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We study spontaneous pattern formation and its asymptotic behaviour in binary fluid
flow driven by a temperature gradient. When the conductive state is unstable and the
size of the domain is large enough, finitely many spatially localized time-periodic
travelling pulses (PTPs), each containing a certain number of convection cells, are
generated spontaneously in the conductive state and are finally arranged at non-
uniform intervals while moving in the same direction. We found that the role of
PTP solutions and their strong interactions (collision) are important in characterizing
the asymptotic state. Detailed investigations of pulse–pulse interactions showed the
differences in asymptotic behaviour between that in a finite but large domain and in an
infinite domain.
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1. Introduction
Rayleigh–Bénard convection is one of the most well-known examples of pattern-

formation phenomena: depending on the parameters, convection cells form various
patterns including rolls or hexagons (Busse 1964). In many convection experiments
(Heinrichs, Ahlers & Cannell 1987; Kolodner, Bensimon & Surko 1988; Niemela,
Ahlers & Cannell 1990; Kolodner 1991), a long narrow channel has been used
to mimic a two-dimensional situation. In such a situation, convection rolls which
are uniform in the roll axis direction are observed, which can be modelled by
two-dimensional flow. Under the two-dimensional assumption, only a stationary
overturning convection (SOC) is possible in a (pure-fluid) Rayleigh–Bénard convection
near and above critical temperature gradient. However, in a mixture of two miscible
fluids such as water and ethanol (binary fluid), richer convection patterns can be
observed even in two-dimensional space, in addition to an SOC. In this paper we focus
in particular on a class of spatially localized convective patterns called ‘pulses’ and
study their role in the asymptotic behaviour for t→∞.

The rich patterns in binary fluids are explained by the Soret effect (Platten 2006),
by which a concentration gradient is induced by a temperature gradient. In some cases,
including appropriately proportioned water–ethanol mixtures, the concentration and
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temperature gradients have opposite effects on the buoyancy: convection is motivated
by the temperature gradient but inhibited by the concentration gradient. As a result,
the critical Rayleigh number Rac, at which the conductive state loses stability, becomes
larger than that of pure-fluid Rayleigh–Bénard convection. In this case, a bistable
region between the conduction state and the convection state is typically observed.

Such bistability has been related to the spatially localized solutions (pulse solutions).
A pair of ‘pinning’ fronts connecting to two stable states leads to the bound state,
which corresponds to the pulse solutions (Pomeau 1986). Recently, more detailed
studies of bistable systems for the pulse solution and the structure of snaking
bifurcation have been published (Burke & Knobloch 2007; Beck et al. 2009; Chapman
& Kozyreff 2009). Therefore the relationship between the bistable region and spatially
localized solutions in binary fluid convection is of great interest. A ‘convecton’
(Batiste et al. 2006), or a steady pulse (SP), is a spatially localized solution in binary
fluid convection that is steady in time. The SP solution was obtained numerically
by Batiste et al. (2006). They presented a branch of the SP solution with a snake-
like structure known as ‘homoclinic snaking’ (Woods & Champneys 1999; Burke &
Knobloch 2007), which has subsequently been observed in some other systems (Burke
& Knobloch 2006; Schneider, Gibson & Burke 2010; Houghton & Knobloch 2011).

There emerges another interesting type of spatially localized pattern: periodic
travelling pulses (PTPs), i.e. moving spatially localized convection cells whose shapes
periodically change with time. Note that the same structure is also called by
other names, e.g. travelling-wave pulse (or TW pulse) (Kolodner 1991) or localized
travelling wave (or LTW) (Niemela et al. 1990; Ning, Harada & Yahata 1996;
Jung, Matura & Lücke 2004). However, we use the term PTP so as to emphasize
the time-periodicity in the reference frame. Here we investigate in particular the
spontaneous formation of PTPs and their asymptotic behaviour for t→∞ in large
periodic domains when the conductive state is unstable.

PTPs were first experimentally observed by Heinrichs et al. (1987) as a transient
state for a steady localized travelling wave alongside the sidewall of the container, and
the origin of the localization was explained by the sidewall effect predicted by Cross
(1986). However, PTPs were also observed in an annulus by Kolodner et al. (1988), so
the sidewall effect is not necessary to account for the localization mechanism. Thual
& Fauve (1988) then provided a theoretical model in terms of the Ginzburg–Landau
equation (GL) in a periodic domain, and found that the mechanism for localized
states is not attributed to the sidewall effect but to the non-variational effect of the
system. Their theory was experimentally supported by Niemela et al. (1990), who
compared PTP states in a rectangular container with those in an annular container
and showed that the PTP state is qualitatively geometry-independent. After their
experiments, many authors conducted convection experiments in annular containers
under various parameters. In particular, Kolodner’s experiment (Kolodner 1991) is
interesting because he showed that the group velocity of PTPs varies according to the
Rayleigh number.

The GL approach was extended to a general framework by van Saarloos &
Hohenberg (1992), focusing on the pattern selection of coherent structures. Recently,
Iima & Nishiura (2009) addressed the collision process of two counter-propagating
PTPs via extended complex GL. Although their results reproduced the experiment
performed by Kolodner (1991) qualitatively, a study based on the Navier–Stokes
equations should be considered because the structure of PTPs cannot be resolved
by amplitude equations such as GL and related equations. A PTP consists of a certain
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number of moving convection cells within its envelope. Therefore, understanding the
detailed collision process requires the internal dynamics of convection cells of PTPs.

A Navier–Stokes approach has also been conducted by many authors (Barten, Lücke
& Kamps 1991; Barten et al. 1995; Ning et al. 1996; Jung et al. 2004; Toyabe 2009).
For example, Barten et al. (1995) and Jung et al. (2004) performed time evolution
studies in two-dimensional space in a parameter range in which both conduction
and travelling-wave solutions are stable. They obtained PTPs as an asymptotic state.
Because PTPs contain internal dynamics of generating and destroying convection cells
within the envelope, we need to obtain a PTP as a solution satisfying appropriate
mathematical conditions. In fact, Toyabe (2009) studied the collision problem of PTPs
obtained by the asymptotic states, and found that the result was sensitive to the
detailed change of parameters. Recently, Watanabe et al. (2010) succeeded in obtaining
PTPs globally in parameter space as a time-periodic travelling solution numerically.
Further, they constructed the bifurcation branch of the PTP solutions. The branch
has saddle-node points, but the shape is not snaky as is often observed for spatially
localized structures including ‘convectons’ (Batiste et al. 2006). The PTP solution is
useful for detailed analysis such as control of the precise initial conditions including
the internal state of convection cells, which will be presented in detail in this paper.

Remarkably, stable SP branches exist in small domain sizes with periodic
boundary condition even when the conductive state is unstable (Batiste et al. 2006;
Mercader et al. 2011), which is also true for PTP solutions (Watanabe et al.
2010). This phenomenon for PTPs was reproduced in an experiment conducted by
Niemela et al. (1990) in an annular container. They explain this fact in terms
of the convective/absolute instability. In such a situation, perturbation growth in a
convectively unstable region can be suppressed because perturbations are absorbed at
the front of the pulse if their amplitude is not too large. In other words, even if the
background state (conductive state) is convectively unstable, pulse solutions can persist
provided that the domain is not too large.

Now, the following natural question arises: What is the final asymptotic state in
binary fluid convection for a large but finite domain when the background (conductive)
state is convectively unstable? If the system is large enough, the perturbations can
grow sufficiently large to form convection cells and may destroy the various pulse
solutions even if they are stable in smaller domains.

Consider the time evolutions starting from small-amplitude perturbations in a large
periodic domain, as shown in figure 1 (cf. § 5), where the aspect ratio of the
computational domain Γ is 500. In both cases, small initial perturbations grow to
form some coherent structures. After a series of complicated transition processes, we
see an array of PTPs moving in the same direction with non-uniform intervals.

It is worth considering this asymptotic state, focusing on the lengths of conduction
regions between arranged PTPs. As is pointed out above, perturbations are absorbed
by PTPs, and thus PTPs are approximately ‘impermeable’ for disturbances. Therefore,
a large unstable conduction state at t = 0 (see figure 1) is finally divided into small
partitions by PTPs. Although perturbations could grow sufficiently at the early stage
because the unstable conductive state is long enough for disturbances to grow, they no
longer do so at t� 1 because they are promptly absorbed at the nearest PTP in the
propagating direction. This point is argued in detail in § 6.1.

Strong interactions (collisions) between localized structures have an important role
in transition processes and have been extensively investigated, for example, in barchan
dunes (Katsuki et al. 2005), reaction–diffusion systems (Nishiura, Teramoto & Uera
2003b; Teramoto, Ueda & Nishiura 2004; Nishiura, Teramoto & Ueda 2005), and
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FIGURE 1. Time evolution of ψ(x, 0, t) for Γ = 500. (a) A point disturbance is added
at t = 0, x = 500, and (b) small random disturbances are added across the whole domain.
The time interval of the visualization is t = 250. Note that the size of the periodic box
is 2Γ = 1000. In both figures, each localized structure except e and f, for t & 27 500,
corresponds to a PTP solution in figures 3, 5 and 6(b,d); e and f correspond to figure 6(a,c).
Each collision process (C1, C2 and E) resembles figure 11(a). See § 5 for details.

the Swift–Hohenberg equation (Houghton & Knobloch 2011). In the present case, the
role of collisions between counter-propagating PTPs is also very important. In fact,
PTP–PTP collision has been examined experimentally (Kolodner 1991), showing that
the collision results depend on the velocity of each pulse: they fuse into a single PTP
when the PTP velocity is large, but bind at a distance when the velocity is small. The
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result of a collision also depends on the phase of each PTP at the instant of collision
because PTPs are time-periodic in a moving frame. This phase dependence of PTP
collisions was first studied by Toyabe (2009) and more recently by Watanabe et al.
(2010) in greater detail.

The main theme of this paper is a pattern formation mechanism in binary fluid
convection when the conductive state is unstable. In particular, we clarify the
dependence of the asymptotic pattern for t→∞ on system size. Our conjecture is
that the asymptotic pattern is an array of unequally distanced PTPs for generic initial
data, when the domain is large but finite. To show this, we first list the possible
localized structures, including SPs, PTPs and PTP-like structures, that have not been
reported. Then we clarify the maximum and minimum domain size for a single PTP.
At the maximum domain size, we find that the single PTP solution disappears via the
saddle-node bifurcation. Further, we study the interactions among pulses. It is shown
that PTPs have strong survival ability, which supports the numerical time evolution
results obtained with generic initial conditions. These results suggest the existence of
three qualitatively different system sizes:

(i) small (a solitary PTP exists);
(ii) large enough but finite (a solitary PTP cannot exist);

(iii) infinite.

Our main concern in the present study is to clarify case (ii) in detail. Although
phenomena which occur in case (iii) are not necessarily clear, the patterns formed are
expected to be completely different from case (ii), because wave-packet disturbances
and pulses moving in an arbitrary direction can always appear somewhere in the
system and therefore there may arise no modulated direction.

Here we would like to stress the importance of numerical solutions to study of
the pattern formation problem. To investigate the pattern formation phenomena it
is essential to know the behaviour of possible patterns in global parameter space
including unstable ones and, further, it is not until we know the PTP solution that we
can examine the phase dependence of PTP–PTP collisions accurately (see § 6.3) – not
to mention the importance of the solution itself.

This paper is organized as follows. In § 2 we introduce the basic equations, and in
§ 3 we review numerical schemes for obtaining the various classes of solutions. Then
§ 4 presents a detailed bifurcation diagram for a relatively small aspect ratio (Γ = 32).
The main focus is then addressed in § 5, where the domain-size dependence of the
pattern formation process is discussed. Time evolutions starting from generic initial
conditions are described, and the critical Γ for a single PTP is obtained. In § 6, we
focus on pulse–pulse interactions, that is, collisions between counter-propagating PTPs,
interactions between co-propagating PTPs, and SP–PTP collisions. These processes are
fundamental to our understanding of the complete asymptotic dynamics.

2. Basic equations
Consider a two-dimensional binary-fluid layer confined between two horizontal

plates as shown in figure 2. The governing equations for the binary fluid convection
are given as follows (Platten & Legros 1984):

∇̃ · ũ= 0, (2.1)

∂ũ
∂ t̃
+ (ũ · ∇̃)ũ=− 1

ρ 0

∇̃p̃+ ν∇̃2ũ+ {α(T̃ − T0)− β(C̃ − C0)}g j, (2.2)
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–d

d

0

FIGURE 2. System configuration.

∂T̃

∂ t̃
+ (ũ · ∇̃)T̃ = κ∇̃2T̃, (2.3)

∂C̃

∂ t̃
+ (ũ · ∇̃)C̃ = γ2∇̃2T̃ + D∇̃2C̃, (2.4)

where ũ = (ũ, ṽ, w̃) is the velocity of the fluid, t̃ is the time, ρ0 is the mean density
of the mixture, p̃ is the pressure, ν is the kinematic viscosity, α is the coefficient
of thermal expansion, T̃ is the temperature, T0 is the reference temperature, β is the
coefficient of variation in the concentration of the mixture, C̃ is the concentration, C0

is the reference concentration, g is the gravitational acceleration, j is the unit vector in
the ỹ-direction, κ is the thermal diffusivity, D is the concentration diffusivity, and γ2

is the coefficient of the Soret effect. Note that, in this paper, dimensional variables are
denoted by an added .̃ A periodic boundary condition with period 2Γ d is imposed in
the x̃-direction.

Equation (2.1)–(2.4) can be rewritten as

∂

∂t

(∇2ψ
)= ∂(ψ,∇2ψ)

∂(x, y)
+ σ∇4ψ − σRa

16

{
(1+ S)

∂θ

∂x
− S

∂η

∂x

}
, (2.5)

∂θ

∂t
= ∂(ψ, θ)
∂(x, y)

− ∂ψ
∂x
+∇2θ, (2.6)

∂η

∂t
= ∂(ψ, η)
∂(x, y)

+∇2θ + Le∇2η, (2.7)

where σ is the Prandtl number, Ra is the Rayleigh number, Le is the Lewis number,
and S is the separation ratio defined by

σ = ν
κ
, Ra= 16αgd31T

κν
, Le= D

κ
, S= βγ2

Dα
. (2.8)

Here ψ is the stream function such that u= ∂ψ/∂y, v =−∂ψ/∂x, and all the variables
are represented in non-dimensional form:

ũ= κ
d
u, (x̃, ỹ)= d(x, y), t̃ = d2

κ
t, p̃= ρ0κ

2

d2
p, (2.9)

T̃ − T0 =1T(θ − y), C̃ − C0 = γ21T(η − θ + y)

D
. (2.10)

Note that the separation ratio S denotes the strength of the Soret effect and can
take both positive and negative values according to the sign of γ2. However, we
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assume S to be negative in the present study, which means that the Soret effect inhibits
convection. If the sign were positive instead, the flow would be completely different
because the concentration field also motivates convection (Platten 2006).

Throughout this paper, we use Kolodner’s experimental parameters (Kolodner 1991),
Le = 0.0088, σ = 7, and S = −0.123, because PTPs are observed in this parameter.
The boundary conditions in the y-direction are

∂ψ

∂y
(x,±1, t)= θ(x,±1, t)= ∂η

∂y
(x,±1, t)= 0, ψ(x,±1, t)= ψc(±1, t), (2.11)

and a periodic boundary condition with period 2Γ is imposed in the x-direction. Then,
the calculation was performed for a [−1, 1] × [0, 2Γ ) domain. The control parameter
is the Rayleigh number Ra and the aspect ratio Γ . Note that ψ(x,±1, t) is not
zero because the spatially averaged velocity is allowed to have an x-component and
ψc(±1, t) is determined automatically in the calculation (see § 3).

3. Numerical method
The spectral method was used for the numerical solution of (2.5)–(2.7) as follows:ψ(x, y, t)
θ(x, y, t)
η(x, y, t)

= [(L−1)/2]∑
l=−[L/2]

eiklx

ψl(y, t)
θl(y, t)
ηl(y, t)

 ,
ψl(y, t)
θl(y, t)
ηl(y, t)

= M∑
m=1

Ψ
(l)

m (y)ψlm(t)
Θm(y)θlm(t)
Hm(y)ηlm(t)

 , (3.1)

where k = π/Γ is the wavenumber, i is the imaginary unit, L and M are truncation
numbers, and Ψ (l)

m (y), Θm(y), and Hm(y) are defined in terms of the Chebyshev
polynomial Tm(y)= cos(m cos−1(y)) as

Ψ (l)
m =

(1+ amy2 + bmy4)Tm − cos
mπ

2
(l= 0),

(1− y2)
2

Tm−1 (l 6= 0),
(3.2)

Θm = (1− y2)Tm−1, (3.3)

Hm = 1

2{(m+ 1)2−1}
{
(1− y2)T ′′m+1 + 2yT ′m+1 − 2Tm+1

}
, (3.4)

to satisfy the boundary conditions (2.11), where am and bm are determined so as to
satisfy the conditions

dΨ (0)
m

dy

∣∣∣∣
y=±1

= d3Ψ (0)
m

dy3

∣∣∣∣
y=±1

= 0. (3.5)

Note that the boundary condition for l = 0 is different from the others because
ψc(±1, t) in (2.11) corresponds to the Fourier coefficient for l = 0, i.e. substituting
l= 0 and y=±1 into ψ in (3.1) we have

ψ(x,±1, t)=
M∑

m=1

Ψ (0)
m (±1)ψ0m(t)= ψc(±1, t) (3.6)

and thus Ψ (0)
m (±1) should not be zero. In other words, v = −∂ψ/∂x is identically

zero because [−∂ψ/∂x]l = iklψl = 0 when l = 0, and thus we cannot adopt the
condition ψ(±1, t) = 0 as the boundary condition in this case. Then we consider
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the x-component of the Navier–Stokes equations:

∂u

∂t
+ (u ·∇)u=−∂p

∂x
+ σ

(
∂2u

∂x2
+ ∂

2u

∂y2

)
. (3.7)

The l-component of the equation above is

∂ul

∂t
+ [(u ·∇)u]l =−iklpl − σk2l2ul + σ ∂

2ul

∂y2
. (3.8)

Thus, only the contribution of the third term of the right-hand side is retained on the
two walls when l= 0, and we have

0= σ ∂
2u0

∂y2

∣∣∣∣
y=±1

, (3.9)

and therefore the boundary condition for l = 0 (3.5) is obtained. Note also that the
(l = 0)-component is zero for SP solutions and not zero for PTP solutions, although
the contribution is very small.

Equation (3.1) is substituted into (2.5)–(2.7) and the collocation method is applied;
then, 3LM simultaneous ordinary differential equations are obtained. Thus, the
equations can be simply described by

dz
dt
= f (z), (3.10)

where

z= {zlmn} (l= 1, 2, . . . ,L;m= 1, 2, . . . ,M; n= 1, 2, 3) (3.11)

and (zlm1, zlm2, zlm3)= (ψlm, θlm, ηlm). The flow φ = {φlmn} given by the vector field f is
defined as

z(t)= φ(z(0), t), (3.12)

where φ(z(0), 0) = z(0). Collocation points are chosen to be extrema of the Chebyshev
polynomials, which has an advantage in resolving steep variation of concentration
boundary layer near both walls.

The phase-space vector z is integrated numerically using the forward Euler method
together with the Crank–Nicolson method for viscous and diffusion terms and the
Adams–Bashforth method for nonlinear terms. The truncation number M is chosen to
be M = 32, and L is the smallest odd non-prime number that satisfies L> 16Γ .

The Newton–Raphson method can be used to find the solutions in table 1 by
calculating the fixed point of the Poincaré section together with the GMRes method
(Watanabe et al. 2010). Further, the Arnoldi method can be utilized to solve eigenvalue
problems to examine the linear stability of the solutions.

The numerical accuracy is examined by increasing the truncation numbers L and
M. For example, period τ and translation Uτ for the PTP solution for Ra = 1950
is 10.5015 and 0.4176 when (L,M) = (513, 32) and 10.5017 and 0.4182 when
(L,M) = (1025, 64), respectively. The maximum relative deviation of period and
translation are less than 0.002 and 0.13 %, respectively, which confirms the sufficiency
of the truncation number (L,M)= (513, 32).
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FIGURE 3. Bifurcation structures of various solutions for Γ = 32. Thick solid lines
and thick dashed lines denote stable and unstable solutions, respectively. Although the
conductive state z = 0 exists for all Ra, it loses stability via subcritical Hopf bifurcation
at Ra = Rac = 1953.54, leading to the unstable TW solution. The TW meets an SOC at
Ra = 1914.9 and the SOC is stabilized. The wavenumber of the SOC branch corresponds to
the critical one around the Hopf point. There are two snake-like branches: even-SP and odd-
SP. They are spatially localized and their stability is examined for several branches containing
a smaller number of cells (thick lines). Solutions in which stability is not calculated (although
the calculation is possible) are indicated by thin solid lines. When we climb up along the
snake-like SP branch, two convection cells are added after passing two saddle-node points.
The detailed bifurcation structure near A is described schematically in the lower-left inset. It
should be noted that stability does not change at saddle-node point b but at point a, slightly
before the saddle-node point, because the second or lower-order eigenvalue changes sign at
each saddle-node point. In contrast to SPs, PTP solutions do not form snake-like structures
but lose and gain stability via saddle-node bifurcation. Note that stable SP and PTP solutions
exist outside of the bistable region (Ra > Rac). Also note that the PTP solution branch does
not connect to the SP branch at the upper end of the PTP branch, but the continuation of
the branch is difficult because the period of deformation of a PTP becomes very large as |z|
increases, which means that the number of convection cells in a PTP is large. Note that the
PTP branch ends up with open ends because of the numerical difficulty.

4. Convection patterns and their stability in binary fluid mixture
In this section, we present a variety of classes of solutions, together with

their stability, to explain the complex pattern formation in figure 1. The solutions
characterized in table 1 and another type of solution characterized by quasi-periodicity
are presented in §§ 4.1 and 4.2, respectively.

4.1. Solutions
For the solution branches defined in table 1 at Γ = 32 (figure 3), when Ra is small,
only the stable conduction solution z = 0 exists. The conductive state loses stability
via subcritical Hopf bifurcation at Ra = Rac = 1953.54 and the unstable travelling-
wave (TW) solution emerges. The TW branch meets the SOC solution and the SOC
solution is stabilized at Ra = 1914.9. Thus, there exists a bistable region between
1914.9 6 Ra 6 Rac where both the conductive state and the SOC are stable.

The instability in the region Ra > Rac has been studied by Batiste et al. (2006).
They divided the region Ra > Rac into two parts: one where the conductive state
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(b)

(a)

FIGURE 4. Examples of (a) odd-SP solution and (b) even-SP solution for Ra = 1950. Both
solutions correspond to the SP with the minimum number of cells. Other numbers of cells are
possible in the limit of system size. Note that only part of the domain 16 6 x 6 48 is shown.

shows convective instability and one where it shows absolute instability (Huerre &
Monkewitz 1990). When the state has convective instability (indicated in figure 3:
see Appendix for details), a small perturbation becomes a propagating wave packet
that grows exponentially in amplitude on the co-moving coordinate. However, in the
laboratory frame, the amplitude finally converges to zero at any point.

SP solutions appear as two snake-like branches. They represent localized convection
cells: cells are confined to a spatially localized region (convection region) and outside
that region, the state is similar to the conductive state (see figure 4). This solution is
steady and is classified as the steady solution in table 1. Two branches constructed
by SP solutions are termed the even-SP branch and odd-SP branch, depending on the
number of convection cells. The two branches can be identified by their symmetry. For
the even-SP branch, the symmetry for ψ , θ , η is given by

ψ(x− x0, y, t)=−ψ(−(x− x0), y, t),
θ(x− x0, y, t)= θ(−(x− x0), y, t),
η(x− x0, y, t)= η(−(x− x0), y, t),

(4.1)

and for the odd-SP branch, we have
ψ(x− x0, y, t)= ψ(−(x− x0),−y, t),
θ(x− x0, y, t)=−θ(−(x− x0),−y, t),
η(x− x0, y, t)=−η(−(x− x0),−y, t),

(4.2)

where x0 is the centre of the SP (see figure 4).
When we trace each branch from the bottom of the bifurcation diagram, the number

of cells increases by two as the branch passes two saddle-node points. The regions
where snake-like branches of the even- and odd-SP solutions exist overlap with the
bistability region (1914.9 < Ra < Rac). However, stable SP solutions also exist when
Ra> Rac, that is, where the conductive state is unstable.

We remark that the stability of SP solutions does not change at the saddle-node
point, where the sign of the first eigenvalue remains positive, but the sign of the
second or lower eigenvalue changes there. The first eigenvalue changes the sign at a
point close to the saddle-node point (see the inset of figure 3). A similar bifurcation
diagram is obtained for the Swift–Hohenberg equation (Burke & Dawes 2012).

PTP solutions form another branch (figure 3) that, like SP solutions, represents
spatially localized patterns consisting of finitely many convection cells – but it is
not steady (figure 5). The convection cells are created at one end of the convection
region, but at the same time, disappear at the other end of the region. Thus, the PTP
solution is achieved by a balance between the creation and destruction of convection
cells. Moreover, its envelope propagates at a constant speed (group velocity) in the
laboratory frame. If we observe the PTP solution in a frame moving with the group
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2.6255

5.2510

7.8765

10.502

0.418

(a)

(b)

(d )

(e)

(c)

FIGURE 5. PTP solution for Ra = 1950. The background colour denotes the concentration
field: black is high density, white is low density. Black solid lines denote stream lines. The
period τ is 10.502 and the increment of the PTP pattern during a period Uτ is −0.418. Note
that only part of the domain 16 6 x 6 48 is shown. All values are non-dimensionalized.

velocity, the pattern is time-periodic. Therefore, in addition to each component of z(0),
obtaining the PTP solution requires two unknowns, the group velocity and the period.
It is classified as the time-periodic spatially travelling solution in table 1. The global
behaviour of a PTP solution branch, as detailed by Watanabe et al. (2010), is less
snaky and includes only one stable solution for a given Ra. And in contrast to the SP
solution, the PTP solution loses its stability via saddle-node bifurcation (see figure 3).
Moreover, the stable PTP solution also exists outside the bistability region, where the
conductive state is unstable. These facts are consistent with the experiment conducted
by Niemela et al. (1990) because they reported that PTPs (LTWs in their notation)
also exist above critical Ra and, moreover, are only observed below a certain value.

The origin of bistability can be traced back to the effect of the concentration
field. As mentioned earlier, when the separation ratio S is negative, the Soret effect
suppresses the onset of convection, which increases the Ra-value of the instability
of the conductive state. In contrast, if convective motion already exists, the Soret
effect does not play an important role because of mixing, allowing the convection
cells to persist for the same Ra-values. Recall that we assume Le � 1 (D � κ);
thus, concentration diffusion is much slower than that of momentum and temperature
and therefore the mass flux is nearly passive. Therefore, once a spatially localized
convection region is activated, the non-uniform field is maintained. In terms of
the bifurcation diagram, the two states correspond to the bistability. Therefore, we
can consider SP solutions as describing a convection region sandwiched between
conduction regions. The PTP solution may also be understood similarly; however, the
convection region is maintained instead by the birth and death of convection cells.

Although stable SP and PTP branches are detected, as in figure 3 for Γ = 32,
even if the conductive state becomes unstable, a natural question is how they are
stabilized from a dynamical point of view. What we observe in our numerics is that
small fluctuations grow and travel in the unstable conductive region as wave packets
and collide with SPs or PTPs. However, they are not strong enough to destroy them
and are instead absorbed by them. This is because the system size (Γ = 32) is small
enough to prevent wave packets from growing sufficiently large to affect the existing
structures (Batiste et al. 2006). However, if the domain is large enough, such wave
packets will grow to form a localized structure, as shown in figure 1. Then the
interaction between such structures becomes more complex, and this should be treated
in a separate way. We discuss the details of the domain-size effect and interaction
between such structures in § 6.
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FIGURE 6. (a,b) Time evolution plots of ψ(x, 0, t) and (c,d) phase plots of (a,c) PTP cousin
and (b,d) PTP. Note that in both, ψ(x, 0, t) is observed in the frame of reference moving with
the group velocity of the PTP solution. Although the shape of the pulse is different, the group
velocity is almost the same. The PTP solution is time-periodic whereas the PTP cousin is
quasi-periodic.

4.2. PTP cousin

We find another PTP-like pulse as shown in figure 6; however, it is not detected as a
bifurcation branch. We designate it as the ‘PTP cousin’ because the group velocity is
almost the same as that of the PTP. It is difficult to specify the position of the PTP
cousin because it is not time-periodic; however, as shown in figure 1, the slope of the
track of two PTP cousins (e and f) is almost the same as that of the PTP. Thus, we
could estimate the group velocity of the PTP cousin as a long time-averaged velocity.

PTP cousins are obtained both by an asymptotic state of generic initial conditions
(see e, f in figure 1b) and as a result of collisions (see figure 10). We extracted PTP
cousins from these results and calculated their time evolution in a smaller domain
(Γ = 32). Calculations for larger truncation numbers (M = 36 and L ≈ 32Γ , which is
about twice the size of general calculations) were also performed. These examinations
confirmed that the PTP cousin is neither an artifact of numerical error nor the result of
a size effect.
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Indeed, we have not succeeded in obtaining a PTP cousin as a solution branch
because it seems to be quasi-periodic, as shown in figure 6(c). Thus, the conditions for
such a solution are not expressed in the form shown in table 1.

A similar structure is reported in doubly diffusive convection; see Beaume, Bergeon
& Knobloch (2011), the leftmost panel of figure 14.

5. Pattern formation in a large domain
In this section, asymptotic behaviour in a large periodic domain (Γ = 500) is

examined. We have chosen Ra = 1960, at which the conductive state is convectively
unstable but SP and PTP solutions exist when Γ = 32 (figure 3).

Figure 1(a) shows a time evolution started from a pointwise initial disturbance at
x = 500 with a pair of small convection cells having the symmetry described by (4.1).
The amplitude of the disturbance is about ten times smaller than that of an SOC.
At first, the initial disturbance splits into two wave packets propagating in opposite
directions, B1 and B2. Initially, the amplitudes of the wave packets are sufficiently
small for linearity to hold; thus, their collisions appear to be simply superpositions of
the wave packets with no significant interactions. As the amplitude of the wave packet
grows, however, it forms a travelling pulse similar to the PTP solution (§ 3) and also
spreading disturbances over a wide range (t ≈ 10 00). Some of these disturbances grow
to form a localized structure that is wider than the PTP or PTP cousin.

At C1 and C2 (t ≈ 4000), a collision between a travelling pulse and the localized
structure is observed. As a result, a single travelling pulse survives. The symmetry of
the distribution of the large-scale structure is broken at t ≈ 5000 by the creation of
other coherent structures (D).

After the collision at E, all of the large-scale structure moves in the left direction.
In the period 6250 < t < 6750, only two travelling pulses exist. Because the interval
between pulses is wide enough, perturbations in the interval can grow to form other
localized structures (F). Such localized structures experience many interactions, and
finally produce an array of four travelling pulses, all of which are similar to the PTP.
The distribution of the pulses is not uniform, but is maintained for a long time (over
10 000 units of time).

Besides strong interactions (collisions), there are interactions between travelling
pulses and wave packets, termed as ‘mild interactions’. Because the velocity of the
wave packet is larger than the group velocities of the travelling pulses, the wave
packet can catch up with the pulse. When the wave packet has a small amplitude, it
is absorbed by the travelling pulse; the velocity and the shape of the travelling pulse
do not change significantly. When the amplitude is slightly larger, however, the shape
of the pulse is temporally deformed, although it finally recovers its original shape.
Nevertheless, due to the interaction, the position is shifted (a–d). The birth of a new
pulse, as at D and F, occurs again at G (t ≈ 25750, x ≈ 500), because the interval
between PTPs is large enough to allow the growth of wave-packet disturbances.

Compared with the time evolution from a random disturbance with an amplitude
10−10 times smaller than that of an SOC, as in figure 1(b), we see that although
the details are different, the spatio-temporal pattern consists of processes similar to
those in figure 1(a). First, we observe the growth of a disturbance into a wave packet.
Second, after the amplitude of this wave packet is large enough, a travelling wave is
generated. The shape is similar to the PTP or PTP cousin, but we observe another
localized structure wider than either the PTP or PTP cousin (H), although the structure
is not stable. Finally, it converges to a pulse similar to the PTP (or PTP cousin).
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PTP branch
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FIGURE 7. (a) Detection of the maximum aspect ratio ΓM . (b) A stable PTP bifurcation
branch on the Γ = 32 plane is extended on the Γ –|z| plane at Ra = 1960. (c) The result
implies the existence of an ice-cream-cone-like bifurcation surface. (d) A saddle-node point is
expected to exist on the Ra–|z| plane at Γ = 390. (e) A saddle-node point also appears on the
Γ –|z| plane at Ra= 1960.

From these simulations, we propose a scenario for the pattern formation process in
the large domain as follows. (i) A disturbance in the background state (similar to the
conductive state) grows into a wave packet due to the convective instability. (ii) If
the region for the background is large enough, the wave packet forms a coherent
structure similar to the PTP, the PTP cousin (travelling pulse), and localized travelling
pulses with larger width, a ‘fat’ PTP. However, the fat PTP becomes thinner as it
propagates. In the asymptotic state, we only observe the PTP or the PTP cousin.
(iii) The interaction between a travelling pulse and a wave packet results in a single
travelling pulse. (iv) Interactions between two travelling pulses also result in a single
travelling pulse. (v) If SP solutions exist, those pulses do not survive because they
eventually become PTP(s) as a result of collisions (see § 6.2 and figure 9). In the
following section, we focus on the elementary processes constituting pattern formation.

6. Elementary process of pattern formation
6.1. Critical aspect ratio for PTP

As shown in figure 3, a single PTP solution is stable at Ra = 1960 for Γ = 32, but
it becomes unstable when Γ = 500. Therefore, for a single PTP, there is a range of
aspect ratios where the PTP solution is stable. Here, we obtain the range Γm < Γ < ΓM

by estimating the values of ΓM and Γm at Ra= 1960, where ΓM and Γm are the largest
and the smallest aspect ratio for a single PTP, respectively.

First, we study the largest aspect ratio ΓM. Since it is difficult to calculate a PTP
solution for large Γ , time-evolution calculations are performed to find stable PTPs, as
shown schematically in figure 7. We followed a stable PTP branch on the Γ –|z| plane
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104
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FIGURE 8. Sojourn time of a solitary PTP for Γ = 390 versus Ra− 1959.872. Outline circles
denote sojourn times obtained by numerical simulation, which are fitted by the thick solid line
tsojourn = 9031.74× (Ra− 1959.872)−1/2.

(recall (3.11) for the definition of z) from Γ = 32 by continuation (figure 7b) and
found that it disappears around Γ = 390. We have at least two explanations for why
the stable PTP branch disappears: one is that the single PTP solution at Γ = 390 still
exists but is unstable; the other is that the single PTP solution disappears. If the latter
picture is valid, the solution surface of the PTP in Ra–Γ –|z| space has a conical shape
near the region determined by Γ = 390, Ra = 1960 (figure 7c). Thus, if we cut the
cone at Γ = 390, there is a saddle-node point around Ra = 1960 on the Ra–|z| plane
at Γ = 390 (figure 7d). To confirm this expected saddle-node point, time-evolution
calculations for Ra = 1960, 1961, 1962 and 1963 were performed at Γ = 390 and the
sojourn time near a single PTP was examined. A plural-PTP state is achieved via a
typical transition process: (i) convective wave-packet disturbances, which propagate in
the same direction as that of the PTP, grow and collide with the PTP from behind
it, but many are absorbed by the PTP in an early stage; (ii) the PTP is gradually
modulated, and the PTP itself emanates new seeds of wave-packet disturbances (recall
that the domain is periodic); (iii) some disturbances grow sufficiently to break down
the PTP; (iv) the PTP breaks and almost disappears; (v) two or more PTPs appear.
Therefore, the phase-space vector z passes through near the conductive state before it
goes to the plural-PTP state and thus |z| experiences a local minimum between the
initial and the final state. This local minimum is detected as the end of the sojourn
time.

As shown in figure 8, the sojourn time tsojourn obeys the function of Ra as

tsojourn = 9031.74× (Ra− 1959.872)−1/2 . (6.1)

The −1/2 law supports the existence of a saddle-node point at Ra = 1959.872. Then,
there also appears a saddle-node point at Γ ≈ 390 if we project the conical solution
surface onto the plane Ra = 1960 (figure 7e). Therefore, we detect ΓM as ΓM ≈ 390,
and there exists no single PTP solution beyond ΓM.

For Γm, we calculated successive time evolutions of a single PTP by decreasing
Γ gradually. The initial condition was set up by removing the conductive state just
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FIGURE 9. Collision between 20-cell SP (centre at t = 0) and leftward-moving PTP (right
end at t = 0). ψ(x, 0, t) is shown. The SP cannot survive the collision.

behind the PTP obtained by simulation at a slightly larger value of Γ . As a result we
found that Γm is in the range [9.658, 9.659].

Note that if a plural-PTP state is achieved, the system can approximately be
regarded as small independent fragments, where the distance of each fragment does
not exceed ΓM and is larger than Γm. Therefore, we estimate the number of PTPs in a
domain Γ , N as [

Γ

ΓM

]
< N <

[
Γ

Γm

]
, (6.2)

which is 2 6 N 6 51 for Γ = 500, where [·] is the Gauss symbol. The numbers of
PTPs and PTP cousins in the two cases in figure 1 were four and five, which is within
the range of this estimation. Note that plural PTPs can coexist if Γ > 2Γm, as has been
observed in experiment (Niemela et al. 1990).

The existence of a critical domain size suggests that large domain sizes should
be considered separately. In particular, a single PTP solution outside the bistable
region does not exist for large domain size because the PTP solution vanishes through
the saddle-node bifurcation. Therefore it is conjectured that bifurcation branches of
PTPs in figure 3 may change their shape according to the aspect ratio because their
saddle-node points shift to the left (lower-Ra) direction for larger Γ , and they might
eventually approach or enter the bistable region when Γ →∞.

6.2. SP–PTP collision
There are several stable SP solutions at Ra = 1960 in the bifurcation diagram shown
in figure 3, however no SP appears in the asymptotic state in figure 1. To check the
robustness of the SP solutions, we simulated collisions between PTPs and several SP
solutions characterized by the number of active cells (from 6 to 20 cells) at Γ = 128.
In all cases, SP–PTP collisions result in a single PTP; a typical collision (20-cell SP
and PTP) is shown in figure 9. Thus, even if an SP exists, it will be destroyed by a
collision with a PTP.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

41
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.413


236 T. Watanabe, M. Iima and Y. Nishiura

(a)

0
0

FIGURE 10. Phase dependence of PTP–PTP collisions: •, SOC; , leftward-moving PTP;
, rightward-moving PTP; , rightward-moving PTP cousin.

6.3. PTP–PTP collision
In the time evolutions, we often observed a collision between travelling pulses. In
all cases, the final result was a single PTP. Here we study the collision processes in
detail. It was reported that the collision results depend sensitively on the Rayleigh
number even if the initial conditions are the same (Toyabe 2009), although the initial
conditions were constructed by travelling pulses obtained as the asymptotic state of the
time evolution. As is mentioned in § 4.1, the PTP solution is a time-periodic spatially
travelling solution; thus, the state has a phase when we observe the PTP solution in
the moving frame. Thus, for a complete analysis of the collision, we need to control
the phase for both leftward- and rightward-propagating PTPs (Watanabe et al. 2010).

We define the phase of the solution at t = t0 by Φ = 2π × t0/τ (mod 2π), where τ
is the period of the solution. Then we prepare Pr(Φr) and Pl(Φl), the rightward- and
leftward-moving PTPs, where Φr and Φl are the initial phases, respectively. The initial
conditions for the collision are constructed by positioning Pr and Pl with an interval of
64. The system size Γ is 64 (spatial period is 128).

We show the collision results for all the possible combinations of (Φr, Φl) in
figure 10, with the symmetry of the PTP solution as

−ψ(x− Uτ/2,−y, 0)= ψ(x, y, τ/2),
−θ(x− Uτ/2,−y, 0)= θ(x, y, τ/2),
−η(x− Uτ/2,−y, 0)= η(x, y, τ/2),

(6.3)

and invariance under the transformation x→−x.
Figure 10 shows that the results are either a single PTP, a PTP cousin, or an SOC.

The interaction processes for these results are categorized by the phase difference
Φd = |Φl − Φr|. They can be classified into three categories as shown in figure 11.
(I) In most cases, mainly 0 < Φd < π, only one PTP is selected immediately after
the collision (figure 11a). (II) If Φd = 0, where the initial conditions have mirror
symmetry, two PTPs appear to annihilate each other after the collision, but a new
pair of counter-propagating PTPs is generated again. These PTPs undergo a second
collision, producing either a rightward- or leftward-moving PTP. During the collision
process, the mirror symmetry is lost due to the accumulation of numerical error. As a
result, the phase difference at the second collision is not zero, which leads to a single
PTP (figure 11b). (III) If Φd = π, once they fuse into an 11-cell SP, both fronts of the
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FIGURE 11. Four typical transition processes (ψ(x, 0, t) is shown). (a) Immediate
convergence to a single PTP. (b) Collision once results in annihilation; two counter-
propagating PTPs emerge again; collision occurs again, and they merge into a single PTP.
(c) Collision once results in an SP but it starts moving and converges into a PTP. (d) Collision
once results in an SP; both its fronts stretch out while breaking the initial symmetry; then it
starts moving and finally converges into an SOC.

SP stretch out with an increasing number of convection cells after losing the initial
symmetry (4.2). Then it starts moving. It converges to a PTP if the symmetry breaking
occurs before the increase in the number of cells (figure 11c). By contrast, it converges
to an SOC if the increase in the number of cells occurs earlier (figure 11d).

As classified above, the collision seldom results in an SOC. The basin area of an
SOC is estimated by the probability of SOC occurring, which is indicated by the
filled circles in figure 10. Similar numerical experiments for phase differences around
Φd = π revealed that SOCs exist when Φd 6 2π/2300 in all seven cases except (a) in
figure 10 and when Φd 6 6π/2300 for case (a). The area of the basin is less than
0.1 % in all representative initial conditions. The results show that the flow converges
to PTPs in almost all cases and only rare initial conditions result in an SOC.

In sum, except for rare cases where an SOC appears, a sufficiently large conductive
region for Ra = 1960, where a trivial state is convectively unstable, results in PTPs
and PTP cousins that move in the same direction and are arranged in non-uniform
intervals.

7. Conclusion
We study spontaneous pattern formation and its asymptotic behaviour in binary

fluid flow driven by a temperature gradient. We succeeded in obtaining time-periodic
travelling pulses (PTPs) globally in parameter space as numerical solutions which
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satisfy appropriate mathematical conditions including unstable ones, and clarified
their important role in the characterization of asymptotic behaviour in a large but
finite domain (see also Watanabe et al. 2010). In contrast to a pure fluid, localized
patterns such as steady pulses (SPs) and PTPs appear, in addition to the conventional
Rayleigh–Bénard convection pattern (SOC).

Despite the long history of studying PTPs via experiments (Heinrichs et al. 1987;
Kolodner et al. 1988; Niemela et al. 1990; Kolodner 1991), the numerical approach
(Barten et al. 1991, 1995; Ning et al. 1996; Jung et al. 2004; Toyabe 2009), and the
theoretical model based on the amplitude equations (Thual & Fauve 1988), detailed
analysis of the pattern formation process had not been possible because the PTP is a
time-periodic travelling solution, and the state is determined not only by the position
of the envelope but also by the phase of the internal convection structure. Although
Iima & Nishiura (2009) investigated the collision process of two counter-propagating
PTPs by extended complex Ginzburg–Landau equations and their results agree with
those of experiment qualitatively, they pointed out the importance of the internal
structure of PTPs, which cannot be resolved by the amplitude equations. A numerical
solution satisfying the mathematical conditions has made it possible to analyse the
interaction process in detail (Watanabe et al. 2010).

We obtained the global bifurcation diagram for the aspect ratio Γ = 32 (figure 3). A
stable PTP solution as well as a stable SP solution exists outside the bistable region,
where the conductive state is linearly unstable. Similar phenomena were observed
by Niemela et al. (1990), where the convective instability was suggested. This is
counter-intuitive because a small perturbation added to the conductive state may grow
and destroy these localized patterns. Therefore, such peculiar solutions are considered
to be the result of the finiteness of the domain. This naturally leads to the following
question: What happens in a finitely large domain if the conductive state is linearly
unstable?

To examine this question, we performed time-evolution calculations with generic
initial conditions in a large periodic domain (Γ = 500), much larger than that used
for the bifurcation diagram (Γ = 32). The Rayleigh number Ra was set to be 1960,
where the conductive state is linearly unstable. Figure 1 shows typical results of these
calculations. Interestingly, no single SP or PTP state is realized in spite of the fact that
they are stable when Γ = 32. Instead, an array of PTPs and PTP cousins moving in
the same direction and arranged at non-uniform intervals are obtained. This implies the
existence of a critical aspect ratio ΓM above which a single and stable PTP cannot be
observed.

Then the next question addressed is the following: How does the stable PTP branch
disappear at ΓM? To elucidate the nature of ΓM, the stable PTP branch at Ra = 1960
was extended to larger Γ . We found that the single PTP solution disappears around
Γ = 390 (figure 7b); ΓM ≈ 390 for Ra = 1960. We confirmed that the critical Ra of
the saddle-node point for Γ = 390 (Ra = 1959.872) is much smaller than that for
Γ = 32 (Ra = 1990.61). In figure 1, because ΓM < Γ = 500, the asymptotic states are
expected to be patterns consisting of at least two PTPs.

In terms of pattern formation in a large domain, we have another question: Why
was no SP observed? To clarify this point, the collision process between SP and
PTP was simulated, which showed that SPs are overwhelmed by PTPs. Thus, the
transient of the asymptotic behaviour results in interactions between PTPs. Therefore,
to understand the asymptotic behaviour in a large domain, interactions between PTPs
are important.

Hence PTP–PTP collisions were examined, as in figure 10, which showed that, in
most cases, a single PTP is generated as the result of a collision. A PTP cousin, a
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PTP-like moving pulse as shown in figure 6, is sometimes also generated. However,
it can be regarded as having the same structure as a PTP in this context because the
group velocity is almost the same. Thus, a PTP and PTP cousin that propagate in the
same direction do not collide: both of them persist. Although an SOC is generated in
a few cases, we do not need to take it into account because the basin area of SOCs is
less than 0.1 %. In addition, the realization of SOCs strongly depends on the system
size, as shown in figure 11(d) and figure 1 (H), because a ‘fat’ PTP gradually becomes
a PTP or PTP cousin (H in figure 1) as long as the two fronts of the envelope do not
meet each other (figure 11d).

The results of these analyses confirm the asymptotic behaviour in a large domain as
shown in figure 1: an array of unequally spaced PTPs moving in the same direction.

In these analyses, the size of the system Γ is an essential factor because a
linearly unstable conductive state is convectively unstable, as shown in figure 3. In
a convectively unstable state, the asymptotic state depends on whether wave-packet
disturbances can grow sufficiently large to influence the results. If Γ is small, they
are absorbed by the existing pulse and then a single pulse is stable. But if Γ is large
enough, the disturbances grow sufficiently to break the existing pulse; a single pulse
in the system is no longer stable, and other pulses appear between them and collisions
occur. Thus, system size can be divided into three categories:

(i) small (a solitary PTP exists);
(ii) large enough but finite (a solitary PTP cannot exist);

(iii) infinite.

The difference between small (i) and finitely large (ii) is distinguished by the critical
aspect ratio ΓM(Ra). A single PTP is possible when Γ is smaller than ΓM(Ra) but
impossible when it exceeds ΓM(Ra) and, instead, an array of PTPs or PTP cousins
is realized after complicated transition processes. For the infinite system (iii), the
asymptotic behaviour might be very different from (ii). Some implications for Γ →∞
were also obtained via the analysis to determine ΓM, because the critical Ra of the
saddle-node point of the PTP solution seems to decrease. These observations suggest
that the saddle-node point approaches or enters the bistable region when Γ approaches
infinity.

Spontaneous pattern generation and the interactions among these patterns have been
studied in many other systems, for example, barchan dunes (Katsuki et al. 2005) and
reaction–diffusion systems (Nishiura, Teramoto & Ueda 2003a; Nishiura et al. 2003b;
Teramoto et al. 2004). These studies are useful for understanding pattern formation,
in general. Among them, an example of travelling spots in a two-dimensional
reaction–diffusion system (Nishiura et al. 2005) resembles the present case in terms
of the asymptotic behaviour. In this system, when a single spot is given at t = 0,
self-replication occurs again and again and the newly born spots travel, collide, and
eventually form a marching, spatially periodic pattern with the same velocity. The
number of spots in a system is determined by the system size. However, the essential
difference between them is the instability property. For travelling spots, self-replication
occurs through the instability of each spot itself and the background homogeneous
state is stable. By contrast, in the present system, the PTP itself is stable and the
background conductive state is unstable.

We remark that further investigation is needed for the SP solution. The first problem
is how the stability interval or the saddle-node point changes when the domain size
becomes large. A preliminary result suggests that the saddle-node point of the SP
branch does not change significantly like the PTP case when Γ = 500, but some
SP solutions that are stable when Γ = 32 become unstable. Because the difference
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between the tail part of the SP solution and the conductive state becomes unlimitedly
small in the limit Γ →∞, it is expected that the SP solution becomes unstable
or vanishes in the limit Γ →∞ when the conductive state is unstable. The second
problem is the role of the SP as the separator in a collision process. We sometimes
observe unstable SP solutions as transient states in the PTP–PTP collision (Toyabe
2009); the SP looks unstable but its unstable manifold controls the final states after
collision. Clearly, the detailed mathematical structure for SP solutions is useful and it
should be further investigated. We will report the details elsewhere.

In sum, remarkably unique pattern formation phenomena exist in the present case;
the differences from phenomena in other systems must be stressed. In many systems,
localized patterns are generated in a bistable region, or, even if only one state is
stable, the background state is stable. However, in the present system, the situation is
the opposite because the background conductive state is unstable and is the origin of
the pattern generation. However, many interesting properties of binary fluid convection
remain to be explored in future work, for example, collisions between a PTP and PTP
cousin or between two PTP cousins, the stability of SP solutions, and the stabilization
mechanism for the unstable conductive state through the existence of pulses. Here, it
should be stressed again that the present system is very different from other systems
because patterns are generated via interactions between the instability and stabilization
of the background state, which leads to a general framework, that is, stable patterns in
an unstable field. More detailed analysis for binary fluid convection is expected to lead
us to a complete understanding of such a general framework.
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Appendix. Convective instability

In this section, the stability of the conductive state above and near the Hopf point is
examined.

Adding perturbations (ψ, θ, η) = (ψ(y), θ(y), η(y))eλt+νx to the conduction solution
ψ = θ = η = 0 and linearizing (2.5)–(2.7) around the trivial solution, a generalized
eigenvalue problem is obtained as follows:

λ

Ψ
′′

m + ν2Ψm 0 0
0 Θm 0
0 0 Hm


ψl

θl

ηl



=

σ(Ψ
iv

m + 2ν2Ψ ′′m + ν4Ψm) −σRa(1+ S)ν

16
Θm

σRaSν

16
Hm

−νΨm Θ ′′m + ν2Θm 0
0 Θ ′′m + ν2Θm Le(H′′m + ν2Hm)



×

ψl

θl

ηl

 . (A 1)
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FIGURE 12. Projection of the set of points A := {λr, λi, νr, νi | λr = 0, λ= λ(ν)} onto
(a,b) the ν-plane and (c,d) the (νi, λi)-plane: (a,c) Ra= 2141.4; (b,d) Ra= 2141.6.

The above equation gives a dispersion relation λ = λ(ν). Here λ and ν are written as
λ = λr + iλi and ν = νr + iνi, respectively, for the sake of simplicity, where λr, λi, νr,
and νi are real numbers.

Assume that there exists a complex wavenumber ν0 such that the corresponding
group velocity is zero:

∂λ

∂ν

∣∣∣∣
ν=ν0

= 0. (A 2)

The system is convectively unstable if the linear amplification rate λr0 := Re[λ(ν0)]
corresponding to ν0 is negative, because any perturbations are propagated even if
they grow. However, the system is absolutely unstable if λr0 is positive because
zero-group-velocity perturbations are amplified; that is, there exists a perturbation that
grows at a fixed point. The turning point to absolute instability is detected by setting
the condition that the eigenvalue λ(ν) has a double root at the threshold of absolute
instability (Huerre & Monkewitz 1990), as conducted by Batiste et al. (2006). The
isoline for λr = 0 is reconnected between Ra = 2141.4 and Ra = 2141.6, as shown in
figure 12. Figures 12(a) and 12(b) show that there is a saddle-node point around the
point ν0 = 0.39+ 1.58i and the linear amplification rate corresponding to the point λr0

changes sign between Ra = 2141.4 and Ra = 2141.6. Figures 12(c) and 12(d) show
that there exists a cusp point on the algebraic singular point.

Therefore, it is obvious that the critical value for the absolute instability is
Ra ≈ 2141.5 and is far larger than in the Ra region where pulse solutions exist.
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Note that figure 1 displays the growth and propagation of packet disturbances. A point
disturbance added at point A at t = 0 reaches points B1 and B2 at t = 250.
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BARTEN, W., LÜCKE, M. & KAMPS, M. 1991 Localized traveling-wave convection in binary-fluid
mixtures. Phys. Rev. Lett. 66, 2621–2624.

BARTEN, W., LÜCKE, M., KAMPS, M. & SCHMITZ, R. 1995 Convection in binary fluid mixtures.
Part 2. Localized traveling waves. Phys. Rev. E 51, 5662–5680.

BATISTE, O., KNOBLOCH, E., ALONSO, A. & MERCADER, I. 2006 Spatially localized binary-fluid
convection. J. Fluid Mech. 560, 149–158.

BEAUME, C., BERGEON, A. & KNOBLOCH, E. 2011 Homoclinic snaking of localized states in
doubly diffusive convection. Phys. Fluids 23, 093102.

BECK, M., KNOBLOCH, J., LLOYD, D. J. B., SANDSTEDE, B. & WAGENKNECHT, T. 2009 Snakes,
ladders, and isolas of localized patterns. SIAM J. Math. Anal 41, 936–972.

BURKE, J. & DAWES, J. H. P. 2012 Localized states in an extended Swift–Hohenberg equation.
SIAM J. Appl. Dyn. Syst. 11, 261–284.

BURKE, J. & KNOBLOCH, E. 2006 Localized states in the generalized Swift–Hohenberg equation.
Phys. Rev. E 73, 056211.

BURKE, J. & KNOBLOCH, E. 2007 Homoclinic snaking: structure and stability. Chaos 17, 037102.
BUSSE, F. H. 1964 The stability of finite amplitude cellular convection and its relation to an

extremum principle. J. Fluid Mech. 30, 625–649.
CHAPMAN, S. J. & KOZYREFF, G. 2009 Exponential asymptotics of localised patterns and snaking

bifurcation diagrams. Physica D 238, 319–354.
CROSS, M. C. 1986 Traveling and standing waves in binary-fluid convection in finite geometries.

Phys. Rev. Lett. 23, 2935–2938.
HEINRICHS, R., AHLERS, G. & CANNELL, D. S. 1987 Traveling waves and spatial variation in the

convection of a binary mixture. Phys. Rev. A 35, 2761–2764.
HOUGHTON, S. M. & KNOBLOCH, E. 2011 Swift–Hohenberg equation with broken cubic–quintic

nonlinearity. Phys. Rev. E 84, 016204.
HUERRE, P. & MONKEWITZ, P. A. 1990 Local and global instabilities in spatially developing flows.

Annu. Rev. Fluid Mech. 22, 473–537.
IIMA, M. & NISHIURA, Y. 2009 Unstable periodic solution controlling collision of localized

convection cells in binary fluid mixture. Physica D 238, 449–460.
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