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This paper considers adaptive maximum likelihood estimation of reduced rank vec-
tor error correction models+ It is shown that such models can be asymptotically
efficiently estimated even in the absence of knowledge of the shape of the density
function of the innovation sequence, provided that this density is symmetric+ The
construction of the estimator, involving the nonparametric kernel estimation of the
unknown density using the residuals of a consistent preliminary estimator, is de-
scribed, and its asymptotic distribution is derived+Asymptotic efficiency gains over
the Gaussian pseudo–maximum likelihood estimator are evaluated for elliptically
symmetric innovations+

1. INTRODUCTION

Contemporary empirical researchers in macroeconomics and finance make con-
siderable use of error correction representations in the modeling of cointegrated
systems+ Such representations are always possible (Engle and Granger, 1987)
and derive their name from the fact that the deviations of a system from its co-
integrating relationships are explicitly modeled as impacting upon subsequent
short-run dynamics+ An error correction representation can be derived from a
vector autoregression (VAR) by taking first differences+ The fact that the system
is cointegrated implies that among the regressors in the differenced VAR will be
a term in the lagged levels of the variables, with an accompanying coefficient
matrix that has reduced rank equal to the number of cointegrating relationships+

A natural approach to estimating such a model is reduced rank regression+ For
the case of stationary VAR’s, reduced rank regression estimators have been an-
alyzed by Ahn and Reinsel (1988) and Velu, Reinsel, and Wichern (1986)+ In the
nonstationary case, the reduced rank structure implies an error correction repre-
sentation because the reduced rank matrix can be decomposed into a matrix of
cointegrating vectors and a matrix of error correction coefficients, or factor load-
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ings, characterizing the effects of the deviations from the cointegrating relation-
ships on the transitory dynamics of the system+ The estimation of cointegrated
systems by reduced rank regression has been analyzed by Johansen (1988, 1991)
and Ahn and Reinsel (1990)+ These authors derived maximum likelihood estima-
tors (MLE’s) of the model assuming Gaussian innovations to the underlying
VAR+ The Gaussian reduced rank MLE has been widely employed in empirical
cointegration analysis+ For example, Johansen (1992), Johansen and Juselius
(1990), and Friedman and Kuttner (1992) estimated monetary models, Johansen
and Juselius (1992) estimated exchange rate models, Kunst and Neusser (1990)
estimated real business cycle models, and Kasa (1992) estimated models of stock
prices and dividends+

If the assumption of Gaussianity is correct, then the estimators of Johansen
(1988) and Ahn and Reinsel (1990) are asymptotically efficient and should have
performance superior to that of alternatives such as the least-squares estimator of
Engle and Granger (1987)+ Indeed,Ahn and Reinsel (1990) reported a simulation
study comparing their estimator of the cointegrating parameter in a Gaussian
bivariate model with ordinary least squares (OLS)+ They found a large improve-
ment in mean squared error for all sample sizes considered (50 through 400)
when the efficient MLE is used+ An extensive and general analysis of efficient
estimation of cointegrated models in the Gaussian case has been provided by
Phillips (1991)+

Although the MLE’s discussed previously are asymptotically efficient when
the innovations are Gaussian, they are inefficient when the innovations are non-
Gaussian+ In the latter case, the efficient MLE will take a different form+As Ahn
and Reinsel’s (1990) simulations show, it matters in the estimation of cointegrat-
ing vectors whether or not an efficient estimator is used+ Some of the applied
studies cited earlier (Johansen and Juselius, 1990, 1992; Kasa, 1992) test and
reject the Gaussianity hypothesis for estimated residuals+ The rejections are due
primarily to excess kurtosis+ This result is not surprising, given that many eco-
nomic time series, especially speculative prices, are well documented to be driven
by leptokurtic processes (see, e+g+,Mandelbrot, 1963; Fama, 1963, 1965;Mittnik
and Rachev, 1993; McGuirk, Robertson, and Spanos, 1993)+ That Gaussian re-
duced rank estimators can give poor estimates when using thick-tailed data has
been demonstrated by Phillips (1993) and Phillips, McFarland, and McMahon
(1996) in the context of empirical exchange rate models+

In problems for which a Gaussian MLE is inappropriate, adaptive estimation,
which can be employed when the underlying density function of the data-generating
process is of unknown shape, provides a highly attractive alternative+An adaptive
estimator shares the asymptotic optimality properties of the MLE, differing from
the latter in that a nonparametric estimator of the score function of the log likeli-
hood replaces the analytic expression that would be used if the density were known+
An adaptive estimator can be viewed as an MLE when the shape of the likelihood
is unknown+A simulation study by McDonald and White (1993) found that adap-
tive estimators compare quite favorably with OLS, least absolute deviations (LAD),
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generalized method of moments (GMM), andM-estimators in the estimation of a
(noncointegrating) non-Gaussian linear regression model+Further evidence on the
finite-sample behavior of adaptive estimators in stationary models was provided
by Hsieh and Manski (1987) and Steigerwald (1992)+

There is a growing literature addressing the problem of robust and efficient
estimation in non-Gaussian cointegrated models+ Phillips (1995) developed ro-
bust LAD andM-estimators for triangular models, and adaptive estimators in
triangular models were derived by Jeganathan (1995, 1997) and Hodgson (in
press)+ Simulation and empirical results obtained by Hodgson (1995, in press)
illustrate the good finite-sample properties of the adaptive estimators and of the
estimator developed in the present paper+

We analyze adaptive estimation of reduced rank regression in cointegrated
error correction models+We extend the work of Jeganathan (1995) and Hodgson
(in press), who analyzed the adaptive estimation of linear cointegrating regres-
sions+ In Section 2, the model and notation are introduced+ In Section 3, we show
that this model falls within the locally asymptotically normal (LAN) and locally
asymptotically mixed normal (LAMN) family of models, with the component of
the model associated with short-run dynamics being LAN and the component
associated with long-run dynamics being LAMN+ In Section 4,we define exactly
what we mean by the termefficient estimatorand describe the optimality prop-
erties of these estimators in LAN0LAMN models+We first show how to compute
efficient estimators when the density function of the innovations is known, and
then we show how to construct estimators that are asymptotically equivalent to
efficient estimators, thus sharing their optimality properties, but that do not re-
quire knowledge of the shape of the density of the innovations+ These estimators,
termedadaptive, use nonparametric density estimators to consistently estimate
the score and information of the log-likelihood function+We derive the asymp-
totic distribution of an adaptive estimator and, for the special case of elliptically
symmetric innovation densities, evaluate its efficiency gains over the Gaussian
pseudo-MLE+ Section 5 discusses possible extensions of this research+ The Ap-
pendix contains proofs of all lemmas and theorems+

The following notation is used throughout the paper+ The termIs denotes the
identity matrix of dimensions, 6x6 the euclidean norm of the vectorx, I ~{! the
indicator function, N~x,V! the distribution of a random variable that is normal
with mean vectorx and covariance matrixV, andMN~x,V! a mixed normal dis-
tribution, i+e+, one in which the covariance matrixV is random+ The vectorization
operator vec~X! stacks the transposed rows of the matrixX, and the inequalities
X . Y andX $ Y, when applied to matrices, signify that the differenceX 2 Y is
positive definite and positive semidefinite, respectively+We simplify notation by
writing *0

1 Z in place of*0
1 Z~r !dr whenZ~r ! is a Brownian motion process de-

fined on the interval [0,1]+ The expressionL~X6P! denotes the distribution (or
law) of X with respect to the probability measureP+WhenP is the distribution of
X itself, L~X6P! is abbreviated toL~X!+ The weak convergence of probability
measures is denoted by the symboln+

46 DOUGLAS J. HODGSON

https://doi.org/10.1017/S0266466698141026 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698141026


2. THE MODEL AND NOTATION

We assume that theq-dimensional stochastic processXt is observed for allt 5
1, + + + ,n+ Considered individually, each of theq series is integrated of order one,
but we shall assume that there existr cointegrating relationships among the vari-
ables, with 1 # r , q, and thatr is known+ We also assume that the data-
generating process forXt can be characterized by the following VAR, of known
orderk:

Xt 5 p0 1 P1Xt21 1 {{{ 1 PkXt2k 1 «t , (1)

wherep0 is a q 3 1 intercept vector+ In addition, we assume that initial obser-
vations X12k, + + + ,X0 are available+ The implications for the lag polynomial
P~z! 5 I 2 (j51

k Pj z
j of our assumption thatr cointegrating vectors exist are

that det$P~z!% 5 0 hasq 2 r roots on the unit circle andr roots outside the unit
circle+

So far, our model is identical to the models of Johansen (1988) and Ahn and
Reinsel (1990)+Where we differ from these authors is in our assumptions regard-
ing the distribution of the independent and identically distributed (i+i+d+) innova-
tion process$et%+ Whereas they assumed that this distribution is Gaussian, we
allow it to belong to a much broader class and to be unknown to the investigator+
This class is restricted by assuming that the true distribution has a Lebesgue
density function, p~«!, which is absolutely continuous with respect to Lebesgue
measure and symmetric about the origin in the sense thatp~«! 5 p~2«!, and
which satisfies the moment condition cov~«! 5 S« ,`+ The symmetry assump-
tion is important for our purposes because it implies that theq-vector of partial
derivatives (which we assume to exist for every«! is antisymmetric, i+e+, that
]p~«!0]« 5 2]p~2«!0]«+Consequently, theq-dimensional (negative of the) score
function ofp~«!, which we denote byc~«! 5 ~]p~«!0]«!0p~«!, is also antisym-
metric in«+ This latter property facilitates our derivation of an adaptive estimator
because it allows us to apply a result of Jeganathan (1988) in showing that the
sample score function of the model can be consistently estimated through the use
of a nonparametric kernel estimator ofc~«!+ Finally, we assume that the infor-
mation matrix ofp~«!, V [ * c~«!c~«!'p~«!d«, is finite and positive definite+1

Note that in the special case wherep~«! is Gaussian,V 5 S«
21+ If Gaussianity does

not hold, thenV . S«
21+

As noted in the Introduction, first differencing the VAR given in (1) yields the
following error correction representation:

DXt 5 p0 1 ABXt21 1 (
j51

k21

Fj DXt2j 1 «t , (2)

where theq 3 r matrixA is a matrix of error correction coefficients and the rows
of ther 3 q matrixB are cointegrating vectors+We also assume thatp0 5 2AB1,
whereB1 is ther-vector of intercepts in the cointegrating vectors (see (3))+ Be-
cause the VAR intercept vectorp0 belongs to the subspace spanned by the col-
umns ofA, we do not allow for the presence of linear time trends in the data$Xt%+
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Thus, our model belongs to the class denoted asH1
*~r ! in Johansen’s (1994)

discussion of cointegrated models with deterministic components+ This model is
analyzed by Johansen (1988) and Ahn and Reinsel (1990) under the Gaussianity
assumption+

As the model stands, A andB are unidentified+ In what follows, we only con-
sider the estimation of an identified model+ Following Ahn and Reinsel (1990),
this is achieved by partitioning the variables inXt asXt 5 @X1t

' ,X2t
' # ', with X1t

havingr elements andX2t havingq 2 r elements, such that the subsystemX2t

containsq 2 r unit roots, and by writingB 5 @Ir ,2B0#, whereB0 has dimensions
r 3 ~q 2 r !+ The r ~q 2 r ! elements ofB0 are the long-run coefficients in this
model+2 We can then rewrite (2) as

DXt 5 A@X1, t21 2 B1 2 B0X2, t21# 1 FYt21 1 «t , (3)

whereF 5 @F1, + + + ,Fk21# andYt21 5 @DXt21
' , + + + ,DXt2k11

' # '+
It is clear from equation (3) why the representation is termed an error correc-

tion model+ The bracketed expression is anr-vector of transitory fluctuations of
the system about its cointegrating relationships, andAdetermines the reactions of
the system to these fluctuations+ The system’s remaining transitory dynamics are
characterized byF, the matrix of coefficients on lagged first differences,which is
treated as a nuisance parameter in most applications+ Our primary objective is to
efficiently estimateA, B1, andB0, adapting for the unknown densityp~«!+ How-
ever, we would also like to adapt for the unknown nuisance parameterF+ It will
be shown subsequently that this can be done forB1 andB0 but not forA+ In fact,
we will show thatB1 andB0 can be efficiently estimated by adapting for unknown
p~«!, F, and A+ In other words, if our interest is confined to estimating the sys-
tem’s long-run dynamics, we can do as well, asymptotically, not knowing its
short-run dynamics as we can knowing them+ Conversely, we can estimate the
short-run dynamics as well not knowing the long-run dynamics as we can know-
ing them+ However, we can always improve our estimates of certain short-run
components, even asymptotically, if other short-run components are known, vis-
à-vis the case where the latter are unknown+

The development of the asymptotic theory in subsequent sections will be
facilitated by the arrangement of all of the model’s unknown parameters into a
single vector+ To this end, we definea 5 vec~A!, w 5 vec~F!, andb 5 vec~B0!,
of dimensionsqr, q2~k 2 1!, andr ~q 2 r !, respectively+ The respective param-
eter vectors are gathered into them-dimensional full parameter vector, u 5
@a ',w',B1

' ,b '# ' 5 @h ',B1
' ,b '# ', where h [ ~a ',w'!', m 5 r 1 2qr 2 r 2 1

q2~k 2 1!, andu belongs to the parameter spaceQ, which is taken to be all of
Rm (excepting points at which eitherA or B' is not of full column rank)+ De-
fining s 5 qr 1 q 2~k 2 1! as the total number of parameters in the stationary
component of the model (i+e+, the dimension ofh! allows us to define the
m 3 m scaling matrixdn 5 diag@n2102Is,n2102Ir ,n21Im2s2r#+We can then write
the local representation of the full parameter vectoru asun 5 u 1 dnhn, where
$hn% is a sequence of boundedm-vectors+ Note thatun converges tou but does
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so at different rates in different directions of the parameter space+ In directions
associated with transitory dynamics and with the cointegrating intercepts, the
rate of convergence is!n, whereas in those associated with the cointegrating
slope parameters, the rate isn+

In the remainder of the paper, we shall denote byPu,n the distribution of the
sample of sizen with parameteru+ All convergence statements, unless otherwise
noted, should be read as occurring underPu,n+

3. LOCAL ASYMPTOTIC (MIXED) NORMALITY

In this section, we analyze the asymptotic behavior of the log-likelihood ratio,

Ln~un,u! 5 log~dPun,n0dPu,n!+

We find that the behavior ofLn~un,u! is such that our model falls within the
LAN0LAMN family , which is important because a theory of optimal estimation
applies to such models+ In Section 4, optimal estimators for this family are char-
acterized+

We establish in Theorem 3+2 that the component of the model associated with
the parameters describing the long-run relationships in the model (i+e+, the co-
integrating coefficientsB1 and B0! belongs to the LAMN family and that the
component associated with parameters describing short-run dynamics (i+e+,Aand
F! belongs to the LAN family+We show that these two components are asymp-
totically independent, allowing separate adaptive estimation of the coefficients
associated with long-run and short-run dynamics, respectively, but not allowing
adaptive estimation of the error correction coefficients~A! separately from other
parameters characterizing short-run dynamics~F!+

To obtain our asymptotic results regardingLn~un,u!, we couch our model in
terms of the framework of a general nonlinear model, as described by Jeganathan
(1995, equation (37))+We assume that the initial observationsuX0 5 ~X12k, + + + ,X0!
have a density (with respect to as-finite measure) denoted byf0~ uX0,u! that has
the property thatf0~ uX0,un! 2 f0~ uX0,u! 5 op~1! whenun r u+ We define uXt 5
~ uX0,X1, + + + ,Xt! and denote byFt thes-field generated byuXt +We can then write
our model as

Xt 5 gt ~ uXt21,u! 1 «t ,

where«t is as in equation (2) and, also using (2), we have

gt ~ uXt21,u! 5 Xt21 2 AB1 1 ABXt21 1 (
j51

k21

Fj DXt2j

5 Xt21 2 AB1 1 ABXt21 1 FYt21+

The following result is derived within the preceding nonlinear framework and is
useful in our subsequent development of the LAN0LAMN theory+

LEMMA 3 +1+ Defining dt~un,u! 5 gt~ uXt21,un! 2 gt~ uXt21,u!, we have

dt ~un,u!' 5 hn
' dnHt21~u! 2~n2302X2, t21

' bn
' an
' 1 n21b1n

' an
' !, (4)
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where Ht21~u! 5 @~Iq J Vt21! ',~Iq J Yt21! ',2A,~2A' J X2, t21! '# ', Vt21 5
X1, t21 2 B1 2 B0X2, t21, and $an%, $b1n%, and $bn% are bounded sequences of
matrices of dimensions q3 r, r 3 1, and r 3 ~q 2 r !, respectively+

Remark+ The q-vectordt~un,u! plays an important role in the theory devel-
oped later+ Its first component is particularly important because it enters into our
expressions for the (scaled) score function and information matrix of the sample+
We write the sample score function, scaled bydn, as

Wn~u! 5 2(
t51

n

dnHt21~u!c~«t !, (5)

and the sample information, pre- and postmultiplied bydn, as

Sn~u! 5 (
t51

n

dnHt21~u!VHt21~u!'dn+ (6)

Note that in these expressions for the sample score vector and information ma-
trix3 appear the quantitiesc~«! andV, which are, respectively, the (negative of
the) score and the information of the innovation densityp~«!+ The basic problem
addressed in this paper is the fact that we assume thatp~«!, and consequently also
c~«! andV, are unknown to the investigator+ In Section 4, we show how this
problem can be addressed through the estimation ofc~«! andV using nonpara-
metric density estimates+

The following theorem, proved in the Appendix, is the central result of this
section+

THEOREM 3+2+ The likelihood ratiosLn~un,u! have the following asymptotic
quadratic approximation for every bounded sequence of m-vectors$hn%:

Ln~un,u! 5 hn
'Wn~u! 2 ~ 1

2
_!hn

'Sn~u!hn 1 op~1!+ (7)

Furthermore, we have the following weak convergence result:

L~Wn~u!,Sn~u!6Pu,n! n L~MN~0,S~u!!,S~u!!, (8)

where

S~u! 5 3
V J E @Mt Mt

'# 0 0

0 A'VA A'VA J OZ2
'

0 A'VA J OZ2 A'VA J E
0

1

Z2Z2
' 4, (9)

Mt21 5 @Vt21
' ,Yt21

' # ', Z2 is a Brownian motion process with covariance matrix
lr cov~DX2t! 5 E @DX2t DX2t

' # 1 (j51
` E @DX2t DX2, t1j

' # 1 (j51
` E @DX2t DX2, t1j

' # ',
and OZ2 5 *0

1 Z2+

Remarks+ (a) Equations (7) and (8) together imply that our model belongs to
the LAMN family, as defined, for example, by LeCam and Yang (1990) and
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Jeganathan (1995), the latter of whom showed, in a result similar to ours, that
triangular cointegrated models belong to the LAMN family+ The LAN family is a
special case of the LAMN in which the matrixS~u! is nonrandom+ We can see
from (9) that, for our model, S~u! is block diagonal between components that are,
respectively, nonrandom and random+ It follows that we can decompose the qua-
dratic on the right-hand side of (7) into the sum of two asymptotically indepen-
dent quadratic functions,one of which has an asymptoticallynonrandomquadratic
term and represents the asymptotic approximation of the likelihood ratios of a
model belonging to the LAN family, and the other of which has an asymptotically
randomquadratic term and represents the asymptotic approximation of the like-
lihood ratios of a model belonging to the LAMN family+ The first component
corresponds to the parametersh of the transitory dynamics of the model, while
the second corresponds to the parameters~B1

' ,b '!' of the cointegrating relation-
ships+

The block diagonality of our asymptotic information matrixS~u! implies that
short-run and long-run dynamics are asymptotically independent of one another,
so that in the analysis of one component the other can be treated as known+ Of
particular importance is the fact that we can estimate the cointegrating param-
eters as efficiently when treating the remaining parameters as unknown nuisance
parameters as we could if the latter were known+ The information matrix is not,
however, block diagonal between the components associated with the cointegrat-
ing slope and intercept parameters, implying that we can estimate the slopes more
efficiently if we know the intercepts than if we do not+

(b) One important consequence of this theorem is that the sequences of prob-
ability measures$Pu,n% and$Pun,n% are contiguous and therefore have the property
that a sequence of statistics$Tn% isop~1! in Pun,n if and only if it isop~1! in Pu,n (see
LeCam and Yang, 1990, p+ 20)+ This fact is used subsequently because statistics
will be computed using residuals«~un! from a consistently estimated model in
lieu of the true innovations«~u! and the fact that the latter statistics areop~1! in
Pu,n will be used to show that the former areop~1! in Pun,n+

4. EFFICIENT AND ADAPTIVE ESTIMATION

In this section, we are concerned with the efficient estimation of our model+ The
results of the preceding section are important in this regard because they permit
us to draw upon the theory of efficient estimation that has been developed for
LAN0LAMN models+We begin by formally defining the notion of an efficient
estimator for our model and then briefly discuss the optimality properties of such
an estimator+ We then show how to compute an efficient estimator of the full
parameter vectoru when the innovation densityp~«! is known to the investigator+
Finally,we consider adaptive estimation, deriving efficient estimators even when
the innovation density is unknown+

We begin with the following definition+
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DEFINITION 4+1+ If the model is LAMN or LAN atu, we call a sequence$ Zun%
of estimatorsefficient if

dn
21~ Zun 2 u! 2 Sn

21~u!Wn~u! 5 op~1!, (10)

where Wn~u! and Sn~u! are defined in~5! and~6!+

Remark+ We can see from this definition that an efficient estimator for our
model will have an asymptotic mixed normal distribution when appropriately
scaled and centered+ Furthermore, the asymptotic covariance matrix is the in-
verse of the Fisher information, so that an efficient estimator has the same as-
ymptotic distribution as the MLE and thus shares the latter’s optimality properties+
Efficient estimators are optimal according to the locally asymptotically minimax
(LAM) criterion, which means that for any symmetric, bowl-shaped loss func-
tion and for anyu [ Q, they achieve a lower bound for the limit inferior of the
supremum of the risk over a ball aroundu whose radius converges to zero asnr

` (for a discussion, see, e+g+,Ghosh, 1985, pp+ 318–320)+ These estimators were
termedasymptotically centeringby Jeganathan (1995)+

The computation of efficient estimators through a one-step iteration in the
LAN case was analyzed by LeCam (1960), and the extension of the method to
LAMN models was described by Jeganathan (1995)+ We begin with some se-
quence of preliminary estimators$un

*% with the property that

dn
21~un

* 2 u! 5 Op~1!+

From a practical standpoint, there are several possible ways to obtain such esti-
mators+We may, for example, employ the Gaussian maximum likelihood estima-
tor ofAhn and Reinsel (1990)+Asimpler alternative would be to compute estimates
~B1n
* ,B0n

* ! through an OLS regression ofX1t onX2t and a constant vector, substi-
tute these estimates into the right-hand side of (3), and then use OLS in (3) to
compute~An

* ,Fn
* !+

We defineun
**, thediscretizedversion ofun

*, as follows (cf+ LeCam and Yang,
1990; Jeganathan, 1995, 1996)+

DEFINITION 4+2+ Partition the space Rm into cubes Ci , i $ 1, of sides of
length unity, and let Cni 5 dnCi 5 $dnu : u [ Ci %+ If un

*[ Q ù Cni , takeun
**5 tni ,

where tni is some fixed point inQ ù Cni , which will necessarily be nonempty
becauseun

* [ Q+

Remark+ Theun
** constructed in this way preserve the properties ofun

* in the
sense thatun

** [ Q anddn
21~un

** 2 u! 5 Op~1! for everyu [ Q+ The “trick” of
using a discretized preliminary estimator is due to LeCam (1960) and allows us to
prove that iterative estimators are efficient under quite general conditions+

The following lemma gives an expression for an efficient one-step iterative
estimator computed using a discretized preliminary estimator+

LEMMA 4 +3+ Suppose thatun
** is a dn

21-consistent, discretized preliminary
estimator, as defined earlier+Define ZSn as any consistent estimator of Sn~u!+ Then
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Zun as defined in equation~11! is an efficient estimator:

Zun 5 un
** 1 dn ZSn

21Wn~un
**!+ (11)

Furthermore, we have

Wn~un! 5 Wn~u! 2 ZSnhn 1 op~1! (12)

for every bounded$hn% andun 5 u 1 dnhn+

Remark+ We can see from (11) that our model can be efficiently estimated
following the usual Newton–Raphson iteration+The efficiency of such estimators
in LAN models was shown by LeCam (1960) and was extended to LAMN models
by Jeganathan (1995)+ The result given by (12) follows from a similar result in
Jeganathan (1995) and is important for our proof of adaptivity in Theorem 4+5+

The asymptotically efficient estimator derived in (11) is of no immediate use to
us because of the assumption that the densityp~«! is known to the investigator, an
assumption we wish to avoid+ We now argue that our model can be efficiently
estimated even ifp~«! is unknown+We show how to construct an estimator that is
asymptotically equivalent to the efficient estimator given by (11)+ To accomplish
this equivalence, we employ nonparametric kernel techniques to estimate the
density, p~«!, its score, c~«!, and its information matrix, V; these estimates are
then substituted into equations (5) and (6) to give us consistent estimators of the
sample score and information, with which we can construct a one-step Newton–
Raphson estimator similar in form to that given by (11)+

Our analysis belongs to the body of research stemming from Stein’s (1956)
investigation of the problem of efficiently estimating a parameter of interest in
the presence of an unknown infinite-dimensional nuisance parameter+ The prob-
lem of adaptively estimating a location parameter using a sample of i+i+d+ obser-
vations from a symmetric density of unknown shape was solved by Beran (1974)
and Stone (1975), the former using Fourier series methods and the latter using a
Gaussian kernel+ To prevent misbehavior of his score estimator, Stone (1975)
required that extreme outliers be trimmed in its computation+ Similar procedures
were adopted by Bickel (1982), Kreiss (1987b), Manski (1984), Linton (1993),
and Jeganathan (1995), among others, and are also employed here+

Our first step in this section is to formulate a nonparametric kernel estimator of
the scorec~«t!+ Our construction is a multivariate generalization of that devel-
oped by Kreiss (1987b) for univariate autoregressive moving average (ARMA)
models with symmetric innovations+We introduce the following notation:

p~x,s! 5 ~s#2p!2q exp~26x6202s 2!,

[ps, t ~x,u! 5
1

2~n 2 1! (
i51
iÞt

n

$p~x 1 «i ~u!,s! 1 p~x 2 «i ~u!,s!%

and let [ps, t
j ~x,u! be the partial derivative of[ps, t~x,u! with respect to thej th

element ofx, for all j 5 1, + + + ,q+ In these expressions, p~x,s! is aq-dimensional
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Gaussian kernel with smoothing parameters+ The larger iss, the smoother is the
estimate ofp+We further define

Zcn, t
j ~x,u! 5 5 [ps, t

j ~x,u!

[ps, t ~x,u!
if

0 otherwise

5
[ps, t ~x,u! $ mn

j

6x6 # an
j

6 [ps, t
j ~x,u!6 # cn

j [ps, t ~x,u!,

wherecn
j
r`, an

j
r`, s r 0, andmn

j
r 0+ Because[ps, t

j is an estimator of the
j th element of the vector of partial derivatives ofp~«!, Zcn, t

j is an estimator of
c j~«!, the j th element of the score vectorc~«!+ The trimming parametersmn

j ,
an

j , andcn
j serve to omit extreme outlying observations that would distort the be-

havior of our score estimator+ Our derivation of an adaptive estimator hinges on
showing that the mean integrated squared difference betweenZcn, t

j andc j~«! con-
verges to zero+ The preceding conditions on the trimming parameters and on the
smoothing parameters are used to prove this consistency+

With this notation, we can define ourq-dimensional score estimator as
Zcn, t~x,u! 5 ~ Zcn, t

1 ~x,u!, + + + , Zcn, t
q ~x,u!!'+Assuming thatp~«! is symmetric about the

origin implies thatc~«! is antisymmetric about the origin+ Furthermore, Zcn, t~x,u!
is antisymmetric about the origin inx by construction+ We can use this error
density score estimator to derive the following consistent estimator of the score
function of the model:

ZWn~u! 5 2(
t51

n

dnHt21~u! Zcn, t ~«t ~u!,u!, (13)

where we recall that the score of the model is

Wn~u! 5 2(
t51

n

dnHt21~u!c~«t ~u!!+ (14)

The key step in obtaining an adaptive estimator for our model is to show that
ZWn~u! is a consistent estimator ofWn~u!+ The proof of this consistency result will

be facilitated by the introduction of the following notation:

Wn
j~u! 5 2(

t51

n

dnHt21
j ~u!c j~«t ~u!!

and

ZWn
j~u! 5 2(

t51

n

dnHt21
j ~u! Zcn, t

j ~«t ~u!,u!,

whereHt21
j ~u! is thej th column ofHt21~u! and we recall thatc j~«t~u!! is thej th

element ofc~«t~u!!+ Now, we seek to prove that

ZWn~un! 2 Wn~un! 5 op~1!, (15)
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for which it is sufficient to show that

ZWn
j~un! 2 Wn

j~un! 5 op~1! ∀j 5 1, + + + ,q (16)

because

ZWn~un! 2 Wn~un! 5 (
j51

q

~ ZWn
j~un! 2 Wn

j~un!!+

Our desired consistency result (16), and hence (15), is a consequence of the fol-
lowing theorem, which follows from Proposition 15 in Jeganathan (1988) and is
similar to Theorem 17 in Jeganathan (1995)+

THEOREM 4+4+ For every j 5 1, + + + ,q, assume that cn
j
r `, an

j
r `, mn

j
r

0,s r 0,scn
j
r 0, and n21an

j s 2~41q! r 0+ Then, for every bounded$hn% ~where
we recall that hn 5 dn

21~un 2 u!!, it follows that, for every j 5 1, + + + ,q,

ZWn
j~un! 2 Wn

j~un! 5 op~1!+ (17)

Furthermore, we have

ZWn~un! 5 ZWn~u! 2 Sn~u!hn 1 op~1!+ (18)

It follows from (17) that consistent estimation of the score for the sample is
possible, i+e+, that (15) holds+

With a consistent score estimator in hand, we need only find a consistent es-
timator of the scaled sample information matrixSn~u! to be able to derive an
adaptive estimator+ Recall that

Sn~u! 5 (
t51

n

dnHt21~u!VHt21~u!'dn

5 (
j51

q

(
l51

q

(
t51

n

dnHt21
j ~u!Ht21

l ~u!'dnvjl

5 (
j51

q

(
l51

q

vjl Sn
jl ~u!,

whereSn
jl ~u! 5 (t51

n dnHt21
j ~u!Ht21

l ~u!'dn+ For the moment, we shall assume the
existence of a consistent estimator[vjl of vjl (the construction of such an estimator
is discussed later)+Now, given our sequence$un% of local approximations tou,we
haveSn

jl ~un! 2 Sn
jl ~u! 5 op~1! for everyj, l 5 1, + + + ,q+We now define the estimator

ZSn~un! 5 (
j51

q

(
l51

q

[vjl Sn
jl ~un!+

From the preceding discussion, it follows that

ZSn~un! 2 Sn~u! 5 op~1!+ (19)

The preceding results can be used to derive an adaptive estimator foru, as shown
in the following theorem+
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THEOREM 4+5+ The estimator Dun given in~20! is adaptive for our model:

Dun 5 un
** 1 dn ZSn~un

**!21 ZWn~un
**!+ (20)

In other words,

dn
21~ Zun 2 Dun! 5 op~1!, (21)

where Zun is given by~11!+

Remarks+

(a) In deriving our estimatorZSn~un! of Sn~u!, we assumed the existence of a consis-
tent estimator ofvjt + The argument of Kreiss (1987b, p+ 123) can be used to show
that [vjl as defined in (22) is such an estimator (the proof uses the fact that$Pu,n%
and $Pun,n% are contiguous):

[vjl 5 n21 (
t51

n

Zcn, t
j ~«t ~un

**!,un
**! Zcn, t

l ~«t ~un
**!,un

**!+ (22)

(b) It may seem odd that the convergence results (17)–(19) are useful in our proof of
Theorem 4+5 because these results prove consistency for statistics evaluated at a
deterministicallyconsistent sequence$un%, whereas it would seem that we require
such results for these statistics evaluated at thestochasticallyconsistent sequence
$un
**%+ However, this difficulty disappears as a result of the fact that$un

**% is dis-
cretized+ According to Lemma 4+4 of Kreiss (1987b, p+ 120), the sequence of sta-
tistics$Tn~un

**!% 5 op~1! if the sequence$Tn~un!% 5 op~1!+
(c) We now derive the asymptotic distribution of the adaptive estimatorDun+ Because Dun

is an efficient estimator, we can use the definition of the latter in (10), combined
with (8), to obtain

L~dn
21~ Dun 2 u!6Pu,n! n L~MN~0,S~u!21!!, (23)

whereS~u! is the block diagonal Fisher information matrix+ It therefore follows that

L~!n~ Ihn 2 h!6Pu,n! n L~N~0,V21 J E @Mt Mt
'#21!!, (24)

L~n~ Dbn 2 b!6Pu,n! n LSMNS0,~A'VA!21 J SE
0

1

Z2Z2
' 2 OZ2 OZ2

'D21DD,
(25)

and

L~n102~ EB1n 2 B1!6Pu,n!

n LSMNS0,~A'VA!21 J S1 1 OZ2
' SE

0

1

Z2Z2
' 2 OZ2 OZ2

'D OZ2D21DD+ (26)

(d) The asymptotic efficiency gains to be obtained from employing the adaptive es-
timator developed here rather than the Gaussian pseudo-MLE whenp~«! is not
Gaussian can be investigated using the results in the preceding remark+ The co-
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variance matrix of the scaled and centered Gaussian pseudo-MLE of the slope
parametersb is

~A'S«
21A!21 J SE

0

1

Z2Z2
' 2 OZ2 OZ2

'D21

+ (27)

If p~«! actually is Gaussian, thenS«
21 5 V, so that (27) is identical to the covari-

ance matrix in (25)+ However, if Gaussianity fails, then V . S«
21, so that

~A'S«
21A!21 $ ~A'VA!21 and the Gaussian estimator is inefficient+ The degree of

inefficiency can be measured using the following ratio of generalized variances
(cf+ Mitchell, 1989), where AER is the mnemonic for asymptotic efficiency ratio:

AER 5

FdetF~A'VA!21 J SE
0

1

Z2Z2
' 2 OZ2 OZ2

'D21GG10r ~q2r !

FdetF~A'S«
21A!21 JSE

0

1

Z2Z2
' 2 OZ2 OZ2

'D21GG10r ~q2r !

5

@det~A'S«
21A!# ~q2r !0r ~q2r !FdetSE

0

1

Z2Z2
' 2 OZ2 OZ2

'DGr0r ~q2r !

@det~A'VA!# ~q2r !0r ~q2r !FdetSE
0

1

Z2Z2
' 2 OZ2 OZ2

'DGr0r ~q2r !

5 F det~A'S«
21A!

det~A'VA!
G10r

+ (28)

Now suppose, for example, thatp~«! is elliptically symmetric, with characteristic
functioncf ~s! 5 f~s'Ss!, whereS« 5 k«S, with k« 5 22f'~0!, and where

p~«! 5 6detS62102f *~«'S21«!+ (29)

Then, as shown by Mitchell (1989),

V 5 4apk«S«
21, (30)

whereap is defined in Mitchell (1989, p+ 296)+ (In the Gaussian case, k« 5 1 and
ap 5 1

4
_ , giving us the familiar result thatV 5 S«

21+! Substituting (30) into the last
line of (28) gives us

AER 5 F det~A'S«
21A!

det~4apk« A'S«
21A!

G10r

5 ~4apk«!21+

This result is interesting because the ratio obtained is identical to that derived by
Mitchell (1989) for the estimation of the location of a distribution from which a
sequence of i+i+d+ observations is drawn+ Thus, the efficiency gains to be obtained
through maximum likelihood estimation of the nonstationary components of a re-
duced rank VAR are identical to those to be obtained through maximum likelihood
estimation in a very wide range of stationary and nonstationary models (we can see
from (23)–(26) that a similar argument can be made with respect to any of the
subvectors of Dun, including Dun itself )+

ADAPTIVE ESTIMATION OF ERROR CORRECTION MODELS 57

https://doi.org/10.1017/S0266466698141026 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698141026


Mitchell (1989) illustrated this ratio for the case wherep~«! has at-distribution
with n degrees of freedom+ She found thatk« 5 n0~n 2 2! andap 5 ~n 1 q!04~n 1
q 1 2!, so that

AER 5 ~1 2 20n!{~1 1 20~n 1 q!!+

Thus, the asymptotic efficiency gains to be obtained from using the adaptive esti-
mator are increasing inq, the number of variables in the model+

(e) The preceding remark suggests that the adaptive estimator will deliver superior
relative performance the larger is the system+ At least for Studentt errors, the as-
ymptotic efficiency ratio is decreasing in the dimensionalityq+ However, this im-
provement in asymptotic performance asq increases is likely to be significantly
mitigated by a deterioration in finite-sample performance as a result of the notori-
ous “curse of dimensionality” that is common in nonparametric estimation prob-
lems+ We are using a multivariate kernel to estimate the innovation densityp~«!+
The rate of convergence of multivariate kernel density estimators is well known to
be negatively related to the dimensionality of the data+ This consideration suggests
that our procedure is only useful in the estimation of fairly small systems+

However, there is a way to avert the curse of dimensionality if we are willing to
assume that our innovation densityp~«! belongs to the elliptically symmetric fam-
ily+4 This is because, as can be seen from (29), the multivariate densityp~«! can then
be written in terms of a functionf *whose argument is ascalartransformation of the
data+ We can use this fact to reduce our kernel density estimation problem to a
univariate one+ Stute and Werner (1991) showed that kernel estimators that cor-
rectly impose elliptical symmetry restrictions have a rate of convergence that is
independent of dimension+ Such dimensionality reduction was employed by Bickel
(1982) in the estimation of a multivariate location model and by Hodgson, Linton,
and Choo (1997) in the estimation of seemingly unrelated regression (SUR) mod-
els+ Extension of this work to our model and to the triangular model estimator of
Hodgson (in press) should be feasible and is a topic for future research+

(f ) Our trimmed, leave-one-out, Gaussian kernel score estimatorZcn, t
j ~x,u! is just one

among several valid possibilities+ Jeganathan (1995) used a similar estimator that
does not require the omission of an observation, and Schick (1987) developed a
logistic kernel estimator that requires neither trimming nor the omission of an ob-
servation and that could presumably be shown to apply to our model+ Of greater
interest would be the investigation of the applicability to nonstationary models of
the estimators of Kreiss (1987a) and Drost and Klaassen (in press), which are ap-
plied respectively to AR and GARCH models and allow for asymmetric error
densities+

(g) Some evidence on the finite-sample performance of the estimator developed in this
paper is provided in Hodgson (1995), which reported the results of Monte Carlo
simulations and the application of our method to the estimation of a forward ex-
change market unbiasedness model+ The simulation study compares the perfor-
mances of our adaptive estimator and Johansen’s (1988) Gaussian pseudo-MLE in
bivariate models for various sample sizes and error densities+ The adaptive estima-
tor exhibits significant improvements in a truncated mean-squared error criterion
for all non-Gaussian densities (Student’st, variance-contaminated mixed normal,
and bimodal mixed normal) and sample sizes (100, 250, and 500) considered+ The
magnitude of the gains is found to be fairly insensitive to smoothing and trimming
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parameter variation,with the Silverman (1986) rule-of-thumb bandwidth generally
yielding good results+

The empirical study reported in Hodgson (1995) evaluates a variant of the for-
ward exchange market unbiasedness hypothesis according to which thek-period–
ahead forward exchange rate between two currencies in periodt 2 k should be an
unbiased forecast of the spot rate between them in periodt+ This hypothesis is
generally tested by estimating a cointegrating relationship between the logarithms
of the spot rate and the lagged forward rate, with the unbiasedness hypothesis pos-
iting zero intercept and unit slope parameters (cf+ Baillie and Bollerslev, 1989;
Baillie, Lippens, and McMahon, 1983;Barnhart and Szakmary, 1991;Corbae, Lim,
and Ouliaris, 1992; Hakkio and Rush, 1989; Phillips, 1993; Phillips et al+, 1996)+
Hodgson (1995) estimated such a model using a sample of 650 daily observations
on the Canada–U+S+ spot and 90-day forward exchange rates using an error correc-
tion model and a maintained hypothesis of zero intercept+ The Johansen (1988)
methodology yields a slope estimate of 0+937 with an estimated standard error of
0+033+ The adaptive estimator, using this as the preliminary estimate and using the
Silverman (1986) rule-of-thumb bandwidth, yields an estimate of 0+995 with as-
ymptotic standard error of 0+026, a result that is highly insensitive to smoothing and
trimming parameter variation+

5. CONCLUSIONS

In this paper we have demonstrated that reduced rank error correction models can
be adaptively estimated, assuming that the innovations in the underlying VAR are
drawn from a symmetric density function+We have shown how to construct con-
sistent nonparametric estimators of the score function of the unknown density of
the innovations, and we have demonstrated that the asymptotic efficiency gains
to be obtained from employing the adaptive estimator rather than a Gaussian
pseudo-MLE are identical to those obtained in an extremely broad class of sta-
tistical and econometric models, including the most basic location parameter
problem+ We have also cited the simulation and empirical results reported in
Hodgson’s (1995) practical implementation of the procedure+

As they stand, the theory and methods developed here have the potential to be
of substantial value to practitioners+ Nevertheless, further developments seem
desirable+The relaxation of the symmetry assumption (possibly along the lines of
Kreiss, 1987b) is one direction in which the generality of the analysis could be
increased significantly+ Conversely, in cases where elliptical symmetry is a rea-
sonable assumption, further investigation of techniques of kernel estimation to
reduce a multidimensional density estimation problem to a one-dimensional prob-
lem could produce improved estimators for large systems+ Finally, the range of
empirical situations to which the methodology is applicable would also be in-
creased by generalizing the analysis to allow for various possible specifications
of deterministic components, including the case of drifting variables+

We might also want to extend the model to allow for the presence of higher
order dependence, such as ARCH effects, in the innovations+ Indeed, the inno-
vations to the error correction model of the daily exchange rate data analyzed in
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Hodgson (1995) appear to be subject to volatility clustering+ However, even if
unmodeled conditional or unconditional heterogeneity is present in the innova-
tions, results derived in Hodgson (1996) suggest that the adaptive estimator con-
structed under the false assumption that the innovations are i+i+d+ will still have
desirable robustness properties and will be asymptotically more efficient than the
Gaussian pseudo-MLE+

NOTES

1+ It follows from this assumption that 0, l2 [ *6c~«!62p~«! d« , `, becausel2 5 tr~V!+
2+ Note thatB0 is the coefficient matrix of the reduced form representation of the cointegrating

vectors that is analogous to the reduced form representation of a simultaneous equations model+ This
representation is valid under the assumption that the coefficient matrix onX1t in the structural form of
the cointegrating vectors is nonsingular+Our identification assumption implies that the parameters of
this structural form can be uniquely recovered fromB0+

3+ Note that(t51
n dnHt21~u!VHt21~u!'dn is not, strictly speaking, the sample information (as

pointed out by a referee), because it contains the population quantityV+ However, for ease of expo-
sition we shall continue to refer to it as the sample information+

4+ There is an intimate relationship between the assumption of elliptical symmetry of asset returns
and mean-variance asset pricing theory+ See Chamberlain (1983),Owen and Rabinovitch (1983), and
Ingersoll (1987, Ch+ 4)+
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APPENDIX

Throughout the Appendix, we simplify notation by writinggt21~u! in place ofgt~ uXt21,u!+

Proof of Lemma 3.1. By writing hn 5 ~han
' ,hfn

' ,hB1n
' ,hbn

' !', we decomposehn into
components of respective dimensionqr , q2~k2 1!, r , andr ~q2 r !+ These components can
be thought of as vectorizations of the matricesan, fn, b1n, andbn, whose respective di-
mensions areq 3 r, q 3 q~k 2 1!, r 3 1, andr 3 ~q 2 r !, and where$fn% is a bounded
sequence+ Using this notation and (3), we have

gt21~u! 5 Xt21 1 A@X1, t21 2 B1 2 B0X2, t21# 1 FYt21 (A.1)
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and

gt21~un! 5 Xt21 1 ~A 1 n2102an!@X1, t21 2 ~B1 1 n2102b1n! 2 ~B0 1 n21bn!X2, t21#

1 ~F 1 n2102fn!Yt21

5 gt21~u! 1 n2102an@X1, t21 2 B1 2 B0X2, t21# 2 n21AbnX2, t21

2 n2102Ab1n 2 n2302anbnX2, t21 1 n2102fnYt21 2 n21anb1n+ (A.2)

Subtracting (A+1) from (A+2) yields

dt ~un,u! 5 n2102~anVt21 1 fnYt21 2 Ab1n! 2 n2302anbnX2, t21

2 n21~AbnX2, t21 1 anb1n!+ (A.3)

Noting thatdt~un,u! is a vector, and applying the formula for vectorizing products of
matrices, we can rewrite (A+3) as follows:

dt ~un,u!' 5 han
' n2102~Iq J Vt21! 1 hwn

' n2102~Iq J Yt21! 2 hB1n
' n2102A'

2 hbn
' n21~A' J X2, t21! 2 n2302~anbnX2, t21!' 2 n21~anb1n!',

from which (4) immediately follows+ n

Proof of Theorem 3.2. We begin by quoting Condition A+1 and Proposition A+2,which
follow, as stated by Jeganathan (1995, p+ 848)+ According to Proposition A+2, the likeli-
hood ratiosLn~un,u! have the asymptotic quadratic approximation given by (7) if Condi-
tionA+1 holds+We therefore proceed to verify that ConditionA+1 is satisfied for our model+
To save space, we only report the proof of (7) for the case where it is known thatB1 5 0+
The extension to our more general model with nonzero intercepts follows very similar
lines+ In the course of checking Condition A+1, we shall prove the second part of the weak
convergence result (8)+ The proof of the first part of (8), for the general model, is reported
immediately following our verification of Condition A+1+

Condition A+1 and Proposition A+2 are as follows+

Condition A.1. There is a suitable sequence$dn% of normalizing matrices such that, for
every bounded$hn% (whereun 5 u 1 dnhn!, it holds that

(
t51

n

6dt ~un,u! 2 hn
' dnHt21~u!62 5 op~1! (A.4)

such that

(
t51

n

6hn
' dnHt21~u!62 5 Op~1! (A.5)

and

max
t[$1, + + + ,n%

6hn
' dnHt21~u!62 5 op~1!+ (A.6)

PROPOSITION A+2+ Under our assumptions, Condition A+1 implies the quadratic ap-
proximation given by~7!+
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Verification of Condition A.1. We now proceed to verify that equations (A+4)–(A+6)
are satisfied for our model+

To verify (A+4), we must check that

n23 (
t51

n

6X2, t21
' bn

' an
' 62 5 op~1!+ (A.7)

But (A+7) will hold as a result of the fact that

n22 (
t51

n

6X2, t21
' bn

' an
' 62 5 n22 (

t51

n

anbnX2, t21X2, t21
' bn

' an
'

5 Op~1!

(cf+ Phillips and Durlauf, 1986)+
To establish (A+5), we shall verify (A+8),

hn
' F(

t51

n

dnHt21~u!VHt21~u!'dnGhn 5 Op~1!, (A.8)

in the process of which we also prove the second part of (8)+ The following calculations
will prove useful:

Ht21~u!VHt21~u!' 5 F Iq J Mt21

2A' J X2, t21
GV@Iq J Mt21

' , 2A J X2, t21
' #

5 F Iq J Mt21

2A' J X2, t21
G~V J 1!@Iq J Mt21

' , 2A J X2, t21
' #

5 F V J Mt21Mt21
' 2VA J Mt21X2, t21

'

2A'V J X2, t21Mt21
' A'VA J X2, t21X2, t21

' G,
from which it follows that

(
t51

n

dnHt21~u!VHt21~u!'dn

5 (
t51

n F n21V J Mt21Mt21
' 2n2302VA J Mt21X2, t21

'

2n2302A'V J X2, t21Mt21
' n22A'VA J X2, t21X2, t21

' G+ (A.9)

We proceed to show that the matrix on the right-hand side of (A+9) is Op~1!+ To achieve
this, we show that the following results hold:

n21 (
t51

n

V J Mt21Mt21
' 5 V J E @Mt Mt

'# 1 op~1!, (A.10)

n2302 (
t51

n

VA J Mt21X2, t21
' 5 op~1!, (A.11)

and

n22 (
t51

n

A'VA J X2, t21X2, t21
' n A'VA J E

0

1

Z2Z2
' + (A.12)
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We obtain (A+10) as a consequence of Lemma 1(iv) of Ahn and Reinsel (1990, p+ 815),
while (A+11) and (A+12) can be shown to follow from Lemmas 3+1(e) and (b), respectively,
of Phillips and Durlauf (1986, p+ 477)+ In consequence of (A+10)–(A+12), we have

(
t51

n

dnHt21~u!VHt21~u!'dn n FV J E @Mt Mt
'# 0

0 A'VA J E
0

1

Z2Z2
'G+ (A.13)

Incidentally, (A+13) indicates thatSn~u!nS~u!, so that the second part of the convergence
result (8) in the theorem is established+

To complete our proof of (7), we must verify (A+6), which can be rewritten as

max
t[$1, + + + ,n%

hn
'F n21I J Mt21Mt21

' 2n2302A J Mt21X2, t21
'

2n2302A' J X2, t21Mt21
' n22A'A J X2, t21X2, t21

' Ghn5 op~1!+ (A.14)

We verify (A+14) by checking the following three conditions:

max
t[$1, + + + ,n%

6n21Mt21
j Mt21

l 6 5 op~1! ∀j, l,

max
t[$1, + + + ,n%

6n2302Mt21
j X2, t21

l 6 5 op~1! ∀j, l,

max
t[$1, + + + ,n%

6n22X2, t21
j X2, t21

l 6 5 op~1! ∀j, l,

where the superscriptsj andl represent thej th andl th elements of the respective vectors+
Using the inequality

max
t[$1, + + + ,n%

6xt yt 6 # max
t[$1, + + + ,n%

6xt 6 max
t[$1, + + + ,n%

6 yt 6

for scalar random variablesxt and yt , (A+14) follows because maxt[$1, + + + ,n%6Mt
j 6 5

Op~n102! ∀j and maxt[$1, + + + ,n%6Xt
j 6 5 Op~n! ∀j+

We now complete our proof of Theorem 3+2 by verifying the first part of the conver-
gence result (8) for the general model (we can verify the second part of (8) for the general
model along the same lines as we derived (A+13) earlier)+ To analyze the limit distribution
of the scoreWn~u!, we write it as follows:

Wn~u! 5 (
t51

n F2n2102c~«t ! J Mt21

n2102A'c~«t !

n21A'c~«t ! J X2, t21

G+ (A.15)

We begin with an analysis of the first component of (A+15),

2n2102 (
t51

n

c~«t ! J Mt21+

We can use a central limit theorem for stationary and ergodic processes (e+g+,White, 1984,
p+ 118) to show that

LS2n2102 (
t51

n

c~«t ! J Mt216Pu,nDn L~N~0,V J E @Mt Mt
'#!!+ (A.16)
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As for the second and third components of (A+15), we use Lemma 3+1(e) of Phillips and
Durlauf (1986) to obtain

Ddn (
t51

n

A'c~«t ! J S 1

X2, t21
Dn E

0

1

A' dZ1 J S 1

Z2
D,

whereZ1 is the Brownian motion with covariance matrixV generated by the scaled partial
sums of the$c~«t!% and Ddn 5 diag@n2102Ir ,n21Im2s2r #+ As shown in Lemma A+3, which
follows, the Brownian motion processesA'Z1 andZ2 are independent, from which it fol-
lows that

LSE
0

1

A' dZ1 J S 1

Z2
DD 5 L1MN10,F A'VA A'VA J OZ2

'

A'VA J OZ2 A'VA J E
0

1

Z2Z2
'G2 2 ,

(A.17)

as shown by Phillips and Park (1988)+ But (A+17) will hold as a result of the following
lemma+

LEMMA A +3+ The Brownian motion processes A'Z1 and Z2 are independent+

Proof of LemmaA.3. Denote the Brownian motion process generated by scaled partial
sums of the innovations$«t% by Z«, with covariance matrixS«+We begin by showing that
the covariance matrix betweenZ1 andZ« is the negative of an identity matrix+Because$«t%
and$c~«t!% are both i+i+d+ zero-mean processes, the covariance betweenZ1 andZ« is equal
to E @c~«!«'#, so we must prove that

E @c j~«!«2j # 5 0 (A.18)

and

E @c j~«!« j # 5 21 (A.19)

for every j 5 1, + + + ,q, where the superscripts denote thejth elements of the respective
vectors, and«2j 5 ~«1, + + + ,«j21,«j11, + + + ,«q!+ We denote the marginal density of«2j by
Ip~«2j!+

As in Jeganathan (1995),we can use the law of iterated expectations to show that (A+18)
is implied by

E @c j~«!6«2j # 5 0

or

Ec j~«!~ p~«!0 Ip~«2j !! d« j 5 0,

which holds by Lemma (a) on p+ 19 of Hajek and Sidak (1967)+
By the law of iterated expectations, (A+19) will hold if we can show that

E @c j~«!« j 6«2j # 5 21+ (A.20)

We can write the left-hand side of (A+20) as

E pj~«!

p~«!
« j

p~«!

Ip~«2j !
d« j 5 E« j

p j~«!

Ip~«2j !
d« j +
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But our earlier moment conditions on« andc~«! allow us to apply Lemma (b) on p+ 20 of
Hajek and Sidak (1967) to show that

E« j
p j~«!

Ip~«2j !
d« j 5 21+

The lemma then follows through a straightforward application of the argument in the first
column of p+ 818 of Ahn and Reinsel (1990)+ n

Continuing our proof thatL~Wn~u!6Pu,n! n L~MN~0,S~u!!!, we verify the following
equation:

n2302 (
t51

n

A'c~«t !c~«t !
' J X2, t21Mt21

' 5 op~1!+ (A.21)

To this end, we rewrite the left-hand side of (A+21) as

n2302 (
t51

n

A'~c~«t !c~«t !
' 2 V! J X2, t21Mt21

' 1 n2302 (
t51

n

A'V J X2, t21Mt21
'

5 op~1! 1 op~1!+

The second term isop~1! by (A+11), and, as pointed out by a referee, the first term can be
shown to beop~1! by a law of large numbers for martingale difference sequences (e+g+,
White, 1984, p+ 58), using the facts thatE @Mt Mt

'# , ` andn21E @X2t X2t
' # , `∀t 5

1, + + + ,n+
To complete our proof of (8),we consider the asymptotic behavior of the statisticg 'Wn~u!,

for any realm-vectorg 5 ~g1
' ,g2
' !', where the subvectorsg1 andg2 have respective di-

mensions ofs andm 2 s+ It follows from (A+16), (A+17), and (A+21) that

L~g 'Wn~u!6Pu,n! n L1N~0,g1
' @V J E @ MtMt

'##g1!

1 MN10,g2
' F A'VA A'VA J OZ2

'

A'VA J OZ2 A'VA J E
0

1

Z2Z2
'Gg22 2

5 L~MN~0,g 'S~u!g!!,

from which (8) follows+ This completes the proof of Theorem 3+2+ n
Proof of Lemma 4.3. This follows directly from Proposition 3 and Theorem 2 of Je-

ganathan (1995), using the facts thatQ is open, dn r 0, anddn is independent ofu+ n
Proof of Theorem 4.4. We obtain (18) from (12) and (17),while equation (17) follows

from Proposition 15 of Jeganathan (1988),Condition A+1 as given earlier, and verification
of the following condition (Condition (B+3) in Jeganathan, 1988)+

Condition A.4. Verify that, for everyj 5 1, + + + ,q, for every bounded$hn%, and for every
u, it holds that

(
t51

n

6u'dnHt21
j ~un! 2 u'dnHt21

j ~u!62 5 op~1!, (A.22)

ADAPTIVE ESTIMATION OF ERROR CORRECTION MODELS 67

https://doi.org/10.1017/S0266466698141026 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698141026


and

max
t[$1, + + + ,n%

n6dnHt21
j ~u!62 5 Op~1!+ (A.23)

We begin by checking (A+22), which can be rewritten as

u'dnS(
t51

n

Ht21
j ~un!Ht21

j ~un!'Ddnu 2 u'dnS(
t51

n

Ht21
j ~u!Ht21

j ~un!'Ddnu

2 u'dnS(
t51

n

Ht21
j ~un!Ht21

j ~u!'Ddnu 2 u'dnS(
t51

n

Ht21
j ~u!Ht21

j ~u!'Ddnu 5 op~1!,

(A.24)

which holds because each of the four terms on the left-hand side of (A+24) converges
weakly tou'Sjj ~u!u, whereSjj ~u! is defined by writing

S~u! 5 (
i51

q

(
l51

q

vil Sil ~u!+

We verify (A+23) by writing its left-hand side as

max
t[$1, + + + ,n%

n* n2102i j J Mt21

2n21A~ j !' J X2, t21
*
2

, (A.25)

wherei j denotes thej th column of the identity matrix andA~ j ! denotes thej th row of the
matrix A+We can rewrite (A+25) as

max
t[$1, + + + ,n%

n@n21i j'i j J Mt21
' Mt21 1 n22A~ j !A~ j !' J X2, t21

' X2, t21#

5 max
t[$1, + + + ,n%

@Mt21
' Mt21 1 n21~A~ j !A~ j !'!X2, t21

' X2, t21#

# max
t[$1, + + + ,n%

Mt21
' Mt21 1 max

t[$1, + + + ,n%
n21~A~ j !A~ j !'!X2, t21

' X2, t21

5 Op~1! 1 Op~1! 5 Op~1!,

completing our proof of the theorem+ n

Proof of Theorem 4.5. From (11) and (20), it follows that

dn
21~ Zun 2 Dun! 5 ZSn

21Wn~un
**! 2 ZSn

21~un
**! ZWn~un

**!+ (A.26)

Using (18), we have

ZWn~un
**! 5 ZWn~u! 2 Sn~u!hn 1 op~1! in Pu,n+ (A.27)

Combining (A+27) and (15) gives us

ZWn~un
**! 5 Wn~u! 2 Sn~u!hn 1 op~1! in Pu,n, (A.28)

so that the second term on the right-hand side of (A+26) becomes, using (19) and (A+28),

2Sn
21~u!@Wn~u! 2 Sn~u!hn# 1 op~1! in Pu,n+ (A.29)
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By definition,

ZSn 5 Sn~u! 1 op~1! in Pu,n, (A.30)

while (12) gives

Wn~un
**! 5 Wn~u! 2 ZSnhn 1 op~1! in Pu,n

5 Wn~u! 2 Sn~u!hn 1 op~1! in Pu,n, (A.31)

the second equality holding because of (A+30)+ Combining (A+30) and (A+31) gives

ZSn
21Wn~un

**! 5 Sn
21~u!@Wn~u! 2 Sn~u!hn# 1 op~1! in Pu,n+ (A.32)

Using (A+26), (A+29), and (A+32), the desired result (21) follows+ n
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