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Abstract

In this paper, self-focusing of finite Airy–Gaussian (AiG) laser beams in collisionless plasma
has been investigated. The source of nonlinearity considered herein is relativistic. Based on the
Wentzel–Kramers–Brillouin (WKB) and paraxial-ray approximations, the nonlinear coupled
differential equations for beam-width parameters in transverse dimensions of AiG beams have
been established. The effect of beam’s modulation parameter and linear absorption coefficient
on the self-focusing/defocusing of the beams is specifically considered. It is found that self-
focusing/defocusing of finite AiG beams depends on the range of modulation parameter.
The extent of self-focusing is found to decrease with increase in absorption.

Introduction

The study of high-power laser–plasma interaction has paved the way in various directions due
to its large applications (Kaw, 2017) such as laser electron acceleration, optical harmonic
generation, laser-driven fusion, generation of X rays, etc. For many of these applications, it is
necessary that the optical beam is intense and propagates for extended distances without diver-
gence. In this respect, the propagating distance is limited to approximately Rayleigh diffraction
length in the absence of optical guiding mechanism. Such propagating distance is strongly
affected by nonlinear self-focusing (Akhmanov et al., 1968) at sufficient high-power and inten-
sity of laser. In plasma, three main mechanisms of self-focusing (Sodha et al., 1976), namely
relativistic, ponderomotive, and thermal, have been pointed out. The latter two require finite
time to set up, while relativistic self-focusing arises instantly and requires very high laser inten-
sity. The analytical theory of relativistic self-focusing of laser in plasma has been included in the
numerical treatment by Hora and co-workers (Hora, 1975; Hauser et al., 1988). By considering
the arbitrary magnitude of beam intensity, relativistic self-focusing of Gaussian laser beam in
plasma has been discussed in different situations (Asthana et al., 2000; Feit et al., 2001;
Khanna and Baheti, 2001; Varshney et al., 2006; Hasson et al., 2010; Sharma and Kourakis,
2010; Patil et al., 2011, 2013a, 2016, 2018a). In the same context, the field of relativistic self-
focusing of laser has received a considerable bonus in some stimulated scattering processes
(Mahmoud and Sharma, 2001), acceleration of electrons (Habara et al., 2006), generation of
high harmonics (Sharma et al., 2019), etc. from plasmas. By exploring classical Hamiltonian
formalism, relativistic self-focusing of ultra-intense lasers in underdense plasmas have been ana-
lyzed to determine the limit between geometrical optics and wave optics considerations (Curcio
et al., 2018). An analytic theory has been described for the formation of a self-focusing structure
of Gaussian laser beam in plasma with relativistic nonlinearity (Kovalev and Bychenkov, 2019).

On the other hand, considerable interest has been also elevated in the relativistic self-
focusing of some modified Gaussian beams such as cosh-Gaussian beams (Vhanmore et al.,
2017, 2018a; Kumar et al., 2018), Hermite–Gaussian beams (Kant et al., 2012),
Hermite-cosh-Gaussian beams (Patil et al., 2007; Nanda et al., 2013; Vhanmore et al., 2019,
2020; Gavade et al., 2020), Hermite-cosine-Gaussian beams (Wani and Kant, 2016), elliptic
Gaussian beams (Kumar and Aggarwal, 2018), quadruple Gaussian beams (Aggarwal et al.,
2018), q-Gaussian beams (Vhanmore et al., 2018b; Kashyap et al., 2019), Bessel–Gaussian
beams (Patil et al., 2019), and Laguerre–Gaussian beams (Dwivedi et al., 2019), due to their
definite characteristics in comparison to that of Gaussian laser beam. In contrast to the tradi-
tional plasma physics, some works in the literature on relativistic self-focusing of Gaussian
laser beam in quantum plasmas have already been properly discussed (Hefferon et al., 2010;
Patil et al., 2013b, 2018b; Zare et al., 2015; Kumar et al., 2016; Aggarwal et al., 2017a,
2017b, 2019). It has been realized that in comparison with the classical relativistic box of
situation, the quantum effects have a key part in better focusing of Gaussian laser beam in
plasmas. It has been observed that early and strong relativistic self-focusing is observed in
case of the cosh-Gaussian laser beam in cold quantum plasma (Nanda et al., 2018). Such
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enhanced focusing is found to occur earlier and strongest for the
case of thermal quantum plasma in comparison with cold quan-
tum plasma (Patil and Takale, 2013, 2014; Mahajan et al., 2018).

Besides, a significant interest has been gained in a new family of
paraxial light beams, known as Airy beams (Siviloglou and
Christodoulides, 2007). Unlike normal optical beams, Airy beams
transversely accelerate (self-bend) throughout propagation. This
exotic behavior is possible even in entirely homogeneous media.
Remarkably, the intensity peaks of Airy beams follow parabolic tra-
jectories much like the ballistics of projectiles (Polynkin et al.,
2009a). Such finite Airy beams have potential applications in
plasma channel generation (Polynkin, et al., 2009b), laser-driven
acceleration (Li et al., 2010), optical trapping (Zheng et al., 2011),
etc. By considering general nonlinear media, the propagation of
Airy beams has been studied in detail (Deng and Li, 2012; Chen
et al., 2015). Using the Wentzel–Kramers–Brillouin (WKB) approx-
imation, relativistic self-focusing of finite Airy–Gaussian (AiG)
beams in plasma has been presented (Ouahid et al., 2018a). They
have also extended the same under the combined effects of relativ-
istic and ponderomotive nonlinearities in a plasma (Ouahid et al.,
2018b). It is found that the modulation parameter plays an impor-
tant role in the self-focusing. In the present work, we have empha-
sized analytically to set the numerical domain of modulation
parameter of finite AiG beams propagation in plasma.

The present paper is devoted to investigate the domains of
modulation parameter of finite AiG beams propagating through
plasma. Using the ansatz for the electric field in the wave equa-
tion, a mathematical formulation for the beam-width parameters
in plasma is obtained through the parabolic equation approach
(Akhmanov et al., 1968) under paraxial and WKB approxima-
tions. By considering the relativistic nonlinearity, the evolution
of the beam-width parameter is introduced in the distance of
propagation. The present work is structured as follows: In the
"Self-focusing" section, evolution equations in governing beam-
width parameters in transverse dimensions of finite AiG beams
have been established by using the parabolic equation approach
under WKB and paraxial approximations. The detailed discussion
of results is presented in the context of domains of the modula-
tion parameter in the "Numerical results and discussion" section.
A brief conclusion is added in the "Conclusion" section.

Self-focusing

We begin by considering the propagation of finite AiG laser
beams along the z-direction. The initial electric field distribution
of the beams is expressed as follows (Ouahid et al., 2018a):
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E0Ai
x
r0

( )
exp

a0x
r0

( )
exp

−x2

r20
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Ai

y
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−y2

r20

( )

(1)

where E0 is the constant amplitude of electric field, Ai( ⋅ ) is the
Airy function of the first kind, r0 is the initial beam-width, and
a0 is the modulation parameter also called the aperture coefficient.

The propagation of finite AiG laser beam in plasma is charac-
terized by the dielectric function which can, in general, be
expressed as follows (Sodha et al., 1976):

1 = 10 +F(EE∗)− i1i (2)

where 10 = 1− v2
p/v

2 is the linear part of the dielectric function.
In the relativistic regime, the usual expression for nonlinear part
F(EE∗) of the dielectric function for the plasma is written as
follows (Sharma and Kourakis, 2010):

F(EE∗) = v2
p

gv2
(g− 1) (3)

where ω is the angular frequency of laser beam, ωp is the plasma
frequency given by ωp = (4πne2/m)1/2, n0 is the density of plasma
electrons in the absence of the beam, γ is the relativistic factor
expressed as γ = (1 + αEE*)1/2. Here, α = e2/m2ω2c2 with e is
the charge on electron and m is the rest mass of electron. We
limit ourselves to the case when εi is field independent and εi≪ ε0.

The wave equation governing the electric vector of the beam in
plasma with the dielectric function given by Eq. (2) can be written
as follows:

∇2E − 1

c2
∂2E
∂t2

= 0 (4)

In writing Eq. (4), the term ∇(∇ · E) has been neglected which
has been justified when (c2/v2)|∇(ln 1)/1| ≪ 1. For the conve-
nience of field distribution given by Eq. (1), we have adopted
the Cartesian coordinate system. Within the framework of WKB
approximation, the solution of Eq. (4) can be written as follows:

E = A(x, y, z)exp[i(vt − kz)] (5)

Substituting for E and ε from Eqs. (5) and (2) in Eq. (4), one
obtains

2ik
∂A
∂z

= ∂2A
∂x2

+ ∂2A
∂y2

+ k2F(AA∗)
1

A (6)

Equation (6) is known as the parabolic wave equation that
describes the evolution of beam envelope in plasma.

We may express A as

A = A0(x, y, z)exp[−ikS(x, y, z)] (7)

where A0 and S are real functions of x, y, and z. Here, S is the eiko-
nal of the beam which determines convergence or divergence of
the beam. Equation (7) is valid when the polarization of the
beam does not change with propagation. Substituting for A from
Eq. (7) in Eq. (6) and separating real and imaginary parts, we get
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Following the approach given by Akhmanov et al. (1968) and
Sodha et al. (1976), the solutions corresponding to Eq. (8) can be
written as follows:

S = b1(z)
x2

2
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y2

2
+ w(z) (9a)
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where β1(z) = (1/f1(z))(∂f1(z)/∂z) and β2(z) = (1/f2(z))(∂f2(z)/∂z)
are the inverse of radius of curvatures of the beam along the
x and y directions, respectively, w(z) is the axial phase, f1(z) and
f2(z) are the dimensionless beam-width parameters along the
x and y directions, respectively, and ki is the absorption coefficient.

Substituting for S and A2
0 from Eq. (9) in Eq. (8a) and using

the paraxial approximation, we find
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where ξ = z/Rd the dimensionless distance of propagation,
Rd = kr20 is the Rayleigh diffraction length, and k′i = kiRd is the
normalized absorption coefficient.

Equations (10a) and (10b) are the nonlinear coupled differen-
tial equations governing the variation of the beam-width param-
eters f1 and f2 with the distance of propagation ξ. The first term
on the right-hand side corresponds to the diffraction divergence

of the beam and the second term corresponds to convergence
due to the nonlinearity. We now devote our efforts for obtaining
and analyzing the domain of propagation of finite AiG beams
through plasma.

Numerical results and discussion

For an initial plane wavefront of the beam, the initial conditions
on f1 and f2 are f1(ξ = 0) = f2(ξ = 0) = 1 and df1/dξ = df2/dξ = 0.
When the two terms on the right-hand side of Eqs. (10a) and
(10b) cancel each other at ξ = 0, d2f1/dξ

2 = d2f2/dξ
2 = 0 since

df1/dξ and df2/dξ are also zero and f1 = f2 = 1 for all values of ξ.
In other words, the beam propagates without convergence or
divergence. The condition for self-trapping is therefore
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4
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where ρ = r0ωp/c is the dimensionless initial beam radius and
p = aE2

0 is the initial intensity parameter. Equation (11) is defi-
nitely more amenable to mathematical manipulations. With the
help of this equation, the critical values of a0 and p pertaining
to uniform propagation of finite AiG beams can be easily deter-
mined. We have determined the minimum value of ρ by minimiz-
ing it with respect to a0 and p using the theorem on extremum
values in two variable cases. This gives respective critical values
of modulation and intensity parameters as a0 = a0c = 0.70635
and p = pc = 125.88654. At these two values, one can get the min-
imum value of the critical beam radius as ρ = ρc = 28.50137. Now
one may investigate the response of ρ against p around a0c by
using Eq. (11).

In Figure 1, we have plotted the dimensionless initial beam
radius ρ as a function of the initial intensity parameter p for dif-
ferent values of a0. Such variation of ρ against p is regarded as
critical curves for finite AiG beams propagation in plasma. Each
of these curves divides ( p, ρ) plane into two regions. Initial points
( p, ρ) lying above and below the each curve corresponds to self-
focusing and divergence of finite AiG beams, respectively, which
accords with earlier investigation (Sharma et al., 2003). One
should note from this figure that as a0 increases, the critical

Fig. 1. Critical curves for different modulation parameters a0.
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curve shifts downward till a0 takes a critical value a0c = 0.70635.
However, with further increase in a0, the curve shifts upward.
Figure 2 shows the variation of beam-width parameters f1 and
f2 with dimensionless distance of propagation ξ for same values
of a0 as varied in Figure 1 and k′i = 0. We have chosen a represen-
tative point ( p, ρ) which lie below the all critical curves of
Figure 1, i.e., ρ = ρc = 28.50137 and p = pc = 125.88654. It is evi-
dent from Figure 2 that as a0 increases, AiG beams suffers with
defocusing character of f1 and f2 with ξ up to a0c. At a0c =
0.70635, beam shows a stationary self-trapped mode. With further
increase in a0 above a0c (a0 > a0c) causes defocusing of finite AiG
beams. It is to be noted that for ρ < ρc, AiG beams always get
defocused, although it has p > pc.

Figure 3 shows the variation of d2f1/dξ
2 and d2f2/dξ

2 with a0
for ρ = 40 ( > ρc) with p = pc = 125.88654. Three domains of a0
have been observed characterizing the nature of propagation of
finite AiG beams as follows:

(i) Self-focusing
d2f1/dξ

2 < 0 and d2f2/dξ
2 < 0 for −0.07179 < a0 < 1.50680.

(ii) Defocusing
d2f1/dξ

2 > 0 and d2f2/dξ
2 > 0 for −0.07179 > a0 > 1.50680.

(iii) Self-trapping
d2f1/dξ

2 = 0 and d2f2/dξ
2 = 0 for −0.07179 = a0 = 1.50680.

In Figure 4, we have displayed beam-width parameters f1 and f2 as
a function of ξ for different values of a0 with ρ = 40 and k′i = 0.
From this figure, we have observed exact propagation behaviors of
f1 and f2 with ξ as per the domains of a0 discussed in Figure 3.
Consequently, by increasing the modulation parameter a0, self-
focusing of finite AiG beams becomes better and shifted toward
lower values of propagation distance ξ as reported earlier in
Ouahid et al. (2018a). However, such early and strong self-focusing
trend of f1 and f2 is observed to be reversed beyond critical modula-
tion parameter a0c. As such finite AiG beams suffer more defocused
character of f1 and f2. Figure 5 illustrates the three domains of a0 for
different values of ρ. The most striking feature of this figure is that
the range of a0 remain unchanged as discussed in Figure 3. However,
the self-focusing region enhances with an increase in ρ values.

Fig. 2. Dependence of beam-width parameters f1 and f2 with dimensionless propaga-
tion distance ξ for different modulation parameters a0. The other numerical param-
eters are ρ = 28.50137, p = 125.88654, and k′i = 0.

Fig. 3. Domains of modulation parameter a0 with ρ = 40 and p = 125.88654.

Fig. 4. Dependence beam-width parameters f1 and f2 with dimensionless propaga-
tion distance ξ for different modulation parameters a0 with k′i = 0. Other parameters
are same as in Figure 3.

Fig. 5. Domains of modulation parameter a0 for different ρ with p = 125.88654.
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It may be noted that critical beam radius ρ has an infinite value at
two values of modulation parameter a0. These are a0 =−0.39603
( = a01) and a0 = 1.85406 ( = a02). Thus, it is of interest to find the
range of a0, within which the self-trapping of beam is valid which
demands the following inequality to be satisfied.

(i) For a01 < a0 < a02, ρ is real.
(ii) For a01 > a0 > a02, ρ is imaginary.
(iii) For a01 = a0 = a02, ρ is undefined.

Hence, the range of a0, for which self-trapping of finite AiG
beams is valid, is −0.39603 < a0 < 1.85406. The above three
domains are independent on the power ( p) of the AiG beam.
To further elucidate the results for delineating the propagation
of finite AiG beams through plasma, we numerically analyze
the dependence of beam-width parameters f1 and f2 as a function
of ξ for different values of normalized absorption coefficient k′i
when relativistic nonlinearity is taken into account. The results
are depicted in the form of a set of graphs in Figure 6. This figure
demonstrates that with an increase in a0 for given k′i, the beam
exhibits strong ad early self-focusing. But such focusing trends
get reversed to sharp defocusing depending on the location of
a0 in the relevant domain as defined earlier. Further, at a given
modulation parameter, an increase in k′i causes a substantial
reduction in self-focusing. This is because the weakening of
self-focusing action takes place due to absorption and thus
beam suffers sharp steady divergence for higher k′i values.

Conclusions

Starting with the electric field distribution of finite Airy–Gaussian
beams, nonlinear coupled differential equations in transverse
dimensions of the beams has been established by using the para-
bolic equation approach under WKB and paraxial approxima-
tions. The existence equation for a self-trapped mode of laser
has been obtained. Using the theorem on extremum values in
two variable cases, the critical curve has been analyzed to obtain
domains of the modulation parameter in the propagation of AiG
beams through plasma taking into account relativistic nonlinear-
ity. Following important conclusions are drawn from the present
analysis:

• Self-focusing/defocusing of finite AiG beams depends on criti-
cal values modulation parameter.

• The range of modulation parameter for self-focusing remains
unchanged with an increase in the initial beam radius.

• There is a range of modulation parameter within which the ini-
tial beam radius has a real value.

• Extent of self-focusing is found to decrease with increase in
absorption.

We find that the study of finite Airy–Gaussian beams can be
analyzed like Gaussian beam in plasma, but the modulation
parameter and its range is found to play a key role in determining
the nature of self-focusing/defocusing of the beams.

Fig. 6. Dependence beam-width parameters f1 and f2 with dimensionless propagation distance ξ for different modulation parameters a0 with (a) k′i = 0.00, (b)
k′i = 0.04, (c) k′i = 0.08, and (d) k′i = 0.12. Other parameters are same as in Figure 3.
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