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Abstract. In the present paper the long-term behavior of the nonlinear dynamical
evolution of modulational instability is investigated by using a simplified model
for one-dimensional Zakharov equations, which couples the electrostatic electron
plasma wave and ion-acoustic wave propagation. The manuscript details on the
occurrence of fixed points and fixed-point attractors for a suitable value of the
wavenumber of perturbation through associated bifurcations, both for the adiabatic
(nonlinear Schrödinger equation) and non-adiabatic cases for Zakharov equations.
It is shown that these evolutions are quite sensitive to initial conditions, Fermi–
Pasta–Ulam recurrence is broken up and a chaotic state develops for the non-
adiabatic case. Regular patterns with a periodic sequence in space and time and spa-
tiotemporal chaos with irregular localized patterns are formed in different regions
of unstable wavenumbers, hence producing a self-organizing dynamical system.
The results are consistent with those obtained by numerically solving Zakharov
equations as previously reported and summarized in the present manuscript.

1. Introduction
In various branches of physics there is an interest in the stability of (simple)
solutions of nonlinear problems. These solutions, which are usually equilibria of
the related physical system, are in many cases found to be unstable to infinitesimal
perturbations. The question then arises as to whether the physical system can evolve
from unstable (relatively simple) equilibrium to a more complicated equilibrium
(limit cycle behavior). If dissipation is present, limit cycle behavior seems likely
to occur because the tendency towards a new equilibrium is accompanied by an
increase in the entropy of the system. However, when dissipation is absent, it is not
at all obvious that the limit cycle behavior occurs. After reaching maximum amp-
litude the unstable mode decreases in amplitude and eventually returns to its initial
value and this process is repeated in time. This long-term, periodic behavior of the
nonlinear system has become known as the Fermi–Pasta–Ulam (FPU) recurrence
phenomenon.
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Extensive research has been done to study the above phenomenon where the
nonlinear Schrödinger (NLS) equation is considered as the basic envelope equation
of a dispersive wave system that is weakly nonlinear and has also found numerous
applications in plasma physics, in the theoretical study of deep water waves [1, 2]
and also as a model for nonlinear pulse propagation in fibers [3]. The Zakharov
equations

i
∂E

∂t
+

∂2E

∂x2
= nE, (1a)

∂2n

∂t2
− ∂2n

∂x2
=

∂2

∂x2
|E|2, (1b)

where E(x, t) is the dimensionless slowly varying (in time) envelope of the
high-frequency electric field, n(x, t) is the dimensionless low-frequency density
fluctuation associated with the ion-acoustic field, t is the dimensionless time and
x is the dimensionless distance, are (along with their extended forms) also used as
model equations in the study of ionospheric heating by radiowaves in the F layer
for the study of Langmuir turbulence [4], resonant absorption of laser beams near
the critical density region [5,6] and stimulated Raman and Brillouin scattering in a
laser plasma interaction in a fully nonlinear stage as investigated in [7]. In plasmas,
the NLS equation describes the modulational instability (MI) of the monochromatic
Langmuir waves [1, 8–11]. For initial conditions that decay sufficiently with large
distances, the NLS equation is integrable by the inverse scattering transform and
admits asymptotically a finite number of stable solitons [12, 13]. For spatially
periodic (in space) fields the numerical results of Yuen and Fergusen [2] have
predicted FPU recurrence. Infield [8] has also developed a model to explain this
recurrence by taking the first few harmonics and predicting that the actual amp-
litude of the harmonics is less than that predicted by the numerical simulation of
Yuen and Fergusen [2]. Moreover, two patterns of development exist for the NLS,
which has been investigated numerically by Moon [9]. Goldstein and Rozmus [10]
have constructed a model for the nonlinear evolution of modulation instability using
the Ritz variational method to predict the development of instability through the
localization to a quasi-soliton state and a periodic recurrence of the initial condition.
Similar methods have also been used to investigate the evolution of Gaussian-shaped
pulses connected with the Zakharov equations by Bhakta [14]. Tracy and Chen [11]
dealt with the so-called N -phase wavetrain solutions of the cubic Schrödinger
equation and discussed the recurrence phenomena for systems with a finite spatial
period as well as developing a method for calculating the recurrence time.
The NLS equation, which is the adiabatic limit of the Zakharov equations coup-

ling the electrostatic plasma wave and ion-acoustic wave propagation [12,13], is not
able to give a complete picture of the nonlinear saturation mechanism. The effect
of relaxing the condition of adiabaticity may modify the nonlinear evolution of the
modulational instability and the FPU recurrences. Moreover, spatiotemporal chaos
in a continuum Hamiltonian system is an important subject used to investigate
the long-term behavior of a volume preserving system with an infinite number of
degrees of freedom, which leads to a solitary pattern.
In this paper we continue our interest in extensively modeled examples of re-

currence, namely, in the modulational instability (also known as the Benjamin–
Feir instability, or side-band instability), using one-dimensional (1D) Zakharov
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equations, which are one of the most extensively studied models used to describe
strong turbulence in plasmas. We develop a simplified model that is used to explain
the temporal features of the evolution pattern as predicted numerically using the 1D
Zakharov equations. This model not only establishes the fact that as the condition
of adiabaticity is relaxed and the recurrence disappears but also that the existence
of a chaotic state can be established. Furthermore, this paper also reports on
the stability of the system through associated equilibrium points and bifurcations
analytically, using the simplified model. A fixed-point analysis of the system using
the simplified model indicates the presence of a fixed-point attractor at the same
value of wavenumber of perturbation where complete FPU recurrence is obtained
numerically. Results are consistent with those obtained numerically as also from
using the Zakharov model.
In Sec. 2 we derive dynamical equations for the simplified model. In Sec. 3, we

compare the computer simulation results from the simplified model for the non-
adiabatic case with those obtained by solving 1D Zakharov equations numerically.
Section 4 gives a detailed stability analysis of the model with the help of various
simulations and discusses the conditions of stability with associated fixed points
and attractors for the non-adiabatic and the adiabatic case for a specific value of
the wavenumber of perturbation. We present concluding remarks in Sec. 5.

2. Simplified model equations
In order to study the stability of the field envelope to infinitesimal perturbations
we describe the general solution as a superposition of a set of normal modes as

E = E0(t) + E−1(t)e−iαx + E1(t)eiαx, (2)

where
E−1(0) = E1(0)

and
n = n0 + (n1(t)eiαx + n2(t)e2iαx + c.c.). (3)

Similar methods have been used in fluid dynamics by Benney [15] where it was
shown that if the amplitudes of the three primary waves are regarded as slowly
varying functions of time, rather than as strict constants, the interactions can be
described by much simplified equations that are apparently valid even when the
amplitude in the fourth mode becomes comparable with that in the other three.
Complete solutions of Benney’s equations, which are periodic functions of time,
were obtained by Bretherton [16]. Rowlands and Janssen [17] independently used
the fact that, for a wavenumber sufficiently near the critical value, calculations
to study the FPU recurrence in the NLS equation can be somewhat simplified.
They obtained the long-term behavior of the modulation of the linearly unstable
mode in this limit, leading to a qualitative confirmation of the numerical results of
Yuen and Fergusen [2]. A more general calculation using similar methods in which
the wavenumber is not restricted for the NLS equation was given by Infield [8].
Substituting the above expressions in (1a) and on comparing coefficients we

obtain the following three equations,

iĖ0 = n0E0 + n1E−1 + n∗
1E1, (4)

iĖ−1 = α2E−1 + n0E−1 + n∗
1E0 + n∗

2E1, (5)

iĖ1 = α2E1 + n0E1 + n1E0 + n2E−1. (6)
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Multiplying (4) by Ė∗
0 and subtracting the complex conjugate of the resulting

equation from itself gives

i ˙|E0|2 = n1(E−1E
∗
0 − E∗

1E0) + n∗
1(E1E

∗
0 − E∗

−1E0). (7)

Similarly on using (5) and (6) we obtain

i ˙|E−1|2 = n∗
1E0E

∗
−1 + n∗

2E1E
∗
−1 − n1E−1E

∗
0 − n2E

∗
1E−1 (8)

and

i ˙|E1|2 = n1E0E
∗
1 + n2E−1E

∗
1 − n∗

1E1E
∗
0 − n∗

2E
∗
−1E1. (9)

Adding (7), (8) and (9) gives the following conservation equation consistent with
the definition of the number of plasmons, N :

|E0|2 + |E1|2 + |E−1|2 = N. (10)

We introduce the variables ρ0, θ0, ρ1, θ1 according to

E0 = ρ0e
iθ0 , E1 = E−1 = ρ1e

iθ1 (11)

and ϕ = θ−
0 θ1 with ρ0 =

√
n0 sin z, ρ1 =

√
n0/

√
2 cos z, a = 2z.

Substituting (2) and (3) in (1b) with the assumption n1 = n∗
1 and using (11) gives,

on using n0 = N ,

n̈1 + α2n1 = −α2N sin a cos ϕ. (12)

Furthermore,

ȧ = −4n1 sin ϕ (13)

and

ϕ̇ = α2 − 2n1 cot a cos ϕ. (14)

Under the assumed equations (11), (2) and (3) can also be written as

E =
√

N sin(a/2)eiθ0 +
√

2N cos(a/2)eiθ1 cos(αx) = E0 + 2
√

2E1 cos αx

and

n = N + n1 cos(αx). (15)

When we assume the adiabaticity condition, the dynamical system can be written
in Hamiltonian form as

ϕ̇ =
∂H

∂a
(16)

and

ȧ = −∂H

∂ϕ
(17)

where

H = α2a + N sin a + N sin a cos 2ϕ. (18)

3. Numerical solution to 1D Zakharov equations
We solve (1a) and (1b) numerically in a periodic box for the initial condition

E = A0(1 + βeiγ cos αx), (19)

where A0 is the amplitude of the pump Langmuir wave, β and γ are the para-
meters governing the magnitude and the phase of the perturbation while α is the
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Figure 1. 3D field plot of the electric field for the Zakharov equations solved numerically
for the initial condition (19) with A0 = 1, β = 0.1, γ = 0 and α = 1.2 showing no FPU
recurrence as opposed to that obtained for the NLS case (see [9]).

wavenumber of the perturbation. This initial condition corresponds to a slightly
perturbed plane Langmuir wave solution of the Zakharov equations. A pseudo-
spectral method was used for space integration and a modified version of the
Gazdag [18] predictor–corrector method was employed to investigate the evolution
in time. The linear evolution is exactly integrated, forming an important feature of
the code so as to accurately reproduce the instability, and a variable time step was
used in order to monitor the invariants to the desired accuracy. Different evolution
patterns are obtained with variations in the wavenumber of perturbation α. We
have reported the patterns with their explanation in [19], giving details on the
associated Lypaunov exponents describing the field trajectories. To compare the
results of the simplified model with those obtained by numerically simulating the
Zakharov equations we choose one typical case when A0 = 1, β = 0.1, γ = 0
and α = 1.2. The chosen parameter values correspond to the case where the NLS
equation has the maximum growth rate for MI and also exhibits FPU recurrence.
Figure 1 illustrates the three-dimensional (3D) spatio-temporal evolution of the
electric field for the 1D Zakharov equations for the chosen parameter values.
It has already been reported by the authors in [19] that by suitably changing

the wavenumber of perturbation, a Zakharov system can arrive at a periodic self-
organized state exhibiting complete FPU recurrence. Bifurcations exist that
separate the dynamical system from a chaotic to a periodic to a chaotic state.
One such bifurcation point extensively studied by the authors numerically in [19]
is at α = 1.39. For reference, Fig. 2(a) is reproduced in this research paper depicting
the 3D spatio-temporal evolution of the field profile for this value along with its
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(a)

(b) (c)

(d) (e)

Figure 2. (a) 3D field plot of the electric field for the Zakharov equations solved numerically
for the initial condition (19) with A0 = 1, β = 0.1, γ = 0 and α = 1.39 illustrating
complete FPU recurrence. Time evolution of the absolute value of the Fourier component of
the electric field for the Zakharov equations solved numerically for the initial condition (19)
with A0 = 1, β = 0.1, γ = 0 and α = 1.39 (b) illustrating the maximum energy contained
in the lowest order mode k = 0, (c) for k = α = 1.39, (d) for k = α = 2.78 and (e) for the
first three harmonics.
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contour plot. Complete periodicity (FPU recurrence) is obtained. Figures 2(b), 2(c)
and 2(d) depict the time evolution of the absolute values of the Fourier components
of the field for the first three harmonics illustrating that the energy in the system
is confined to a few low modes, a characteristic feature of FPU recurrence. Similar
behavior is also observed for the adiabatic case (NLS) [10]. Figure 2(e) reproduces
the result for the adiabatic case.
Comparing (15) from the simplified model with the initial condition (19) allows

us to define the following initial conditions (the subscript 0 identifies initial values
of the parameters) for the solution of the simplified model:

z0 = arctan
(√

2
β

)
, ϕ0 = −γ = 0, Plasmon number,

N = A2
0

(
1 +

β2

2

)
, n10 = −N sin 2z0 cos ϕ0.

4. Nonlinear analysis of the system
4.1. Non-adiabatic case

In the non-adiabatic case, the simplified model (12)–(14) has been used to study
the evolution of the electric field and density. Preliminary results comparing the
results from the Zakharov model and the simplified model for the adiabatic case
have been reported by the authors in [19]. However, we find that the simplified
model can predict not only the existence of chaos but can also be used for in-
depth analysis to investigate variation from a chaotic to a self-organized state
through a careful numerical simulation of associated bifurcations. The wavenumber
of perturbation α = 1.2, which corresponds to the maximum growth rate of MI for
the NLS case, depicting complete FPU recurrence, illustrates a completely chaotic
behavior for the non-adiabatic case (Fig. 3) through the simplified model. Figure 4
for α = 1.41 depicts a fixed-point attractor that draws the system to a single point
in phase space for the non-adiabatic case, obtained through the simplified model
and also through the Zakharov model (within the limits of numerical accuracy)
consistent with the behavior depicted in Fig. 2(a) forα = 1.39 through the numerical
Zakharov model. Also note that the restricting volume in phase space attributed
to constant ϕ values up to third decimal and in a values up to second decimal,
a characteristic feature of self-organization. We report that α = 1.4 (up to the
first decimal place) is indeed a point of bifurcation, separating the dynamical
system into two distinct dynamical behaviors. The behavior is highly sensitive
to initial conditions as illustrated in Figs 5(a), 5(b) and 5(c) with minor variations
in the initial amplitude, wavenumber and amplitude of perturbation, a behavior
characteristic of nonlinear self-organizing dynamical systems.
For the evaluation of fixed points, ȧ = 0 from (13) implies ϕ = nπ which when

used with ϕ̇ = 0 from (14) gives α2 = 2n1 cot a cos ϕ changing sign with n even or
odd. Furthermore, from (12) with v = ṅ1 = 0, n1 = −N sin a cos ϕ.
Solving the two equations for n1 and a for a fixed wavenumber of perturbation

and plasmon number, the ordered pair(
nπ, −1

2
N

[
4N2 cos4 ϕ − α4

N2 cos4 ϕ

]1/2

cos ϕ, π − cos−1

(
1
2

α2

N cos2 ϕ

))
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Figure 3. Phase space plot for the Zakharov equations through the simplified model with
A0 = 1, β = 0.1 and α = 1.2 showing no FPU recurrence. This behavior is consistent with
that obtained in Fig. 1 obtained numerically.

Figure 4. Phase space (a, ϕ) plot in the adiabatic case when A0 = 1, β = 0.1 and α = 1.41
using the simplified model showing near periodicity consistent with the behavior depicted in
Fig. 2, illustrating the presence of a fixed-point attractor. Numerical simulation indicates n1

oscillates around 0.1480 as also proved analytically in the manuscript. Points on the x-axis
are obtained after multiplying by a factor of 103. The solid curve is obtained through the
simplified model and the dotted points are obtained through the Zakharov model.

defines the equilibrium points or fixed points for the 3D system (ϕ, n1, a).
The values of n1 and a, ignoring negative values for n1 and hence even values
of n, can be further simplified and for one value of wavenumber of perturbation the
fixed point (cos ϕ = 1) can be defined as(

2nπ,
1
2
N

[
4N2 − α4

N2

]1/2

, π − cos−1

(
1
2

α2

N

))
.

With initial amplitude A0 = 1, plasmon number N = 1.005 and α = 1.41 the
fixed point is (2nπ, 0.1480, 2.9938) as illustrated in Fig. 4 where one can view the
convergence to this fixed-point attractor in the limit of numerical investigations,
also indicating that the system restricts itself to a point in phase space and hence
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(a)

(b)

a

a

Figure 5. (a) Phase space (a, ϕ) plot in the non-adiabatic case when A0 = 1.0, β = 0.1 and
α = 1.42. Notice a break up of periodicity in the trajectory with a slight increase in the
wavenumber of perturbation and (b) when A0 = 1.0, β = 0.5 and α = 1.41 with an increase
in the amplitude of perturbation again depicting a break up of periodicity.

an attractor of the system. Deviating the wavenumber of perturbation slightly at
initial amplitude A0 = 1 and plasmon number N = 1.005 to α = 1.2 (refer Fig. 3)
the fixed point is (2nπ, 0.7012, 2.3695).
We introduce four variables f , g, v and q through the following relations

f = ȧ, g = ϕ̇, v = ṅ1, q = v̇ (20)

such that on using (12), (13) and (14) the dynamical equations can be written as

f = −4n1 sin ϕ, (21)

g = α2 − 2n1 cos ϕ cot a (22)

and

v̇ + α2n1 = −α2N sin a cos ϕ (23)

https://doi.org/10.1017/S002237780500423X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780500423X


680 K. Batra, R. P. Sharma and A. D. Verga

in a, v, ϕ, n1 so that the simplified model can be treated as a four-dimensional (4D)
continuous autonomous chaotic system. We will now analyze the basic properties
of this system.
From (21)

∂f

∂a
= 0,

∂f

∂v
= 0,

∂f

∂ϕ
= −4n1 cos ϕ,

∂f

∂n1
= −4 sin ϕ.

From (22)
∂g

∂a
= 2n1 cos ϕ cosec2 a,

∂g

∂v
= 0,

∂g

∂n1
= −2 cos ϕ cot a,

∂g

∂ϕ
= 2n1 sinϕ cot a.

Similarly, on using (20) and (23) the characteristic equation for the associated
stability matrix is given as

(1 − λ)

∣∣∣∣∣∣
−α2 − λ α2N sin a sin ϕ −α2N cos a cos ϕ

−2 cos ϕ cot a 2n1 sin ϕ cot a − λ 2n1 cos ϕ cosec2a
−4 sin ϕ −4n1 cos ϕ −λ

∣∣∣∣∣∣ = 0. (24)

The above equation can be solved as

(1 − λ)[−λ3 + λ2t1 + λ(t2 + t3 + t4) + (t5 + t6 + t7)] = 0 (25)

where we introduce variables ti (i = 1 . . . 7) through the following equations:

t1 = 2n1 sinϕ cot a − α2, (26)

t2 = −8n2
1 cos2 ϕ cosec2a, (27)

t3 = 2n1α
2 sin ϕ cot a, (28)

t4 = α2N sin 2ϕ cos a, (29)

t5 = −8α2n2
1 cos2 ϕ cosec2a, (30)

t6 = −8α2n1N cot a cos a cos ϕ, (31)

t7 = −4α2n1N cosec a sin ϕ sin 2ϕ. (32)

The associated eigenvalues (denoted by S) are

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
C

1/3
1

6
− 6C2 +

t1
3

−C
1/3
1

12
+ 3C2 +

t1
3

+
1
2
i
√

3
(

C
1/3
1

6
+ 6C2

)

−C
1/3
1

12
+ 3C2 +

t1
3

− 1
2
i
√

3
(

C
1/3
1

6
+ 6C2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

where

C1 = 36t1t2 + 36t1t3 + 36t1t4 + 108t5 + 108t6 + 108t7 + 8t31

+ 12
(
54t1t3t6 − 6t3t4t

2
1 − 6t2t3t

2
1 + 54t1t2t7 + 54t1t2t6 − 72t2t3t4

+ 54t1t4t7 + 54t1t4t6 − 6t2t4t
2
1 + 54t1t4t5 + 54t1t3t5 + 54t1t2t5

+ 54t1t3t7 − 36t22t3 − 36t22t4 − 3t22t
2
1 − 36t2t

2
3 − 36t2t

2
4 − 36t23t4

− 3t23t
2
1 − 36t3t

2
4 − 12t32 − 12t33 − 12t34 − 3t24t

2
1 + 81t25 + 162t5t6

+ 162t5t7 + 12t5t
3
1 + 81t26 + 162t6t7 + 12t6t

3
1 + 81t27 + 12t7t

3
1

)1/2
(34)
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Figure 6. Variation of absolute values of eigenvalues λ2, λ3 and λ4 with wavenumber of
perturbation α for the non-adiabatic case.

and

C2 =
(

−t2
3

− t3
3

− t4
4

− t21
9

)/
C

1/3
1 . (35)

We denote the four eigenvalues by λ1, λ2, λ3 and λ4. The first eigenvalue, λ1 = 1 (33)
is real and greater than 0. The third and fourth eigenvalues, λ3 and λ4 are complex
conjugates of each other, indicating the existence of elliptic equilibrium points
(see Fig. 4) unstable to slight perturbations (Figs 5(a) and 5(b)). Equation (33)
was solved numerically for varied values of the wavenumber of perturbation α.
Figure 6 shows the variation of the absolute values of the eigenvalues λ2 (dotted
curve), λ3 (dashed curved) and λ4 (solid curve) in the same graph. With specific
reference to points B and C in the graph at point B, α = 1.329(|λ2| = |λ4| = 0.8405)
and at point C, α = 1.417(|λ2| = |λ4| = 2.172). Beyond point D the eigenvalues
are completely distinct. For α values between B and C, λ2 and λ4 are complex
conjugates of each other, corresponding to the existence of elliptic fixed points
as obtained numerically. We also report that the unstable fixed points predict
exactly the same growth rate of MI as expected by Zakharov equations in the
linear stage [20] justifying the correctness of the model (from the theoretical point
of view) in the linear limit.
A second approach to investigate the stability could be to substitute the value

of n1 obtained numerically (for α = 1.41, n1 = 0.1480) in (13) and (14) and hence
reduce the 4D system to a system of two coupled first-order differential equations.
For α = 1.41 these equations are

va(a, ϕ, t) = ȧ = 0.592 sin ϕ (36)

and

vϕ(a, ϕ, t) = ϕ̇ = 1.9881 − 0.296 cot a cos ϕ. (37)

Dividing and eliminating time

da

dϕ
=

0.592 sin ϕ

1.9881 − 0.296 cot a cos ϕ
(38)

determines the phase curve with the phase velocity v(a, ϕ).
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Solving the stability matrix for a system of equations (36) and (37) for eigenvalues
yields

λ1,2 =
p1

2
±

√
p2
1 + 4p2

2
(39)

where p1 = 0.296 cot a sin ϕ and p2 = 0.592 × 0.296 cos2 ϕ cosec2a. For ϕ = 0 and
for a > 1 eigenvalues are complex conjugates of each other with a positive real part
and hence the equilibrium points are elliptic fixed points.
Figures 7(a) and 7(b) depict the bifurcation diagram for n1 iterates with varying

values of α for β = 0.1 and β = 0.2 with ϕ0 = 0. The behavior remains the same
with any initial value of ϕ0 = nπ. However, the attractor at α = 1.41 (Fig. 7(c)) is
sensitive to the initial value of ϕ0�nπ. Figure 8 gives the bifurcation diagram for
amplitude a corresponding the bifurcation point at α = 1.41.

4.2. Adiabatic case

Using (18) in (16) and (17) we get the following dynamical equations for the adia-
batic case:

ϕ̇ = α2 + n0 cos a(1 + cos 2ϕ) (40)

and

ȧ = 2n0 sin 2ϕ sin a. (41)

Aiming for a determination of fixed points, from (41) ȧ = 0 implies either that
a = nπ or ϕ = nπ/2 with values of n starting from zero (calling the former as
case (a) and the latter as case (b) for future citations in this research paper). For
case (a) and case (b) on using (40) with ϕ̇ = 0 implies

for case (a) when a = nπ, ϕ =
1
2

cos−1

[
−

(
α2 + n0

n0

)]
, (42)

for case (b) when ϕ = nπ/2, a = cos−1

(
−α2

2n0

)
, (43)

α and n0 being positive the argument in (42) would always be greater than one
giving complex values of phase ϕ compared with the argument in (43), which could
give real values for a when α2 < 2n0. Results for case (a) and case (b) are also
evident by solving the associated eigenvalue equations with the stability matrices,

Ma =

⎡
⎢⎢⎣

∂f

∂a

∂g

∂a

∂f

∂ϕ

∂g

∂ϕ

⎤
⎥⎥⎦ =

[
2n0 sin 2ϕ 0

0 −2n0 sin 2ϕ

]
, Mb =

[
0 −n0 sin a

4n0 sin a 0

]
,

with corresponding eigenvalues given as

λa1 = ±2n0

√
−α2

n0

(
2 +

α2

n0

)
(when cos a = +1),

λa2 = ±2n0

√
−α2

n0

(
2 − α2

n0

)
(when cos a = −1)
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Figure 7. (a) Bifurcation diagram for n1(α ∈ [1, 2]), a0 = 1.0 and β = 0.1, ϕ0 = 0.
Notice the single value of n1 near the bifurcation point, (b) a0 = 1.0, β = 0.2 and
ϕ0 = 0. Notice the single value of n1 near the bifurcation point and (c) a0 = 1.0, β = 0.1,
ϕ0 = π/2. Notice the single value of n1 near the bifurcation point.
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Figure 8. Bifurcation diagram for a (α ∈ [1, 2]), β = 0.1 and ϕ0 = 0. Notice the
convergence to a single value near the bifurcation point.

and

λb = ±2n0

√
α2

2n2
0

− 1.

Since the eigenvalues of the stability matrix for case (a) are purely imaginary the
fixed points are elliptic. For case (b) with α = 1.2, λb is again negative demonstrat-
ing elliptic fixed points, which is also evident from Figs 9 and 10 with slightly varied
values of β (the amplitude of perturbation). One can see the existence of regular
orbits is consistent with the results obtained for the NLS case [1, 2, 8–10]. For
α2 > 2n0 roots are real with opposite signs. We could equivalently start simulations
with any other value of ϕ, the nature of stability remaining the same with variations
in perturbation wavenumber. Thus, we report that the allowed range of α2 is given
by 0 < α2 < 2N .
Corresponding to unstable fixed points, the growth rate of instability γI is given

by

γI = (−α4 + 2Nα2)1/2 ≡ γMI

where γMI is the linear growth rate of MI as predicted by the NLS equation [1, 2,
8–10], expressed in terms of amplitude.

5. Conclusions
The numerical solutions of the Zakharov equations reveal that nonlinear evolution
patterns of MI are quite sensitive to initial conditions. The field in these patterns
becomes localized and delocalized but not in a periodic manner as observed in the
nonlinear evolution of the 1D NLS equation for the same values of the perturbing
wavenumber. We find, in contrast to the NLS equation, the Zakharov equations
describe a more realistic evolution of the MI. We define a simplified model for the
1D Zakharov equations that establishes the fact that, as the condition of adiabati-
city is relaxed, the FPU recurrence disappears and the chaotic state is observed.
The route from the periodic to quasi-periodic to spatiotemporal chaos is studied
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Figure 9. Phase space (a, ϕ) plot in the adiabatic case when A0 = 1, β = 0.1 and α = 1.2
using the simplified model. Plasmon number N = 1.005 (elliptic fixed point in case (b) with
complex eigenvalues).

Figure 10. Phase space (a, ϕ) plot in the adiabatic case when A0 = 1, β = 0.3 and α = 1.2
using the simplified model. Plasmon number N = 1.0450 (elliptic fixed point in case (b) with
complex eigenvalues).

both numerically and through a simplified model by varying the wavenumber of
the perturbation. Results are compared with the numerical results obtained form
the Zakharov model. The route from periodic to chaotic behavior is also observable
for variations in other input parameters such as β and γ. This research paper
further reports the occurrence and the nature of elliptic fixed points (adiabatic case)
and a fixed-point attractor (non-adiabatic case where complete FPU recurrence is
achieved) for suitable values of wavenumber of perturbation for adiabatic and non-
adiabatic cases, respectively. A phase space and bifurcation analysis of the system
illustrates that the dynamical system shrinks to a limited volume in phase space
for α = 1.41, indicating general self-organization leading to a point attractor as is
also apparent numerically through the Zakharov model in the same graph.
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