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This paper contains the details of an experimental study of the vortex formed in front
of a piston as it moves through a cylinder. The mechanism for the formation of this
vortex is the removal of the boundary layer forming on the cylinder wall in front of
the advancing piston. The trajectory of the vortex core and the vorticity distribution
on the developing vortex have been measured for a range of piston velocities. Velocity
field measurements indicate that the vortex is essentially an inviscid structure at the
Reynolds numbers considered, with viscous effects limited to the immediate corner
region. Inviscid flow is defined in this paper as being a region of the flow where
inertial forces are significantly larger than viscous forces. Flow visualization and
vorticity measurements show that the vortex is composed mainly of material from
the boundary layer forming over the cylinder wall. The characteristic dimension of
the vortex appears to scale in a self-similar fashion, while it is small in relation to
the apparatus length scale. This scaling rate of t0.85+0.7m, where the piston speed is
described as a power law Atm, is somewhat faster than the t3/4 scaling predicted
by Tabaczynski et al. (1970) and considerably faster than a viscous scaling rate of
t1/2. The reason for the structure scaling more rapidly than predicted is the self-
induced effect of the secondary vorticity that is generated on the piston face. The
vorticity distribution shows a distinct spiral structure that is smoothed by the action
of viscosity. The strength of the separated vortex also appears to scale in a self-similar
fashion as t2m+1. This rate is the same as suggested from a simple model of the flow
that approximates the vorticity being ejected from the corner as being equivalent
to the flux of vorticity over a flat plate started from rest. However, the strength
of the vorticity on the separated structure is 25% of that suggested by this model,
sometimes referred to as the ‘slug’ model. Results show that significant secondary
vorticity is generated on the piston face, forming in response to the separating primary
vortex. This secondary vorticity grows at the same rate as the primary vorticity and
is wrapped around the outside of the primary structure and causes it to advect away
from the piston surface.

1. Introduction
Vortex rings and separated flows have been the topic of a range of experimental and

analytic studies. However, quantitative information is limited regarding the nature of
the vortex formed in the region close to the junction of two perpendicular surfaces
moving relative to each other. Figure 1 shows a diagram of a segment of this class of
vortex forming in front of a circular piston.
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2 J. J. Allen and M. S. Chong

Centreline

Torroidal vortex

Wall
direction

Figure 1. Schematic diagram of the vortex development in front of a circular piston.

The aim of this study is to classify the vortex, identify the possible factors affecting
its formation and growth and develop scaling laws for its important features. To
accomplish this a series of experiments was conducted to measure the spatial devel-
opment of the vortex and the distribution of vorticity in front of the piston for a
varying range of experimental conditions.

The experiments of Hughes & Gerrard (1971) showed that the boundary layer
material, scraped off the stationary surface by the advancing piston, separated from
the piston face and rolled into a vortical structure. This vortex was composed of
the separated boundary layer and entrained material from the surrounding quiescent
fluid. The Reynolds number (Reapparatus = UwD/ν where D is the piston diameter
and Uw is the piston speed) was greater than 400 for roll-up to occur. Reapparatus was
constant for the duration of an experiment.

Tabaczynski, Hoult & Keck (1970) and Daneshyar, Fuller & Deckker (1973)
conducted flow visualization experiments to examine the transient development of
this class of vortex. Tabaczynski et al. (1970) postulated that the cross-sectional area
of the vortex was a function of the piston speed and the distance the piston had moved
from rest. The area of the vortex was defined as the area of the separated primary
vortex and in experiments the area was marked by a dye streakline. By assuming
that the size of the vortex was small in relation to the apparatus length scale (piston
diameter) an analytic expression was developed for the cross-sectional area of the
laminar vortex by assuming that the area of the boundary layer forming on the
cylinder wall was proportional to the area of the vortex. The analysis suggested that
the characteristic dimension the vortex should scale as t3/4. Although it was a hard
to determine from the flow visualization pictures, Tabaczynski et al. (1970) stated
that for Reynolds numbers Revortex = UwLw/ν, where Lw is the distance the piston
has moved from rest, greater than 15 000 the vortex became turbulent. Revortex is a
Reynolds number that increases during vortex development. For a turbulent vortex it
was suggested that the rate of change of its cross-sectional area is proportional to the
product of the perimeter of the vortex and the velocity of the piston. This resulted
in the prediction that the size of the vortex should scale linearly with time when
turbulent. Reasonable agreement was found between experiments and predictions.
However, the data were scattered due to a 25% error in the estimation of the area of
the vortex from the flow visualization photographs and a 10% error in the estimation
of the location and velocity of the piston. The experimental results suggested that
85% of the vortical structure is the material from the separated boundary layer. The
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Vortex formation in front of a piston moving through a cylinder 3
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Figure 2. Axisymmetric vortex generator.

remaining 15% is the result of inviscid entrainment. The experiments of Daneshyar et
al. (1973) involved moving a rectangular piston with a sinusoidal velocity characteristic
and using dye for flow visualization. As in the study of Tabaczynski et al. (1970), in
order to develop an analytic expression for the vortex scaling, it was assumed that
the area of the boundary layer forming over the duct wall is proportional to the
cross-sectional area of the vortex. The experiments agreed reasonably well with the
analytic predictions until turbulent transition.

Similar vortices occur in an engine cylinder when the piston moves through the
exhaust and compression strokes. Researchers in the automotive field, e.g. Obokata
& Okajima (1992), Namazian et al. (1981), and Ishikawa & Daily (1978), observed
vortex formation at the head of a piston using smoke visualization and schlieren
photography. However, little quantitative information was collected about the vortex
development due to the poor quality of the experimental results.

2. Apparatus and experimental techniques
In order to examine the vortex at the head of a circular piston an experimental

apparatus was designed such that the piston was fixed while the outside cylinder was
moved relative to the piston. The benefit of such an apparatus is that it reduced the
system inertia and enabled the camera to remain fixed. An overall schematic of the
experimental apparatus used to generate an axisymmetric vortex in front of a circular
piston is shown in figure 2.

The experiments were conducted in cylinders of two different internal diameters, 138
and 170 mm. These large diameters were chosen in order to maximize the resolution of
the vortical structure being formed at the cylinder wall/piston junction and to reduce
the effects of the experimental length scale, i.e. the cylinder diameter, on the vortex
development. The pistons were fitted with rubber gaskets to stop leakage. A square
viewing tank was fitted around the outside of the Perspex tube to minimize parallax
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Figure 3. Flow visualization results from the current study with the features of the vortex labelled.

error associated with recording images of the vortical structure. The vertical distance
between the piston and the free surface in the cylinder was 500 mm. A computer-
controlled stepper motor enabled the cylinder wall to be driven with accurate and
repeatable velocity characteristics of the form Uw = Atm, where Uw is the cylinder
wall speed. A stepper motor drove a sled to which the cylinder was attached. Accurate
determination of the start of motion and hence the vortex roll-up was achieved with
a photo-diode that detected the start of sled motion. This photo diode in turn was
linked to an LED which was turned off when motion started and hence enabled
the time of the start of the cylinder motion to be recorded to within 1/25th of
a second from a video of the vortex roll-up. The wall speed was calibrated by
recording the motion of the cylinder and then curve fitting Lw = Atm+1/(m+ 1) to the
displacement data to determine A and m. Both the flow visualization experiments and
particle tracking experiments involved taking an illuminated cross-section through
the centreline of the piston. This was accomplished with an argon-ion laser and a
cylindrical and spherical lens system to generate a 1 mm thick illumination sheet. The
flow visualization experiments used fluorescent dye to mark the developing vortex.
The vortex was made visible by leaking dye into the working section via the piston
through a 1 mm diameter hole close to the piston/cylinder junction. Careful injection
of dye was required so as not to disturb the structure of the developing vortex.
The dye was introduced at this location because this is where the boundary layer is
removed from the cylinder wall and close to where it subsequently separates from the
piston. The illumination sheet was configured to pass through the cylinder centreline
and the injector hole. Once the dye had begun to leak into the cavity the cylinder
was set in motion and the developing vortex recorded on video tape. Images from the
video tape, with time codes, were subsequently digitized with a frame grabber and
enhanced for experimental evaluation of the location of the vortex core. An example
of the experimental results using fluorescent dye with the important features of the
vortex labelled, in particular the location of the vortex core (XΓ , YΓ ), is shown in
figure 3. The vortex core is clearly identifiable in the videos. The size of the core was
of the order of millimetres and resulted in an error of the order ±2% in locating the
‘centre’ of the vortex. Experiments were repeated about ten times for each Reynolds
number and the tank was allowed to settle for approximately 15 minutes.

3. Particle tracking
Quantitative information regarding the evolution of velocity and vorticity fields

was obtained from a series of digital particle tracking experiments. The particle
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Vortex formation in front of a piston moving through a cylinder 5

tracking data provided instantaneous two-dimensional velocity fields from which in-
formation about the evolution of the vorticity field is generated. The experiments
involved seeding the flow with 40 µm neutrally buoyant Kodak fluorescent micro-
spheres, illuminating the piston cross-section as described above, and recording the
vortex development. The videos were subsequently analysed to determine the path
of particles through successive video frames and the velocity of the particles. The
procedure for generating particle paths was to frame grab video images of the seeded
flow field to 500 × 500, 8 bit (256 grey level) arrays and locating the centroids of
the particles to sub-pixel accuracy. The intensity of a particle’s image was assumed
to be Gaussian and hence the sub-pixel centroid location was accomplished using a
Gaussian curve fit, as outlined in Cowan & Monismith (1997). The next stage was
to locate a particle identified in the first frame in three subsequent video frames.
This involved first locating particles in the second frame in the neighbourhood of a
particle in the first frame and making a prediction about where the particle will lie in
the third frame. If a particle is successfully located in the third frame then a revised
prediction was used to locate it in the fourth frame. Occasionally multiple tracks were
identified. The track that was selected was the one that had a minimum variance of
length and angle between successive video frames and also correlated with identified
velocity vectors in the vicinity of the particle. Details of this process are described
in Hassan & Cannaan (1993). If the length of the track is small, two further video
frames were analysed to increase length of the track and hence reduce the error in
the calculated velocity. For the experiments presented here the number of successful
tracks identified in a single video frame is of the order 500. From this scattered
non-regularized velocity information a global interpolation technique, similar to that
outlined in Hardy (1971) and Spedding & Rignot (1993), was used to fit a surface to
the experimental velocity data. Two surface functions were generated to describe the
u and v components of velocity. These global functions were then used to generate
information regarding the circulation and vorticity distribution of the developing
vortex. Digital particle tracking was chosen for the current experiments due to the
large dynamic range of velocities present in experiments. The accuracy of the particle
tracking experiments was determined by

(i) the successful identification and tracking of the particles through successive
video frames,

(ii) the type of algorithm that was used to interpolate the non-uniformly spaced
velocity data to a regular grid, and

(iii) the ability of the particles to move with the local fluid velocity.
The error in locating and tracking the particle is a function of the size of its image,
the seeding density and the local fluid velocity. The mean size of the particles in
the video images was of the order 10 pixels. Gaussian fitting algorithms were used
to locate the centroid of the particle to an accuracy of ±0.25 pixels. This correlates
spatially to an error in locating the centroid of the particles to ±40 µm. The relative
tracking error is then determined by the length of the track. In the regions of high
velocity, i.e. in the separated vortex and in the boundary layer developing over the
cylinder wall, the distance travelled by particles between video frames is of the order
of 30 pixels and hence the relative velocity error is 2%. In regions of the flow distant
from the separated vortex, where the particle is tracked through six video frames, the
length of the path is often of the order 4 pixels and hence the relative velocity error
is 10%.

Spedding & Rignot (1993) evaluated the performance of the global thin shell spline
algorithm used in the current work and found the error to be relatively insensitive to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

86
5X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200000865X


6 J. J. Allen and M. S. Chong

D A
Symbol (mm) Reapparatus (mm s−(m+1)) m

� 170 3458 21.14 0.00
× 170 8936 53.98 0.02
� 138 3164 24.03 0.0
B 170 8632 24.02 0.69
O 170 10 213 45.15 0.335

Table 1. Velocity calibration results for the flow visualization experiments.

the grid spacing h and essentially a decaying function of L/δ, where L is the global
length scale and δ is the mean distance between particles. Extrapolating these results
to the current study with a local length scale of L = 42 mm and a mean particle
spacing of δ = 2 mm results in an estimation of the errors associated with the velocity
and vorticity interpolating polynomial as being 2.5% and 5% respectively.

Chen & Emrich (1963) and Merzkirch (1987) described how to estimate the spatial
resolution of a measurement based on the ability of particle to follow the flow. In the
current experiment particles of 40 µm diameter were used. The density is 1.2 g cm−3

and the maximum fluid velocity is 6 × 10−2 m s−1. This results in an estimate of the
minimum spatial resolution due to the ability of the particles to track the fluid of the
order 10 µm. Combining the different sources of error for the experiments described
in this paper, using a 50 × 50 spline grid with h/δ ' 0.45, results in an estimate of
the error associated with the velocity and vorticity measurements, in the region of the
separated vortex, the order of 5% and 8% respectively. In the low-speed sections of
the flow the errors are the order of 12% and 18%.

4. Results
4.1. Flow visualization results

Table 1 gives velocity characteristics for the flow visualization experiments in the 170
and 138 mm diameter tubes. Reapparatus, a Reynolds number based on cylinder wall
speed Atm and piston diameter D, and defined as

Reapparatus = D(1+2m)/(m+1)A(1/(1+m))/ν,

is held constant throughout the duration of an experiment. If the wall speed is
constant then m = 0 and Reapparatus = UwD/ν as defined in Hughes & Gerrard (1971).

The video sequences in figures 4(a) to 4(e) show the various stages of development
of the vortex in front of the piston for the Reapparatus listed in table 1. The non-
dimensional time t∗ is defined as tν/D2. The physical size of the images in figure
4(a–d) is 40× 40 mm2. Figure 4(e) shows the total cross-section of the toroidal vortex
forming in front of the 138 mm diameter piston and provides an indication of the size
of the vortex being measured in relation to the piston diameter. As noted in Pullin
& Perry (1980) the best description of the centre of the vortex would come from
the peak vorticity strength in the viscous sub-core. Comparisons between the centre
of the spiral dye streakline and the streamline pattern generated from the particle
tracking results (see figure 10 in § 4.2), indicate the path of the vortex core to be
accurately marked with the fluorescent dye.

Figure 4(a–e) shows that the outer shape of the spirals is geometrically similar

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

86
5X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200000865X


Vortex formation in front of a piston moving through a cylinder 7

t* = 7.3¬10–5

2.18¬10–4

3.26¬10–4

4.35¬10–4

t* = 4.3¬10–5

8.7¬10–5

1.31¬10–4

1.74¬10–4

(a) (b)
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ii

iii

iv

Figure 4 (a, b). For caption see page 9.

for the various Reapparatus considered and that the spirals also seem to scale in a
self-similar fashion in time. It does appear however that the internal structure of the
spirals is a function of Reapparatus. The larger Reapparatus the more tightly wound the
spiral appears for a given non-dimensional time. If we assume that the strength of
the vortex core is increasing with Reapparatus and t∗ then, in a qualitative sense, the
number of spiral turns in the core is a function of the strength of the vorticity in
the core. Figure 4(a–e) also shows that as m increases the number of turns on the
spirals is reduced for equivalent Reapparatus and t∗. A similar effect was noted in the
computations of Pullin (1978) for the structure of the vortex sheet formed at a wedge
apex with a power-law starting flow. The computations showed that the vortex sheet
was more loosely wound about the spiral centre as m increased and the proportion
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8 J. J. Allen and M. S. Chong

t* = 5.4¬10–5

1.09¬10–4

1.62¬10–4
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t* = 7.25¬10–5

1.09¬10– 4
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(c) (d)
i

ii

iii

iv

Figure 4. (c, d). For caption see facing page.

of the total circulation on the outer turns increased as m increased. The effect of
reduced turns with increasing m indicates that the vorticity in the inner core becomes
weaker as m increases. One can consider the impulsively started wall case, m = 0,
as being the limiting case for the maximum inner core strength. As m increases the
strength of the initial vorticity shed into the core decreases and results in a more
loosely wound inner structure. The vortex cores universally display an elliptical shape
with the semi-major axis having a slope of approximately 45◦ with respect to the
piston face. It is not until the structure is of the same order in size as the apparatus
length scale, see figure 4(e) at t∗ = 7.71 × 10−4, that there is significant distortion of
the structure from its earlier self-similar shape. One cause of this stretching is the
self-induced effect of the vortex which has become more significant as the radius of
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Vortex formation in front of a piston moving through a cylinder 9

t* = 2.05¬10–4
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Figure 4. Video sequences for various Reapparatus: (a) 3458, (b) 8936, (c) 10213, (d) 8632, (e) 3164.

the ring decreases and the strength of the vortex increases. The images also show that
in all cases the location of the separation point of the boundary layer on the piston,
as defined in figure 3, moves along the piston face and is located almost directly
beneath the vortex core.

Figure 5 shows the trajectory of the vortex core for the cylinder wall velocity
characteristics in table 1. The location of the vortex core is defined as (XΓ , YΓ ) as
shown in figure 3.

In the early stages of vortex development the scaling of the vortex core coordinates
are universal with respect to Reapparatus until XΓ/D and YΓ/D ' 0.1. As the vortex
develops beyond this point there is a trend for the trajectories to diverge and the
rate of growth of the XΓ -coordinate to slow relative to the rate of growth of the
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10 J. J. Allen and M. S. Chong
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8632
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Uw = constant, D =170 mm

Uw = ramped, D =170 mm

Uw = constant, D =138 mm

*
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Reapparatus

YC
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XC /D

Figure 5. Plot of the trajectory of the vortex core for a range of Reapparatus.

YΓ -coordinate. The scatter of the experimental results is relatively low, with an
approximately ±5% spread around a mean result for a given Reapparatus. Plots of
XΓ/D and YΓ/D versus t∗, figures 6(a) and 6(b) respectively, show that initially the
core coordinates grow at an approximately constant rate. As the size of the vortex
approaches the size of the experimental apparatus, XΓ/D, YΓ/D ' 0.1, the growth
rate of the XΓ -coordinate slows appreciably while the YΓ -coordinate growth rate
appears unaffected. For similar Reapparatus the growth rate of the XΓ -coordinate is
slower for the ramped velocity case (Reapparatus = 8632) than the constant velocity
case (Reapparatus = 8963). The YΓ -coordinate also shows a similar trend with the
ramped velocity data, being '10% smaller at the equivalent non-dimensional time.
For Reapparatus = 8632 when t∗ < 10−4 the data for the core location scales according
to a strong power law; however, the growth rate does not continue to show the same
power-law characteristic. Beyond t∗ > 10−4 for Reapparatus = 8632 the growth appears
linear.

If one assumes that the thickness of the boundary layer removed from the cylinder
is similar in thickness to that forming over an impulsively started flat plate then an
estimate of the 99% thickness of the boundary layer δ∗ is 4

√
νt. Figures 6(a) and 6(b)

include plots of δ∗/D = 4
√
νt/D2 and show this length scale to be similar in size to

the experimental measurements for the core when t∗ < 10−4 and 50% to 70% smaller
than the core location when t∗ > 2 × 10−4. Measurements of the distance between
the cylinder wall and the inner turn of the dye spiral, Xentrain in figure 7, indicates
that Xentrain is typically of the order of XΓ/2. Comparison of Xentrain with δ∗ shows
that the former is larger for most of the vortex development, implying that a narrow
alleyway exists for entrainment of quiescent fluid into the vortex. This is illustrated in
figure 7 and entrainment of fluid into the vortex can be seen occurring through the
alleyway between the vortex core and the cylinder wall, see figure 3, and in the vorticity
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Vortex formation in front of a piston moving through a cylinder 11
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(b)
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tm/D2

d = 4(tm)1/2

d = 4(tm)1/2

Figure 6. Plots of the variation of the location of the vortex core ZΓ/D with respect to t∗. For
symbols, see figure 5.

plots, figure 9(b), § 5.2. Measurements of the area of the vortex in Tabaczynski et al.
(1970) and Allen (1997) suggest of the order of 60–90% the material in the vortex is
from the separated boundary layer. As time increases the data shown in figures 6(a)
and 6(b) display a stronger growth rate than t1/2, indicating that the proportion of
entrained inviscid fluid in the vortex increases with time.
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Inviscid fluid

Boundary layer

Piston

Xentrain

d* = 4(mt)1/2

Cylinder
wall

Figure 7. Entrainment alleyway of inviscid material into the vortex.

D A
Symbol (mm) Reapparatus (mm s−(m+1)) m

� 170 3458 21.14 0.00
× 170 8936 53.98 0.02
B 170 8632 24.02 0.69� 170 8601 42.3 0.20◦ 170 7431 39.03 0.12

Table 2. Velocity calibration results for the particle tracking experiments.

4.2. Particle tracking results

Quantitative information regarding the velocity field of the vortex was obtained for the
cylinder velocity characteristics listed in table 2. Figures 9(a) and 9(b) show streamline
patterns and vorticity fields generated for Reapparatus = 8632 and are representative
of the results for Reynolds numbers in table 2. The size of the regions shown in
figure 9 is 42 mm × 42 mm. The streamline patterns appear to grow spatially and
temporally in a self-similar fashion about the vortex core. The vortex appears as
a bubble, growing from the corner junction. The streamlines close to the piston
face, under the vortex core, diverge away from the piston face. The vortex bubbles
show a distinct tail that extends up the cylinder wall. The qualitative features of the
integrated streamline patterns agree well with a time exposure photograph of particle
traces shown in figure 8. The ‘pinch-off’ point of the tail of the vortex bubble is
identified in figure 8.

The streamline patterns in figure 9(a) appear as spirals in the vortex core. This
is thought to be a function of the errors involved with velocity measurements and
the integration of the velocity field to generate streamlines. Streamline patterns in
figure 9(a) show some indication of separation bubbles forming on the piston face.
The local fluid velocity in this region is low relative to that in the vortex, resulting
in a degree of uncertainty about the integrity of results for the streamline pattern on
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Separation point

Pinch-off point

Figure 8. Particle pathline photograph for Reapparatus = 8632, t∗ = 1.71× 10−4.

the piston face. Results of an axisymmetric enclosed cavity simulation of T. Mattner
(1998, personal communication) indicate that a separation bubble forms on the piston
surface in front of the developing vortex but the fluid velocities in the bubble are an
order of magnitude smaller than that of the separated primary vortex.

Plots of the vorticity fields in figure 9(b) for Reapparatus = 8632 show the shape,
distribution and development of the vorticity field in front of the piston. The strength
of the vorticity Ω was normalized with D−2ν. The vorticity is generated on the cylinder
wall and is ejected into the cylinder from the corner junction, the separated vorticity
forming an expanding, rotating and coherent spiral shape. Although somewhat diffuse,
the shape of the vorticity distribution correlates well with the dye streakline. The outer
turn of the vortex is clearly defined from the vorticity distribution but the vorticity in
the inner core is diffuse and no inner spiral structure is evident. An alleyway where
quiescent fluid is entrained can be seen between the cylinder wall and the vortex core.
Figure 9(b) also shows a growing region of secondary vorticity wrapped around the
outside of the primary structure. The secondary vorticity appears to grow at a rate
similar to the amount of vorticity in the primary structure. The secondary vorticity
is generated in order to preserve the no-slip condition on the piston face as the
primary vorticity is being convected into the corner region. Figure 9(b) also shows
fairly uniform development of the boundary layer on the cylinder wall. The vorticity
profile in the boundary layer does not appear to be adversely affected by the vorticity
being shed into the cylinder at the corner junction.

Figure 10(a) shows an image of the dye streakline overlaid on a corresponding
vorticity field. The outer turn of the dye streakline clearly marks the boundary between
the primary vorticity on the separated vortex and the induced secondary vorticity from
the piston face. Figure 10(b) shows the streamline pattern overlaid on the vorticity
field and illustrates that the focus from the streamline pattern is clearly located at the
centre of the vorticity distribution of the primary vortex. The secondary vorticity has
a plume-like distribution and is only indicated by a slight deviation in the streamlines.

Stokes theorem can be used to relate the contour integral of velocity u to the area
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(a) (b)

t* =1.31¬10–4

t* = 2.15¬10–4

Figure 9. Streamline patterns (a) and vorticity contours (b) for Reapparatus = 8632, m = 0.69.

(a)

(b)

Figure 10. Comparison of vorticity field and dye streakline (a) and vorticity field and streamline
pattern (b) for Reapparatus = 8632, t∗ = 1.71× 10−4.
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Piston

ve

ve

Cylinder
wallA

B

C

C

B

A

Figure 11. Diagram showing the presence of primary (−ve) and secondary (+ve) vorticity.

integral of the vorticity Ω via

Γ =

∮
u ds =

∫∫
Ω dx dy. (4.1)

Figure 11 defines three different contours for which circulation data have been
generated from the particle tracking velocity fields. Integration around contour A
corresponds to the amount of vorticity ejected from the boundary layer into the
inviscid fluid, ΓA. Integration around contour B corresponds to the secondary vorticity
on the piston face, ΓB , formed in response to the primary vortex and hence of opposite
sign to the vorticity in the boundary layer and primary vortex. The contour integral
around C corresponds to the total vorticity within image area, ΓC . The path of the
contours of integration around the primary structure were evaluated from the zero-
vorticity level (see figure 12). These contours corresponded well with the path marked
by the outer turn of the dye spiral. There is a degree of uncertainty in completing
contour A from the end of the zero-vorticity curve to the piston surface. However,
this length was typically of the order of 10% of the total length of contour A and the
flow in this region had only a small component of velocity tangent to the contour;
hence contributions to the contour integral A were small and of the order of 2%. The
path of contour B close to the cylinder wall is selected so as to not contain vorticity
from the boundary layer on the cylinder wall.

The contour used for calculating ΓA is shown in figure 12(b) and an example of
the contour used for calculating ΓB is shown in figure 12(c). Figures 13(a) to 13(c)
show the results for the size of the circulation integrals, non-dimensionalized with
ν, plotted against t∗ for the range of Reapparatus listed in table 2. Figures 13(a) and
13(b) show that the primary and secondary vorticity increase at approximately the
same rate. The primary vorticity levels are only fractionally larger than the secondary
vorticity levels. In order to test the sensitivity of the contour in calculating the vortex
strength the integrals were repeated with a 5% variation of the contours. In all cases
these integrations produced smaller results for ΓA and ΓB than those presented in
figure 13(a, b), indicating that the method of finding the contour of zero vorticity
level was successful. The results for the total circulation are shown compared with
Γw = 4.0× 104 ×Uw(t∗), indicated by the solid lines in figure 13(c). Γw represents the
contribution to the circulation loop C from the cylinder wall. The small difference
between the total circulation and the contribution from the cylinder wall indicates
that the vorticity being shed at the corner junction is being matched closely by the
generation of opposite-sign vorticity on the piston face.
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0
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Y/D X/D

(a)

XD2

m
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0.2 0.2
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Y/D X/D

(b)
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0.1

0.2 0.2
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5¬105

–5¬105

0

Y/D X/D

(c)

XD2

m

Figure 12. Vorticity fields with integration contours marked for Reapparatus = 7431, m = 0.12:
(a) t∗ = 1.26× 10−4, (b) t∗ = 1.5× 10−4, (c) t∗ = 2.16× 10−4.
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2000
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0 0.0001 0.0002 0.0003 0.0004

(a)
3458 m = 0.0
8963 m = 0.02
8632 m = 0.69
8601 m = 0.20
7431 m = 0.12

Reapparatus
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2000
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0
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4000

3000

2000

0
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1000

tm/D2

Figure 13. Results for circulation integrals around paths (a) A, (b) B and (c) C .

5. Discussion
5.1. Introduction

The problem of an inclined wall moving over another fixed wall, sometimes referred to
as the scraping corner problem, was analysed by Taylor (1960) and Batchelor (1967).
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Piston Piston

Cylinder
wall ↓

Cylinder
wall ↓

10 mm
(b)(a)

Figure 14. Self-similar streamline solution for flow close to the corner junction compared to an
experimental pathline pattern for Reapparatus = 3458, t∗ = 8× 10−4.

Piston

Cylinder
wall–ve

+ve

X = 0

Figure 15. Analytic solution for the vorticity, Ων/Uw , in the corner region showing the corner
singularity.

In the region of the corner the velocity gradients are large and a discontinuity exists
in the velocity field at the junction of the moving piston and the fixed wall. In this
region viscous forces are much larger than inertial ones. A steady viscous solution for
the stream function ψ in the corner region can be generated from the steady Stokes
equations ∇2(∇2ψ) = 0. Figure 14(a) shows the calculated streamline pattern in the
region of the corner junction from Taylor (1960). An order of magnitude argument
from Batchelor (1967) implies that the distance r from the corner to where the steady
viscous solution is applicable is of the order of r � ν/Uw . Using water and a wall
speed of 21.4 mm s−1, corresponding to the minimum Reynolds number in this study,
i.e. Reapparatus = 3458, gives r � 0.05 mm. However, figure 14(b) shows a photograph
of particle pathlines close to the corner junction from current experimental results.
The scale of the photograph is orders of magnitude larger than the range over which
the two-dimensional analytic solution is applicable. The similarity between the steady
analytic streamline pattern and the instantaneous unsteady experimental pathline
pattern indicate that the range of validity of the viscous solution is significantly
larger than 0.05 mm. The experimental pathline photo clearly shows parallel flow
close to the cylinder wall with pathlines diverging away from the piston face.
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Vortex formation in front of a piston moving through a cylinder 19

The corner flow solution predicts that the shear stresses on the piston become
infinite at the corner. Taylor (1960) resolved this non-physical condition by arguing
that the effect of this force is to lift the piston from the wall and relieve the corner
stresses. The corner flow solution also indicates that an adverse pressure gradient
exists on the piston face, in the direction moving away from the corner junction,
resulting in a flux of vorticity into the flow of opposite sign that generated over
the moving wall. Figure 15 shows a plot of contours of non-dimensional vorticity
from the corner solution of Taylor (1960). The shape of the vorticity distribution
is independent of the wall speed. The sign of the vorticity on the cylinder wall is
opposite to that on the piston face, with the vorticity being singular in the corner.
Figures 9(b) and 12 show similar rapid changes in the vorticity field close to the
corner junction.

The flow inside an enclosed cavity with a moving wall is often used as a simple
analogy for the more complicated family of separated flows past bluff bodies, e.g.
Kim & Moin (1985). However, in these studies little consideration is given to the
transient vortex formation in the moving corner.

Burggraf (1966) computed the steady location of the viscous vortex core in a cavity
with one moving wall up to a Reynolds number, based on the width of the cavity and
the wall speed, of 400. Although no transient behaviour was investigated, the vorticity
distributions in the cell for this Reynolds number indicated a region of separated
primary vorticity in the core and a region of opposite-signed secondary vorticity
on the stationary cavity wall that has similar qualitative features to the vorticity
distribution described in this paper. Burggraf (1966) stated that for Reynolds number
greater than 100 there is a significant inviscid rotational core in the cavity.

A comparison between the inertial and viscous terms of the Navier–Stokes equa-
tions can be made from the experimental data for the velocity field. Evaluation of
u · ∇u, ν∇2u and estimations of ∂u/∂t show that the inertial terms are an order of
magnitude larger than the viscous terms in most of the flow field considered, includ-
ing the region of the separated vortex. The exception is the immediate corner region
where the viscous forces become large. The vortex is not a classical concentrated
sheet of vorticity in an otherwise inviscid fluid, which is often used to describe the
trailing vortex in the wake of an aircraft. However, the relative sizes of the inertial
and viscous terms and the spiral shape in the vorticity distribution indicate that the
separated vortex is an inviscid coherent structure.

Experiments show that separation of the vortex from the piston occurs almost
instantaneously at the corner junction which suggests that the apparatus length scale
is not a relevant variable to describe the early nature of the vortex roll-up. The viscous
corner solution shows that an adverse pressure gradient develops on the piston face.
This may be the reason for the separation of the boundary layer from the piston
after it has negotiated the corner junction. A more physical explanation as to why the
vortex moves away from the piston may be given in terms of the effects of secondary
vorticity. Experimental studies, e.g. Walker et al. (1987), have shown that as a discrete
vortex approaches a surface perpendicular to its direction of motion it induces the
formation of secondary vorticity on the surface.

Numerical studies of Peace & Riley (1983), Tryggvason et al. (1990) and Ersoy &
Walker (1985) examining vortex/surface interactions indicate that induced secondary
vorticity causes the primary vortex to rebound from the surface. The secondary
vorticity in these studies wraps itself around the outside of the rebounding vortex
core, either as a discrete, separated element or as a continuous plume from the
boundary layer on the surface. The results of Peace & Riley (1983) indicated that the
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Piston

Cylinder
wall

Figure 16. Illustration of the self-induced effects of secondary vorticy on the primary vortex.

wall region can act as a sink for the vorticity associated with the primary vortex. In
these studies no apparatus length scale was involved. The relevant length scale is the
distance between the two opposite-signed vortex cores.

In the current experiments, when the cylinder is set in motion a thin layer of highly
concentrated vorticity is generated close to the cylinder surface which diffuses away
from the wall and is convected into the corner junction. In order for the condition of
no slip to be preserved on the piston face, secondary vorticity is generated continually
at the piston face to match the primary vorticity being convected into the corner
region. Experiments show that the secondary vorticity is wrapped around the primary
structure in the form of a plume emanating from the piston face. The secondary
vorticity induces the primary core to move away from the piston face and convect
away from the corner. Figure 16 shows a diagram of the shape of the vorticity
distribution in the corner region and how the opposite-signed distributions induce
advection of the structure away from the corner.

5.2. Experimental analysis

The position of the vortex core and the vortex strength may be defined in terms of the
following functional relationships: ZΓ = ZΓ (A, t, ν, D : m), ΓA = ΓA(A, t, ν, D : m) and
ΓB = ΓB(A, t, ν, D : m) where ZΓ represents the position of the vortex core XΓ + iYΓ .
ΓA is the amount of primary vorticity on the separated structure and ΓB is the amount
of induced secondary vorticity. Applying dimensional analysis these relationships can
be expressed as

ZΓ√
νt

= ωΓ

(
A2t2m+1

(2m+ 1)ν
,

√
tν

D

)
, (5.1)

ΓA

ν
= λA

(
A2t2m+1

(2m+ 1)ν
,

√
tν

D

)
, (5.2)

ΓB

ν
= λB

(
A2t2m+1

(2m+ 1)ν
,

√
tν

D

)
. (5.3)

If the amount of vorticity impinging on the piston in time t is estimated as 1
2

∫ t
0
U2
w(τ) dτ

then the non-dimensional group A2t2m+1/((2m + 1)ν) is a Reynolds number, ReΓ ,
proportional to the amount of circulation impinging on the corner junction. This is
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the logical choice of Reynolds number, in preference to Revortex, as it has a physical
meaning. If during the early stages of roll-up the apparatus length scale is not a
relevant variable then the structure scales in a self-similar fashion and (5.1), (5.2) and
(5.3) can be expressed as

ZΓ/
√
νt = ωΓ (ReΓ ), (5.4)

ΓA/ν = λA(ReΓ ), (5.5)

ΓB/ν = λB(ReΓ ). (5.6)

The study of self-similar vortical flows both experimentally and analytically has been
extensive. A derivation of the similarity scaling for a semi-infinite vortex sheet in an
otherwise inviscid flow field is contained in Saffman (1978), derived by considering
the vortex roll-up to be independent of viscosity. As no external length scale was
present, dimensional analysis was used to determine the scaling rate of the structure.
In the current study there is no apparent external potential flow in which the vortex
is embeddedd and as a result no obvious scaling law exists for the corner vortex
at high Reynolds numbers. Departures from the non-dimensional self-similar scaling
laws in the generation of vortex rings, e.g. Didden (1979), and rectilinear vortices, e.g.
Auerbach (1987), have been attributed to a range of factors including the effect of
an external length scale, the presence of secondary vorticity, finite Reynolds number
effects and viscosity.

An alternative hypothesis evaluated with the present experimental data is that
the vortex core trajectory is not affected by viscosity. If this were the case then the
location of the core would be expected to be dependent on the apparatus length scale,
wall speed and time, and if this were the case then the trajectory of the vortex core
could be expressed non-dimensionally as ZΓ/D = σΓ (Lw/D).

5.3. Flow visualization results

Figures 17(a) and 17(b) show data sets for XΓ/
√
νt and YΓ/

√
νt plotted against

ReΓ to test for a functional relationship between ZΓ and ReΓ . In general the data
appear to scale universally for a period before diverging. The XΓ data depart from
the universal curve in a different fashion to the YΓ data. The XΓ data show a peel-off
and decline in growth rate as XΓ approaches 25% of the size of the piston. There
does not appear to be a significant difference between the ramped velocity cases and
the constant velocity cases. The YΓ data appear to follow a fairly constant power-law
growth throughout the experiment, after an initially flat section when ReΓ < 1000.
The curves for YΓ appear to be weakly offset as a function of m. The measurement
error in calculating the non-dimensional groups ZΓ/

√
νt and ReΓ is ±2%.

Figure 17(b) shows that when the YΓ -coordinate is small the growth rate of the
vortex appears to be slower than in the region of collapse when ReΓ > 1000. In
the early stages of vortex development it could be argued that the position of the
vortex core is a function of viscosity and time alone and hence scales as

√
νt. There

is weak agreement of this relation with experimental results for the YΓ -coordinate
when ReΓ < 1000. The XΓ -coordinate does not show this trend at low ReΓ . For
ReΓ > 1000 there appears to be a region of weak universal dependence of YΓ/

√
νt

and XΓ/
√
νt on ReΓ . Curves of the form

ZΓ/
√
νt = ωΓ Re

q−1/2
Γ (5.7)

are shown fitted to the experimental data in figures 17(a) and 17(b); ωΓ = ξΓ + iηΓ
represents the non-dimensional core location. It can be seen that there is some
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*

Figure 17. Plots of the variation of the location of the vortex core ZΓ/(νt)
1/2 with respect to ReΓ .

flexibility in fitting a curve to data with such a spread and this presents a difficulty
in determining a scaling rate. In general the power laws of best fit for intermediate
Reynolds numbers have q ' 0.86.

Power laws of the form Re
1/4
Γ are also shown fitted to the experimental data in figure
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Figure 18. Plots of the location of the vortex core ZΓ scaled with respect to (a) t0.85 and (b) t3/4.

17(a, b). This corresponds to the vortex structure scaling as tm/2+3/4 and is the scaling
predicted by a model where the distributed vortex is replaced by an isolated point
vortex, as described in Allen (1997). This model indicates that the non-dimensional
core location ωΓ is a function of m. This scaling rate is the same as that predicted
by Tabaczynski et al. (1970) derived from considerations of the area of the boundary
layer detached from the cylinder wall. The difference between the power laws using
q = 0.85 and q = 3/4 is significant. The models of Allen (1997) and Tabaczynski
et al. (1970) do not take the effect of secondary vorticity on the piston face into
account. The action of the secondary vorticity is to induce the primary structure to
move away from the corner junction at a rate faster than q = 3/4. Figures 18(a) and
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Figure 19. Plots of the XΓ -coordinate of the vortex core forming in front of the piston.

18(b) show the location of the vortex core scaled with Re0.35
Γ and Re

1/4
Γ respectively

for the constant velocity data sets. This scaling corresponds to the core scaling as t0.85

and t3/4. The data shown are in the region where it appears that similarity applies,
ZΓ/D < 0.1 and ZΓ > 2

√
νt. The collapse of data appears reasonable for both cases.

However, the variation of data about the mean is an order of magnitude larger for the
t3/4 scaling than the t0.85 scaling, which also can be inferred from the plots in figure
17(a, b). For q = 0.85 the mean non-dimensional core location is (0.275, 0.282) and
for q = 3/4 it is (0.634, 0.65). Examination of the later stages of vortex development
in figure 17(a) shows that XΓ/

√
νt diverges from the universal curve. The suggested

reason for the slowing of the growth rate of the XΓ -coordinate is that the external
length scale, the piston diameter, is now affecting the trajectory of the vortex core
and the vortex is experiencing a significant self-induced effect.

These plots show that the data sets for the different wall speeds peel-off from the
universal curve at different ReΓ . Generally, the larger Reapparatus is, the larger is the
ReΓ where the peel-off occurs. There appears to be an approximately linear relation
between ReΓ and Reapparatus for which peel-off occurs which can be expressed in the
form Lw/D ' 1.5. In other words when the cylinder wall has moved 1.5×D the vortex
is experiencing considerable self-induced effects.

In order to test the alternative hypothesis that ZΓ scales as D and t we need to
determine if ZΓ/D is a function of Lw/D. From figure 19(a) it is evident that the
XΓ/D versus Lw/D data diverges. For Reapparatus = 1965 and 8936, corresponding to
the slowest and fastest wall speeds respectively, and at XΓ/D = 0.1, figure 19(a) shows
that the wall has moved about 50% further for the fastest wall speed. The spread of
data in figure 19(a) does not appear to be function of the wall speed.

The spread data of data in figure 19(b) is of the order ±7% about the mean and
this spread is fairly constant with respect to ReΓ . These data do not show separation
from the universal curve. This may be attributed to the fact that those selected are for
XΓ/D < 0.1 and hence our assertion that the structure should scale in a self-similar
fashion while the size of the structure is an order of magnitude smaller than the
apparatus length scale appears reasonable.

Figures 20(a) and 20(b) show plots of the experimental data for ZΓ/D versus Lw/D
for values of Lw/D up to 3. The plots show a continuing divergence of data as the
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Figure 20. Combined plots of the location of the vortex core ZΓ/D plotted against Lw/D.

vortex increases in size and there exists no region of uniform scaling of the form
ZΓ/D = σΓ (Lw/D).

5.4. Vortex strength results

Figures 21(a) and 21(b) for |ΓA|/ν and |ΓB |/ν plotted with respect to ReΓ show that
the amount of primary and secondary vorticity scales universally as a linear function
of ReΓ . Curves of the form

|ΓA|
ν

= 0.011 ReΓ and
|ΓB |
ν

= 0.088 ReΓ (5.8)

are shown fitted to the data in figure 21(a, b). If the flux of vorticity from the corner
junction into the fluid is approximated by the vorticity flux into the control volume
through the boundary layer then

dΓslug
dt

=

∫ δ∗

0

Ω · u dr (5.9)

where dΓslug/dt is the rate of increase of circulation of the vortex and δ∗ is the 99%
thickness of the boundary layer. Using Ω ' ∂u/∂r (5.9) reduces to

Γslug

ν
= 1

2
ReΓ . (5.10)

This is often referred to as the ‘slug’ model from Maxworthy (1977) and commonly
used to estimate the strength of a vortex ring formed by ejecting a slug of fluid from
a cylinder in front of a piston moving with a velocity Atm. If we compare this to
the experimental results for ΓA it can be seen that, although the model predicts a
linear scaling of the vortex strength, the total strength of the separated vortex is of
the order of 25% of that predicted by the model. A possible cause for the difference
between the model and the experimental results is the annihilation of primary and
secondary vorticity. Taylor’s corner flow solution suggests that the distance between
regions of intense opposite-signed vorticity is small in the corner region and hence
viscous diffusion could be acting a short distance away from the corner to diminish
this vorticity flux.
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Figure 21. Primary ΓA and secondary ΓB vorticity development versus ReΓ .

6. Conclusions
A set of experiments was undertaken to measure the trajectory of the vortex core

and the strength of the vortex that formed in front of a circular piston for a range
of velocity characteristics. As the size of the vortex increases it is suggested that a
universal scaling law exists to describe the size and strength of the vortex that is
independent of the apparatus length scale and dependent only on the wall velocity
and viscosity. This scaling applies while the structure is still small with respect to
external length scales and is expressed as

ZΓ/
√
νt = ωΓ (m)Re0.35

Γ , |ΓA|/ν = 0.11ReΓ , |ΓB |/ν = 0.088ReΓ . (6.1)

The model of Allen (1997) and Tabaczynski et al. (1970) suggests that the size of

the vortex should scale at the slower rate of Re
1/4
Γ compared to Re0.35

Γ . Apart from
the fact that these scaling predictions have been developed from considerations of
planar rather than cylindrical geometry, other reasons for the data not following
the suggested scaling law are (i) the self-induced effects of the vortex ring and (ii)
the effect of secondary vorticity production on the piston face. As the diameter of
the ring decreases there is an enhanced self-induced velocity resulting in the rate
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of growth in the axial direction being larger than predicted by similarity theory.
This type of self-induced effect has been observed in experimental studies, e.g. Didden
(1979), and in computations, e.g. Nitsche (1996). The secondary vorticity on the piston
face will also have the effect of causing the structure to scale faster than predicted.
This secondary vorticity causes the primary ring to separate and convect away from
the piston surface. Measurements of the vorticity distribution in front of the piston
indicate that the vortex is a coherent inviscid spiral structure for the range of Reapparatus
considered. Viscous effects are limited to the immediate corner junction. The fact that
secondary vorticity is generated which is similar in strength to the primary structure
results in only a weak net increase in the circulation in the corner region, despite the
continual convection of vorticity from the boundary layer on the cylinder wall. The
circulation of the separated structure appears to scale linearly with respect to ReΓ .
This is the same as a model of the flow that equates the vorticity flux into the control
volume with the increase of circulation on the separated eddy. However, the amount
of vorticity on the separated vortex is ' 25% of that predicted by this ‘slug’ model
and the suggested reason for the difference is that diffusion is acting in the immediate
corner region to reduce the strength of the primary and secondary vortex.

This work was funded through the Australian Research Council and their support
is gratefully acknowledged. The authors would like to thank Dr T. B. Nickels for
writing the cross-correlation section of the particle tracking code.
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