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The acquisition of signals is a precondition for tracking and solution calculation in software-
based Global Navigation Satellite System (GNSS) receivers. The Parallel Code phase Acquisi-
tion (PCA) algorithm can simultaneously obtain the correlation results at every sampling point.
However, if the number of sampling points that needs processing is large, this method will
lead to a heavy computational load. Thus, we improve the process of the PCA algorithm and
propose a novel algorithm that divides the signals into K (K is a constant) parts to achieve
correlation and obtains the correlation results with a fusion algorithm. This algorithm can simul-
taneously obtain the correlation results for sampling points at an interval of K points. If the K
value is selected appropriately, the computational load can be decreased by about 50%. Also, the
Receiver Operating Characteristic (ROC) curves show that under a certain probability of false
alarm, the detection probability of the proposed algorithms is 5% lower than that of the PCA
algorithm. Therefore, the proposed algorithm can speed up the acquisition process with a slight
decrease in detection probability.
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1. INTRODUCTION. The BeiDou Navigation Satellite System, which is a Chinese
global satellite navigation system, has gradually been brought online in the last few years.
The China Satellite Navigation Office (2013) has released the Interface Control Document
(ICD) for open service signals B1 and B2. This indicates that BeiDou can provide users
with a dual-frequency high precision positioning service. A satellite navigation receiver
can receive the signals broadcast by the satellites in view and process them to provide loca-
tion and navigation information. The key part is baseband signal processing, which is based
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on the acquisition algorithm. The operating time of the acquisition algorithm will directly
affect the Time To First Fix (TTFF) of the receiver (Jan and Lin, 2009). CB2I is the same
as the Coarse/Acquisition (C/A) code of the Global Positioning System (GPS) in sequence
generation, which is generated by two series of Gold code sequences. The difference is that
the Gold code in CB2I is generated through 11 shift registers, while the Gold code in C/A
code is generated from ten shift registers. The code rate of BeiDou CB2I code is twice that
of GPS C/A code. In order to ensure acquisition accuracy, the sampling rate of the B2 sig-
nal needs to be increased accordingly. The number of sampling points to be processed by
the acquisition algorithm will also increase. Using the traditional algorithm will extend the
acquisition time. Therefore, it is necessary to study the fast acquisition algorithm (Simone
et al., 2011) to reduce the receiver delay (Zhang et al., 2016; Jin et al., 2015).

When the software receiver demodulates and spreads received signals, there are three
important parameters: the number of satellites in view, the Doppler frequency offset and
the code phase shift. The process of signal acquisition can be seen as a three-dimensional
search for the above three parameters (Tsui, 2005). The Serial Search Acquisition (SSA)
algorithm mainly takes advantage of the correlation property of the ranging code (that is the
C/A code or CB2I code) and scans all the cells in the search space (Polydoros and Weber,
1984). To speed up the acquisition process, Van Nee and Coenen (1991) applied a Fast
Fourier Transform (FFT) to the correlation of the ranging code and proposed the Parallel
Code phase Acquisition (PCA) algorithm. This converted correlation in the time-domain
to a multiplication in the frequency-domain and obtained correlation results at every sam-
pling point at one time. Thus, only a two-dimensional search for the received signal was
needed. In this way, the computational load was significantly reduced. However, the com-
putational load is still large when the satellite signal is long or the sampling frequency is
high, so many researchers have studied acquisition algorithms based on PCA algorithms.
For instance, Starzyk and Zhu (2001) combined an Averaging Correlations (AC) method
with the PCA algorithm and proposed the AC-PCA algorithm. This divided the 5,000-point
FFT to six 1,023-point FFTs in the correlation operation. Fantino et al. (2008) analysed the
performance of this algorithm thoroughly, and this work shows that the process speed can
be improved without loss of energy. Chun (2005) applied segmented FFT to the acqui-
sition of L2 signals. In this algorithm, L2 signals were divided into small segments and
processed after arriving at the receiver. In this way, the latency, memory and computation
requirements per segment were reduced.

Lin et al. (1999) proposed the Double-Block Zero-Padding (DBZP) method based on a
delay-and-multiply approach. This algorithm was used to capture the P(Y)-Code directly.
It broke down the long data into M subsets and performed local correlation in the fre-
quency domain, where M was the number of Doppler bins. In this way, the length of the
FFT block was decreased and the calculation time could be reduced. Jan and Lin (2009)
proposed a multi-C/A code acquisition method. It replaced the single local C/A code in the
PCA algorithm to a sum of two or more C/A codes of different satellites. This can search
for several satellites at one time and speed up the acquisition process. Leclère et al. (2012)
combined the Fast Finite Impulse Response (FIR) Algorithms (FFAs) and PCA algorithm
into a new algorithm. This algorithm decomposed the initial circular correlation into sev-
eral smaller circular correlations and reduced the length of the FFT blocks. Patel and Shukla
(2011) exploited the symmetry of the power spectrum of the C/A code to reduce the num-
ber of points to perform correlation and FFT. The reduction in FFT/Inverse FFT (IFFT)
points can decrease the computation time and hardware complexity. The above-mentioned
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algorithms all improved the PCA algorithm and reduced the computational load or resource
consumption, but at the cost of increasing algorithm complexity or sometimes decreasing
acquisition accuracy.

In this paper, we propose a new acquisition algorithm. It divides the signal into K parts
to conduct FFT, and obtains the correlation results in the frequency domain with a fusion
algorithm. This algorithm can shift K sampling points in one correlation operation. What
is more, it can also be applied to capture any satellite signals modulated in Binary Phase
Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK) modes with a lower
computational load. In this paper, this algorithm will be denoted as the K-PCA algorithm.

The rest of the paper is organised as follows. In Section 2, we briefly introduce a model
of the B2 signal. A quick review of the SSA and PCA algorithms is presented in Section 3.
Then the principle of the K-PCA algorithm is presented in Section 4. In Section 5, we
evaluate the computational complexity of the K-PCA algorithm and the PCA algorithm.
The method to choose the optimal K value is also described in this section. Section 6
shows the algorithm operation simulation results of the K-PCA algorithm and conclusions
are drawn in Section 7.

2. MODEL OF THE B2 SIGNAL. The China Satellite Navigation Office (2013) has
released the ICD for open service signal B2, describing its structure, basic parameters,
ranging code features and navigation data format. Unlike the BPSK modulation of the
GPS signal, BeiDou adopts the QPSK modulation mode (China Satellite Navigation Office,
2013). Compared with BPSK, the QPSK transmits In-phase/Quadrature-phase (I/Q) signals
simultaneously and utilises the frequency band more efficiently. The B2 signal consists of
the I branch (open) and the Q branch (authorisation), and can be expressed as:

S j
B2(t) = AB2I C j

B2I (t)D j
B2I (t) cos(2π fB2t + ϕ

j
B2I ) + AB2QC j

B2Q(t)D j
B2Q(t) sin(2π fB2t + ϕ

j
B2Q)

(1)
In this equation, superior j represents the serial number of the satellite. AB2I and AB2Q
indicate the signal intensity of the I branch and the Q branch. CB2I and CB2Q are ranging
codes modulated in the I/Q branches. DB2I and DB2Q are navigation data. ϕB2I and ϕB2Q are
carrier phases of the I/Q branches respectively. The carrier frequency fB2 is 1207.14 MHz.
This paper only studies the I branch signal, as the Q branch signal needs authorisation and
is not open to civil use. The CB2I code is a Gold sequence composed of 2,046 chips, and
the code rate is 2.046 Mcps.

The satellite signal is obtained by modulating the CB2I code and navigation data with
the carrier in the QPSK mode. Unlike the traditional QPSK mode, the B2 signal digital
data (CB2I code and navigation data) do not go through a multiplexer but multiply with
the carrier of the I (or Q) branch directly (Xie et al., 2016). The modulation process is
illustrated in Figure 1.

The code rate of CB2I is twice that of the GPS C/A code. To ensure acquisition accuracy,
the signal sampling frequency needs to be improved. Thus, the number of sampling points
that need to be processed will increase too, which will affect the real-time quality of the
receiver. The heavy computational load correspondingly will make the software receiver
much more difficult to implement on an embedded platform with limited resources (Jin
et al., 2008).
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Figure 1. Modulation mode of B2 signal.

(a)

Serial Search Acquisition algorithms Parallel Code Phase Acquisition algorithms

(b)

Figure 2. Principle diagrams of acquisition algorithms.

3. PRINCIPLES OF CONVENTIONAL ACQUISITION ALGORITHMS. When the
signal is transmitted from the satellite to the GNSS receiver, its carrier frequency and code
phase will change due to the Doppler effect and the unknown distance. Also, it will be sub-
merged in noise. Thus, it is necessary for the GNSS receiver to raise the signal from the
noise by acquisition blocks. The acquisition algorithm mainly takes advantage of the cor-
relation property of the ranging code. The process of the acquisition algorithm is illustrated
in Figure 2(a). Once the local carrier and Pseudorandom Number (PRN) code are synchro-
nised with the received signal, there is a peak and the signal can be captured (Akopian,
2005).

The PCA algorithm converted the correlation in the time-domain to multiplication in
the frequency-domain by using FFT, while the correlation result at every sampling point
can be obtained simultaneously by applying IFFT to the product. The process is shown
in Figure 2(b). For each satellite, this algorithm only requires searching for the Doppler
frequency offset, so the computational load can be significantly reduced. Though the PCA
approach is computationally efficient, it must compute the correlation results at every sam-
pling point due to the FFT and IFFT. Thus, its structure is less flexible than the SSA
algorithm illustrated in Figure 2(a), which can shift several sampling points in one cor-
relation operation. Provided that the signal sampling frequency is relatively high or the
number of signal sampling points that need to be processed is large (e.g. weak signals and
long period signals), this algorithm will need large FFT processing blocks to process the
data, which will increase the load on the receiver (Chun et al., 2006). Therefore, if we
can combine the advantages of the SSA and PCA algorithms, the length of FFT blocks
and computational load can be significantly decreased. Based on this idea, we improve
the structure of the PCA - more precisely the structure of FFT blocks in the correlation

https://doi.org/10.1017/S0373463317000984 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000984


NO. 4 AN ACQUISITION ALGORITHM BASED ON DIVISION OF GNSS SIGNALS 937

operation, and propose the following algorithm. It shifts K sampling points in every corre-
lation operation, and the K value can be arbitrarily selected according to the situation; the
algorithm is thus called the K-PCA algorithm.

4. THE CONCEPT OF K-PCA ALGORITHM.
4.1. The principle of the 3-PCA algorithm (take K = 3 as an example). The correla-

tion (Wang et al., 2013) between mixed signal x(n) and local CB2I code h(n) is shown in
Equation (2).

y(n) =
N−1∑
m=0

x(m)h(m − n) (2)

where x(n), h(n) and y(n) are finite sequences whose lengths are N (N is the number of
sampling points in one period of the signal). x(n) means mixed signal x(n), h(n) means
local CB2I , and the period of h(n) is 1 ms.

We then transform the correlation in the time domain to multiplication in the frequency
domain by applying FFT to y(n). The transformed result can be expressed as Equation (3),
where Wnk

N = e−j 2πkn/N represents the twiddle factor, and H ∗(k) is the complex conjugate
of H (k).

Y(k) =
N−1∑
n=0

y(n)Wnk
N =

N−1∑
n=0

(N−1∑
m=0

x(m)h(m − n)

)
Wnk

N =
N−1∑
n=0

(N−1∑
m=0

x(m)h(m − n)

)
Wmk

N W−(m−n)k
N

=
N−1∑
m=0

x(m)Wmk
N︸ ︷︷ ︸

X (k)

N−1∑
n=0

h(m − n)W−(m−n)k
N︸ ︷︷ ︸

H∗(k)

= X (k)H∗(k) (3)

Meanwhile, X (k) can be represented as follows:

X (k) =
N−1∑
n=0

x(n)Wnk
N =

N−1∑
n=0

x(n)Wnk
N

mod(n,3)=0

+
N−1∑
n=0

x(n)Wnk
N

mod(n,3)=1

+
N−1∑
n=0

x(n)Wnk
N

mod(n,3)=2

=
N/3−1∑

r=0

x(3r)W3rk
N +

N/3−1∑
r=0

x(3r + 1)W(3r+1)k
N +

N/3−1∑
r=0

x(3r + 2)W(3r+2)k
N (4)

=
N/3−1∑

r=0

x0(r)Wrk
N/3︸ ︷︷ ︸

X0(k)

+ Wk
N

N/3−1∑
r=0

x1(r)Wrk
N/3︸ ︷︷ ︸

X1(k)

+ W2k
N

N/3−1∑
r=0

x2(r)Wrk
N/3︸ ︷︷ ︸

X2(k)

= X0(k) + Wk
N X1(k) + W2k

N X2(k)
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where ⎧⎪⎨
⎪⎩

x0(r) = x(3r)
x1(r) = x(3r + 1)
x2(r) = x(3r + 2)

r ∈ [1, 2, . . . , N/3 − 1] (5)

Xi(k) = FFT[xj (r)] i ∈ [0, 2]

Similarly,

H ∗(k) = H ∗
0 (k) + W−k

N H ∗
1 (k) + W−2k

N H ∗
2 (k); Y(k) = Y0(k) + Wk

N Y1(k) + W2k
N Y2(k) (6)

where

hi(r) = h(3r + i), H ∗
i (k) = [FFT[hi(r)]]∗ i ∈ [0, 2], r ∈ [1, 2, . . . , N/3 − 1] (7)

According to Equations (3), (4) and (6), we can obtain:

Y(k) = [X0(k) + Wk
N X1(k) + W2k

N X2(k)] × [H ∗
0 (k) + W−k

N H ∗
1 (k) + W−2k

N H ∗
2 (k)]

= X0(k)H ∗
0 (k) + X1(k)H ∗

1 (k) + X2(k)H ∗
2 (k)︸ ︷︷ ︸

Y0(k)

+ W−2k
N X0(k)H ∗

2 (k) + Wk
N X1(k)H ∗

0 (k) + Wk
N︸ ︷︷ ︸

Wk
N Y1(k)

(8)

+ W−k
N X0(k)H ∗

1 (k) + W−k
N X1(k)H ∗

2 (k) + W2k
N X2(k)H ∗

0 (k)︸ ︷︷ ︸
W2k

N Y2(k)

Yi(k)(i ∈ [0, 2]) can be represented as:

Y0(k) = H ∗
0 (k)X0(k) + H ∗

1 (k)X1(k) + H ∗
2 (k)X2(k)

Y1(k) = H ∗
0 (k)X1(k) + H ∗

1 (k)X2(k) + W−3k
N H ∗

2 (k)X0(k) (9)

Y2(k) = H ∗
0 (k)X2(k) + W−3k

N H ∗
1 (k)X0(k) + W−3k

N H ∗
2 (k)X1(k)

The result in the time domain can be derived through IFFT after Yi(k)(i ∈ [0, 2]) is
computed, and can be represented as:

yi(n) = IFFT(Yi(k)) i ∈ [0, 2] (10)

The final correlation result in the time domain can be obtained by combining yi(n)
(i ∈ [0, 2]).

Next, we will take y0(n) as an example to analyse the correlation process of the signal.
The algorithm divides the mixed signal and local CB2I code into three parts (Jin et al.,
2013), which is shown in Figure 3(a), and the FFT operation is applied separately to each
part. From Equation (9), we can see that, in the frequency domain, Y0(k) is a sum of three
parts—X0(k) × H ∗

0 (k), X1(k) × H ∗
1 (k) and X2(k) × H ∗

2 (k). In the time domain, y0(n) is a
sum of three parts—x0(r)∗h0(r), x1(r)∗h1(r) and x2(r)∗h2(r) where ∗ means convolution.
The computing process of y0(0) and y0(1) is shown in Figure 3(b). From Figure 3(a) we
can see that when hi(r)(i ∈ [0, 2]) shifts by one bit to the right, the h(n) shifts by three bits
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(a)

(b)

Figure 3. Computing process of y0(n).

to the right compared to the original sequence. So, in this algorithm, y0(n) is still the cross-
correlation result between x(n) and h(n). The difference is that h(n) shifts by three bits in
every cross-correlation operation.

The computing process of y1(n) and y2(n) is similar to that of y0(n), but in Equation
(9), H ∗

i (k) is multiplied by the twiddle factor W−k
N/3. In light of the circumference-shifting

characteristic of an FFT (Cheng, 2012), we can see that this operation is equal to shifting
hi(r) to the right by one bit first, and then applying the FFT and the conjugate operation to
it. The computing process of yi(n) is shown in Figure 4. The final correlation result y ′(n)
can be obtained by combining yi(n)(i ∈ [0, 2]) together, as shown in Equation (11).

y ′(3n) = y0(n); y ′(3n + 1) = y1(n); y ′(3n + 2) = y2(n) n ∈ [0, N/3 − 1] (11)

If the difference between local carrier frequency and received signal frequency is bigger
than the search step (for example, 1 kHz or 500 Hz), there will be no peak in the correla-
tion results between the mixed signal and local CB2I code. Similarly, there will be no value
exceeding the threshold in y0(n), y1(n) and y2(n). If the local carrier frequency is the same as
the received signal frequency, there will be peaks in y(n). Also, the correlation results in the
sampling points near the code phase will exceed the threshold. The peaks in y0(n), y1(n) and
y2(n) will also exceed the threshold. Hence, it can be judged whether the frequency of the
local carrier is the same as the frequency of the received signal by the peak value of y0(n).
When a correlation peak in y0(n) occurs that exceeds the threshold, it indicates that the
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Figure 4. Computing process of yi(n).

search for frequency offset is accomplished. Otherwise, the frequency of the local carrier
should be changed and the acquisition steps need to be repeated until a correlation peak
appears. Afterwards, the value of y1(n) and y2(n) should be calculated. We then compare the
peak values of y0(n) , y1(n) and y2(n). If the biggest peak value is located at the mth points
in yi(n) (m is a constant), the final code phase is located at the (3m + i)th sampling point.

The acquisition process of the 3-PCA algorithm is demonstrated in Figure 5 and as
follows.

Step 1: First, strip off the carrier from the received signal by the process shown in Equation
(12), where SIF represents the received signal and L(n) represents the local carrier. Next,
divide the mixed signal and local CB2I code into three parts by the process shown in
Equation (13).

x(n) = SIF (n)L(n) (12)⎧⎪⎪⎨
⎪⎪⎩

x0(r) = x(3 × r)

x1(r) = x(3 × r + 1)

x2(r) = x(3 × r + 2)

⎧⎪⎪⎨
⎪⎪⎩

h0(r) = h(3 × r)

h1(r) = h(3 × r + 1)

h2(r) = h(3 × r + 2)

r ∈
[

0,
N
3

− 1
]

(13)

Step 2: Apply the FFT to xi(r), hi(r)i ∈ {0, 1, 2}, then take the conjugate value of Hi(k). The
procedures are as follows:

Xi(k) = FFT(xi(r))

Hi(k) = FFT(hi(r))

H ∗
i (k) = conj (Hi(k)) i ∈ {0, 1, 2}, r ∈ [1, 2, . . . , N/3 − 1] (14)

Step 3: Obtain Y0(k) according to the fusion algorithm shown in Equation (15).

Y0(k) = X0(k)H ∗
0 (k) + X1(k)H ∗

1 (k) + X2(k)H ∗
2 (k) (15)

Step 4: Then obtain the correlation results y0(n) in the time-domain by applying IFFT to
Y0(k). If the peak value of y0(n) exceeds the threshold value, the value of Y1(k) and Y2(k)
will be computed according to the fusion algorithm shown in Equation (9). Then obtain the
correlation results y1(n) and y2(n) in the time-domain by applying IFFT to Y1(k) and Y2(k).
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Figure 5. Acquisition process of 3-PCA algorithm.

The final code phase can be determined by comparing the peak values of y0(n), y1(n) and
y2(n). Otherwise the frequency of the local carrier should be changed and Steps 1 to 4 need
to be repeated until a correlation peak appears.

The proposed algorithm shortens the length of signals for FFT (Kurz et al., 2010) oper-
ation by dividing them into three parts, which makes it easy to achieve on an embedded
platform with limited resources (Humphreys et al., 2006). Moreover, in the PCA algorithm
(Leclère et al., 2013), the local CB2I code shifts by only one bit in every correlation
operation, while it shifts by three bits every time in the 3-PCA algorithm. In addition,
the number of sampling points involved in every correlation operation remains the same
in the two algorithms. Hence, the proposed algorithm will not decrease the acquisition
accuracy.

4.2. The principle of the K-PCA algorithm. The above 3-PCA algorithm divides the
mixed signal and local CB2I code into three parts. Furthermore, the signal can be divided
into K parts to perform the correlation operation. However, with the increase of the K
value, the complexity of the algorithm will also be increased. The principle of the K-PCA
algorithm is shown as follows.

First, the mixed signal is divided into K parts:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(rK) = x0(r)
x(rK + 1) = x1(r)
...
x(rK + K − 1) = xK−1(r)

r ∈
[

0,
N
K

− 1
]

(16)
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Then a FFT is applied to x(n), and X (k) can be written as Equation (17):

X (k) =
N−1∑
n=0

x(n)Wnk
N =

N/K−1∑
r=0

x(rK)WrKk
N +

N/K−1∑
r=0

x(rK + 1)W(rK+1)k
N

+ · · ·
N/K−1∑

r=0

x(rK + K − 1)W(rK+K−1)k
N (17)

=
N/K−1∑

r=0

x0(r)Wrk
N/K + Wk

N

N/K−1∑
r=0

x1(r)Wrk
N/K

+ · · · W(K−1)k
N

N/K−1∑
r=0

xK−1(r)Wrk
N/K =

K−1∑
i=0

Wik
N Xi(k)

Xi(k) = FFT(xi(n)) (18)

Similarly, H ∗(k) and Y(k) can be represented as:

H ∗(k) =
K−1∑
i=0

W−ik
N H ∗

i (k), Y(k) =
K−1∑
i=0

Wik
N Yi(k) (19)

The correlation result in the frequency domain is shown in Equation (20):

Y(k) = X (k)H ∗(k) =

(
K−1∑
i=0

Wik
N Xi(k)

)
×
(

K−1∑
i=0

W−ik
N H ∗

i (k)

)
(20)

according to Equations (19) and (20), Yi(k)(i ∈ [0, K − 1]) can be defined as follows

Y0(k) = H∗
0 (k)X0(k) + H∗

1 (k)X1(k) + . . . + H∗
K−2(k)XK−2(k) + H∗

K−1(k)XK−1(k)

Y1(k) = H∗
0 (k)X1(k) + . . . + H∗

K−3(k)XK−2(k) + H∗
K−2(k)XK−1(k) + W−k

N/K H∗
K−1(k)X0(k)

... (21)

Yp−1(k) = H∗
0 (k)XK−1(k) + W−k

N/K H∗
1 (k)X0(k) + W−k

N/K H∗
2 (k)X1(k) + . . . + W−k

N/K H∗
K−1(k)XK−2(k)

The correlation results in the time domain yi(n), therefore, can be obtained by applying
an IFFT to Yi(k). The process of the correlation is the same as the process shown in Figure 5
where K = 3. In this algorithm, h(n) shifts by K bits in every correlation operation. We can
choose the value of K according to the situation. Meanwhile, the value of K should be
smaller than the number of sampling points contained in half a CB2I code chip. This is
because when the local CB2I code shifts more than half a chip every time, there will be no
peaks in yi(n) even though the frequency of the received signal and local carrier is the same.
In addition, the choice of K is also related to the number of sampling points N , which will
be analysed in the next section.

4.3. Method to reduce the computational complexity. y0(n) is the correlation result
between h(n) and x(n), where h(n) shifts by K bits every time. In this acquisition pro-
cess, if the peak value of y0(n) exceeds the threshold, yi(n)(i ∈ [1, K − 1]) will be further
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Figure 6. Process of the method to reduce the computational load.

computed to determine at which sampling point the code phase is located. This operation
is not efficient enough as it involves a number of multiplications and IFFTs which are
computation-intensive. Since the range code phase can be derived from the peak position
of y0(n), the final code phase can be asserted by comparing the correlation values in the
sampling points around the peak position of y0(n).

h(n) shifts by K bits every time it is correlated with x(n). If the coordinate of the peak
of y0(n) is (m, R), the range of the code phase should be (K × m − K ∼ K × m + K). Then
the final code phase can be determined by comparing the correlation results at the (K ×
m − K ∼ K × m + K)th sampling point. The process is illustrated in Figure 6 (take K = 3
as an example) and Equation (22). This method only needs 2K × N multiplications and
2K × (N − 1) additions, and the procedure is simpler.

yK (n) =
N−1∑
m=0

x(m)h(m − n) n ∈ [K × m − K , K × m + K] (22)

5. ANALYSIS OF COMPUTATIONAL COMPLEXITY. When implemented on an
embedded platform with limited resources, the time complexity of an acquisition algorithm
will affect the start-up speed of the software receiver. In a traditional hardware receiver,
signal acquisition is achieved by an Application Specific Integrated Circuit (ASIC), whose
computing speed is high. In a software receiver, signal acquisition is achieved by soft-
ware running in the Central Processing Unit (CPU). It has a more flexible structure but
a slower speed (Liu et al., 2011). Therefore, a software receiver will become more use-
ful than a hardware receiver if we can reduce the time complexity of the acquisition
algorithm.

The K-PCA algorithm decomposes the N-point FFT to K parts. The first issue to con-
sider is the number of points of the FFT when the acquisition algorithm is implemented on
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Table 1. Computational complexity comparison.

PCA Algorithm K-PCA Algorithm

Compute y(n) Compute y0(n) Compute yi(n)

Step MP AP MP AP MP AP

Step 1 N 0 N 0 0 0

Step 2
M
2

logM
2 M logM

2 K × F
2

logF
2 K × F logF

2 0 0

Step 3 N 0 N
N
K

× (K − 1)
3N
2

× (K − 1)
(K − 1)2

K
× N

Step 4
M
2

logM
2 M logM

2
F
2

logF
2 F logF

2 (K − 1) × F
2

logF
2 (K − 1) × F logF

2

Sum y(n) × 21 y0(n) × 21 + yi(n)

Sum MP 21M logM
2 + 42N (11K + 10) × F logF

2 +
(

40 +
3K + 1

2

)
× N

AP 42M logM
2 (22K + 20)F logF

2 +
(

19 + K − 20
K

)
N

the hardware platform. If the algorithm uses the Cooley-Tukey radix-2 FFT structure, the
FFT input vector needs to be fulfilled up to a power of two with zeros. If the split-radix
FFT structure is chosen, this issue should not cause any concern (Tamazin et al., 2016;
Molino et al., 2008). We will analyse the computational load in these two situations in the
following parts.

5.1. Time complexity analysis with radix-2 FFT structure. The number of points the
FFT needs to evaluate in the conventional PCA algorithm and K-PCA algorithm are shown
in Equations (23) and (24) respectively:

Length of FFT blocks in the PCA algorithm: M = 2ceil(logN
2 ) (23)

Length of FFT blocks in the K-PCA algorithm: F = 2ceil(logN/K
2 ) (24)

where N is the number of sampling points to be processed, and ceil represents the function
that rounds the number up to the nearest integer.

In a common scenario, the Doppler frequency ranges between −10kHz to 10kHz.
Assuming the scan step is 1 kHz, the acquisition algorithm needs to search for the car-
rier frequency offset 21 times. If the frequency of the two signals (received signal and local
carrier) is different, the K-PCA algorithm only needs to compute the result of y0(n). While
the frequency of the two signals is the same, yi(n)(i ∈ [0, K − 1]) will be calculated. The
computational complexity of different algorithms is listed in Table 1.

The information related to Table 1 is as follows:

Step 1: Strip the carrier off the received signal.
Step 2: Apply FFT to x(n) or xi(n)(i ∈ [0, K − 1]). Due to the local CB2I code, h(n) is fixed

during the algorithm operation process, the H ∗(k) and H ∗
i (k)(i ∈ [0, K − 1]) are

stored in memory without being calculated.
Step 3: Multiply X (k) with H ∗(k) to obtain Y(k) or combine Xi(k)(i ∈ [0, K − 1]) with

H ∗
i (k)(i ∈ [0, K − 1]) together to obtain Yi(k)(i ∈ [0, K − 1]).
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Figure 7. Comparison of computational load.

Step 4: Apply IFFT with the results obtained in Step 3.
MP: Multiplication operation.
AP: Addition operation.

With the increase of sampling points, the growing trend of computational load with
different K values is shown in Figure 7.

If the K-PCA algorithm has the lowest computational load, we call the corresponding
K the optimal K value. For example, if the computational load of 3-PCA is lowest, the
optimal K is three. Provided that the sampling frequency and the number of sampling
points are certain, we can choose the optimal K value to achieve the lowest computational
complexity. In Figure 7, the optimal K value changes when the computational load has a
step change. The parameter that can cause the step change of the computational load is F .
Next, we will analyse its relationship with the optimal K value.

In Equation (24), F = 2ceil(logN/K
2 ), and by using tK to represent the exponential part

ceil (logN/K
2 ), then F = 2tK . The change of F is related to the parameter tK , so we will

analyse the step change of tK .

tK = ceil(logN/K
2 ) = ceil(logN

2 − logK
2 ) (25)

logN
2 and logK

2 can be presented as the forms in Equation (26), where DN and DK represent
the decimal part of logN

2 and logK
2 respectively, and IN and IK represent the integer part.

logN
2 = IN︸︷︷︸

integer
part

· DN︸︷︷︸
decimal

part

logK
2 = IK︸︷︷︸

integral
part

· DK︸︷︷︸
decimal

part

(26)

If DN > DK , tK = ceil(logN
2 − logK

2 ) = IN − IK + 1; otherwise, tK = ceil(logN
2 − logK

2 ) =
IN − IK .

When DN = DK , tK will change suddenly and F will have a step change. Therefore, the
optimal K value is related to the values of DN and DK . The length of the FFT block in
different situations is shown in Table 2.
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Table 2. Length of FFT block.

0 < DN ≤ D5 D5 < DN ≤ D3 D3 < DN ≤ 1

K = 1 2IN +1 2IN +1 2IN +1

K = 3 3 × 2IN −1 3 × 2IN −1 3 × 2IN

K = 4 4 × 2IN −1 4 × 2xN −1 4 × 2xN −1

K = 5 5 × 2xN −2 5 × 2IN −1 5 × 2IN −1

Optimal K K = 5 K = 3 K = 4

Figure 8. The reduction ratio of computational load.

By analysing Table 2 and Figure 7, we can see that the optimal K value can be deter-
mined by the relationship between DN and DK . If DK1 < DN ≤ DK2 , the optimal K value
is K2. Since D2K2 = DK2 , 2K2 is also the optimal K value. However, as K increases, the
algorithm will become more and more complex. Therefore, the K value should be selected
according to the actual situation.

In summary, the optimal K value selection method is: 1. Calculate the value of l, which is
the number of sampling points contained in half a CB2I code chip. 2. Compare the values of
DN and DK . If DK1 < DN ≤ DK2 , the optimal K value is 2kK2 (k ∈ [0, logl

2], k is an integer).
If there is more than one optimal value, the final optimal K value can be selected according
to the structure complexity of the algorithm. As shown in Figure 8, the computational load
can be reduced by as much as about 50% with an appropriate K value.

5.2. Time complexity analysis with split-radix FFT structure. There is no need to
consider the zero-padding problem with the use of a split-radix FFT structure, and the
computational load will also change. The Doppler frequency range is still set to −10 kHz
to 10 kHz and the scan step is 1 kHz. The acquisition algorithm needs to search for the
carrier frequency offset 21 times. The acquisition process is the same as the process
shown in Figure 5. So, in the K-PCA algorithm, y0(n) should be computed 21 times, and
yi(n)(i ∈ [1, K − 1]) only needs to be computed once. In the PCA algorithm, y(n) should
be computed 21 times. The computational complexities of the PCA algorithm and K-PCA
algorithm are listed in Table 3. With the number of sampling points varying from 1 × 103 to
80 × 103, the trend of the computational load of different algorithms is shown in Figure 9.
Compared with the PCA algorithm, the K-PCA algorithm exhibits a lower computational
burden. Figure 10 shows the reduction ratio of computational load with different numbers
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Table 3. Computational complexity of two algorithms with split-radix FFT structure.

PCA algorithm The proposed algorithm decomposes the N-point FFT to P parts

Compute y(n) Compute y0(n) Compute yi(n)

Step MP AP MP AP MP AP

Step 1 N 0 N 0 0 0

Step 2
N
2

logN
2 N logN

2
N
2

log
N
K
2 N log

N
K
2 0 0

Step 3 N 0 N
N
K

× (K − 1)
3N
2

× (K − 1)
(K − 1)2

K
× N

Step 4
N
2

logN
2 N logN

2
N
2K

log
N
K
2

N
K

log
N
K
2 (K − 1) × N

2K
log

N
K
2 (K − 1) × N

K
log

N
K
2

Sum y(n) × 21 y0(n) × 21 + yi(n)

Sum MP 21N logN
2 + 42N (81 + 3K)/2N + (11K + 10)/KN log(N/K)

2

AP 42N logN
2 (19 + K − 20/K)N + (22K + 20)/KN log(N/K)

2

Figure 9. Multiplication computational load of algorithms with different K values.

Table 4. Parameters of BeiDou intermediate frequency signal.

Parameter name BeiDou B2 Parameter name BeiDou B2

Frequency 1207·140 MHz CB2I code length 2046 chips
IF signal frequency 4·5 MHz Period 1 ms
Sampling frequency 18·073 MHz Signal power −160 dBW
CB2I code rate 2·046 Mcps Carrier to noise ratio 45 dB·Hz

of sampling points. Since the reduction ratio is proportional to the value of K , a larger K
value can be chosen when acquisition accuracy is not affected.

6. SIMULATION RESULTS. To validate the performance of the K-PCA algorithm,
we applied the algorithm to capture the B2 signal generated by MATLAB, which has been
filtered, down-converted to an Intermediate Frequency (IF) and digitised to a digital signal.
The related parameters are shown in Table 4.
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Figure 10. Reduction ratio of computational load of algorithms with different K values.

(a) (b)

Figure 11. Results of y0(n) in different local carrier frequency situations.

From Table 4, we can see that the signal period is 1 ms and sampling frequency is
18·073 MHz, so the number of sampling points to be processed is 18,073. The number
of sampling points contained in a half CB2I code chip is four or five, so K should not
exceed four. As log18073

2 = 14·1415, log3
2 = 1·585 and DN < D3, the optimal k value should

be three. Hence, we chose K = 3.
In this simulation process, a two-dimensional search for carrier frequency offset and

code shift is carried out. The frequency offset range is set between −10 kHz and 10 kHz
and is scanned with a 1 kHz step. The frequency offset is set to 2 kHz. The code phase
is located at the 13,665th sampling point. If the frequencies of the received signal and
local carrier are different, the result of y0(n) is similar to Figure 11(a). Accordingly, the
frequency of the local carrier should be changed and the acquisition process repeated until
a correlation peak appears. If the peak value in y0(n) is much larger than the others, as
shown in Figure 11(b). This indicates that the search for carrier frequency offset and a
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(a)

(b)

Figure 12. Results of y1(n) and y2(n).

rough estimation of code phase have been accomplished. At this stage, two methods can
be used to find the final code phase. Method 1: As illustrated in Figure 5, the results of
y1(n) and y2(n) are computed and their peak values are compared. If the largest peak value
belongs to yi(n) and its coordinate is (m, R), the final code phase is located at the (3 × m +
i)th sampling point. Method 2: Use the methods shown in Figure 6 and Equation (22) to
compute the correlation results in the sampling points near the peak position of y0(n). The
code phase can be determined according to the position of the largest correlation result.
The results of y1(n) and y2(n) in Method 1 are displayed in Figure 12, where the peak value
coordinates of y0(n), y1(n) and y2(n) are (4555, 1·253 × 10−4), (4554, 1·182 × 10−4) and
(4554, 1·242 × 10−4) respectively. So, the final code phase is located at the (4555 × 3 + 0 =
13663)th sampling point. Figure 13 shows the results of yK (n) obtained with Method 2.
From the figure, we can see that the correlation result at the 13,665th sampling point is the
largest. Accordingly, the code phase is located at the 13,665th sampling point. Obviously,
the final code phase obtained by the two methods is the same as the pre-set value, so both
methods can find the final code phase accurately. The Doppler frequency offset results are
shown in Figure 14, and the frequency offset is 2 kHz which is the same as the pre-set
value. In conclusion, the K-PCA algorithm can successfully estimate the Doppler shift and
the code phase of the B2 signal.

From Section 5.1, we know that the value of K is related to the number of sampling
points to be processed. When the signal sampling frequency is changed from 18·073 MHz
to 15·491 MHz, the number of sampling points that need to be processed in one period
is 15,491. The number of sampling points contained in half a CB2I code chip is three to
four, so K should not exceed three. As log15491

2 = 13·9191, log3
2 = 1·713 and D3 < D15491 <

D2, (Define D2 = 1) the optimal K value should be two. Hence, we choose K = 2. In this
simulation, the C/N0 of the signal is 40 dB·HZ. The code phase and the Doppler frequency
are set at the 1,446th chip and 2 kHz. The acquisition results of 2-PCA are as shown in
Figures 15–18.

When the frequencies of the received signal and local carrier are different, the result of
y0(n) is as Figure 15(a). If the received signal and local carrier frequencies are the same,
the result of y0(n) is shown in Figure 15(b). The peak value in y0(n) is much larger than
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Figure 13. Results of yK (n).

Figure 14. Doppler frequency offset map.

(a) (b)

Figure 15. Results of y0(n) in different local carrier frequency situations.
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Figure 16. Results of y1(n).

Figure 17. Results of yK (n).

Figure 18. Doppler frequency offset map.
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Figure 19. ROC comparisons between PCA and 3-PCA.

the others. Then the result of y1(n) and yK (n) should be calculated. The final code phase
can be determined by comparing the peak values of y0(n) and y1(n), or by comparing the
values of yK (n). Figures 16 and 17 show the results of y1(n) and yK (n). The peak value
coordinates of y0(n), y1(n) are (5471, 1·034 × 10−4), (5476, 9·7491 × 10−5) respectively.
So, the final code phase is located at the (5471 × 2)/15491 × 2046 ≈ 1446th chip. From
Figure 3, we can see that the peak value of yK (n) is located at the 10,952nd sampling
point. So, the final code phase is located at the 10953/15491 × 2046 ≈ 1446th chip. The
two methods have the same acquisition results. The Doppler frequency offset results are
shown in Figure 18, and the frequency offset is 2 kHz, which is the same as the pre-set
value.

For the SSA algorithm, when the code phase search step changes, its acquisition results
still obey the Rician distribution. Compared with the PCA algorithm, the acquisition results
of K-PCA are still the cross-correlation results between x(n) and h(n), and the difference
is that h(n) shifts by three bits in every cross-correlation operation. The code phase search
step changes, but the acquisition results of K-PCA should still obey the Rician distribution.
The threshold values of PCA and K-PCA can be calculated according to Equation (27).
In this equation, Pfa is the probabilities of false alarm, σ is the root value of noise power.
σ 2 can be calculated according to Equation (28), where V(n) is the acquisition value in one
search bin and M is the number of search bins.

VT = σ
√−2 ln(Pfa) (27)

σ 2 =
1

2M

M∑
n=1

V2(n) (28)

To assess the performance of the K-PCA, Monte Carlo simulation is performed to the
Receiver Operating Characteristic (ROC) curve (Yang et al., 2014; 2016). ROC represents
the detection probability under different probabilities of false alarm. Figure 19 shows ROC
curves of PCA and 3-PCA. From Figure 19 we can see that the detection probabilities
under the same Pfa of 3-PCA is slightly lower than that of PCA. This is because the code
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search steps of the two algorithms are different, and the peak value of the 3-PCA algorithm
is slightly lower than that of the PCA algorithm.

7. CONCLUSION. A novel acquisition algorithm is proposed in this paper. Unlike the
PCA algorithm, which obtains correlation results at every sampling point, our algorithm
does not evaluate correlation results at every sampling point but at intervals of K points.
The K value can be arbitrarily selected according to the sampling frequency and the number
of sampling points to be processed. If the K value is optimal, the computational load can be
reduced by about 50%; otherwise, its detection probability is slightly lower than that of the
PCA algorithm, under the same probability of false alarm. Therefore, this algorithm can
be used to achieve fast acquisition when the power of the signal is weak and the sampling
frequency is high or the number of sampling points to be processed is large.
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