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ADAPTIVE ESTIMATION OF ERROR
CORRECTION MODELS

DouaLAS J. HODGSON
University of Rochester

This paper considers adaptive maximum likelihood estimation of reduced rank vec-
tor error correction modeldt is shown that such models can be asymptotically
efficiently estimated even in the absence of knowledge of the shape of the density
function of the innovation sequengerovided that this density is symmetrithe
construction of the estimatdnvolving the nonparametric kernel estimation of the
unknown density using the residuals of a consistent preliminary estinisite-
scribedand its asymptotic distribution is derivelsymptotic efficiency gains over

the Gaussian pseudo—maximum likelihood estimator are evaluated for elliptically
symmetric innovations

1. INTRODUCTION

Contemporary empirical researchers in macroeconomics and finance make con-
siderable use of error correction representations in the modeling of cointegrated
systems Such representations are always possible (Engle and Gratfifsf)
and derive their name from the fact that the deviations of a system from its co-
integrating relationships are explicitly modeled as impacting upon subsequent
short-run dynamicsAn error correction representation can be derived from a
vector autoregression (VAR) by taking first differenc€ke fact that the system
is cointegrated implies that among the regressors in the differenced VAR will be
a term in the lagged levels of the variahl@sth an accompanying coefficient
matrix that has reduced rank equal to the number of cointegrating relationships
A natural approach to estimating such a model is reduced rank regreiSsion
the case of stationary VAR 'seduced rank regression estimators have been an-
alyzed by Ahn and Reinsel (1988) and VeReinse) and Wichern (1986)n the
nonstationary caséhe reduced rank structure implies an error correction repre-
sentation because the reduced rank matrix can be decomposed into a matrix of
cointegrating vectors and a matrix of error correction coefficiemtfactor load-
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ings characterizing the effects of the deviations from the cointegrating relation-
ships on the transitory dynamics of the sysitdihe estimation of cointegrated
systems by reduced rank regression has been analyzed by Johansei 99338
and Ahn and Reinsel (1990)hese authors derived maximum likelihood estima-
tors (MLE’s) of the model assuming Gaussian innovations to the underlying
VAR. The Gaussian reduced rank MLE has been widely employed in empirical
cointegration analysisFor example Johansen (1992)Johansen and Juselius
(1990) and Friedman and Kuttner (1992) estimated monetary mpdi@h&nsen
and Juselius (1992) estimated exchange rate modalsst and Neusser (1990)
estimated real business cycle modalsd Kasa (1992) estimated models of stock
prices and dividends

If the assumption of Gaussianity is correttien the estimators of Johansen
(1988) and Ahn and Reinsel (1990) are asymptotically efficient and should have
performance superior to that of alternatives such as the least-squares estimator of
Engle and Granger (1984nhdeed Ahn and Reinsel (1990) reported a simulation
study comparing their estimator of the cointegrating parameter in a Gaussian
bivariate model with ordinary least squares (OLR)ey found a large improve-
ment in mean squared error for all sample sizes considered (50 through 400)
when the efficient MLE is usedhn extensive and general analysis of efficient
estimation of cointegrated models in the Gaussian case has been provided by
Phillips (1991)

Although the MLE's discussed previously are asymptotically efficient when
the innovations are Gaussiahey are inefficient when the innovations are non-
Gaussianin the latter casdhe efficient MLE will take a different formAs Ahn
and Reinsel’s (1990) simulations shatymatters in the estimation of cointegrat-
ing vectors whether or not an efficient estimator is usedme of the applied
studies cited earlier (Johansen and Jusegli@9Q 1992 Kasag 1992) test and
reject the Gaussianity hypothesis for estimated residliaks rejections are due
primarily to excess kurtosig his result is not surprisingiven that many eco-
nomic time serigespecially speculative pricesre well documented to be driven
by leptokurtic processes (s&sy., Mandelbrot 1963 Fama 1963 1965 Mittnik
and Rachev1993 McGuirk, Robertsonand Spanqsl993) That Gaussian re-
duced rank estimators can give poor estimates when using thick-tailed data has
been demonstrated by Phillips (1993) and PhilligeFarland and McMahon
(1996) in the context of empirical exchange rate models

In problems for which a Gaussian MLE is inapproprjatdaptive estimatign
which can be employed when the underlying density function of the data-generating
process is of unknown shap®ovides a highly attractive alternativen adaptive
estimator shares the asymptotic optimality properties of the Miifering from
the latter in that a nonparametric estimator of the score function of the log likeli-
hood replaces the analytic expression that would be used if the density were.known
An adaptive estimator can be viewed as an MLE when the shape of the likelihood
is unknownA simulation study by McDonald and White (1993) found that adap-
tive estimators compare quite favorably with Qleast absolute deviations (LAD)
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generalized method of moments (GMMhdM-estimators in the estimation of a
(noncointegrating) non-Gaussian linear regression médether evidence onthe
finite-sample behavior of adaptive estimators in stationary models was provided
by Hsieh and Manski (1987) and Steigerwald (1992)

There is a growing literature addressing the problem of robust and efficient
estimation in non-Gaussian cointegrated modelsllips (1995) developed ro-
bust LAD andM-estimators for triangular modeland adaptive estimators in
triangular models were derived by Jeganathan (19997) and Hodgson (in
press) Simulation and empirical results obtained by Hodgson (189press)
illustrate the good finite-sample properties of the adaptive estimators and of the
estimator developed in the present paper

We analyze adaptive estimation of reduced rank regression in cointegrated
error correction model§Ve extend the work of Jeganathan (1995) and Hodgson
(in press) who analyzed the adaptive estimation of linear cointegrating regres-
sions In Section 2the model and notation are introducéuSection 3we show
that this model falls within the locally asymptotically normal (LAN) and locally
asymptotically mixed normal (LAMN) family of models/ith the component of
the model associated with short-run dynamics being LAN and the component
associated with long-run dynamics being LAMIN Section 4we define exactly
what we mean by the terefficient estimatoand describe the optimality prop-
erties of these estimators in LANAMN models We first show how to compute
efficient estimators when the density function of the innovations is knand
then we show how to construct estimators that are asymptotically equivalent to
efficient estimatorsthus sharing their optimality propertigsut that do not re-
quire knowledge of the shape of the density of the innovatidhsse estimators
termedadaptive use nonparametric density estimators to consistently estimate
the score and information of the log-likelihood functiée derive the asymp-
totic distribution of an adaptive estimator arfidr the special case of elliptically
symmetric innovation densitiesvaluate its efficiency gains over the Gaussian
pseudo-MLE Section 5 discusses possible extensions of this reseBnehAp-
pendix contains proofs of all lemmas and theorems

The following notation is used throughout the pagdre termls denotes the
identity matrix of dimensiors, |x| the euclidean norm of the vectay|(-) the
indicator function N(x,V) the distribution of a random variable that is normal
with mean vectox and covariance matri¥, andMN(x,V) a mixed normal dis-
tribution, i.e., one in which the covariance matnkis randomThe vectorization
operator ve¢X) stacks the transposed rows of the makjand the inequalities
X>YandX =Y, when applied to matricesignify that the differenc& — Yis
positive definite and positive semidefinitespectivelyWe simplify notation by
writing folZ in place off012(r)dr whenZ(r) is a Brownian motion process de-
fined on the interval [(L]. The expressiol(X|P) denotes the distribution (or
law) of X with respect to the probability measuPeWhenP is the distribution of
Xitself, L(X|P) is abbreviated td.(X). The weak convergence of probability
measures is denoted by the symbsl
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2. THE MODEL AND NOTATION

We assume that thg-dimensional stochastic proceXsis observed for alt =
1,...,n. Considered individuallyeach of theg series is integrated of order gne
but we shall assume that there exisbintegrating relationships among the vari-
ables with 1 = r < g, and thatr is known We also assume that the data-
generating process fof; can be characterized by the following VABf known
orderk:

Xt = T + Hlxt_l + ..o+ HkXI_k + Et, (l)

wheremq is aq X 1 intercept vectorin addition we assume that initial obser-
vations X;_y,..., Xo are available The implications for the lag polynomial

Mz =1 - Ejk:lHj z of our assumption that cointegrating vectors exist are
that defl1(z)} = 0 hasq — r roots on the unit circle androots outside the unit
circle.

So far our model is identical to the models of Johansen (1988) and Ahn and
Reinsel (199Q)Where we differ from these authors is in our assumptions regard-
ing the distribution of the independent and identically distributadl(j innova-
tion procesde;}. Whereas they assumed that this distribution is Gaussian
allow it to belong to a much broader class and to be unknown to the investigator
This class is restricted by assuming that the true distribution has a Lebesgue
density functionp(e), which is absolutely continuous with respect to Lebesgue
measure and symmetric about the origin in the sensepifaat= p(—¢), and
which satisfies the moment condition dey = X, < co. The symmetry assump-
tion is important for our purposes because it implies thaigtvector of partial
derivatives (which we assume to exist for evelyis antisymmetrici.e., that
dp(e)/de = —ap(—e)/de. Consequentlytheg-dimensional (negative of the) score
function of p(e), which we denote by (e) = (dp(e)/de)/p(e), is also antisym-
metric ine. This latter property facilitates our derivation of an adaptive estimator
because it allows us to apply a result of Jeganathan (1988) in showing that the
sample score function of the model can be consistently estimated through the use
of a nonparametric kernel estimatorfe). Finally, we assume that the infor-
mation matrix ofp(g), Q = [¢(e)i(e)'p(e)de, is finite and positive definité
Note that in the special case whe@x@) is Gaussian) = 3 1. If Gaussianity does
not hold thenQ > 3.

As noted in the Introductigrirst differencing the VAR given in (1) yields the
following error correction representation

k—1
AX; = 7o+ ABX_1 + > DAX + &, (2)
j=1

where theg X r matrix A is a matrix of error correction coefficients and the rows
of ther X qmatrixB are cointegrating vectargVe also assume that, = —AB,,
whereB; is ther-vector of intercepts in the cointegrating vectors (see. @)
cause the VAR intercept vectaty belongs to the subspace spanned by the col-
umns ofA, we do not allow for the presence of linear time trends in the f&ta
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Thus our model belongs to the class denotedHi$r) in Johansen’s (1994)
discussion of cointegrated models with deterministic compon&hts model is
analyzed by Johansen (1988) and Ahn and Reinsel (1990) under the Gaussianity
assumption

As the model stand#\ andB are unidentifiedIn what follows we only con-
sider the estimation of an identified modEbllowing Ahn and Reinsel (1990)
this is achieved by partitioning the variablesXpasX; = [ X4, X5:]’, with Xy;
havingr elements an&,; havingg — r elementssuch that the subsysteKy,
containgg — r unit roots and by writingB = [I,,—By], whereB, has dimensions
r X (q—r). Ther(q — r) elements 0B, are the long-run coefficients in this
model? We can then rewrite (2) as

AXi = A[Xy -1 — By = BoXpi—1] + ®Y1 + &, (3

where® = [‘Dl, . aq)k—l] andYt_l = [AX{,l, . ,AX{,kH] "

It is clear from equation (3) why the representation is termed an error correc-
tion model The bracketed expression is ewector of transitory fluctuations of
the system about its cointegrating relationshgrslA determines the reactions of
the system to these fluctuatiafi$e system’s remaining transitory dynamics are
characterized by, the matrix of coefficients on lagged first differencesich is
treated as a nuisance parameter in most applicatidumsprimary objective is to
efficiently estimateA, B,, andB,, adapting for the unknown densipye). How-
ever we would also like to adapt for the unknown nuisance parandetérwill
be shown subsequently that this can be don&fandBy, but not forA. In fact,
we will show thatB, andB, can be efficiently estimated by adapting for unknown
p(e), ®, and A In other wordsif our interest is confined to estimating the sys-
tem’s long-run dynamigswe can do as wellasymptotically not knowing its
short-run dynamics as we can knowing theédonverselywe can estimate the
short-run dynamics as well not knowing the long-run dynamics as we can know-
ing them However we can always improve our estimates of certain short-run
componentseven asymptoticallyf other short-run components are knowis-
a-vis the case where the latter are unknown

The development of the asymptotic theory in subsequent sections will be
facilitated by the arrangement of all of the model’s unknown parameters into a
single vectarTo this endwe definea = ved(A), ¢ = vecd(®), andB = vec(By),
of dimensiongyr, g2(k — 1), andr(q — r), respectivelyThe respective param-
eter vectors are gathered into thedimensional full parameter vectof =
[a',¢',BL,B'] = [n',BL,B'], wheren = (a',¢'), m=71 + 2qr — r? +
g%(k — 1), and@ belongs to the parameter spaggewhich is taken to be all of
R™ (excepting points at which eitheéx or B’ is not of full column rank) De-
fining s = gr + q?(k — 1) as the total number of parameters in the stationary
component of the model .€, the dimension ofp) allows us to define the
m X mscaling matrixs, = diagln~*?l;,n"Y2I,,n" s, ]. We can then write
the local representation of the full parameter ve@asd,, = 6 + 5,h,, where
{h,} is a sequence of boundedtvectors Note thatd,, converges t@ but does
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so at different rates in different directions of the parameter sgaddirections
associated with transitory dynamics and with the cointegrating interceets
rate of convergence ign, whereas in those associated with the cointegrating
slope parameteyshe rate isn.

In the remainder of the papexre shall denote by, , the distribution of the
sample of sizea with paramete#. All convergence statementsnless otherwise
noted should be read as occurring undg,.

3. LOCAL ASYMPTOTIC (MIXED) NORMALITY
In this sectionwe analyze the asymptotic behavior of the log-likelihood ratio
An(eme) = IOg(dpen,n/dpa,n)-

We find that the behavior oA ,(6,,0) is such that our model falls within the
LAN/LAMN family, which is important because a theory of optimal estimation
applies to such modeli Section 4 optimal estimators for this family are char-
acterized

We establish in Theorem3that the component of the model associated with
the parameters describing the long-run relationships in the madgltkie co-
integrating coefficientd, and By) belongs to the LAMN family and that the
component associated with parameters describing short-run dynamicsdind
®) belongs to the LAN familyWe show that these two components are asymp-
totically independentallowing separate adaptive estimation of the coefficients
associated with long-run and short-run dynamiespectivelybut not allowing
adaptive estimation of the error correction coefficigitsseparately from other
parameters characterizing short-run dynanties

To obtain our asymptotic results regarding(,, ), we couch our model in
terms of the framework of a general nonlinear modsldescribed by Jeganathan
(1995 equation (37))We assume that the initial observatiofis= (X1, ..., Xo)
have a density (with respect tasafinite measure) denoted biy(X,,#) that has
the property thaty(Xo,6,) — fo(Xo,6) = 05(1) whené, — 6. We defineX, =
(Xo, X1,...,X;) and denote by, the o-field generated by;. We can then write
our model as

Xi = 0 (Xi-1,0) + &,
whereg, is as in equation (2) an@lso using (2)we have
k—1
Qt(>_<t71,¢9) = X1 — AB + ABX 1 + 21 (I)jAXt—j
i=
= X»[71 - AB]_ + ABX,]_ + (I)thl'

The following result is derived within the preceding nonlinear framework and is
useful in our subsequent development of the LLAKMN theory.

LEMMA 3.1. Defining d(6,,60) = 0:(Xi-1,6n) — G(Xi-1,6), we hae
t(04,0)" = h\8,H,—1(0) —(n~¥2X5,_1bha) + n~'hizay), (4)
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where H 1(0) = [(Ig ® Vi 1)',(lg ® %), =A(~A @ Xo11)']', Vo1 =
Xit—1 — B1 — BoXz—1, @and{a,}, {bs,}, and {b,} are bounded sequences of
matrices of dimensions g r,r X 1, and r X (q — r), respectvely.

Remark The g-vectord(6,,6) plays an important role in the theory devel-
oped laterlts first component is particularly important because it enters into our
expressions for the (scaled) score function and information matrix of the sample
We write the sample score functioscaled by, as

W, (0) = —t:zl SnHi1(0) ¥ (e0), %)

and the sample informatiopre- and postmultiplied b, as

S\(0) = [:ZlanHt—l(e)QHt—l(e)lan- (6)

Note that in these expressions for the sample score vector and information ma-
trix® appear the quantitie(s) andQ, which are respectivelythe (negative of

the) score and the information of the innovation dengits). The basic problem
addressed in this paper is the fact that we assum@tbhatand consequently also
() andQ, are unknown to the investigatdn Section 4 we show how this
problem can be addressed through the estimatioh(ef andQ using nonpara-
metric density estimates

The following theoremproved in the Appendixis the central result of this
section

THEOREM 32. The likelihood ratios\,(6,,6) have the following asymptotic
quadratic approximation forwery bounded sequence ofuactors{h,}:

An(05,60) = haWa(6) — (2)h;S,(6)h, + 0p(1). (7)
Furthermore we hae the following weak camrgence resuit
L(Wh(0), $:(60)[Py,n) = LIMN(0, S(6)), S(9)), (8
where
0 ® E[M;M/] 0 0
S(6) = 0 A QA AQA ®1ZZ , ©)
0 AOAR Z, AQAR® fo Z,Zb

M1 = [V"1,Y 1], Z, is a Brownian motion process with e@riance matrix
Ir COY(AXZt) = E[AXpAX3 ] + ZZ1 E[AXAX 4] + ZiZ1E[AX AXS 141,
andZ, = [4 Z,.

Remarks (a) Equations (7) and (8) together imply that our model belongs to
the LAMN family, as definedfor example by LeCam and Yang (1990) and
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Jeganathan (1995bhe latter of whom showedn a result similar to outsthat
triangular cointegrated models belong to the LAMN famillze LAN family is a
special case of the LAMN in which the matr(#) is nonrandomWe can see
from (9) that for our mode) S(0) is block diagonal between components that are
respectivelynonrandom and randartt follows that we can decompose the qua-
dratic on the right-hand side of (7) into the sum of two asymptotically indepen-
dent quadratic functionsne of which has an asymptoticaipnrandonquadratic
term and represents the asymptotic approximation of the likelihood ratios of a
model belonging to the LAN familyand the other of which has an asymptotically
randomquadratic term and represents the asymptotic approximation of the like-
lihood ratios of a model belonging to the LAMN familyhe first component
corresponds to the parametersf the transitory dynamics of the modethile
the second corresponds to the paramdiBisB’)’ of the cointegrating relation-
ships

The block diagonality of our asymptotic information mat&¢g) implies that
short-run and long-run dynamics are asymptotically independent of one gnother
so that in the analysis of one component the other can be treated as.knbwn
particular importance is the fact that we can estimate the cointegrating param-
eters as efficiently when treating the remaining parameters as unknown nuisance
parameters as we could if the latter were knoWne information matrix is not
howeverblock diagonal between the components associated with the cointegrat-
ing slope and intercept parametgnsplying that we can estimate the slopes more
efficiently if we know the intercepts than if we do not

(b) One important consequence of this theorem is that the sequences of prob-
ability measure$P, .} and{P,_,}are contiguous and therefore have the property
that a sequence of statistid } is0,(1) in Py_,ifand onlyifitiso,(1) in Py , (see
LeCam and Yangl99Q p. 20). This fact is used subsequently because statistics
will be computed using residuaiq6,,) from a consistently estimated model in
lieu of the true innovations(6) and the fact that the latter statistics agél) in
Py,» Will be used to show that the former apg(1) in Py, ..

4. EFFICIENT AND ADAPTIVE ESTIMATION

In this sectionwe are concerned with the efficient estimation of our modke
results of the preceding section are important in this regard because they permit
us to draw upon the theory of efficient estimation that has been developed for
LAN/LAMN models We begin by formally defining the notion of an efficient
estimator for our model and then briefly discuss the optimality properties of such
an estimatarWe then show how to compute an efficient estimator of the full
parameter vectat when the innovation densipfe) is known to the investigator
Finally, we consider adaptive estimatiateriving efficient estimators even when
the innovation density is unknown

We begin with the following definition
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DEFINITION 4.1. If the model is LAMN or LAN &, we call asequenc&?n}
of estimatorsefficientif

80 (0 — 0) — STHOW(9) = 0p(1), (10)
where W(0) and $(0) are defined in(5) and (6).

Remark We can see from this definition that an efficient estimator for our
model will have an asymptotic mixed normal distribution when appropriately
scaled and centere&urthermorethe asymptotic covariance matrix is the in-
verse of the Fisher informatigso that an efficient estimator has the same as-
ymptotic distribution as the MLE and thus shares the latter’s optimality properties
Efficient estimators are optimal according to the locally asymptotically minimax
(LAM) criterion, which means that for any symmetrizowl-shaped loss func-
tion and for anyd € 0, they achieve a lower bound for the limit inferior of the
supremum of the risk over a ball arougvhose radius converges to zeraas
oo (for a discussionseg e.g., Ghosh 1985 pp. 318—320) These estimators were
termedasymptotically centeringy Jeganathan (1995)

The computation of efficient estimators through a one-step iteration in the
LAN case was analyzed by LeCam (1968hd the extension of the method to
LAMN models was described by Jeganathan (199% begin with some se-
guence of preliminary estimatof8;} with the property that

87160 — 0) = Oy(1).

From a practical standpoirthere are several possible ways to obtain such esti-
mators We may for exampleemploy the Gaussian maximum likelihood estima-
tor of Ahn and Reinsel (1990 simpler alternative would be to compute estimates
(B1n, Bon) through an OLS regression &f; on X,; and a constant vect@ubsti-
tute these estimates into the right-hand side of 4Bd then use OLS in (3) to
compute(Ay, D).

We defined;*, thediscretizedversion ofé)};, as follows (cf LeCam and Yang
1990 Jeganathgr995 1996)

DEFINITION 4.2. Partition the space Rinto cubes ¢ i = 1, of sides of
length unityand let G; = 6,C; = {6,u:u € C}. If 6; € ® N C,;, takeh;;* = t,;,
where ; is some fixed point i® N C,;, which will necessarily be nonempty
becausd#; € 0.

Remark The6;* constructed in this way preserve the properties;oh the
sense tha#;* € © ands, 1(6;* — 6) = O,(1) for everyd € ©. The “trick” of
using a discretized preliminary estimator is due to LeCam (1960) and allows us to
prove that iterative estimators are efficient under quite general conditions

The following lemma gives an expression for an efficient one-step iterative
estimator computed using a discretized preliminary estimator

LEMMA 4.3. Suppose tha}* is a 8, 1-consistentdiscretized preliminary
estimatoras defined earlierDefineS§, as any consistent estimator gf(8). Then
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6, as defined in equatiofil1) is an efficient estimator

On = 05" + 82 Sy P Wh(67). (11)
Furthermore we hae

Wa(B) = Wa(6) — Sihy + 0,(2) (12)
for every boundedh,} and@,, = 6 + 6,h,,.

Remark We can see from (11) that our model can be efficiently estimated
following the usual Newton—Raphson iteratidine efficiency of such estimators
in LAN models was shown by LeCam (1960) and was extended to LAMN models
by Jeganathan (1995)he result given by (12) follows from a similar result in
Jeganathan (1995) and is important for our proof of adaptivity in Theotdm 4

The asymptotically efficient estimator derived in (11) is of no immediate use to
us because of the assumption that the dempgityis known to the investigatpan
assumption we wish to avaiiiVe now argue that our model can be efficiently
estimated even {i(¢) is unknown We show how to construct an estimator that is
asymptotically equivalent to the efficient estimator given by (Th)accomplish
this equivalencewe employ nonparametric kernel techniques to estimate the
density p(e), its score ¢ (g), and its information matrix(); these estimates are
then substituted into equations (5) and (6) to give us consistent estimators of the
sample score and informatipwith which we can construct a one-step Newton—
Raphson estimator similar in form to that given by (11)

Our analysis belongs to the body of research stemming from Stein’s (1956)
investigation of the problem of efficiently estimating a parameter of interest in
the presence of an unknown infinite-dimensional nuisance parariiéeprob-
lem of adaptively estimating a location parameter using a sampledfabser-
vations from a symmetric density of unknown shape was solved by Beran (1974)
and Stone (1975})he former using Fourier series methods and the latter using a
Gaussian kernello prevent misbehavior of his score estimat®tone (1975)
required that extreme outliers be trimmed in its computat®milar procedures
were adopted by Bickel (1982Kreiss (1987h)Manski (1984) Linton (1993)
and Jeganathan (199%mong othersand are also employed here

Ouir first step in this section is to formulate a nonparametric kernel estimator of
the scoref(g). Our construction is a multivariate generalization of that devel-
oped by Kreiss (1987b) for univariate autoregressive moving average (ARMA)
models with symmetric innovationg/e introduce the following notation

7 (%0) = (o2m) dexp(—|x|%/20?),

1
prr,t(x’e) = m |:21{7T(X + 8i(0),0') + 7T(X - Si(e)’o-)}

i#t

and Ietpci,,t(x,e) be the partial derivative o, ;(x,0) with respect to thgth
element ofk, forall j = 1,...,q. In these expressions (x,o) is ag-dimensional

https://doi.org/10.1017/50266466698141026 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466698141026

54 DOUGLAS J. HODGSON

Gaussian kernel with smoothing parametei he larger isr, the smoother is the
estimate of. We further define

P (X,0) = m),

ple(x6) .
. = f X| = al
8 = { ey X |
‘ ﬁ(lr,t(x70)| = C#ﬁa,t(xﬁ),
0 otherwise

wherec) — o, a, — o0, & — 0, andm}, — 0. Because), . is an estimator of the
jth element of the vector of partial derivatives mfe), lﬁﬂm is an estimator of
Yi(g), thejth element of the score vectgr(e). The trimming parametensy,,
a), andc) serve to omit extreme outlying observations that would distort the be-
havior of our score estimataDur derivation of an adaptive estimator hinges on
showing that the mean integrated squared difference betg&/ﬂgefmdzpj(s) con-
verges to zerdl' he preceding conditions on the trimming parameters and on the
smoothing parameter are used to prove this consistency

With this notation we can define oulg-dimensional score estimator as
lﬁm(x,e) = ((ﬁrl,,t(x,e), .. ,zﬁﬂ,t(x,a))’. Assuming thap(g) is symmetric about the
originimplies thai/ (¢) is antisymmetric about the origiﬁurthermorezﬁn,t(x,0)
is antisymmetric about the origin ix by constructionWe can use this error
density score estimator to derive the following consistent estimator of the score
function of the model

n
W,(0) = — X 8nHi-1(0) P 1 (£:(0),6), (13)
t=1
where we recall that the score of the model is
n
W,(0) = = 8nHi1(0) ¢ (£:(0)). (14)
t=1
The key step in obtaining an adaptive estimator for our model is to show that

W, (6) is a consistent estimator ¥f,(6). The proof of this consistency result will
be facilitated by the introduction of the following notation

W, (6) = —tglanHttl(e)w(st(e»
and
Wl () = —i SnH{_1(0) 1), ((£,(6),0),

wherthj,l(H) is thej th column ofH;_,(6) and we recall that’(s,()) is thejth
element ofi (g,(6)). Now, we seek to prove that

Wn(en) — W, (6,) = Op(l), (15)
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for which it is sufficient to show that
WH(0n) = WA(B) = 05(1) Cj=1,...,q (16)
because

. a :
Wn(on) - Wn(en) = E (WnJ (an) - an(en))

j=1
Our desired consistency result (1&hd hence (15)s a consequence of the fol-
lowing theoremwhich follows from Proposition 15 in Jeganathan (1988) and is
similar to Theorem 17 in Jeganathan (1995)

THEOREM 44. For every j = 1,...,q, assume that/c— oo, aj, — oo, m) —
0,0 = 0,0¢,— 0,and n ta)o ~“*9 — 0. Then for every boundedh,} (where
we recall that i = 8, 1(6,, — 9)), it follows that for every j= 1,...,q,

W (6) — Wi (6,) = 0,(D). 17)
Furthermore we hae
Wn(en) = Wn(e) - §()h, + Op(l)- (18)

It follows from (17) that consistent estimation of the score for the sample is
possiblei.e., that (15) holds

With a consistent score estimator in hame need only find a consistent es-
timator of the scaled sample information mat8x6) to be able to derive an
adaptive estimatoRecall that

I
M >

Si(0) = 2, 8nHi—1(0) QH1(6)'5,

-
I
=

5 Ht 1(0)Ht 1(0)'6 nij|

I
=
I
[y

I
M
M

'u’M:

o SO

Il
Mg
0 Mn

wheresiI (6) =316, Ht_l(O)Ht'_l(e)’Sn. For the momentwe shall assume the
existence of a consistent estimadgrof w; (the construction of such an estimator
is discussed laterlNow, given our sequendd,,} of local approximations té, we

havesi' 6,) — Si" (6) = 0p(1) for everyj, | = 1,...,9. We now define the estimator

R a g .
Sﬂ(an) = '21I§:16)“ SJ1I (On)-
e
From the preceding discussiahfollows that

$i(0n) — Sh(0) = 0,(1). (19)

The preceding results can be used to derive an adaptive estima@igoatoshown
in the following theorem
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THEOREM 45. The estimato#, given in(20) is adaptve for our model
O = 07" + 8.5 (07") WK (67). (20)
In other words
8n 26 — 0r) = 0p(D), (21)
wheref,, is given by(11).

Remarks

(@) In deriving our estimato$,(6,) of $,(6), we assumed the existence of a consis-
tent estimator ofvj;. The argument of Kreiss (1987p. 123) can be used to show
thato; as defined in (22) is such an estimator (the proof uses the factRha}
and{P,_n} are contiguous)

@y = n_lgltﬁﬁ,t(st(ﬁﬁ*)ﬁﬁ*)%t(st(0?{*),0%‘*)- (22)

(b) It may seem odd that the convergence results (17)—(19) are useful in our proof of
Theorem 45 because these results prove consistency for statistics evaluated at a
deterministicallyconsistent sequengé,}, whereas it would seem that we require
such results for these statistics evaluated astbehasticallyconsistent sequence
{65*}. However this difficulty disappears as a result of the fact th@'} is dis-
cretized According to Lemma 4} of Kreiss (1987bp. 120) the sequence of sta-
tistics{Tn(05")} = 0,(1) if the sequencgT,(6n)} = 0p(1).

(c) We now derive the asymptotic distribution of the adaptive estintat@ecausd,
is an efficient estimatomwe can use the definition of the latter in (1@pmbined
with (8), to obtain

L(8n M0 — 0)|Pg,n) = LIMN(0,S(6) 1)), (23)
whereS(0) is the block diagonal Fisher information matrittherefore follows that

LA = 1) Ps,n) = LINO,Q7* ® E[MM{]71)), (24)

1 —1
L(N(Bn = B)IPy,n) = L<MN<0,(A/QA)71 ® (fo 2,75 — zzzé> >>,

(25)

and

L(nY2(By, — B1)|Ps,n)
1 -1
:L(MN(O,(A’QA)’1®<1+Z’2<f zzzg—zzz)zz> )) 26)
0

(d) The asymptotic efficiency gains to be obtained from employing the adaptive es-
timator developed here rather than the Gaussian pseudo-MLE pfagris not
Gaussian can be investigated using the results in the preceding térharko-
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variance matrix of the scaled and centered Gaussian pseudo-MLE of the slope
parameterg is

1 -1
WA ® < [ 22~ 222'2) . (27)

0
If p(e) actually is Gaussiarthen3_;* = Q, so that (27) is identical to the covari-
ance matrix in (25) However if Gaussianity fails then Q@ > 37, so that
(A3;1A) 1 = (AQA)~* and the Gaussian estimator is inefficiefihe degree of

inefficiency can be measured using the following ratio of generalized variances
(cf. Mitchell, 1989) where AER is the mnemonic for asymptotic efficiency ratio

1 —177/r(@-1)
ool wonrro [z 22) |
0

1 o -1 1/r(g—r)
det[(A’E;lA)’l ®<f Z,Zb — zzzg> ”
0

1 o r/r(q—r)
[det(A's tA)@ /@ [det( fo 2,25 — zzz'zﬂ

AER = [

1 —_\ |/rla=n
[det(A'QA)]@*r)/'m*”[det( f 2,25 — zzzgﬂ
0

I —1 1/r
[det(A S, A)] (28)

det(A'QA)

Now supposgfor example thatp(e) is elliptically symmetri¢ with characteristic
functioncf(s) = ¢(s'Ss), where3, = k.3, with k, = —2¢'(0), and where

p(e) = |dets|~V2f*(e'3 " Le). (29)
Then as shown by Mitchell (1989)
Q = 4a k.31, (30)

whereay,, is defined in Mitchell (1989p. 296) (In the Gaussian cask, = 1 and
ap = 7, giving us the familiar result that = 3;*.) Substituting (30) into the last
line of (28) gives us

det(A'S;1A) T/f

AER = [ det(4a k, A'S, 1A)

= (dapk,) .

This result is interesting because the ratio obtained is identical to that derived by
Mitchell (1989) for the estimation of the location of a distribution from which a
sequence of.i.d. observations is drawiThus the efficiency gains to be obtained
through maximum likelihood estimation of the nonstationary components of a re-
duced rank VAR are identical to those to be obtained through maximum likelihood
estimation in a very wide range of stationary and nonstationary models (we can see
from (23)—(26) that a similar argument can be made with respect to any of the
subvectors of,,, includingd, itself).
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Mitchell (1989) illustrated this ratio for the case wher@) has at-distribution
with v degrees of freedonshe found thak, = v/(v — 2) anda, = (v + @)/4(» +
g+ 2), so that

AER = (1 — 2/v)-(1 + 2/(v + Q).

Thus the asymptotic efficiency gains to be obtained from using the adaptive esti-
mator are increasing ig, the number of variables in the model

(e) The preceding remark suggests that the adaptive estimator will deliver superior
relative performance the larger is the systéleast for Student errors the as-
ymptotic efficiency ratio is decreasing in the dimensionatjty{owevey this im-
provement in asymptotic performance @sicreases is likely to be significantly
mitigated by a deterioration in finite-sample performance as a result of the notori-
ous “curse of dimensionality” that is common in nonparametric estimation prob-
lems We are using a multivariate kernel to estimate the innovation depsiy
The rate of convergence of multivariate kernel density estimators is well known to
be negatively related to the dimensionality of the d&tds consideration suggests
that our procedure is only useful in the estimation of fairly small systems

However there is a way to avert the curse of dimensionality if we are willing to

assume that our innovation densitée) belongs to the elliptically symmetric fam-
ily.* This is becausas can be seen from (2% e multivariate densitg(e) can then
be written in terms of a functiofi* whose argument isscalartransformation of the
data We can use this fact to reduce our kernel density estimation problem to a
univariate oneStute and Werner (1991) showed that kernel estimators that cor-
rectly impose elliptical symmetry restrictions have a rate of convergence that is
independent of dimensioBuch dimensionality reduction was employed by Bickel
(1982) in the estimation of a multivariate location model and by Hodgsioton,
and Choo (1997) in the estimation of seemingly unrelated regression (SUR) mod-
els Extension of this work to our model and to the triangular model estimator of
Hodgson (in press) should be feasible and is a topic for future research

(f) Our trimmed leave-one-oytGaussian kernel score estimaiid{t(x,e) is just one
among several valid possibilitie3eganathan (1995) used a similar estimator that
does not require the omission of an observatenmd Schick (1987) developed a
logistic kernel estimator that requires neither trimming nor the omission of an ob-
servation and that could presumably be shown to apply to our m@dejreater
interest would be the investigation of the applicability to nonstationary models of
the estimators of Kreiss (1987a) and Drost and Klaassen (in prsigh are ap-
plied respectively to AR and GARCH models and allow for asymmetric error
densities

(g) Some evidence on the finite-sample performance of the estimator developed in this
paper is provided in Hodgson (199%)hich reported the results of Monte Carlo
simulations and the application of our method to the estimation of a forward ex-
change market unbiasedness modéle simulation study compares the perfor-
mances of our adaptive estimator and Johansen’s (1988) Gaussian pseudo-MLE in
bivariate models for various sample sizes and error densliesadaptive estima-
tor exhibits significant improvements in a truncated mean-squared error criterion
for all non-Gaussian densities (Studert’'sariance-contaminated mixed normal
and bimodal mixed normal) and sample sizes (B, and 500) consideredhe
magnitude of the gains is found to be fairly insensitive to smoothing and trimming
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parameter variatigiwith the Silverman (1986) rule-of-thumb bandwidth generally
yielding good results

The empirical study reported in Hodgson (1995) evaluates a variant of the for-
ward exchange market unbiasedness hypothesis according to whicipéned—
ahead forward exchange rate between two currencies in periddshould be an
unbiased forecast of the spot rate between them in péridtis hypothesis is
generally tested by estimating a cointegrating relationship between the logarithms
of the spot rate and the lagged forward ratéh the unbiasedness hypothesis pos-
iting zero intercept and unit slope parameters Bdillie and Bollersley 1989
Baillie, Lippens and McMahon1983 Barnhart and Szakmar§991; CorbaeLim,
and Ouliaris 1992 Hakkio and Rush1989 Phillips, 1993 Phillips et al, 1996)
Hodgson (1995) estimated such a model using a sample of 650 daily observations
on the Canada—\3. spot and 90-day forward exchange rates using an error correc-
tion model and a maintained hypothesis of zero intercEpé Johansen (1988)
methodology yields a slope estimate 0887 with an estimated standard error of
0.033 The adaptive estimatousing this as the preliminary estimate and using the
Silverman (1986) rule-of-thumb bandwidtyields an estimate of.995 with as-
ymptotic standard error 0£026, a result that is highly insensitive to smoothing and
trimming parameter variation

5. CONCLUSIONS

In this paper we have demonstrated that reduced rank error correction models can
be adaptively estimatedssuming that the innovations in the underlying VAR are
drawn from a symmetric density functiowwe have shown how to construct con-
sistent nonparametric estimators of the score function of the unknown density of
the innovationsand we have demonstrated that the asymptotic efficiency gains
to be obtained from employing the adaptive estimator rather than a Gaussian
pseudo-MLE are identical to those obtained in an extremely broad class of sta-
tistical and econometric modelgcluding the most basic location parameter
problem We have also cited the simulation and empirical results reported in
Hodgson’s (1995) practical implementation of the procedure

As they standthe theory and methods developed here have the potential to be
of substantial value to practitionerfseverthelessfurther developments seem
desirableThe relaxation of the symmetry assumption (possibly along the lines of
Kreiss 1987h) is one direction in which the generality of the analysis could be
increased significantlyConverselyin cases where elliptical symmetry is a rea-
sonable assumptiofurther investigation of techniques of kernel estimation to
reduce a multidimensional density estimation problem to a one-dimensional prob-
lem could produce improved estimators for large systdfirslly, the range of
empirical situations to which the methodology is applicable would also be in-
creased by generalizing the analysis to allow for various possible specifications
of deterministic componenticluding the case of drifting variables

We might also want to extend the model to allow for the presence of higher
order dependen¢such as ARCH effectsn the innovationsindeed the inno-
vations to the error correction model of the daily exchange rate data analyzed in
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Hodgson (1995) appear to be subject to volatility clusterkiowever even if
unmodeled conditional or unconditional heterogeneity is present in the innova-
tions results derived in Hodgson (1996) suggest that the adaptive estimator con-
structed under the false assumption that the innovationsiatewill still have
desirable robustness properties and will be asymptotically more efficient than the
Gaussian pseudo-MLE

NOTES

1. It follows from this assumption that & A? = [ | ()|?p(e) de < oo, because\? = tr(Q).

2. Note thatBy is the coefficient matrix of the reduced form representation of the cointegrating
vectors that is analogous to the reduced form representation of a simultaneous equation$msdel
representation is valid under the assumption that the coefficient matix @mthe structural form of
the cointegrating vectors is nonsingul@ur identification assumption implies that the parameters of
this structural form can be uniquely recovered frBgm

3. Note that>_;8,H—1(9)QH,_1(0)'6, is not strictly speakingthe sample information (as
pointed out by a refereghecause it contains the population quantityHowever for ease of expo-
sition we shall continue to refer to it as the sample information

4. Thereis anintimate relationship between the assumption of elliptical symmetry of asset returns
and mean-variance asset pricing the@ge Chamberlain (1983pwen and Rabinovitch (1983nd
Ingersoll (1987Ch. 4).
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APPENDIX

Throughout the Appendjxve simplify notation by writingg;—1(#) in place ofg;(X;—1,6).

Proof of Lemma 3.1. By writing h, = (hjn, hin, hi,n, hgn)', we decomposé, into
components of respective dimensigmq?(k — 1), r, andr (q — r). These components can
be thought of as vectorizations of the matriegs ¢,, b, andb,, whose respective di-
mensions arg X r,q X q(k — 1), r X 1, andr X (q — r), and wherd¢,} is a bounded
sequenceUsing this notation and (3jve have

Gi-1(0) = X1 + AlXy -1 — By — BoXp 1] + ®Yy (A.1)
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and
Oi-1(6n) = X1 + (A + n_l/zan)[xl,t—l — (B + n"Y2by,) — (Bp + N~ tbp) X5 1-1]

+ (@ + 020 Yy

=0i-1(0) + n"Y2a,[ X1 -1 — By — BoXg—1] — nTTAB X511

—n Y2Ab, — n"¥2a,b, X5 1 + N Y26, Y, 1 — n"ta, by, (A.2)
Subtracting (A1) from (A.2) yields
4 (0n,0) = n" Y% (@,Vi1 + dn Y1 — Aby) — n7¥2a,b Xy

— N (Ab Xz, —1 + anbyn). (A.3)

Noting thatd,(6,,0) is a vector and applying the formula for vectorizing products of
matriceswe can rewrite (A3) as follows

dt(an»g)/ = h;nn71/2(|q® thl) + h;nn71/2(|q® Y(71) - h/Blnnil/zA/
- hi;nnil(A, ® X2,t—1) - n73/2(anbnxz,tfl)l - nil(anbln),a

from which (4) immediately follows u

Proof of Theorem 3.2. We begin by quoting Condition A and Proposition £, which
follow, as stated by Jeganathan (19p5848) According to Proposition £, the likeli-
hood ratios\ ,(6,,,6) have the asymptotic quadratic approximation given by (7) if Condi-
tion A.1 holds We therefore proceed to verify that ConditiorlAs satisfied for our model
To save spaceve only report the proof of (7) for the case where it is known Bat 0.
The extension to our more general model with nonzero intercepts follows very similar
lines In the course of checking Condition3 we shall prove the second part of the weak
convergence result (8)he proof of the first part of (§for the general modegis reported
immediately following our verification of Condition A.

Condition A1 and Proposition £ are as follows

ConditionA.1. There is a suitable sequen@g} of normalizing matrices such thdor
every boundedh,} (whereé,, = 6 + 8,h,), it holds that

n
> 1d(6n,0) — hid,H_1(0)]% = 0p(1) (A.4)
t=1
such that
n
> [hh8nH-1(0)[? = Op(1) (A5)
t=1
and
max_[h}8,H-1(0)? = 0,(1). (A.6)
te{l,..., n}

PROPOSITION A2. Under our assumptiong€ondition Al implies the quadratic ap
proximation gien by(7).
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Verification of Condition A.1. We now proceed to verify that equations.4)—(A.6)
are satisfied for our model
To verify (A.4), we must check that

n
N2> [X5,1branl? = op(D). (A7)
t=1
But (A.7) will hold as a result of the fact that
n n
n—2 21 IX5—1bhan? =n"2 > anb,Xp 1 X5 1bhan
t=

t=1

= Op(l)

(cf. Phillips and Durlauf1986)
To establish (A5), we shall verify (A8),

ha[i 6nH[71w>QHtfl<0)'an] hy = Oy(D) (A8)
t=1

in the process of which we also prove the second part ofT{8 following calculations
will prove useful

He@oH @ - | PO ]n[lq@)wb ~AQ X5 ]
__AI ®X2,t—1 ’
| @M ](Q@l)[l @M1, ~A® X5 1]
__A/®X2,t—1 q t—1» 2,t—1
3 Q@ M1 M{_; —O0AQ M_1 X511 }
L AQ® Xo M AOA® Xo 1 Xb 1]

from which it follows that

M:

6n Htfl(o)QHtfl(g)/ﬁn

t

1

.S N0 MM N Y20A® M X a9
Gl -0 RO @ Ko aMi1 NTPAQA® X1 Xbi1 ] '

We proceed to show that the matrix on the right-hand side d)(is Oy(1). To achieve
this, we show that the following results hold

n
n-t 219 ® M_1M{_1 = Q ® E[M{M{] + 0,(1), (A.10)
t=
n
n"¥2 3 0A® M1 X5 1 = 0p(1), (A.11)
t=1
and
n 1
N2> ANOA® Xor1Xb1-1 = A0A® f Z,75. (A.12)
t=1 0
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We obtain (A10) as a consequence of Lemma 1(iv) of Ahn and Reinsel (429815),
while (A.11) and (A12) can be shown to follow from Lemmasige) and (b)respectively
of Phillips and Durlauf (1986p. 477). In consequence of (A0)—(A12), we have

O ® E[MM(] 0

5n Ht—l(g)QHt—l(e)/an = (A13)

,,
\ZE]
i

1
0 ANOA® f 2,2}
0

Incidentally (A.13) indicates tha$,(6) = S(0), so that the second part of the convergence
result (8) in the theorem is established
To complete our proof of (7)wve must verify (A6), which can be rewritten as

{ N~ @ MM, N ¥PAQ@ M1 Xp 1

max hj
-n"32A ® X -1 M{_1 n2AA® X -1 X511

}hn— 0p(1).  (A.14)

We verify (A.14) by checking the following three conditians

max_[n~*M{ M| = 0y(1) Tj,
te{l n}

,,,,,

max [n~¥2M{_ 1 X} 4] = 0,(D) Oj, 1,
te{l n}

.....

max |[n 2XJ 1 Xb, 4| = 0,(1) Oj,1,
e X n}| 211 X511l (D 0j
where the superscripjgindl| represent thgth andl th elements of the respective vectors
Using the inequality

max |[Xyi| = max |x| max

te{1,..., n}‘ lyt' te{1,..., n}l t| te{l. |yt|

for scalar random variables; andy;, (A.14) follows because max;
0p(nY2) Oj and maxeqr,. | X{| = Op(n) j.

.....

We now complete our proof of Theoren23by verifying the first part of the conver-
gence result (8) for the general model (we can verify the second part of (8) for the general
model along the same lines as we derivedl@ earlier) To analyze the limit distribution
of the score\,,(6), we write it as follows

. —n"Y2(81) @ Mg

W,(0) = > nTY2AY(e) | (A.15)
Tl e ® X

We begin with an analysis of the first component of15),

-n~Y2 24’(&) &® M1

We can use a central limit theorem for stationary and ergodic procesge¥\(rite, 1984
p. 118) to show that

L<—n_1/2 leﬂ(st) ® Mt71|P0,n> = L(N(0,0 ® E[MM/])). (A.16)
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As for the second and third components ofXB), we use Lemma.3(e) of Phillips and
Durlauf (1986) to obtain

5 nA’ ( ! ) flA'dz (1>
nl:El (e ® Xo o1 = . 1 ® 2,)’

whereZ, is the Brownian motion with covariance matfixgenerated by the scaled partial
sums of thely (&)} and$, = diagin~v2l,,n"!,,_s_]. As shown in Lemma £8, which
follows, the Brownian motion process@sZ, andZ, are independenfrom which it fol-
lows that

. 1 A QA ANOA® Zb
L(f A’le®< ))—L MN| O, _ 1 ,
0 Z; AOAR Z, AOAR f Z,7%
0

(A17)

as shown by Phillips and Park (1988ut (A.17) will hold as a result of the following
lemma

LEMMAA .3. The Brownian motion processe&ZA and % are independent

Proof of LemmaA.3. Denote the Brownian motion process generated by scaled partial
sums of the innovationig;} by Z,,, with covariance matri% .. We begin by showing that
the covariance matrix betwe@n andZ, is the negative of an identity matriBecauséde, }
and{ys (¢;)} are both ii.d. zero-mean processehke covariance betweeh andZ, is equal
to E[¢(e)e’], so we must prove that

E[yi(e)e11=0 (A.18)
and

E[¥(e)e)] = -1 (A.19)
for everyj = 1....0 where the superscripts denote flile elements of the respective
vecE?rs ande™ = (e1,...,8-1,&+1,...,8q). We denote the marginal density ef! by
p(aAs)i.n Jeganathan (1995ye can use the law of iterated expectations to show thd§)A
is implied by

E[y)(e)le'1=10

or

flﬂj(S)(p(S)/D(s_i)) de! =0,

which holds by Lemma (a) on. A9 of Hajek and Sidak (1967)
By the law of iterated expectation@.19) will hold if we can show that

E[y!(e)el|e 1] = —1. (A.20)
We can write the left-hand side of (20) as
pie) | ple) | P

pie) “ pe ) )T pe)
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But our earlier moment conditions @randy () allow us to apply Lemma (b) on 20 of
Hajek and Sidak (1967) to show that

. Pe)
] ] = —
fs b)) de 1
The lemma then follows through a straightforward application of the argument in the first
column of p 818 of Ahn and Reinsel (1990) n
Continuing our proof that (W,(8)|Py.n) = L(MN(0,S(6))), we verify the following
equation
n
N2 AY(e)(e) @ Xor1M{ 1 = 0p(1). (A.21)
t=1

To this endwe rewrite the left-hand side of (A1) as

n

n
n-%2 EIA’(¢(81)¢(81), —0)® Xy -1M{_1 + n-%2 ZlA’Q ® X 1-1M{_1
= =

= 0y(1) + 0y(1).

The second term ig,(1) by (A.11), and as pointed out by a refergthe first term can be
shown to beoy(1) by a law of large numbers for martingale difference sequencgs (e
White, 1984 p. 58), using the facts thaE[M;M{] < co andn 1E[ Xy X5] < oo Ot =
1,...,n.

To complete our proof of (8jve consider the asymptotic behavior of the statigtit),(6),
for any realm-vectory = (y1,y3)’, where the subvectorg, andy, have respective di-
mensions o andm — s. It follows from (A.16), (A.17), and (A21) that

L(y"Wa(60)|Pg,n) = L| N(O,y1[Q &® E[ MM{]]y1)

A QA ANOA® Zb

+ MN| 0,72 Y2

1
AOARZ, AQAR f 2,75
0
= L(MN(0,y'S(0)7)),
from which (8) follows This completes the proof of Theoren23 u

Proof of Lemma 4.3. This follows directly from Proposition 3 and Theorem 2 of Je-
ganathan (1995)sing the facts thab is open §,, — 0, and$,, is independent of. M

Proof of Theorem 4.4. We obtain (18) from (12) and (1,Avhile equation (17) follows
from Proposition 15 of Jeganathan (1988pndition A1 as given earlieand verification
of the following condition (Condition (BB) in Jeganathgri988)

Condition A.4. Verify that, for everyj = 1,...,q, for every bounde¢h,}, and for every
u, it holds that

n . .
Z |U’5nHtJfl(0n) - u,‘antLl(e)‘z = Op(l), (A-22)
t=1
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and

max n\6 H{ 1(0)]2=0 NE) (A.23)

te{l,...,

We begin by checking (&2), which can be rewritten as

u 5n<2 Ht]—l(en)HtJ—l(en)’>6nu - u/6n<2 Htj—l(e)Htj—l(en),>6nu
t=1 t=1

n . . n . .
- U’6n<zl Htjfl(en)HtLl(a)) 5nl'I - u’8n<21 Htjfl(e) Htjfl(g)/> Snu = Op(l)»
t= t=
(A.24)
which holds because each of the four terms on the left-hand side.2fi|Aonverges
weakly tou’Si(9)u, whereSi(9) is defined by writing
q g

S(9) = E ; 1 S(0).

We verify (A.23) by writing its left-hand side as
n_l/zbj ® M[71
max n . , (A.25)
el | —n"rAG) ® Xao1

whered) denotes th¢th column of the identity matrix and( j) denotes thgth row of the
matrix A. We can rewrite (A25) as

max n[n_l I @ M{_1Me—1 + N T2A()A()) ® X5 —1X21-1]

tefl,...,
= e ?nax [M{_ 1M1 + N~ HAG)AG) ) Xb -1 X5, -1]
= Enax M{- 1 M- 1t _max n THAGDAG))Xg -1 X211
= p(l) + Op(l) = p(l),

completing our proof of the theorem u

Proof of Theorem 4.5. From (11) and (2Q)it follows that

80 (0 — 0n) = STIWL(0:7) — SHOR ) Wa(677). (A.26)
Using (18) we have
Wa(0:7%) = Wh(0) — Sh(B)hy + 0p(1) in Py p. (A.27)
Combining (A27) and (15) gives us
Wa(05%) = Wh(8) — Si(0)hy + 0p(1) in Py, (A.28)
so that the second term on the right-hand side o2§\becomesusing (19) and (A28),
=S HOWL(0) — Si(@)ha] + 0p(1)  in Py . (A.29)

https://doi.org/10.1017/50266466698141026 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466698141026

ADAPTIVE ESTIMATION OF ERROR CORRECTION MODELS 69

By definition,
S =S0) + 0,(1) NPy, (A.30)
while (12) gives
Wh(65) = Wh(6) — Sihy + 0p(1)  in Py,

=W,(0) — Sy(0)h, + 0p(1) in Py p, (A.31)
the second equality holding because of3®). Combining (A30) and (A31) gives
S WL (677) = SO WL(0) — Si(0)ha] + 0p(1) in Py, (A.32)

Using (A.26), (A.29), and (A32), the desired result (21) follows n
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