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A fully developed, turbulent Poiseuille flow with wall transpiration, i.e. uniform
blowing and suction on the lower and upper walls correspondingly, is investigated
by both direct numerical simulation (DNS) of the three-dimensional, incompressible
Navier–Stokes equations and Lie symmetry analysis. The latter is used to find
symmetry transformations and in turn to derive invariant solutions of the set of two-
and multi-point correlation equations. We show that the transpiration velocity is a
symmetry breaking which implies a logarithmic scaling law in the core of the channel.
DNS validates this result of Lie symmetry analysis and hence aids establishing a new
logarithmic law of deficit type. The region of validity of the new logarithmic law is
very different from the usual near-wall log law and the slope constant in the core
region differs from the von Kármán constant and is equal to 0.3. Further, extended
forms of the linear viscous sublayer law and the near-wall log law are also derived,
which, as a particular case, include these laws for the classical non-transpiring case.
The viscous sublayer at the suction side has an asymptotic suction profile. The
thickness of the sublayer increase at high Reynolds and transpiration numbers. For
the near-wall log law we see an indication that it appears at the moderate transpiration
rates (0.05< v0/uτ < 0.1) and only at the blowing wall. Finally, from the DNS data
we establish a relation between the friction velocity uτ and the transpiration v0 which
turns out to be linear at moderate transpiration rates.

Key words: turbulence simulation, turbulence theory

1. Introduction
In this paper we investigate the mean velocity scaling laws for a turbulent Poiseuille

flow with uniform wall transpiration as it is shown in figure 1. Wall-bounded turbulent
flows with transpiration may not only be a technologically important subject of
investigation (Jiménez et al. 2001; Kametani & Fukagata 2011) but also important
for theoretical reasons as we will subsequently show.
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oberlack@fdy.tu-darmstadt.de
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FIGURE 1. Schematic view of the channel flow with wall transpiration. Fluid is blown
through the lower wall and removed from the upper wall at a constant rate.

In the classical non-transpiring plane turbulent channel flow all statistical quantities
are symmetric or antisymmetric with respect to the channel centreline. This includes
symmetric distribution of the mean velocity, the normal Reynolds stresses and point
symmetric distributions of viscous and turbulent shear stresses including values of
shear stresses at the walls. These results are consistent with zero total shear stress
and zero mean velocity gradient in the centre of the channel. In the presence of
wall transpiration, all of these symmetries are broken. Furthermore, the occurrence
of an additional term in the streamwise component of the mean momentum equation
modifies the classical universal scaling laws (linear viscous sublayer and law of the
wall) for non-transpiring wall-bounded flows.

Boundary-layer flows with wall-transpiration are the most commonly studied
wall-bounded flow with permeable boundary conditions. First experimental results
and a new mean velocity scaling law (so-called ‘bi-logarithmic law’) on the subject
were obtained in the 1950s (Mickley & Davis 1957; Black & Sarnecki 1958) using
mixing-length theory. Tennekes (1965) obtained a new form of the law of the wall
(‘semi-logarithmic’) and a velocity defect law assuming the existence of a joint
velocity scale u2

τ/v0 for the inner and the outer regions. Later Stevenson in his two
companion papers (Stevenson 1963a,b) compared his experimental results with the
experimental data of Black & Sarnecki (1958) and Mickley & Davis (1957). He
found generalized forms of the law of the wall and shortly afterwards a velocity
defect law for the turbulent boundary layer with suction and blowing at zero pressure
gradient. He stated that the slope constant, i.e. the von Kármán constant, and the
additive constant C are both independent of the transpiration velocity v0. The most
recent study on turbulent boundary-layer flow with transpiration is a numerical one
conducted by Schlatter & Örlü (2011). They showed that uniform suction considerably
changes the mean velocity profile and they found the modified coefficients for the
log law to be κ = 0.82 and C= 9.2.

In comparison with the other wall-bounded flows with specific, non-standard
boundary conditions, turbulent channel, i.e. Poiseuille flow with wall transpiration is
a relatively new subject of investigation. The only experimental study of this flow
of an incompressible fluid known to the authors was conducted by Zhapbasbayev
& Isakhanova (1998). They collected statistics for the mean velocity and turbulent
stresses for different Reynolds numbers and a variety of small transpiration velocity
numbers in the range 0 < v0/uτ < 0.05. Thereafter, they employed the experimental
data to evaluate a Reynolds stress transport model developed by Launder and
co-authors (see e.g. Hanjalić & Launder 1972b; Launder, Reece & Rodi 1975).

In the literature only a few direct numerical simulation (DNS) studies of the
turbulent channel flow with blowing and suction were reported. Sumitani & Kasagi
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New scaling laws for turbulent Poiseuille flow with wall transpiration 101

(1995) studied turbulent channel flow with uniform wall transpiration and heat
transfer. The walls were kept isothermal, while their temperatures vary. The Reynolds
number and the transpiration rate were held constant at Reτ = 150 and v0/uτ = 0.05.
Various statistical quantities including mean velocity and mean temperature, Reynolds
stresses and turbulent heat fluxes were obtained. Energy budgets and temperature
correlations were also calculated. One key overall result they found was that blowing
stimulates the near-wall turbulence and creates an excessive amount of small-scale
coherent streamwise vortical structures, while suction suppresses turbulence and at
the same time creates large-scale near-wall coherent structures. Nikitin & Pavel’ev
(1998) performed DNS computations at Reτ = 356 and 681.2 for v0/uτ = 0.112
and 0.118, respectively. They showed that blowing and suction increase the friction
coefficient. Apart from this, they investigated the near-wall logarithmic region of
the mean velocity profile and found that the slope constant of the log law at the
blowing wall is not constant and increases with the increase of transpiration rate. It
is important to mention that they used the local friction velocity at each wall as the
velocity scale. Presently we employ an averaged friction velocity from both walls,
which is a measure of the pressure gradient. Chung & Sung (2001) investigated the
initial relaxation of a turbulent channel flow after a sudden application of blowing
and suction. Chung, Sung & Krogstad (2002) analysed the effects of uniform wall
blowing and suction by modulating the near-wall turbulence. They confirmed that
suction increases the turbulence anisotropy, while blowing decreases the anisotropy
in the near-wall region and enhances the transverse components of the velocity
fluctuations (u2 and u3).

A purely analytical study of the turbulent channel flow with wall transpiration was
performed by Vigdorovich & Oberlack (2008). Employing the method of matched
asymptotic expansions led them to the construction of the solutions for the near-wall
regions (both blowing and suction) as well as for the core region of the flow. The
results therein did not give any scaling for the mean velocity or the correlation
functions but it allowed the relation between the wall shear stress, the Reynolds
number and the transpiration velocity to be described by a function of one variable.

Summarizing all above-mentioned studies we conclude that there is no comprehensive
investigation of the mean velocity scaling laws of the Poiseuille flow with uniform
wall transpiration based on first principles. This difficulty may be traced back to the
problem of determining an appropriate velocity scale as there are multiple including
v0, uτ on both walls and UB being the bulk velocity, as well as the proper choice of
equations on which to base the analysis.

Presently, the application of Lie symmetry method to the two-point correlation
(TPC) and multi-point correlation (MPC) equations is employed as the fundamental
basis to find new mean velocity scaling laws as well as the proper scales on which
it is based. The DNS facilitates the evaluation of the analytical results and finally
allows us to establish a clear connection between the different velocity scales.

Symmetry analysis of a system of differential equations based on continuous
transformation groups, i.e. Lie groups, was introduced by Sophus Lie in the nineteenth
century to unify and extend various specialized methods for solving differential
equations. The symmetry of a system of differential equations is a transformation
that maps any solution to another solution of the system. The advantage of Lie
group method, and in turn constructing symmetry transformations, is that they can
be found using computational methods. Finding of the symmetry transformations of
the TPC equations gives profound insight into the flow physics. Once the symmetries
are derived, they can be used to achieve reduction or self-similarity in a general
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sense of the TPC equations. This reduction is always associated with the decrease
of the number of independent variables and finally leads to the desired turbulent
scaling laws. Presently, the main goal is to find mean velocity scaling laws, but
Lie symmetry method is also useful for finding of scaling laws of any higher-order
statistical quantity.

In a series of papers Oberlack and co-authors (see Oberlack 2000, 2001; Oberlack
& Rosteck 2010; Rosteck & Oberlack 2011) studied the turbulent channel and other
canonical wall-bounded flows using Lie symmetry theory by investigating the infinite
series of MPC equations. Thereof they derived a variety of classical and new scaling
laws. It was shown that they are exact solutions of symmetry invariant type of the
infinite-dimensional series of MPC equations. They have shown that turbulent scaling
laws may be generated from first principle and that most of the classical and new
symmetry invariant solutions are based on one or several of the newly discovered
statistical symmetry groups (Oberlack & Rosteck 2010).

In this paper we propose new scaling laws for turbulent Poiseuille flows with wall
transpiration including the canonical flow without transpiration as a particular case.
In addition, we obtain a new logarithmic scaling law in the centre of the channel
using Lie symmetry methods. The law is of defect type and covers up to 75 % of
the channel depending on the turbulent Reynolds number Reτ and the transpiration
velocity v0. In order to validate the new scaling laws and to study the interplay
between Reynolds and transpiration number effects, various DNS of the channel flow
at Reτ = 250, 480 and 850 and a wide range of the transpiration velocities v0 are
conducted.

Governing equations for the flow with wall transpiration are given in § 2. A new log
law is derived in § 3 and also it is shown that transpiration generalizes the classical
laws for the viscous sublayer and the overlap region. DNS verification of the new
scaling law is presented in § 4. Discussion and conclusions are given in § 5.

2. Basic equations for the turbulent channel flow and DNS
The analysis presented below is based on the mean friction velocity defined as

follows

uτ ≡
√

u2
τb + u2

τ s

2
=
√

1
ρ

|τwb| + |τws|
2

=
√

h
ρ

∣∣∣∣ ∂P̄
∂x1

∣∣∣∣, (2.1)

which is a measure of the pressure gradient and the local friction velocities are defined
as

uτb =
√
ν

∣∣∣∣∂Ū1

∂x2

∣∣∣∣
b

, uτ s =
√
ν

∣∣∣∣∂Ū1

∂x2

∣∣∣∣
s

. (2.2)

Here, Ū1 and (∂P̄/∂x1) are the mean velocity and mean pressure gradient in
streamwise direction, ν is the kinematic viscosity and h is the channel half-width.
Here and subsequently subscripts b and s correspond to variables taken on the blowing
and the suction side, respectively. For variables at the wall we use the subscript w
and variables without blowing and suction are denoted by 0. Dimensionless variables
in the near-wall scaling will have the superscript +:

x+i =
xiuτ
ν
, Ū+i =

Ūi

uτ
, uiuk

+ = uiuk

u2
τ

, v+0 =
v0

uτ
, τ+ = τ

(|τwb| + |τws|)/2 . (2.3)
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Note that here uτ is the mean friction velocity, which is a global parameter. Specific
differences on each wall and the corresponding differences in scaling will be discussed
in §§ 3.2–3.4. We employ the channel half-width h as a core region length scaling
parameter. The bulk mean velocity is defined as

UB = 1
2h

∫ 2h

0
Ū1(x2) dx2. (2.4)

It is suitable to start the analysis with the Navier–Stokes equations written in
Reynolds-averaged form. Throughout this paper we use the following notation. The
statistically averaged quantities are denoted by an overbar, e.g. Ūi and P̄, whereas
fluctuating quantities are denoted by a lowercase letters, e.g. ui and p. The governing
equations for an incompressible turbulent flow, i.e. continuity and mean-momentum
equations, are

∂Ūk

∂xk
= 0, (2.5)

∂Ūi

∂t
+ Ūk

∂Ūi

∂xk
=− 1

ρ

∂P̄
∂xi
+ ν ∂

2Ūi

∂xk∂xk
− ∂uiuk

∂xk
, i= 1, 2, 3, (2.6)

where Ūi(xi, t) and P̄(xi, t) are the mean velocity and mean pressure, and uiuk is
the Reynolds stress tensor. For the incompressible flow investigated, pressure can be
normalized with the constant density as follows

P̄∗ = P̄
ρ
. (2.7)

The asterisk will be omitted throughout the paper. For the present flow we have the
following boundary condition (BC) at the wall

Ūi(x1; x2 = 0, 2h; x3)= (0; v0; 0)T. (2.8)

Because of the periodic BC in the streamwise direction and general homogeneity in
this direction, continuity leads to a constant wall-normal velocity across the channel
height, i.e.

Ū2(x2)= v0. (2.9)

As we employ the BC Ui(x1; x2 = 0, 2h; x3)= (0; v0; 0)T for the DNS together with
(2.8) it implies that all fluctuations vanish at the wall, i.e. ui = 0. Therefore, all
Reynolds stresses also vanish at the wall.

With this, we obtain the streamwise component of mean momentum equation for
the steady state

v0
dŪ1

dx2
=− dP̄

dx1
− du1u2

dx2
+ ν d2Ū1

dx2
2
. (2.10)

As the pressure gradient is specified as a constant, equation (2.10) may be integrated
once and rearranged to obtain

τ(x2)− v0Ū1 =−u1u2 + ν dŪ1

dx2
− v0Ū1 = x2

dP̄
dx1
+ c1. (2.11)
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Here c1 is a constant that in the canonical channel flow is defined as ρu2
τ (Tennekes &

Lumley 1972). Due to different wall conditions of the channel flow with transpiration
the wall shear stresses on the blowing and suction walls are different, which brought
the necessity to use a local friction velocity in (2.11) rather than a global one.

Profiles of the viscous stress, the Reynolds stress and the convective momentum
transport together with the total shear stress are presented and discussed later.

2.1. The TPC equations
The space and time correlation functions in the theory of turbulence was first
introduced by Keller & Friedmann (1924). Various authors derived the complete
system of two-point correlation equations (see e.g. Hinze 1959; McComb 1990),
while Keller & Friedmann (1924) were also the first who closed it by writing
the third moment via the second moment and the mean. Later it was found that
higher-order correlations may indeed not be neglected and the infinite number of the
MPC equations rather than TPC should be taken into account. A first derivation of
the full MPC equation may have been derived in Oberlack (2000).

In order to comprehend the question why the TPC or MPC equations need to be
employed at all for finding the turbulent scaling laws we may for a moment consider
the case of decaying isotropic turbulence. Here, the one-point equation dk/dt = −ε
does not deliver any information that the kinetic energy k usually may decay according
to a power law, if some transitional period has passed. However, the corresponding
two-point equation, the von Kármán–Howarth equation (von Kármán & Howarth
1938), admits a similarity solution as was already shown in the original paper of von
Kármán–Howarth and, probably unknown to the authors, is an implicit use of Lie
symmetries. It delivers the power law decay for the turbulent kinetic energy and at
the same time the algebraic growth of the integral length scale. Hence, transferring
back to the present problem of a shear flow with transpiration we may conclude that
the mean momentum equation (2.10) alone is not sufficient to rigourously derive the
requested scaling property.

In the present section we only focus on the TPC equations in its most general form

D̄Rij

D̄t
+ Rkj

∂Ūi(x, t)
∂xk

+ Rik
∂Ūj(x, t)
∂xk

∣∣∣∣
x+r
+ [Ūk (x+ r, t)− Ūk (x, t)

] ∂Rij

∂rk

+∂puj

∂xi
− ∂puj

∂ri
+ ∂uip
∂rj
− ν

[
∂2Rij

∂xk∂xk
− 2

∂2Rij

∂xk∂rk
+ 2

∂2Rij

∂rk∂rk

]
+ ∂R(ik)j

∂xk
− ∂

∂rk
[R(ik)j − Ri(jk)] = 0, (2.12)

without introducing any closure, where the second- and third-order correlation tensors
are defined as

Rij(x, r; t)= ui(x, t)uj(x+ r, t), puj = p(x, t)uj(x+ r, t), uip= ui(x, t)p(x+ r, t),

R(ik)j(x, r; t)= ui(x, t)uk(x, t)uj(x+ r, t), Ri(jk)(x, r; t)= ui(x, t)uj(x+ r, t)uk(x+ r, t).

(2.13)

and D̄/D̄t= (∂/∂t+ Ūk(∂/∂xk)) is the mean substantial derivative. Continuity equations
for the TPC have the following form

∂Rij

∂xi
− ∂Rij

∂ri
= 0,

∂Rij

∂rj
= 0 (2.14)
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and
∂pui

∂ri
= 0,

∂ujp
∂xj
− ∂ujp
∂rj
= 0. (2.15)

Equations for higher-order correlations have a rather similar form and may be taken
from Oberlack (2000). In the present study Lie group analysis is used to find
symmetry transformations and in turn self-similar solutions of the TPC equations. For
the present flow the TPC equations (2.12) reduce to the following form

Ū2
∂Rij

∂x2
+ R2jδi1

∂Ū1(x2)

∂x2
+ Ri2δ1j

∂Ū1(x2)

∂x2

∣∣∣∣
x2+r2

+ ∂puj

∂xi
− ∂puj

∂ri

+∂uip
∂rj
+ [Ū1(x2 + r2)− Ū1(x2)

] ∂Rij

∂r1
− ν

[
∂2Rij

∂x2∂x2
− 2

∂2Rij

∂x2∂r2
+ 2

∂2Rij

∂rk∂rk

]
+∂R(i2)j
∂x2
− ∂

∂rk
[R(ik)j − Ri(jk)] = 0, (2.16)

since Ūi(x2)= (Ū1(x2), Ū2, 0) and, we recall, Ū2 = v0.
In this context a natural question arises as to why it is sufficient to employ the

mean momentum and the TPC equation for the subsequent Lie symmetry analysis
without taking into account the entire infinite set of MPC equations. Here, the deeper
reason rests on the fact that correlation equations have only a coupling to the direct
neighbouring equation of the next higher tensor order. Hence, without giving a proof
for this, it is sufficient to verify that the derived symmetries for a given correlation
tensor order are consistent to the next higher order. For the present case which relies
on relatively simple symmetries this may readily be verified.

2.2. DNS of the channel flow with wall blowing and suction
In order to verify the scaling laws to be obtained for the different regions of the flow
in the sections to follow we conduct a number of DNS for different transpiration rates
and Reynolds numbers.

For the present DNS we employ a numerical code developed at the School of
Aeronautics, Technical University of Madrid (Hoyas & Jiménez 2006). The code
solves the Navier–Stokes equations for an incompressible fluid in velocity–vorticity
formulation (see e.g. Kim, Moin & Moser 1987). In the streamwise and spanwise
directions (x1, x3) Fourier discretization is used. In the wall-normal direction (x2),
a seven-point compact finite difference scheme (Lele 1992) is applied. Full details
of the numerical methods are given in Hoyas & Jiménez (2006). The DNS data of
Sumitani & Kasagi (1995) are used for the validation of the code. Validation results
are not shown in the present paper, as they were included in Avsarkisov, Oberlack &
Khujadze (2011).

Production runs can be divided into three sets depending on the friction Reynolds
number Reτ . The first two simulation sets consists of four cases for different
transpiration rates, while the highest-Reynolds-number simulation set consists of
only two cases for small and medium transpiration numbers. A complete summary
of the flow and the numerical parameters are given in table 1. Using the DNS and
the experimental results of Sumitani & Kasagi (1995) and Antonia et al. (1986) we
concluded that for the smaller-Reynolds-number simulations (Reτ = 250) it will be
sufficient to use a 4πh × 2h × 2πh box. A validation of this assumption may be
taken from figure 4, where the results for the two-point cross-correlation function
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Reτ v+0 v0/Ub Lx1/h Lx3/h 1x+1 1x+3 Nx1 Nx2 Nx3 NF uτT/h

250 0 0 4π 2π 4.1 6.1 768 251 256 48 100
250 0.05 0.003 4π 2π 4.1 6.1 768 251 256 161 150
250 0.1 0.0069 4π 2π 4.2 6.1 768 251 256 197 70
250 0.16 0.0164 4π 2π 4.2 6.2 768 251 256 161 120
250 0.26 0.05 4π 2π 4.2 6.2 768 251 256 136 150

480 0 0 8π 6π 15.3 11.7 768 385 768 95 31
480 0.05 0.003 8π 6π 15.6 11.7 768 385 768 226 41
480 0.1 0.0075 8π 6π 15.6 11.7 768 385 768 310 40
480 0.16 0.0164 8π 6π 15.7 11.8 768 385 768 212 25
480 0.26 0.049 8π 6π 15.8 11.8 768 385 768 214 30

850 0.05 0.0026 8π 6π 6.8 5.1 3072 471 3072 160 26
850 0.16 0.016 8π 6π 7 5.2 3072 471 3072 205 22

TABLE 1. Summary of the simulations. Here v+0 = v0/uτ is the transpiration rate. Here
Lx1,Lx3,1x+1 and 1x+3 are the periodic dimensions of the numerical box and the resolutions
in streamwise and spanwise directions, respectively. Here Nx1,Nx2 and Nx3 are numbers of
collocation points in streamwise, wall-normal and spanwise directions, respectively. Here
NF is the number of accumulated statistical fields and T is the computational time spanned
by those fields.

R12/
√
(u1u2)2 for Reτ = 250, v+0 = 0.16 are shown. For higher Reynolds numbers we

selected a box similar to the one that was used by del Álamo & Jiménez (2003), del
Álamo et al. (2004) and Hoyas & Jiménez (2006). Due to an increased dissipation at
the blowing side we had to use more grid points in wall-normal direction than it is
usually taken in a classical channel flow DNS to keep the resolution of ∆x2 = 1.8η
approximately constant in terms of the local Kolmogorov length scale η.

3. New scaling laws of the turbulent channel flow with wall transpiration
As was mentioned in the introduction, the existence of the uniform transpiration

implies an asymmetry not only for the mean velocity profile, but also for the
distribution of the stresses. Blowing redistributes Reynolds shear stress into the
core region. This effect is similar to the one that is observed in a turbulent
Couette–Poiseuille flow, where the position at which τ(x2) = 0 is no longer in the
centre of the channel in contrast to what is seen in a pure Poiseuille-type flow (see
e.g. Nakabayashi, Kitoh & Katoh 2004). In addition, we observe that suction creates
a very high wall-normal gradient of the streamwise velocity in the vicinity of the
suction wall. With growing transpiration rate this asymmetry is amplified exhibiting
an ever-increasing difference in physical properties between the canonical channel
flow and the flow with transpiration, as may be taken from the figures 2 and 3. At
moderate transpiration rates, i.e. uτ/v0 < 0.16, in the vicinity of the blowing side the
transpiration velocity produces extra Reynolds shear stress and suppresses the viscous
stress, while the reverse is observed on the suction side. At high transpiration rates,
i.e. 0.166 v0/uτ 6 0.26, the Reynolds shear stress vanishes on the suction side, while
the viscous stress disappears on the blowing one, as can be taken from figures 2(d,e)
and 3(d,e). The flow in the near-wall region is rather particular and very different
from the classical Poiseuille flow as in this region the transpiration velocity is an
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FIGURE 2. Mean velocity and shear stress distribution profiles at Reτ = 250 and v+0 = 0.0,
0.05, 0.1, 0.16 and 0.26. Panel (a) depicts mean velocity profiles and ψ in the panels
(b)–(f ) depict shear stress distributions with increasing transpiration rate: · · · , dŪ+1 /dx+2 ;
- - -, u1u2

+; −−, τ+− v+0 Ū+1 −·−, v+0 Ū+1 . Blowing wall is at x2= 0 and suction wall is at
x2 = 2h. The point of zero shear stress measured from the blowing wall is denoted by a.
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FIGURE 3. Mean velocity and shear stress distribution profiles at Reτ = 480 and v+0 =
0.0, 0.05, 0.1, 0.16 and 0.26. Panel (a) depicts mean velocity profiles and ψ in the panels
(b)–(f ) depict shear stress distributions with increasing transpiration rate: · · · , dŪ+1 /dx+2 ;
- - - , u1u2

+; −−, τ+− v+0 Ū+1 −·−, v+0 Ū+1 . Blowing wall is at x2= 0 and suction wall is at
x2 = 2h. The point of zero shear stress measured from the blowing wall is denoted by a.
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FIGURE 4. Isocontours of the two-point cross-correlation function normalized on stresses,
i.e. R12/

√
(u1u2)2, as a function of the streamwise separation r1/h and the wall-normal

coordinate x2/h: −−, positive/negative; · · · , zero. Further we have r2/h= r3/h= 0. The
spacing of the contour lines is 0.05;

order of magnitude smaller than the streamwise velocity. As a result, in contrast to
the classical flow, streamlines in the near-wall region are perpendicular to the wall.
Further away from the wall they are strongly bent towards the downstream direction.
A first theoretical attempt to study turbulent Poiseuille flow at high transpiration rates
was made by Vigdorovich & Oberlack (2008), who used the method of matched
asymptotic expansions to show that the skin friction vanishes at the blowing wall,
while the point of maximum streamwise velocity approaches the suction wall.

A second critical effect, that can be taken from figures 2 and 3, is the non-
coincidence of the points of zero turbulent shear stress with the point of zero viscous
stress, which appears at high transpiration rates. Usually located in the centre of the
channel, as is shown in figures 2(b) and 3(b), i.e. x2= h, the point of zero shear stress
is slightly shifted towards the blowing wall while the point of maximum velocity
moves towards the suction side.

The non-coincidence of the different locations of the two points with τ(x2)= 0 and
Ū1max(x2) may not only be induced by transpiration. This effect, however, may also be
observed in the turbulent channel flows with asymmetric boundary conditions such as,
rough wall/smooth wall conditions (see e.g. Hanjalić & Launder 1972a) or, generally
speaking, when the values of the stresses at the wall τw are different on the upper
and the lower walls. The exception, when the difference of the stresses at the walls
does not induce this non-coincidence of τ(x2)= 0 and Ū1max(x2) may be found in the
Couette–Poiseuille flow, when there is no region of zero shear stress between the two
walls (Couette-type flow) (see e.g. Nakabayashi et al. 2004; Johnstone, Coleman &
Spalart 2010).

An interesting result was obtained from the analysis of the shear stress combined
with the convective term, τ+ − v+0 Ū+1 . The point of the balance of shear stress
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and convective momentum transport (a/h), approaches the blowing wall as the
transpiration increases, that can be taken from the figures 2 and 3. From simple
geometrical considerations one may derive the relation

a
h
= τwb

(|τwb| + |τws|)/2 , (3.1)

which indicates that the position of the balance point depends on the values of the
both shear stresses at the walls, i.e. τwb and τws.

Another profound insight into the turbulence characteristics of the present flow type
is obtained by analysing the TPCs. It may be taken from figure 4 that close to the
suction wall (x2→2h) the streamwise two-point cross-correlation R12 indicates a rather
long correlation length as it decays slowly in r1 direction. In contrast, on the blowing
side (x2 → 0) correlations show a considerably shorter extend. That nicely agrees
with the structural analysis of the near-wall region conducted by Sumitani & Kasagi
(1995). They showed that near the blowing side the flow is highly populated with
small-scale coherent vortical structures, while on the suction side coherent vortical
structures appear less frequently, however, at significantly larger scales.

Later in this section new scaling laws will be derived for the present turbulent
Poiseuille flow with non-zero blowing and suction (0.05< v0/uτ < 0.16). Already at
this point, from the stress distribution displayed in figures 2 and 3, one can predict
that at high transpiration rates the near-wall log law does not exist on the suction
side because the Reynolds shear stress in that region is negative or equal to zero and
that the viscous sublayer at the blowing wall will vanish because viscous stress in the
near-blowing-wall region is almost zero.

3.1. New logarithmic scaling law from Lie symmetries of the correlation equations
One of the key objectives of the present analysis is to further develop and validate the
Lie group theory for the multi-point statistics of turbulence employing the turbulent
Poiseuille flow with wall transpiration. The first step to accomplish this objective is
to find symmetry transformations which do not change the form of the TPC equation
(2.16). The application of these symmetry groups will later facilitate finding a group
invariant solution of the TPC equation in fluid mechanics often of self-similar type.
Finally, this leads to the reduction of the TPC equation and, at the same time,
determines the functional form of the turbulent scaling law for the mean velocity.
The final step of the analysis will be the validation of the new turbulent scaling law
by employing the present DNS data.

At this point it is important to note that TPC equations (2.12)–(2.16), which are to
be analysed with respect to its symmetries, have undergone a large-Reynolds-number
asymptotics as was first presented in Oberlack (2000). Therein it is shown that for
correlation distances |r| 6 η, where η is the Kolmogorov length scale, all viscous
terms in the latter equations vanish. Exclusion of all of the viscous terms from
TPC equations (2.12)–(2.16) allows us to recover one scaling symmetry, which was
originally lost due to the presence of viscosity.

The starting point of this analysis is the observation that the boundary condition
(2.8), in particular for the transpiration velocity, may be symmetry breaking primarily
in the core region of the flow. In the present section only an abbreviated approach will
be presented, while more mathematical details are available in Oberlack & Rosteck
(2010) and in appendix B of Oberlack (2001).

In order to derive a new turbulent scaling law for the present flow from the TPC
equation we need to consider the appropriate symmetry transformations. For the
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present problem it is sufficient to focus on the three scaling groups (T̄1, T̄2, T̄ ′s), the
translation group in space (T̄x2) and the translation group of the averaged velocity
(T̄Ūi). In global form these transformation groups are defined as

T̄1 : t∗ = t, x∗ = ek1 x, r∗(l) = ek1 r(l), Ū∗i = ek1Ūi, P̄∗ = e2k1 P̄,

R∗ij = e2k1Rij, puj
∗ = e3k1puj, uip∗ = e3k1uip, . . . , (3.2)

T̄2 : t∗ = ek2 t, x∗ = x, r∗(l) = r(l), Ū∗i = e−k2Ūi, P̄∗ = e−2k2 P̄,

R∗ij = e−2k2Rij, puj
∗ = e−3k2puj, uip∗ = e−3k2uip, . . . , (3.3)

T̄ ′s : t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗i = eksŪi, P̄∗ = eks P̄,

R∗ij = eks
[
Rij +

(
1− eks

)
ŪiŪj

]
, puj

∗ = ekspuj + (eks − e2ks)P̄Ūj,

uip∗ = eksuip+ (eks − e2ks)P̄Ūi, . . . , (3.4)
T̄x2 : t∗ = t, x∗ = x+ kx2, r∗(l) = r(l), Ū∗i = Ūi,

P̄∗ = P̄, R∗ij = Rij, puj
∗ = puj, uip∗ = uip, . . . , (3.5)

T̄Ūi : t∗ = t, x∗ = x, r∗(l) = r(l), Ū∗i = Ūi + kŪi,

P̄∗ = P̄, R∗ij = Rij, puj
∗ = puj, uip∗ = uip, . . . . (3.6)

Above and also further down, the dots denote the fact that in principle higher-order
correlations are part of the symmetry transformation since the full MPC equation is
infinite dimensional. This, however, will not be considered presently and we only
focus on the mean velocity and the TPC.

The first two scaling symmetries are well known from the Euler and the Navier–
Stokes equations describing scaling of space and time. The third one is a rather new
group and independent of (3.2) and (3.3). It represents the scaling of all TPC or
MPC tensors, and it is a purely statistical property of these equations (Oberlack &
Rosteck 2010). In fact, it is a property of all linear equations. One of the most crucial
symmetries for the results to follow and also a key ingredient of the classical log
law (Oberlack 2001) is symmetry (3.6). It is also of purely statistical nature and
was discovered in the context of an infinite set of statistical symmetries in Oberlack
& Rosteck (2010). It is noted that the first hint towards (3.6) has been given by
Kraichnan (1965).

In local (infinitesimal) form the symmetries (3.2)–(3.6) are given by

X̄1 = x2
∂

∂x2
+ Ūi

∂

∂Ūi
+ ri

∂

∂ri
+ 2Rij

∂

∂Rij
+ 3puj

∂

∂puj
+ 3uip

∂

∂uip
+ · · · , (3.7)

X̄2 = t
∂

∂t
− Ūi

∂

∂Ūi
− 2Rij

∂

∂Rij
− 3puj

∂

∂puj
− 3uip

∂

∂uip
+ · · · , (3.8)

X̄s = Ūi
∂

∂Ūi
+ (Rij − ŪiŪj)

∂

∂Rij
+ (puj − P̄Ūj

) ∂

∂puj
+ (uip− ŪiP̄

) ∂

∂uip
+ · · · ,(3.9)

X̄x2 =
∂

∂x2
, (3.10)

X̄Ūi =
∂

∂Ūi
+ · · · . (3.11)

As the latter groups are linearly independent, any linear combination of the
symmetries (3.7)–(3.11), yields a new multi-parameter group which is also a symmetry
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of the TPC equation. From the latter we may finally construct the invariant surface
condition (see e.g. Bluman, Cheviakov & Anco 2010) encompassing all groups given
above

dx2

k1x2 + kx2

= dr(k)
k1r(k)

= dŪi

(k1 − k2 + ks)Ūi + kŪi

= · · · , (3.12)

where in the present paper any further invariance conditions for higher correlations
are omitted.

At this point, none of the group parameters ki in (3.12) are determined. In order to
determine at least some of them we may invoke the condition (2.9), i.e. Ū2 = v0, as
this is the key influencing factor for altering the turbulent Poiseuille flow. As it acts
primarily on the velocity we consider the concatenated global transformations for the
mean velocity

Ū∗i = ek1−k2+ksŪi, (3.13)

taken from (3.2)–(3.4) and, for the moment, omit any other part of the transformations.
In order to comprehend the following, we may first recall that invariance, and in
turn invariant reduction, requires a knowledge of the symmetries admitted by the
underlying equation, here the TPC equation (2.16). In a second step, however, for the
construction of a concrete solution, symmetries, or a combination of them, have to
be consistent to the imposed boundary conditions. Presently this means (3.13) has to
be conformal to (2.9) which, after implementing of the former into the latter, leads
to

e−(k1−k2+ks)Ū∗2 = v0. (3.14)

As the definition of symmetry implies form invariance, also for the boundary
conditions, this provides the constraint

k1 − k2 + ks = 0. (3.15)

We may conclude that the transpiration velocity (v0) is symmetry breaking, most likely
in the core region of the flow but also in the near-wall region.

Imposing the latter constraint onto (3.12) and integrating the first with the third term
leads to a new logarithmic scaling law for the streamwise mean velocity in the core
region

Ū1 = A1 ln
(x2

h
+ B1

)
+C1, (3.16)

where A1 = kŪ1/k1 and B1 = kx2/k1 and, hence, they are either functions of the group
parameters ki or simply constants of integration as C1. If it may be presumed that v0
is sufficiently large (0.05. v+0 ) we will subsequently show that the latter new log law
is valid in the core region of a turbulent channel flow with wall transpiration.

For the wall-normal component of the mean velocity Ū2 a result similar to (3.16) is
obtained from (3.12). Taking into account the additional constraint kŪ2 = 0, we obtain
Ū2(x2) = C2, which nicely confirms using (2.9) that the wall-normal component of
mean velocity is a constant and is equal to the transpiration velocity v0.
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3.2. New viscous sublayer velocity scaling law for the blowing wall
As was mentioned above, the mean flow momentum equation (2.10) is integrable once
leading to (2.11). For a local analysis we may in principle rewrite the momentum
equation for each wall and later normalize it on the respective local friction velocities.
Presently, however, we will follow a slightly different route and may first reformulate
the local friction velocities according to (2.1) and (3.1) by the averaged friction
velocity uτ which is related to the streamwise pressure gradient

u2
τb =

a
h

u2
τ , u2

τ s =
2h− a

h
u2
τ . (3.17)

The coefficients a/h and (2h − a)/h represent the relations τwb/τw and τws/τw
respectively defined by (3.1), where a is a parameter that depends on the transpiration
velocity. This facilitates a normalization of the terms of the momentum equation
with uτ rather than with local ones, which allows us to directly compare the
scaling of the blowing and the suction wall based on the same scaling. The mean
momentum equation (2.11) in integrated form for the blowing side and rewritten in
non-dimensional form based on uτ and ν yields

dŪ+1
dx+2
− v+0 Ū+1 − u1u2

+ = a
h
− x+2

Reτ
. (3.18)

Extending the usual universal near-wall region located in the vicinity of the wall where
x+2 is the wall-normal coordinate and taking the limit Reτ → ∞, with x+2 = O(1),
equation (3.18) reduces to

dŪ+1
dx+2
− v+0 Ū+1 − u1u2

+ = a
h
. (3.19)

Finally, for the viscous sublayer at the blowing wall, we take the limit x+2 → 0 to
obtain u1u2

+→ 0 and v+0 Ū+1 → 0 and hence linear velocity scaling law for the blowing
side results

Ū+1 =
a
h

x+2 , (3.20)

or in rescaled form

Ū1b = x+2 , where Ū1b = Ū1

uτb

uτ
uτb
= Ū+1bu+τb. (3.21)

We note that the true local shear stress derives from the prefactor on the right-hand
side of (3.20) and may be reformulated to give a local shear stress based scaling law
employing (3.17). Since in the classical Poiseuille flow without transpiration the point
of zero shear stress coincides with the centreline of the flow, i.e. a= h, we observe
that the modified scaling law (3.20) recovers the classical one for v0 = 0.

In the presence of the convective momentum transport term v0Ū1, the blowing shifts
the viscous shear stress away from the wall towards the channel centre as can be
taken from figures 2(d–f ) and 3(d–f ). Since the viscous stress at the blowing wall is
smaller than in a channel with impermeable boundaries, the viscous sublayer at the
blowing side is thinner than for the classical flow. At very high transpiration rates
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FIGURE 5. Mean velocity profiles and linear law at the blowing wall: −−, linear laws
(3.20); —- , v+0 = 0; - - -, v+0 = 0.05; − ·−, v+0 = 0.1; •, v+0 = 0.16; ◦, v+0 = 0.26.

(v0/uτ = 0.26), when the local friction velocity becomes smaller than transpiration
velocity (v0/uτb = 2.9), blowing creates a strong wall-normal flow in the vicinity of
the blowing wall, and we see an increased validity of the linear scaling for Ū+1 as it
is obtained in figure 5. However, at such a high transpiration rate the viscous stress
at the blowing wall is very small even at high Reynolds numbers, i.e. the streamwise
velocity gradient in wall-normal direction is small, as can be taken from figures 2(f )
and 3(f ).

3.3. New viscous sublayer velocity scaling law for the suction wall
A similar analysis of the viscous sublayer on the suction side is not valid as the flow
in that region may not be fully turbulent for large transpiration rates. However, in the
limit u1u2→ 0 it is possible to find the velocity profile by integration of the mean
momentum equation (2.10). In its final non-dimensional form the solution may be
written as follows

Ū1s = 2Rev0 e2Rev0

1− e2Rev0 (1− 2Rev0)

(
1− e−x2s + 1− e2Rev0

2Rev0 e2Rev0
x2s

)
, (3.22)

where dimensionless variables in the near-suction-wall scaling have the following
forms:

x2s = x2v0

ν
, Ū1s = Ū1

uτ s

v0

uτ s
= Ū+1sv

+
0s, Rev0 = Reτ sv

+
0s =

hv0

ν
. (3.23)

Note that x2s is the wall-normal coordinate, i.e. pointing in a different direction as
in the rest of this paper, thus x2s has been replaced by 2Reτ s − x2s. Taking the limit
Rev0→∞, with x2s =O(1), equation (3.22) reduces to the asymptotic suction profile
(Griffith & Meredith 1936; Drazin & Riley 2006)

Ū1s = 1− e−x2s . (3.24)

In application to the turbulent wall-bounded flows with suction the near-wall solution
(3.24) may have been obtained first by Tennekes (1965). However, due to too
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FIGURE 6. Mean velocity profiles and the asymptotic suction profile (3.24) at the suction
wall at (a) Reτ = 250 and (b) Reτ = 480: —–, profile (3.24); ◦,v+0 = 0.05; •, v+0 = 0.10;
4, v+0 = 0.16; �, v+0 = 0.26.

wide intervals between velocity traverses in his experiments velocity profiles did
not coincide with the analytical solution (3.24). Presently, we verified (3.24) with
the DNS, and the results are presented in figure 6(a,b). As can be taken from
figure 6(a,b), the mean velocity profiles at very high transpiration rates scales with
(3.24) much better than at low or moderate transpiration rates. It is also important to
note that with increasing Reτ the domain of agreement between the data and (3.24)
increases.

3.4. Near-wall logarithmic scaling law
The classical formulation of the near-wall log law traces back to the seminal work
of von Kármán (1930). Later Millikan (1939) employed matched asymptotics to
express the logarithmic law of the wall as an overlap region. Presently we reconsider
a derivation technique based on Lie group analysis, as was used in § 3.1 to find the
log law in the core region of the channel flow with wall transpiration.

It was first shown in Oberlack (2001) that the near-wall log law has its roots in Lie
symmetries based on a combination of statistical and fluctuating equations. Its first
derivation based on the TPC and MPC equations and in particular recognizing the
importance of the statistical groups (3.9), (3.11) was obtained in Oberlack & Rosteck
(2010). The authors used the infinite set of MPC equations to derive the near-wall log
law

Ū+1 =
1
κ

ln(x+2 + A+)+C, (3.25)

and showed that the friction velocity uτ is the key symmetry breaking parameter
in the near-wall region. The latter is a slightly generalized functional form of the
usual near-wall scaling law, as it implies the offset A+ as a displacement height
which gives an extended fit of (3.25) to the experimental data (see e.g. Lindgren,
Österlund & Johansson 2004) and further appears, for example, in the log law for
rough-wall-bounded flows (Jackson 1981), in the overlap formulation for the turbulent
channel and pipe flows proposed by Wosnik, Castillo & George (2000). Recently,
similar formulation of the near-wall log law has been identified by Fife, Klewicki &
Wei (2009) (also see Klewicki 2013).
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An apparent question arises of how (3.25) may change under the influence of the
wall transpiration. In the present flow configuration the friction velocity uτ and the
transpiration velocity are of the same dimension and, as shown below, are closely
correlated. Further, as both are symmetry breaking for the velocity scaling a functional
form of the near-wall log law obtained from Lie group analysis should be similar to
the case without transpiration (3.25).

It was shown above that for the viscous sublayers on each wall the local friction
velocity is the key normalization parameter in (3.20) and (3.22), as would be naturally
expected. This, however, does not appear to be true for the near-wall log law. The
collapse of the near-wall data appears to be due to the mean friction velocity uτ ,
which is a measure of the pressure gradient. A similar normalization parameter was
used by El Telbany & Reynolds (1981), which suggested that an effective friction
velocity, i.e. the one that combines the shear stress information on both walls, should
be used, and by Wei, Fife & Klewicki (2007), who used a mean friction velocity
approach in their analysis of turbulent Couette–Poiseuille flow. This, however, is very
different from what was shown in Nikitin & Pavel’ev (1998). They employed a local
uτ on the blowing wall and observed that the usual von Kármán constant κ varies
with the blowing velocity.

In order to find the modified constants for the classical near-wall log law in (3.25)
due to wall transpiration we may adopt the classical notation given in Millikan (1939).
Since blowing increases turbulence it is preferable to derive an unaltered near-wall log
law for this region.

According to the results obtained by Jiménez et al. (2001) for the channel flow
with permeable boundaries, transpiration only affects the additive constant C of the
log law, while von Kármán constant κ is largely unaltered in the logarithmic region
if a global uτ is used. As will be shown below, the present DNS seem to support the
latter finding and (3.25) may be rewritten in the following form

Ū+1 =
1
κ

ln(x+2 + A+)+C+C1

(
v0

uτ

)
, (3.26)

keeping in mind how it was normalized and the function C1 vanishes for vanishing
v0. Here κ and C are independent of v0 and hence are universal constants obtained
for the case without transpiration and based on the global uτ .

As no first principle idea is known to determine C1(v0/uτ ) we employ a simple
curve fitting procedure to fit the new additive function C1 which comes down to the
following power law

C1(v
+
0 )= α

(
v0

uτ

)β
, (3.27)

where α =−90.62 and β = 1.188.
The results from the DNS and the modified log law calculated from (3.26) with

A+= 0 are compared in figure 7. We observe that the near-wall log law appears to be
valid only in the near-wall region on the blowing side, where transpiration increase
the Reynolds stress. It was found that the log region is formed only at small (v+0 <
0.1) transpiration numbers, while at high transpiration rates (v+0 > 0.16) it seems to
disappear. An indicator function shown on figure 9(e, f ) gives a weak hint toward
this conclusion and further confirms the known result that the von Kármán constant κ
is very sensitive to the Reynolds number and a flat region is almost invisible for small
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FIGURE 7. Mean velocity profiles of a turbulent channel flow with wall transpiration at
the blowing wall. Solid grey line —– corresponds to the log law (3.26), where κ = 0.38,
A+ = 0. Symbols: ◦, Reτ = 480; 4, Reτ = 850.

Reynolds numbers. Presently it is difficult to make any estimates about the near-wall
log law scaling region and the value of the von Kármán constant as much higher-
Reynolds-number simulations are required.

4. New logarithmic scaling law of the channel centre
The scaling law (3.16) obtained using Lie symmetry method contains constants A1,

B1 and C1, that cannot be obtained using Lie group analysis alone. For this reason
one of the main aim of the present study is to determine the constants employing the
DNS results. An open question that arises immediately is a desired velocity scale, that
will induce a collapse of the data in the considered region. Form invariance property
of the symmetries has proven previously the assumption that transpiration velocity v0
is a symmetry breaking constraint in the core region of the flow.

From this one may expect that v0 is the appropriate velocity scale for the core
region log law (3.16). However, a changing of v0/UB also significantly changes uτ/UB
as can be taken from figure 8, and hence the proper velocity scale is not obvious in
the first place. From dimensional reasons, the ratio of two velocities result in two
non-dimensional groups with a unique functional relation

uτ
UB
= F

(
v0

UB

)
. (4.1)

The best fit to all DNS data is obtained if instead of v0 we invoke uτ as the
appropriate velocity scale. We recall that uτ is a measure of the pressure gradient as
the local uτb and uτ s on each wall are very different. The analysis of the DNS results
together with the employment of uτ as a scaling velocity for A1 leads to the fact that
the overall scaling appears rather insensitive to the Reynolds numbers and the relative
transpiration rates. The latter rescaling leads to A1 = uτ/γ , where γ = 0.3 has been
taken from the DNS data. Note that this is not the usual von Kármán constant κ .
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FIGURE 8. Relation between transpiration velocity and friction velocity. Here ◦, Reτ =
250; •, Reτ =480; F, Reτ =850; —– linear relation between v0 and uτ , i.e. uτ =3.36v0+
0.046.

The offset B1 in (3.16) was found to be a very small number. Further, a systematic
and careful analysis of the best fitted values did not reveal a unique picture. Hence,
B1 has been set to zero for all cases, although a better fit of the DNS data to (3.16)
may be obtained from a non-zero B1.

Since the new log law is located in the centre of the channel, our present knowledge
of turbulent scaling laws suggests a defect type of scaling. Hence, a second global
velocity scale is needed to determine C1.

In turbulent boundary-layer flows we use the free-stream velocity U∞ while in the
classical Poiseuille flow Umax located in the centre of the channel is the appropriate
outer velocity scale. An analysis of the present DNS data disclosed C1 to be the bulk
velocity UB (2.4) without an additional non-dimensional prefactor.

In its final form the new logarithmic scaling law for the core region of the channel
flow with wall transpiration is found to be

Ū1 = 1
γ

uτ ln
(x2

h

)
+UB (4.2)

or in deficit form

Ū1 −UB

uτ
= 1
γ

ln
(x2

h

)
. (4.3)

The new Lie-symmetry-induced scaling law (4.3) represents the velocity defect
law that scales the data in the whole core region of the flow as may be taken from
figure 9. This comparatively long log region already appears at the low Reynolds
numbers of Reτ = 250 and becomes even longer as the Reynolds number is increased
to Reτ = 850 as obtained in figure 9(c,d). Most important, and as to be expected, the
validity of (4.3) further increases with growing transpiration rate v0, as it is shown
in figure 9(a,b), until the latter becomes only an order of magnitude smaller than the
streamwise velocity.
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FIGURE 9. Mean velocity profiles at (a,b) constant Reynolds number Reτ = 480: ◦,
v+0 = 0.05; •, v+0 = 0.1; F, v+0 = 0.16; �, v+0 = 0.26; and (c,d) constant transpiration rate
v+0 = 0.16: ◦, Reτ = 250; •, Reτ = 480; F, Reτ = 850. (e, f ) Indicator function x2∂x2 Ū+1 .
Grey lines represent slope constants used in the paper. For near-wall region: —-, κ=0.38;
for core region: - - -, γ = 0.3. (e) Constant Reynolds number Reτ = 850: in direction of
an arrow: - - -, v+0 = 0.05; —-, v+0 = 0.16. (f ) Constant transpiration rate v+0 = 0.16: in
direction of an arrow: - - -, Reτ = 250; — -, Reτ = 480; —-, Reτ = 850.
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An indicator function shown in figure 9(e,f ) confirms once again that the new mean
velocity scaling law (4.3) is valid in the whole core region of the flow. In particular,
it is found that the indicator function has a plateau in the core region, and the slope
constant for the new core region log law was found to be γ = 0.3, as it is highlighted
with a dashed line on figure 9(e,f ). Further, the indicator function plot supports the
fact that the scaling region of the new mean velocity scaling law increases with
Reynolds numbers and moderate (up to v+0 6 0.16) transpiration numbers.

5. Discussion and conclusions
In the present paper we combined Lie symmetry analysis of the TPC equations and

DNS to investigate the statistical characteristics of the turbulent channel flow with wall
transpiration. Lie symmetry analysis revealed a new mean velocity logarithmic type
of scaling law that, afterwards, has been confirmed in the centre of the channel and
studied in detail by DNS. For the derivation of the new log law we used symmetry
transformations which have been previously derived in the TPC and MPC equations
(Oberlack 2001; Oberlack & Rosteck 2010). Although the completeness of the set of
symmetry groups for turbulence statistics for the MPC equations has not been proven
yet, it was sufficient to derive the new scaling law for the core region.

By using the new results from the DNS data it was found, that the slope constant
(γ ) of the new log law is different from the von Kármán constant and that its value
is γ = 0.3. The presence of the transpiration makes the log region much longer than
that of the velocity defect law for the classical channel flow. The new scaling law
covers from 65 to 80 % of the channel height depending on the transpiration rate. We
observed an increase of the new log law scaling region with increasing transpiration
rate, although no first principles theory may be given for this behaviour. The theory
does not provide any estimates of the location of the log law. It might be possible to
give an estimate for the validity such as the classical one for near-wall log, but we did
not observe any clear behaviour and hence decided to avoid unvalidated speculations.

We found weak indications that the classical near-wall scaling laws, i.e. the linear
law in the viscous sublayer and logarithmic law of the wall, may still exist on the
blowing side although in slightly modified form. Further, we have found that at the
suction wall the flow tends to relaminarize and at very high transpiration rates it
becomes similar to the asymptotic suction velocity profile in exponential form, as it
may be taken from figure 6(a,b). This indicates that the permeability of the channel
walls strongly affects and, in fact, dominates the near-wall region and in particular
the wall shear stress. This conclusion in a certain sense is not new, however, results
obtained in the present paper show that at very high transpiration rates the properties
of the near-wall region are completely changed, that can be taken from figures 2(f ),
3(f ) and figure 6(a,b). We showed that the convective momentum transport v0Ū1
exceeds both viscous and Reynolds stresses at the blowing wall and at the same time
leads to an almost zero Reynolds stress at the suction wall. From the same figures
and also from the fact that the new scaling law (4.3) was successfully validated with
DNS data for moderate transpiration rates we may assume that the strong transpiration
has also influence on the core region of the flow.

The importance of the present contribution may be contemplated in a somewhat
larger context as another brick in the turbulence theory based on Lie symmetries
applied to the MPC equation the reason being twofold. First, before the entire project
started and before any DNS was conducted the new log scaling laws was forecasted
from pure theoretical grounds. Second, the basis for the new log law is partially
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based on two of the new statistical groups which have no direct counterpart in the
Euler and Navier–Stokes equations for the instantaneous velocities and hence have yet
been proven once again to be crucial for our general understanding of the statistics
of turbulence.
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