elementary abelian normal subgroup of G of order pn.
(i) If n ≥ 2, then B(G/N) < B(G).

(ii) If n = 1, then B(G/N) ≤ B(G).
(iii) If bk(G/N) = B(G/N) = B(G), then n = 1 and B(G) = bpk(G).

In order to show (i) and (ii), put B(G/N) = bk(G/N) for some divisor k of exp(G/N),
where we recall that k · bk(G/N) = |Lk(G/N)| by definition. Then Lk(G/N) N ⊆ Lpk(G)

and so

|Lpk(G)| = |{g ∈ G | gpk = 1}| ≤ |{gN | (gN)k = N} N | = |Lk(G/N) N |.
Now, either bpk(G) does not exist and bp(G) = pn · bk(G/N), or bkp(G) ≥ p · bk(G/N). In
both cases, we have B(G) > B(G/N) and (i) follows. Note that if n = 1, then the same
argument shows that B(G) ≥ B(G/N) is possible. Therefore, (ii) follows. For the proof of
(iii), we have

B(G/N) = bk(G/N) = |Lk(G/N)|
k

= |Lpk(G)|
k |N | = B(G) ⇒ n = 1.

On the other hand, we may consider M = {x ∈ G | xk ∈ N}. Clearly Lk(G) ⊆ M ⊆
Lpk(G) and |M | = p · |Lk(G)|, so bk(G) > bk(G/N) = B(G/N) if M = Lk(G). On the other
hand, if M �= Lpk(G), then bpk(G) > bpk(G/N) = B(G/N). Now B(G) = B(G/N) yields
M = Lpk(G) and (iii) follows completely.

Up to this point, we may conclude that the result is proved when G contains a subgroup
like N in (a). This case happens when G is a soluble group, looking at N as a minimal
normal subgroup of G. In order to attack the general case, another step is the proof of the
following claim:

(b) Let N be a normal subgroup of G and B(G) = B(G/N). Then all Sylow subgroups
of N are cyclic.

Assume that |N | is even and that D is a Sylow 2-subgroup of N . Of course, if D
is cyclic, there is nothing to prove. Consider NG(D) = T with D noncyclic. By the Frattini
Argument [7, Satz 7.8, p.35], we have TN = G and G/N = TN/N 
 T/(T ∩ N). Since (T ∩
N)/D is of odd order, (T ∩ N)/D is soluble by a well-known theorem of Thompson and
Feit [7, See p. 128]. On the other hand, T ∩ N is soluble, because the derived series of D
and the derived series of (T ∩ N)/D allows us to have a normal series of T ∩ N with abelian
factors. Note that D is a normal subgroup of T and �(D) is a characteristic subgroup of D,
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so we may form the quotient T/�(D). Since D is noncyclic, D/�(D) must be elementary
abelian of rank ≥ 2 and (i) of (a) may be applied, getting

B(T/D) = B((T/�(D))/(D/�(D))) < B(T/�(D)).

Therefore, there is a normal series of T through T ∩ N with a noncyclic elementary abelian
2-quotient such that

B(T) > B(T/(T ∩ N)) = B(G/N).

On the other hand, T is a subgroup of G; therefore, B(T) ≤ B(G) and

B(T) ≤ B(G) = B(G/N) = B(T/(T ∩ N)),

which gives contradiction.
We have deduced that the Sylow 2-subgroup D of N must be cyclic. This means also

that N is 2-nilpotent and so soluble. Note that groups of odd order are soluble, as mentioned
before. Then the argument works perfectly beginning from N soluble and p arbitrary prime
dividing |N | and D arbitrary Sylow p-subgroup of N . Therefore, all Sylow subgroups of N
are cyclic, regardless N is of even order or of odd order, and (b) follows.

Now we attack the general case.

(c) If N is an arbitrary normal subgroup of G, then (i) and (ii) are true.

If N is of odd order, then it is soluble by a well-known result of Thompson and Feit
(see [7]). A minimal normal subgroup M of G is a chief factor of G, so elementary abelian.
Then we may apply (a) to M and we get B(G/M) ≤ B(G) by (i) of (a) and M cyclic by (iii)
of (a). The result follows in this case.

If N is of even order, the idea is to adapt the argument which we have seen in (b)
above. First of all, we may choose a Sylow 2-subgroup D of N and consider NG(D), noting
that D is normal in G. Using the Frattini Argument, we have NG(D)N = G and therefore
G/N 
 NG(D)/(NG(D) ∩ N). We have

B(G/N) = B(NG(D)/(NG(D) ∩ N)) ≤ B(NG(D)) ≤ B(G),

and so B(G/N) ≤ B(G) follows.
Assume B(G/N) = B(G). By (b), all Sylow subgroups of N are cyclic and, in partic-

ular, N is metacyclic. If N is abelian, then the result follows. We are going to see that it is
not possible that N ′ �= 1.

Assume that N ′ �= 1 and consider a Hall subgroup H of N which is a complement
of N ′ in N . Hall subgroups of the same order of a soluble group are conjugate (see [7,
Kapitel VI, Sections 1, 2, and 3] for the properties of Hall subgroups in soluble groups). By
Frattini’s Argument NG(H)N = NG(H)N ′ = G and by construction, H is self-normalizing
in N , so NG(H) is a complement of N ′ in G. Let B(G/N) = bk(G/N) for some k ≥ 1 and
w = |N/N ′|. Here NG(H) is not a normal subgroup of G and H �= x−1Hx for all x ∈ N ′ \ {1}.
This shows that N has more than |H | elements of order dividing w than |H | and accordingly
G has more elements of order dividing kw than NG(H). Therefore, we may argue as in (iii)
of Case (a) above, in fact

B(G) ≥ bkw(G) > bkw(NG(H)) = B(NG(H)) = B(G/N ′) = B(G),

so that Lkw(NG(H)) = Lkw(G) and Lw(H) = Lw(N). This shows that H is a normal subgroup
of N , N ′ = 1, and N = H , contrary to our assumption. The result follows completely.
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As previously noted, we end with an instructive example.

EXAMPLE 4.1. Looking at the first part of the proof above, if G is a group possessing
a cyclic normal subgroup N of order p and k is a divisor of exp(G/N), then we had the
following implication:

B(G/N) = B(G) and bk(G/N) = B(G/N) ⇒ B(G) = bpk(G).

One may wonder whether the same implication is true removing the condition B(G/N) =
B(G). This is not possible.

In fact, if G = Alt(4) × C2 and N 
 C2 with p = 2 and k = 2, then one can use [6,
List at p. 220], in order to see that B(G) = 4 and B(G/N) = B(Alt(4)) = 3. Then B(G) �=
B(G/N) and b4(G/N) = B(G/N) = 3, but B(G) = b2(G) = 4 is different from b4(G) = 2.

5. The classification of 2-groups of global breadth four.

Proof of Theorem 1.4. Assume first that G is a direct product. Then 4 = B(G) =
B(X × Y ) ≥ 2 B(X ) B(Y ). Without loss of generality, we may assume B(X ) = 1. For
X 
 C2, we obtain B(Y ) = 2, while for X 
 C4 we obtain Y 
 C4k or Y 
 C2 × C2. This
shows (a) and (b).

Assume now that G is not a direct product. Let U = 〈c〉 be a cyclic subgroup of maxi-
mal order, that is, |U | = exp(G). Now b|U |(G) = |G : U | ≤ 4 and G is nonabelian. If |U | > 8
and |G : U | = 2, then G is dihedral or quaternion and B(G) is odd, a contradiction. So
|G : U | = 4. If U is not invariant in G, then U ⊂ V ⊂ G, where V = 〈b, U〉 and without loss
of generality b2 = 1 and V is abelian or |[V , b]| = 2. Further G = 〈a, V 〉 and [G, a] �⊆ U . So
without loss of generality [a, c] = b and we have case (c). If U = Z(G) and G is nonabelian,
then G/U is noncyclic and

G 
 〈a, b, c | a2 = b2 = c4k = c2k[a, b] = [a, c] = [b, c] = 1〉,
which is (d). Notice that in case (d) we have 〈a, bc2k〉 
 D8 and 〈ac2k, bc2k〉 
 Q8, so all
cases with three generators are considered. The remaining cases are easily seen to be belong
to this class of groups, also it is clear that the list is exhaustive.

By Meng [11, Main Theorem (ii)], we have |G| = 4 exp(G) for 2-groups of global
breadth four. The only refined abelian groups H with B(H) = 4 are those mentioned in (a)
and (b). The nonabelian groups of exponent 4 are isomorphic to those mentioned in (c) and
(d). The remaining cases follow from the claim.

Claim. There is no refined 2-group H such that exp(H) ≥ 4 and B(H) = 4.

Let exp(H) = 8 and choose x ∈ H of order 8, further let 〈x〉 = L ⊂ K ⊂ H . Then
K = 〈x, y〉 for some y and y2 ∈ L. We obtain [y, x] = xm for even m. For m = 2, we
obtain D16 or Q16 and B(D16) = 5 makes the first one impossible. In the second case,
B(Q16) = B(D8) = 3 and L is characteristic in K. If CH(K)L = H , then H 
 C2 × D8 and
B(H) = 6, which gives contradiction. If CH(K) = K, then we have z ∈ H such that z2 = 1
and [z, x] = x4. We compute the breadth: elements of exact order 2 are x4, z, zx2, zx4, zx6,
so b2(H) = 3, elements of exact order 4 are x2, x6, zx, zx3, zx5, zx7 and all elements of yL,
so b4(H) = 5, so these two cases are excluded for H . It remains to consider the case that
K is abelian or K ′ = L4 = 〈l4 | l ∈ L〉. If H is abelian, it is not refined. If K (and not H)
is abelian, we have z with [x, z] = y or [x, y] = x4. Here B(H) = B(H/L4) and H is not
refined. The same is true in the two remaining cases. We found that all groups H with
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exp(H) = 8 are not refined. For H with exp(H) ≥ 16, the only new two-generator group H
appearing is

〈x, y | x4 = y16m = y4m[x, y] = 1〉,
and here B(H/〈y4〉) = B(H).

Note that if N is a normal subgroup of a group G of B(G) = 4 such that G/N 
 C2 ×
C2, then the condition exp(N) = exp(G) is possible in cases (a),(c),(d) of Theorem 1.4.

6. The role of odd primes less than 7. Before entering into the details of the proofs,
we recall a well-known fact.

REMARK 6.1. If H is a subgroup of the group G, then NG(H)/CG(H) is isomorphic
to a subgroup of the automorphism group Aut(H) of H (see [7, Kapitel I, Satz 4.5]). Note
also that Aut(Cn

p) = GL(n, Fp), where Cn
p is the elementary abelian p-group of rank n (see

[7, Kapitel II, Section 6]). Specializing to p = 3 and n = 2, we find |GL(2, F3)| = 48 and
its noncyclic subgroups are isomorphic to one of the following: D6, D8, C2 × C2, D12,
Q8, SD16, SL(2, F3), where SD16 denotes the semidihedral group of order 16 (see [7, Satz
13.10, Kapitel III, Section 13] and [7, Satz 14.9, Kapitel I, Section 14]).

We have the following restriction on the primes dividing |G|, if B(G) = 8.

PROPOSITION 6.2. A group G cannot be refined if B(G) = 8 and p ∈ Div(exp(G)) where
p > 7.

Proof. Assume that G is refined and p is a divisor of |G|. Then p > 15 is impossible by
Theorem 2.8 (i), and p ∈ {11, 13} is impossible by Theorem 2.8 (ii) since p − 8 �∈ Div(7)

in both cases. Then the result follows.

Now we turn to the groups themselves, characterizing first the refined groups and then,
for every case, the deduced groups, so that the first half of each statement is connected
with Theorem 1.5, while the second half with Theorem 1.6. Whenever the word extension
is used here, it means an extension having the refined group as epimorphic image. In some
cases, we will note different non-isomorphic possibilities. Then all of these possibilities
are included.

THEOREM 6.3. Let G be a nonabelian group of B(G) = 8, and p odd prime. If the
noncyclic Sylow p-subgroups of G are noncyclic, then p = 3. Moreover,

(i) if G is refined, then either G 
 L(F9) or G 
 D6 × D6;
(ii) if G is deduced from L(F9) or from D6 × D6, then either G is an extension of C3 ×

C3 by C8m with gcd(m, 3) = 1, or G is an extension of C3 × C3 by a 3′-group T ∈D.

Proof. (i). Applying Lemma 3.4 (with k = 2), we have |N | = p2 and there is a maximal
subgroup M of S which is cyclic, further S′ = [S, S] ⊆ M ∩ N and S is nilpotent of class at
most 2 and Mp ⊆ Z(S).

Let T be a complement of S in G. There are p maximal subgroups of S that are cyclic,
and at least one of them is normalized by T ; let this be M . Note that T ⊆ CG(S) is impos-
sible, since then G = S × T and B(G) = p · B(T) �= 8 by Lemma 3.1. If T �⊆ CG(M), then
there is an element x ∈ T such that 〈x, M〉 is nonabelian and

B(〈x, M〉) ≥ |M | + 1

2
,

so this happens only if |M | ≤ 15, since B(G) = 8.
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We have derived for |M | > p: |M | = 9 or M ⊆ CG(T). If M ⊆ CG(T), we consider
the p subgroups of order p not contained in M . Not all of them are fixed by conjugation
by elements in T , otherwise S ⊆ CG(T). Let V be one such subgroup. Then V ⊆ G′ and
[V , T] = 1 since G/CG(M) is abelian as subgroup of Aut(M). We deduce that M ⊆ Z(G)

and G = VT × M . This is not refined if |M | > p. We summarize |M | = 9 or N = S. Now we
split into the cases p ∈ {5, 7} and p = 3.

Case 1: The prime p equals either 5 or 7.

Here we have reduced to S = N 
 Cp × Cp, elementary abelian of order p2, and, as
before, S �⊆ Z(G). Since

8 ≥ B(CG(S)) = B(S) · B(CT (S)),

we have CT (S) = 1, so CT (S) is cyclic. We consider first the case S ∩ Z(G) = 1. If we have
x ∈ T \ CT (S) with xq ∈ CT (S) with q a prime, and [x, S] = S, we obtain B(〈x, S〉) > 8, a
contradiction. If x4 ∈ CT (S) and [x, S] = S, we have 2p2 elements of order 4 modulo CT (S)

and

B(〈x, S〉) ≥ p2

2
> 8

again a contradiction. For p = 7, we have to consider also x6 ∈ CT (S) and [x3, S][x2, S] =
S, [x3, S] ∩ [x2, S] = 1 and this yields to the presence of two subgroups X 
 D14 and Y of
〈x, S〉 such that

B(〈x, S〉) = B(D14) · B(Y ) = 4 · 5 = 20 > 8.

Note that D14 = C2 � C7 has B(D14) = 4 by Lemma 3.3. For every other case of G/CG(S)

with [x, S] = S, we have a subgroup of G which is of one of the previous forms. The contra-
dictions above lead to the following restriction: S ∩ Z(G) �= 1. This means G = 〈x, CG(S)〉,
xp−1 ∈ CG(S), and |[x, S]| = p. As mentioned before CT (S) is cyclic, where T is a comple-
ment of S in G. The quotient group G/S cannot be cyclic since otherwise B(G) = p. If G/S
is abelian and noncyclic, then CT (G) ⊆ Z(G) and there is a noncyclic q-subgroup in G/S,
where q divides |G/CG(S)|; therefore

B(G) ≥ qp > 8.

So G/S is nonabelian and the number of conjugates of x increases by a factor,

B(G) ≥ 2 · B(〈x, S〉) = 2p > 8.

Again this is impossible. Then S is cyclic of order p if p = 5 or 7. So we have just proved
that there is no refined group G of B(G) = 8 and noncyclic Sylow p-subgroup (when p ∈
{5, 7}).

Case 2: The prime p equals 3.

We claim the following:

Any noncyclic Sylow 3-subgroup of G with B(G) = 8 is of order 9.

Clearly this means in the notation above S = N . Assume that this is false and there is
a subgroup M , maximal in S, and cyclic and normal in G, with |M | > 3. If G/CG(M) is a
3-group, then G is not refined; in particular, S cannot be a direct factor of G. If G/CG(M)

is not a 3-group, there is x ∈ G \ CG(M) of order a power of 2 and B(〈x, M〉) = 1
2 (|M | + 1).

This shows |M | = 9. The quotient group G/S must be a 2-group with B(G/S) ≤ 2;
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therefore, G is supersoluble, because of the series 1 � S3 � M � S � G with |S3| = |S/S3| = 3
and |G/S| = 2.

Note from Theorem 2.1 that a 2-group D with B(D) = 2 is always generated by two
elements, since otherwise the formula B(〈u, D〉) = 1

2 (|D| + 1) would give contradiction
(with u such that D ⊂ 〈u, D〉).

Therefore, we may conclude that G/SCG(S) is of order 2 or elementary abelian of
order 4. If |G/SCG(S)| = 4, then G possesses an element y such that CG(y) ∩ S = 1 and
B(〈y, S〉) = 14, which is impossible. If |G/CG(M)| is not even, then B(G) = B(G/M3)

and G is not refined. It remains G′ = M and B(G/S) = B(G/M) since G/S 
 G/S × S/M .
Let us call again D a Sylow 2-subgroup of G; obviously B(D) = B(G/S). If B(D) = 1, then
|D| = 2 since G is refined, and b2(G) = 5; b3(G) = 3; b6(G) = 6; b18(G) = 3. If B(D) = 2,
then D is not a quaternion group since G is refined (recall that Q8 is not refined because
B(Q8) = B(Q8/Z(Q8)) = 2, see [6, Example 2.9 (iv)] for details), so b2(D) = 2 and
D 
 C2 × C2, again since G is refined. We obtain G 
 D18 × C6, and putting e1 =
gcd(12, 18) = 6, e2 = gcd(12, 6) = 6, we find from Lemma 3.1 that

B(G) ≥ b12(D18 × C6) = gcd(e1, e2) · b6(D18) · b6(C6) = 6 · 2 · 1 = 12 > 8.

This contradiction proves the claim.
Therefore, we have S = N if p = 3, and B(G/S) ≤ 2. If G/S is cyclic, we deduce

again that CG(S) = S since G is refined, and B(G) = 8 if |G/S| = 8. If B(G/S) = 2,
we see at once B(D6 × D6) = 8 (for instance, Corollary 2.7 shows B(D6) = b2(D6) = 2
and Lemma 3.1 shows that B(D6 × D6) = b6(D6 × D6) = gcd(6, 2) · b2(D6) · b2(D6) =
2 · 2 · 2) for G/S 
 C2 × C2. Clearly G/CG(S) must be isomorphic to a 2-subgroup of
GL(2, F3) (note Remark 6.1) and it cannot be D8 or the full Sylow 2-subgroup K of S since
b2(D8) = 3 and b2(K) = 7. The extension E of S by Q8 (with Z(E) = 1) is not allowed, since
B(E) = 16. Collecting all these information, plus the fact that G is refined and Z(G) = 1,
whenever B(G/S) = 2, we deduce that the only possible solutions are G 
 L(F9), which
has B(L(F9)) = 8 by Lemma 3.3, or G 
 D6 × D6, as we have seen.

(ii) If the refined group G is isomorphic to L(F9), we are in a situation like Case (A) of
Remark 3.2. The Schur multiplier of G is trivial, so all deduced groups are split extensions
of G′ by a group isomorphic to some C8m with gcd(m, 3) = 1. If the refined group is
isomorphic to D6 × D6, then we have Case (B) of Remark 3.2. The Schur multiplier has
order 2, we obtain here the extension of C3 × C3 by Q8 with center of order 2. The result
follows.

When we do not have information on the presence of noncyclic Sylow subgroups,
a different argument must be used. The following result fits this scope, illustrating what
happens when the global breadth is 8 and the prime 7 appears among the divisors of the
order of the group.

THEOREM 6.4. Let G be a nonabelian group of B(G) = 8 and 7 ∈ π(G).

(i) If G is refined and 7 ∈ π(G), then either G 
 L(F8) × C2 or G 
 D14 × C2.
(ii) If G is deduced from one of the groups in (i) above, then either G is an extension of

C2 × C2 × C2 by C14m, or G is an extension of C7 by a 7′-group T ∈D.

Proof. (i). The Sylow 7-subgroup S of G is cyclic of order 7 by Theorem 6.3. Now
|G : NG(S)| = 7k + 1 by the third Sylow Theorem, and

b7(G) = 6(7k + 1) + 1

7
= 6k + 1 ≤ 8,

implies k < 2. We have to consider k = 1 and k = 0.
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If k = 1 and |NG(S) ∩ NG(T)| = d �= 1 for some conjugate T of S, then we apply
Lemma 3.10 and obtain 28 conjugates of this intersection, and

bd(G) ≥ 28(d − 1) + 1

d
> 14,

since d ∈ {2, 3, 6}. So d = 1. Again by Lemma 3.10, |G/Z(G)| = 56 and G is 7-nilpotent.
Thus G/Z(G) ∼= L(F8) and G 
 L(F8) × C2.

If k = 0, then |G : NG(S)| = 1 and S is a normal subgroup of G. Here S cannot
be contained in Z(G), otherwise we apply Proposition 2.3 and G cannot be refined.
Looking at Remark 6.1, |G/CG(S)| = |NG(S)/CG(S)| divides 6 = |Aut(C7)| = |Aut(S)|.
If |G/CG(S)7| = 3, then B(G/CS(G)7) = b3(G/CS(G)7) = 5, and the elements of order 3
generate the quotient group G/CS(G)7. Let x ∈ G \ CG(S)7 be an element of order 3d for
some d ≥ 1. The index |G : 〈x〉| must be a multiple of 7. Assume that the index is at least
14. Then the number of elements of order 3d is at least

3d−1 + 14(3d − 3d−1) = 29(3d−1) > 9 · 3d,

and this implies that

B(G) ≥ b3d (G) = |{y ∈ G | y3d = 1}|
3d

≥ 9 · 3d

3d
= 9,

which is in contradiction with B(G) = 8. So |G : 〈x〉| = |G : NG(〈x〉)| = 7 and 〈x, S〉 is a
normal subgroup of G, that is, G = 〈x, S〉 × CG(S)7, but now again B(G) = 8 is impossible,
because (as before) the presence of 〈x, S〉 implies that the number of elements of order 3d

is at least 9 · 3d and this gives a b3d (G) > 8. Then |G/CG(S)7| = 3 cannot happen. By a
similar argument, we can see that |G/CG(S)7| = 6 is impossible.

It remains the case |G/CG(S)7| = 2. Here we obtain B(D14) = 4 (for instance, apply
Lemma 3.3 to D14 = W � N = C2 � C7 with k = 2 and s = 7, in order to find B(D14) = 4)
and so B(D14 × C2) as the refined example. Then (i) is shown.

(ii) If G 
 L(F7) × C2, we have case Remark 3.2 (A) and the deduced groups are the
extensions of C2 × C2 × C2 by C14m (no restrictions to m). If G 
 D14 × C2, we have case
Remark 3.2 (B). The Schur multiplier has order 2, the corresponding extension of C7 by
Q8 is included in the extension by nilpotent 7′-groups T , where T ∈D. Notice that here
two non-isomorphic extensions may appear for 16 ∈ Div(T) according to the centralizer of
C7 being cyclic or not. The result follows.

In the same spirit of Theorem 6.4, we describe what happens when the global breadth
is 8 and the prime 5 appears between the divisors of the order of the group.

THEOREM 6.5. Let G be a nonabelian group of B(G) = 8 and 5 ∈ π(G).

(i) If G is refined and |G| is divisible by 5, then

(a) G 
 Hol(C5) × C2;
(b) G 
 D30;
(c) G 
 Alt(5).

(ii) If G is deduced from one of the group in (i) above, then

(a) G is the extension of C5 by a 5′-group T such that T ∈D;
(b) G is the extension of C15 by C2m with gcd(30, m) = 1;
(c) G 
 Alt(5) × Cm with gcd(30, m) = 1; or

(c’) G 
 SL(2, F5) × Cm with gcd(30, m) = 1.
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Proof. (i) Repeating the argument of the proof of Theorem 6.4, we obtain that the
Sylow 5-subgroup S of G has order 5, and so |G : NG(S)| ∈ {1, 6}. Moreover, S is not con-
tained in Z(G) (otherwise Proposition 2.3 gives contradiction with the assumption that G
is refined).

We consider first the situation that S is a normal subgroup of G, that is, |G :
NG(S)| = 1. Here |NG(S)/CG(S)| = |G/CG(S)| is a divisor of 4 = |Aut(S)| = |Aut(C5)|
(see Remark 6.1). If |G/CG(S)| = 4, then G 
 Hol(C5) × C2, and this is the only possibil-
ity. Note that B(Hol(C5)) = B(C4 � C5) = 4 by Lemma 3.3 with W = C4, N = C5, k = 4,
and s = 5. Then Lemma 3.1 gives the following:

B(G) = gcd(|Hol(C5)|, |C2|) · B(Hol(C5)) · B(C2) = 2 · 4 · 1 = 8.

On the other hand, the structure of Hol(C5) × C2 
 (C4 � C5) × C2 shows that its non-
trivial quotients are isomorphic either to C4 � C5, or to C2, or to C5 × C2, or to C4 × C2.
Applying Lemma 3.1, it is clear that we cannot get the value eight in these cases, so G is
refined. If |G/CG(S)| = 2, we obtain G 
 D30, again uniquely. One can check easily that
D30 
 C2 � C15 has global breadth eight, again with Lemma 3.3. Here again the structure
of semidirect product allows us to describe the possible quotients of D30, so that we may
easily conclude that D30 is refined.

Now assume that S is not a normal subgroup of G. This means that |G : NG(S)| = 6,
that is, there are six conjugates of S. If NG(S) = CG(S), then we apply Burnside’s Theorem
[7, Hauptsatz 2.6, p. 419] and there is a normal subgroup of M of G with G = SM and
S ∩ M = 1. If q is a prime dividing |M |, then there is a Sylow q-subgroup Q which is
normalized by S. If Q �⊂ CG(S), then |Q : CQ(S)| = 6, which is not a power of a prime, a
contradiction. So for every prime dividing |M |, there is a corresponding Sylow subgroups
of M which is centralized by S, contradicting the nonnormality of S. If |NG(S) : CG(S)| = 4,
then there is an element x ∈ G of order a power of 2 such that 〈x, S〉 ⊆ NG(S) and every
conjugate of 〈x〉 normalizes two conjugates of S. So we get

bo(x)(G) ≥ o(x) + 3

(
14

4

)
· o(x) ≥ 10 · o(x),

contradicting B(G) = 8. We are left with |NG(S) : CG(S)| = 2. We may choose y ∈ NG(S) \
CG(S) of order a power of 2, and we obtain in the same way

bo( y)(G) ≥ o(y) + 3

(
14

4

)
· o(y) ≥ 8 · o(y),

with equality if 〈y2〉 is a normal subgroup of G. Let D be the intersection of all conjugates
of NG(S) in G. Of course D is normal in G and we have that G/D is isomorphic to a
subgroup of Sym(6) of order a multiple of 30. Note that there are no subgroups of order
30 in Sym(6), but, as multiple of 30, only of order 120 and 60. These subgroups are,
respectively, isomorphic to Sym(5) or Alt(5). Now counting the involutions of Sym(5),
one can see that b2(Sym(5)) > 8, which is clearly in contrast with B(G) = 8. Then the
only case is now G/D 
 Alt(5), and if G is refined, this implies G 
 Alt(5). Here, we
should note that exp(Alt(5)) = 30 and count be(Alt(5)) for all e ∈ Div(30), checking that
B(Alt(5)) = 8.

(ii) In (a) we apply Remark 3.2 (B). Notice that here the centralizer of C5 is always
noncyclic. In (b) we have Case (A) of Remark 3.2, and the statement follows. In (c) here G
is perfect, and for H with H/N 
 G with cyclic N , we have N ⊆ Z(G). The Schur multiplier
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of G is of order 2. This leads to SL(2, F5). By Corollary 2.4 and Lemma 3.1, B(G × Cm) =
8 if and only if gcd(30, m) = 1. This shows (c) and completes the proof.

7. The case of {2,3}-groups. Here we prove (v) in Theorem 1.5 and (jv) in
Theorem 1.6.

Proof of (v) in Theorem 1.5. Let S be a Sylow 3-subgroup of G. Note that S is cyclic
by assumption. Moreover |S| must be at most 9 by Theorems 6.3, 6.4, and 6.5. We are
going to prove that |S| = 3, that is, S 
 C3.

The number of conjugates |G : NG(S)| is of the form 1 + 3k by the third theorem of
Sylow and a power of 2 at the same time. If |G : NG(S)| ≥ 16, then

|S| · b|S|(G) = |S| + 16 · |S|
3

= 11 · |S|,
and so b|S|(G) ≥ 11, and this contradicts B(G) = 8. So |G : NG(S)| ∈ {1, 4}. It follows that
S3 is a normal subgroup of G.

Assume |G : NG(S)| = 4. If CG(S) �= NG(S), then there is x ∈ NG(S) \ CG(S) of order a
power of 2 such that B(〈x, S〉) = |S|+1

2 . Since B(G) = 8, we obtain |S| ≤ 9. Assume |S| = 9.
Then the element x normalizes S and some other conjugate S+ of S, and the number of
conjugates of x is at least |S ∪ S+| = 15 and not divisible by 5, since |G| is not divisible
by 5. This implies bo(x)(G) > 8, a contradiction. So |S| = 3 when NG(S) �= CG(S). If this
does not happen, that is, if CG(S) = NG(S), then G is 3-nilpotent and nonrefined, by the
normality of S3, and this gives a further contradiction. Hence |S| = 3 for |G : NG(S)| = 4.

Consider now SG = 〈Sg | g ∈ G〉 and |G : NG(S)| = 4. We obtain SG 
 Alt(4) or SG 

SL(2, F3). For the 3-nilpotent case, we find as only refined groups

G 
 Alt(4) × C2 × C2 or G 
 SL(2, F3) × C4.

If |G : NG(S)| = 4 and NG(S) �= CG(S), then the intersection K of all conjugates of
NG(S) is a normal subgroup of G such that G/K 
 Sym(4). As only refined possibility, we
would have either G 
 Sym(4) × C2 or the subdirect product of Sym(4) by C4. The first
case cannot happen, because b2(Sym(4) × C2) > 8, but the second case has breadth 8 and
is exactly the circumstance, described in (3).

It remains to consider the case that S is a normal subgroup of G. Again we may assume
that |S| ≤ 9. Now if |S| = 3 and the Sylow 2-subgroup D is abelian, we obtain D 
 C4 × C4

and C2 × C2 × C2 × C2 as only possibilities. If D is nonabelian, we have either

D 
 〈a, b|a2 = [a, [a, b]] = [a, b2] = b4 = 1〉 or D 
 〈a, b|a4 = b4 = abab−1〉.
Here we should consider two non-isomorphic extensions of S by D; both are possible.

For |S| = 9, we have |G : CG(S)| = 2. Let T be a Sylow 2-subgroup of G further
U = CS(T) and V = T \ CG(T). Then bm(T) = bm(U) + bm(V) and all terms are divisi-
ble by m as long as m divides exp(U). The number of elements of order a power of 2 is
|U | + 9|U | = 10|U | = 5|S|. Since B(G) = 8, we obtain for every m dividing exp(U)

bm(G) = bm(U) + 9bm(V) ≤ 8m,

where m divides bm(V). So bm(V) = 0 for all m dividing exp(U) and exp(T) = 2 exp(U).
So for u = exp(U), we obtain

b2u(G) = b2u(U) + 9b2u(V) = 10b2u(U),
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since |U | = |V |. Now b2u(U) = |U | = bu(U) by construction, and u divides bu(U). So
b2u(G) is divisible by 5 and B(G) = 8 is impossible.

We are left with the case that G = NG(S) �= CG(S) and |S| = 3. Using the same notation
as above, we have that G has |U | + 3|V | = 2|T | elements of order a power of 2. If B(T) =
bexp(T)(T), then, in analogy to the preceding case, B(G) = 2B(T) and B(T) = 4. If T is
not refined, then B(T) = B(T/N) for some normal subgroup N of order 2 contained in
T ′ = [T, T]. Now N is also normal in G and B(G/T) = B(G), against the fact that G is
refined.

If B(X ) = 4 and X is refined and nilpotent, then exp(X ) ≤ 4: let Y ⊆ X be a cyclic
subgroup of maximal order. Then |〈X , Y 〉| ∈ {2, 4}. If |〈X , Y 〉| = 2, then X is abelian or
dihedral, or quaternion, or of nilpotency class 2. All of these are not refined except Q8

and B(Q8) �= 4. So |〈X , Y 〉| = 4. Let |Y | > 4 and N ⊆ Y be a subgroup of order 2. If Y is
a normal subgroup of G, then B(G) = B(G/N) and G is not refined. If Y is not a normal
subgroup of G, then there is an element z ∈ G such that Y z �= Y and Y ⊆ YY z ⊆ G with all
indices 2, and YY z of nilpotency class 2 and N = (YY z)m, where 2m = |Y |. Again B(G) =
B(G/N) and G is not refined.

The refined groups X with B(X ) = 4 are either elementary abelian of order 8 or of
order 16 and exponent 4; then we conclude that either

|X 2| = 8 and X 
 〈u, v|u4 = v2 = [[v, u], u] = [[v, u], v] = 1〉.
or |X 2| = 4 with two isomorphism classes. The result follows.

In order to modify the previous argument for strictly deduced groups, we note that
these are always extensions of cyclic groups by the corresponding refined group. This is
the main idea of the following argument.

Proof of (jv) in Theorem 1.6 . For (a) we have as first subcase that G is a direct product
PSL(2, F3) × V and B(V) = 2 follows from Lemma 3.1 (ii).

If G is not a direct product, we consider first the case that the Sylow 2-subgroup D
is an extension of a group of order 2 by an elementary abelian group of order 16 and
G′ ∼= Q8. Now G′CD(G′) = D and |G′ ∩ CD(G′)| = |D′| = 2, and we have to decide which
of the groups Q8, D8, C4 × C2 are possible.

Clearly exp(D) = 4 and b4(D) = 4 and we need b2(D) ≤ 4. For CD(G′) 
 Q8, we
would obtain b2(D) = 10, so this case is impossible. For the cases CD(G′) 
 D8, C4 × C2,
we have b2(D) = 8, so these lead to deduced groups. For Sylow 2-subgroups D of G with
CD(G′) of higher order, we obtain that they do not have a subgroup isomorphic to Q8, but
all other groups of breadth two are possible for CD(G′). Finally CD(G′) ∼= D16 is possible.
For the group in (b), the only possibility is obvious since the Schur multiplier of SL(2, F3)

is trivial. In this situation, we have G 
 (SL(2, F3) × W)/Z, where W ∗ is the unique min-
imal normal subgroup of W 2, Z ⊂ (SL(2, F3))

′′W ∗, (SL(2, F3)
′′ �= Z �= W ∗, and W 
 D16

or B(W) = 2 but W �
 Q8.
For the groups in (c) and (d), there are only the possibilities given since split extensions

analogous to (c) of SL(2, F3) lead to breadth 16.

8. Proofs of main theorems and closing remarks. We begin by proving
Theorems 1.5 and 1.6.

Proof of Theorem 1.5. The condition (i) is described by Proposition 3.8, while (ii),
(iii), and (iv) follow from Theorems 6.3 (i), 6.4 (i), and 6.5 (i), respectively. Now (vi)
follows from Theorem 2.8 (i) and (v) is shown in Section 7.
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Proof of Theorem 1.6. The conditions (j), (jj), and (jjj) follow from Theorems 6.3 (ii),
6.4 (ii), and 6.5 (ii), respectively. Finally (jv) is shown in Section 7.

There are a series of conjectures and open problems that we will list in the following,
after we discussed the details of the proofs of the main theorems. On the other hand, the
readers may have noted that in all cases

∃k ∈ N such that 〈Lk(G)〉 = G and bk(G) = B(G). (8.1)

In addition to (8.1), if B(G) = B(G/N) for some proper normal subgroup N of G, then N
is contained in the hypercenter Z∞(G) of G (i.e., the largest term of the upper central series
of G, see [7]).

Both these facts are not true in general, as can be seen by the following example.

EXAMPLE 8.1. The group

T = 〈x, y, z, w | x2 = y15 = (xy)2 = z17 = w17 = [z, w] = y−1zyzw = y−1wyz−1 = 1〉,
has

B(T) = b3(T) = b15(T) = 193, b2(T) = 128, b6(T) = 139, b5(T) = 1,

b17(T) = b51(T) = b85(T) = 17, b34(T).

Here N = 〈y3〉 has B(T/N) = B(T) = b3(T) = 193, but N is not contained in Z∞(T).
Moreover L3(T) does not generate T .

This property of generation of G via Lk(G) is strictly related to the case of global
breadth eight, but it may be related to different values of global breadth. If the number k
is different from exp(G), this may lead to exclusion of primes as divisors of the order of
the cyclic normal subgroups. In other words, it seems that the general theory of generation
of groups (see [8] for recent results) may be related to that of the global breadth, under
prescribed conditions. More precisely, it would be interesting to study the following class
of groups:

E = {G | ∃k ∈ N such that 〈Lk(G)〉 = G and bk(G) = B(G)},
and see if the deduced groups, belonging to this class, have the property of inclusion in the
hypercenter, as mentioned before.

Another observation, which may deserve further study, is the behavior of “minimal
sets of global breadth.” This idea is illustrated here.

REMARK 8.2. A refined group G (for a given value of B(G)) may contain proper
subgroups S with B(G) = B(S); for instance, this is the case for C2 × C2 × C2 × C2 and
L(F8) × C2. In this particular case, the class of deduced groups of one need not be the
class of suitable subgroups of the other: Q8 × C2 × C2 is not isomorphic to a subgroup of
a group, deduced from L(F8) × C2 but is deduced from C2 × C2 × C2 × C2.

The following remark illustrates again a general behavior which may be of independent
interest.

REMARK 8.3. As already mentioned, in addition to (8.1), the following conditions are
satisfied by several deduced groups:

If B(G) = B(G/N), then N ⊆ Z∞(G). (8.2)
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If B(G) = B(G/N) and N is a Sylow subgroup of G, then N ⊆ Z(G). (8.3)

If G is refined, then |G| ≤ B(G)(B(G) + 1). (8.4)

The study of the behavior of these implications is very interesting. Consequently, one could
investigate the following classes of groups:

F = {G | G is deduced from G/N and N ⊆ Z∞(G)};

G = {G | G is deduced from G/N, and N is a central Sylow subgroup of G};

H= {G | G satisfies the condition |G| ≤ B(G)(B(G) + 1)}.
What we have seen until now allows us to conclude that these classes are not empty and
their intersection is not empty. Of course, it would be nice to see if there are relations with
the theory of formations of Gaschütz and Lubeseder (see [2]).

One can see that (8.1), (8.2), (8.3), and (8.4) are not satisfied in general, producing
examples which disprove these implications, nevertheless F , G, and H and their properties
remain interesting to study.

On the other hand, it seems that the orders of simple groups G with B(G) ≤ M (for
a given constant M > 0) are more restricted than refined groups in general, perhaps by
|G| ≤ M2. Thompson’s Conjecture points into the same direction: it says that every finite
simple group G possesses a conjugacy class C such that C2 ∪ {1} = G. This would ease
finding all nonsolvable refined groups for a given global breadth.
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