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ALMOST INDISCERNIBLE SEQUENCES AND CONVERGENCE
OF CANONICAL BASES

ITAÏ BEN YAACOV, ALEXANDER BERENSTEIN, AND C. WARDHENSON

Abstract. Wegive amodel-theoretic account for several results regarding sequences of randomvariables
appearing in Berkes and Rosenthal [12]. In order to do this,

• We study and compare three notions of convergence of types in a stable theory: logic convergence, i.e.,
formula by formula, metric convergence (both already well studied) and convergence of canonical
bases. In particular, we characterise ℵ0-categorical stable theories in which the last two agree.

• We characterise sequences that admit almost indiscernible sub-sequences.
• We apply these tools to the theory of atomless random variables (ARV). We characterise types and
notions of convergence of types as conditional distributions and weak/strong convergence thereof,
and obtain, among other things, the Main Theorem of Berkes and Rosenthal.

§1. Introduction. The main motivation for the present paper is to give a
formal model-theoretic account of several probability theory results of Berkes and
Rosenthal [12]. These results have a strong model-theoretic flavour: the use of limit
tail algebras (canonical bases of limit types), reference to exchangeable sequences
(indiscernible sequences), distribution realisation (type realisation), compactness
of the distribution space (type space compactness), to give some examples.
The appropriate model-theoretic setting for this analysis is the continuous logic
theory ARV of [0, 1]-valued random variables over atomless probability spaces,
which is exposed in somedetail in [11]. InCorollary 3.4,we show that,moduloARV ,
every formula ϕ(x̄) can be expressed as a continuous combination of expectations
of moments E[x̄α], so a reader not totally at ease with continuous logic may simply
take this to be the definition of a formula. Similarly, types in this theory correspond
to conditional distributions, and each of the notions of convergence of conditional
distributions considered by Berkes and Rosenthal has a corresponding notion of
convergence of types. It is easy to check that weak convergence of distributions
corresponds to convergence of types in the logic topology (which is indeed the
weakest natural topology on a type space). We also show that strong convergence of
distributions corresponds tometric convergence of types, aswell as to canonical base
convergence, which we define below. Modulo these translations, [12, Theorem 2.4]
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has a clear model-theoretic counterpart, regarding existence of almost indiscernible
sub-sequences, which we prove (in a general model-theoretic setting) in Section 5.

In Section 2, we consider three topologies on the space of types of any stable
theory:

(i) The logic topology is the weakest topology we consider (since it is compact,
it is minimal among Hausdorff topologies).

(ii) The canonical base topology is defined in terms of convergence of the ca-
nonical bases of the types. It is stronger than the logic topology, and over a
model it is strictly stronger.

(iii) The metric topology is defined in terms of convergence of realisations of
types. It is the strongest of the three.

In Section 4, we introduce strongly finitely based (SFB) theories, namely, theories
for which the two last topologies agree. In particular, we prove the following useful
criterion (Theorem 4.10) for SFB under the assumption of ℵ0-categoricity:
Theorem 1.1. A stable theoryT is ℵ0-categorical and SFB if and only if the theory

TP of beautiful pairs of models of T (as per Poizat [16]) is ℵ0-categorical.
It follows easily that several familiar continuous theories, such as those of Hilbert

spaces, probability algebras and random variable spaces, are SFB.
Section 5 is fairly independent from the preceding sections. Its main result is

Theorem 5.4, which is the general model-theoretic counterpart of Berkes and
Rosenthal [12, Theorem 2.4].
The theory ARV , of [0, 1]-valued random variables over atomless probability

spaces, is discussed in two stages. First, in Section 3, we discuss some general
properties. We characterise types as conditional distributions and show that the
logic topology agrees with weak convergence. We also start proving that strong
convergence of conditional distributions agrees with distance and canonical base
convergence of types. Second, in Section 6, we put everything together, using the
fact that ARV is SFB to complete the characterisation of strong convergence of
distributions, and showing that several of Berkes and Rosenthal’s results, including
their main theorem, are special cases of model-theoretic ones.
Throughout this paper we assume that T is a stable continuous theory in a

countable language. We assume that the reader is familiar with basic facts re-
garding stability and continuous logic, as presented in [14]. We diverge slightly
from the conventions of this reference, in that we do not distinguish between
formulae and definable predicates, and refer to all as just “formulae” (one may
consider that by “formula” here we mean a forced limit of formulae in the sense of
[14, Definition 3.8]).
For material regarding the theory ARV we refer the reader to [11]. Other

background material includes Poizat [16] for beautiful pairs and Pillay [15]
(Chapter 2, Sections 4 and 5, specifically Theorem 5.12) for Zilber’s Theorem and
its consequences for ℵ0-categorical strongly minimal and ℵ0-stable theories.

§2. Convergence of types and canonical bases. As said earlier, we work through-
out in the context of a fixed theory T , which, when necessary, is assumed to be
stable. Since we shall be manipulating types throughout the paper, let us say a few
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words about them. Let X be an arbitrary set, let �∞(X ) denote the Banach space
of bounded complex functions on X , and let F ⊆ �∞(X ). Then we have a natural
evaluation map e : X → CF , and e(X ) is a compact Hausdorff space that can be
naturally identified with the maximal ideal space of the sub-C ∗-algebra generated
by F in �∞(X ). Let us denote this space by �F (X ). In our setting, every m-ary
formula ϕ(x̄) (i.e., formula with m free variables x̄ = (x0, . . . , xm−1)) defines a
bounded function on Mm for each model M � T , and we construct the space
m-types in T as

Sm(T ) = �F (Mm), F = all m-ary formulae.
This does not depend on the choice ofM . (We cheat a little – this holds when T is
complete, otherwise we need to replaceMm with a disjoint union of m-fold powers
ofmodels of all completions ofT , and again, the choice ofmodels is not important.)
The map e will then be denoted tp: ā ∈ Mn , its type is tp(ā) = e(ā) ∈ Sm(T ).
When p = tp(ā) we also write ā � p and use the notation ϕ(x̄)p(x̄) = ϕp = ϕ(x̄)
for the evaluation map.
We shall mostly consider types over a parameter set, namely a subset A ⊆ M in
some modelM � T . We then construct the space of m-types over A as

Sm(A) = �F(Mm), F = all m-ary formulae with parameters in A.
Again, this does not change if we replaceM with an elementary extension, and we
write tp(ā/A) = e(ā).
When T eliminates quantifiers we may replace “formulae” with “quantifier-free
formulae” or even “atomic formulae”. Thus, for example, when T = ARV (which
eliminates quantifiers), elements of a model are [0, 1]-valued random variables, and
F can be equivalently taken to be the family of E[t(x̄, c̄)], where t is a continuous
function and c̄ ∈ Ak for some k. It is then not difficult to check that Sm(A) can
be identified with the space of m-dimensional joint conditional distributions with
respect to �(A) equipped with the topology of weak convergence (we shall discuss
all this in detail in Section 3).
Also, whenT is a classical theory, i.e., when all atomic formulae are {0, 1}-valued,
we may restrict F to classical, i.e., {0, 1}-valued, formulae, without changing the
end result, and we get the classical totally disconnected type spaces.
Given the parameters A ⊆ M , we can always replace M with an elementary
extension N � M such that tp(·/A) : N 2m → S2m(A) is onto (all types over A are
realised in N). We then define a distance on Sm(A) by

d (p, q) = min
{
d (ā, b̄) : ā, b̄ ∈ Nm, ā � p and b̄ � q

}
.

The distance between two finite tuples is defined as the maximum of the distances
between coordinates. Since all formulae are uniformly continuous, this metric on
Sm(A) is stronger than the topology defined above, often called the logic topology.
Going back to our two examples, in ARV metric convergence agrees with strong
convergence of joint conditional distributions, while in classical logic, the metric is
discrete, and a convergent sequence must be eventually constant.
Our assumption that the theory T is stable gives rise to yet another notion
of convergence of types (to be more precise, this is a notion of convergence of
parallelism classes). Recall from [14, Section 7] that for every formula ϕ(x̄, ȳ) there
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exists a formula dx̄ϕ(ȳ, Z), where Z = (z̄n)n∈N consists of countably many copies
of x̄, such that for every type p(x̄) over a modelM admits a ϕ-definition, which is
an instance dx̄ϕ(ȳ, C ):

ϕ(x̄, b̄)p = dx̄ϕ(b̄, C ), ∀b̄ ∈M |ȳ|.

Moreover, if N � M is any elementary extension, p admits a unique extension to
a type over N with the same definitions.
We recall the convention thatMeq denotes the many-sorted structure consisting

of M together with all imaginary sorts added, as per [14, Section 5]. In fact, for
our purposes, we shall only require the sorts of canonical parameters for formulae
dx̄ϕ, for all formulae ϕ, or even just for a dense family of formulae. Therefore, in a
countable language, countably many sorts suffice.
With a slight abuse of terminology, say that A ⊆ M is algebraically closed if

acleq(A) = dcleq(A). This is an unavoidable technical condition, which, in the cases
of interest to us, will turn out to be quite benign: every set of random variables
(in a model of ARV ) is algebraically closed, and similarly every subset of a Hilbert
space is algebraically closed. When A ⊆ M is algebraically closed, every p(x̄) ∈
Sm(A) admits a unique extension to a type over M whose definitions are over A
(i.e., are equivalent to some formula with parameters in A, which need not be of the
form dx̄ϕ(ȳ, C )), and we refer to these as being the definitions of p (this canonical
extension is called the nonforking extension of p toM ). Even more generally, a type
over an arbitrary set is stationary if it has a unique extension to acleq(A) (and A is
algebraically closed if and only if all m-types over A, for all m, are stationary).
Let SCbϕ be the sort of canonical parameters of instances dx̄ϕ(ȳ, Z). The key

property of this sort is that it is equipped with a natural metric: if c and c′ are
the canonical parameters of two instances dx̄ϕ(ȳ, C ) and dx̄ϕ(ȳ, C ′), respectively,
then

d (c, c′) = sup
ȳ

∣∣dx̄ϕ(ȳ, C )− dx̄ϕ(ȳ, C ′)
∣∣.

Now, for a type p over an algebraically closed A we define its ϕ-canonical base,
denoted Cbϕ(p), as the canonical parameter of the definition dx̄ϕ(ȳ, C ). Thus, if
M � T and p(x̄), q(x̄) ∈ Sm(M ), then:

d
(
Cbϕ(p),Cbϕ(q)

)
= sup
b̄∈M

∣∣ϕ(x̄, b̄)p − ϕ(x̄, b̄)q∣∣.
Notation 2.1. For each m we let Φm denote a set of formulae ϕ(x̄, ȳ), where

|x̄| = m, which is generating in the sense that every formula �(x̄, ȳ) (with |x̄| = m) is
a continuous combination of a sequence

(
ϕn(x̄, ȳ)

) ⊆ Φm. Since we assume that the
language is countable, we may take Φm to be countable.

The canonical base of p(x̄) ∈ Sm(A) is defined as:
Cb(p) =

(
Cbϕ(p)

)
ϕ∈Φm .

The choice of Φm is of no importance, so long as it is generating as required in
Notation 2.1: if � is a continuous combination of (ϕn) ⊆ Φm, then the�-definition
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of any p can be recovered uniformly from the family of its ϕn-definitions. We may
therefore make the following convenient assumption:

Convention 2.2. From now on we shall consider that dx̄ϕ takes the canonical base
as parameter: ϕ(x̄, b̄)p = dx̄ϕ(b̄, C ), where C = Cb(p) as above.

The canonical base is usually viewed as amere set (i.e., theminimal set to which p
has a nonforking stationary restriction), but wewill rather view it as an infinite tuple
indexed by Φm, living in the infinite sort SCbm =

∏
ϕ∈Φm SCbϕ which only depends

onm (compare with [10]). Since we took Φm to be countable, the sort SCbm consists
of countable tuples. As such, it is naturally equipped with a metric by enumerating
Φm = {ϕn}n∈N and letting

d
(
Cb(p),Cb(q)

)
=

∨
n

2−n ∧ d(Cbϕn (p),Cbϕn (q)). (1)

Up to uniform equivalence, this does not depend on the chosen enumeration. Now,
convergence of canonical bases is pointwise convergence:

Cb
(
pn(x̄)

) → Cb(p(x̄)) ⇐⇒ Cbϕ(pn)→ Cbϕ(p) for all ϕ ∈ Φm.
We shall call this topology on Sm(A) (where A is algebraically closed) the canonical
base topology.
Types and type spaces of infinite tuples can be constructed in much the same
manner. Let I be some index set, x̄ = (xi )i∈I . Of course, only finitely many variables
can actually appear in a formula, but we shall still call an I -ary formula one all
of whose free variables appear in x̄, and write it as ϕ(x̄) (the other variables are
“dummy”), and similarly for formulae with parameters in a setA. This already gives
us the logic topology on SI (A), and when A is algebraically closed, the canonical
base topology as well.
The metric topology on SI (A) when I is infinite is a little trickier. We observe
that as a set, SI (A) can be naturally presented as the projective limit of

{
SI0 (A) :

I0 ⊆ I finite
}
, and that for each of the logic or canonical base topologies, this is a

topological inverse limit. We therefore also define the distance topology on SI (A)
as the inverse limit of the distance topologies on

{
SI0 (A) : I0 ⊆ I finite

}
.

Remark 2.3. When I is countable we can define a metric on I -tuples by
identifying I with N and letting

d (ā, b̄) =
∨
n∈N
2−n ∧ d (an, bn).

This is a definable metric, and up to uniform equivalence does not depend on
the enumeration of I , so the induced (product) uniform structure is canonical.
Moreover, it induces the metric topology on SI (A) defined above.
In addition,when I is countable (or finite), we havepn → p in themetric topology
if and only if there are realisations ān � pn and ā � p in an elementary extension of
M (the model containing A) such that ān → ā (coordinate-wise, or equivalently, in
the metric on NI ).

Notation 2.4. The three topologies defined on SI (A) will be denoted TL (logic)
TCb (canonical base) andTd (metric). For convergence of nets (or sequences) of types
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in these topologies we shall use the notation pj →� p or p = lim� pj where � ∈
{L,Cb, d}. We allow ourselves to omit L (the logic topology being “the” topology).
Lemma 2.5. For arbitrary theory T and setA we haveTd ⊇ TL. When T is stable

and A is algebraically closed we have Td ⊇ TCb ⊇ TL.

Proof. It is enough to prove this when I is finite, say I = m. Then the first
assertion holds since all formulae are uniformly continuous.
For the second assertion, since I is finite,Td is metric, forTd ⊇ TCb it is enough

to show that for sequences, if pn →d p then pn →Cb p. Fix a formula ϕ(x̄, ȳ) with
|x̄| = m. For each ε > 0 there exists 	 > 0 such that for all ā, ā′, b̄, if d (ā, ā′) < 	
then

∣∣ϕ(ā, b̄) − ϕ(ā′, b̄)∣∣ < ε, and for all n big enough we have d (pn, p) < 	.
For such n we can choose realisations ā � p, ā′ � pn such that d (ā, ā′) < 	, and
moreover, we may choose them in such a manner that āā′ |
A

M . This just means
that tp(ā/M ) and tp(a′/M ) are the nonforking extensions of p andpn, respectively.
It now follows that d

(
Cbϕ(pn),Cbϕ(p)

) ≤ ε. Thus Cbϕ(pn)→ Cbϕ(p) for all such
formulae ϕ, so indeed pn →Cb p.
The canonical base topology is also metrisable (only the logic topology need not

be, if A is uncountable), so for TCb ⊇ TL we may assume we have a sequence
pn →Cb p. Then a formula over A can be written as ϕ(x̄, b̄), and we have

ϕ(x̄, b̄)pn = dx̄ϕ(b̄,Cbϕ(pn))→ dx̄ϕ(b̄,Cbϕ(p)) = ϕ(x̄, b̄)p.
Therefore pn → p as desired. 
Remark 2.6. LetM � T be a model, and let pn →Cb p in Sm(M ). Let ϕ(x̄, ȳ) =∨
i<m d (xi , yi ) be the distance formula, let � = dx̄ϕ, and let cn = Cbϕ(pn),
c = Cbϕ(p). Let also d (p,M ) denote the distance from some (any) realisation of
p toMm, and similarly for pn. Then d (pn,M ) = inf ȳ �(ȳ, cn) → inf ȳ �(ȳ, c) =
d (p,M ). In particular, a sequence of realised types can never converge in canonical
base to a nonrealised type.
On the other hand, the realised types over M are dense in Sm(M ) in the logic

topology. Therefore, if M is noncompact, so nonrealised types exist, we have a
proper inclusion TL � TCb.

Example 2.7. As per the previous Remark, examples of sequences which converge
logically but not inCb are numerous.Consider, for example,N as a model of the theory
of the infinite set (without extra structure). Let pn = tp(n/N) and let q ∈ S1(N) be
the unique nonalgebraic type. Then pn → q. Let ϕ(x, y) be the formula x = y and let
cn be the canonical parameter for the ϕ-definition of pn. Then the cn are all distinct
(have distance one), so the sequence (cn) does not converge.

A classical example where TCb differs from Td cannot be both ℵ0-stable and
ℵ0-categorical (see Proposition 4.12). Since there is no known natural example
of an ℵ0-categorical, strictly stable classical theory (one can be produced using a
Hrushovski construction), we shall give a nonℵ0-categorical one, and a continuous
one.

Example 2.8. Let T = ACF0 be the (complete, ℵ0-stable) theory of algebraically
closed fields of characteristic zero. LetK � T be anymodel. For n ∈ N, the polynomial
Xn + Y is irreducible in K [X,Y ], and therefore gives rise to a complete type pn ∈
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S2(K). Similarly, let p ∈ S2(K) correspond to the trivial ideal. Then pn →Cb p.
On the other hand, the distance on S2(K) is discrete, so pn �→d p.
Example 2.9. Let ALpL be the theory of atomless Lp Banach lattices for
p ∈ [1,∞) (see [1]). Let X = Y = Z = [0, 1] with Lebesgue measure, let
M = Lp(X ) ⊆ Lp(X × Y ) ⊆ N = Lp(X × Y ∪ Z), where the first inclusion
is induced by the projection X × Y → X , and the second by extension by zero. For
each n let fn = n1/p · 1X×[1−1/n,1] ∈ N , and let pn = tp(fn/M ). Similarly, let
f = 1Z , p = tp(f/M ). First of all, it is clear that pn �→d p, and we claim that
pn →Cb p. For this we shall use the characterisation of uniform canonical bases for
1-types in ALpL given in [10, Section 3].
For each n and t ∈ [0, 1], let

fn,t =

{
0 0 ≤ t ≤ (n − 1)/n
n1/p · 1X (n − 1)/n < t ≤ 1.

Then fn,t ∈ M increases with t, and fn is just (x, y) �→ fn,y(x) extended by
zeroes to X × Y ∪ Z. In the notation of [10] we have E[t,s][fn|M ] =

∫ s
t
fn,r dr for

0 < t < s < 1. Similarly, E[t,s][f|M ] = 0. In particular, E[t,s][fn|M ] is zero for n big
enough, so E[t,s][fn|M ] → E[t,s][f|M ] for all 0 < t < s < 1. In addition, ‖f+‖ =
‖f+n ‖ = 1, ‖f−‖ = ‖f−

n ‖ = 0. By [10, Theorem 3.16], Cb(fn/M ) → Cb(f/M ),
i.e., pn →Cb p.

§3. The theory of [0, 1]-valued random variables. The main aim of this paper is
to place results of Berkes and Rosenthal [12] in a model-theoretic context. One
convenient way to code probability spaces as model-theoretic objects is via the
corresponding spaces of [0, 1]-valued random variables. Let us recall a few facts
from [11, Section 2] regarding such spaces. Let Ω be a probability space, and
M = L1(Ω, [0, 1]) the space of all [0, 1]-valued random variables, equipped with the
L1 distance. Formally, we view M as a metric structure (M, 0,¬, 12 ,−. ), where the
function symbols ¬, 12 , and −. are interpreted naturally by composition. We shall
also use E(X ) as an abbreviation for d (X, 0), namely the expectation of X . The
class of all such structures is elementary, axiomatised by a universal theoryRV . The
restriction to the operations ¬, 12 , and −. is purely technical and may be ignored:
by the lattice version of the Stone-Weierstraß Theorem, if � : [0, 1]α → [0, 1] is
any continuous function then the map X̄ �→ �(X̄ ) is uniformly approximated by
expressions in these symbols, and is therefore uniformly definable in all models
of RV .
The probability algebra associated with Ω can be identified with the set of all
characteristic functions in L1(Ω, [0, 1]), and this set is uniformly quantifier-free
definable in models ofRV , and will be denoted byF . For A ⊆M , let �(A) ⊆ FM

denote the minimal complete sub-algebra with respect to which every X ∈ A is
measurable (so in particular �(M ) = FM ).
The theory RV admits a model companion ARV , whose models are the spaces
of the form L1(Ω, [0, 1]), where Ω is atomless. The theory ARV is ℵ0-categorical
(whereby complete), ℵ0-stable and it eliminates quantifiers. Furthermore, nonfork-
ing in models of ARV coincides with probabilistic independence. In other words,
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A |
B
C if and only if P[X |�(BC )] = P[X |�(B)] for every X ∈ �(A) (or, equival-

ently, for everyX ∈ �(AB)). In terms of definability of types: B andBC are always
algebraically closed, and tp(A/BC ) is definable with parameters in B (equivalently,
its definitions agree with those of tp(A/B)) if and only ifP[X |�(BC )] = P[X |�(B)]
for every X ∈ �(A).
The theories RV and Pr (the theory of probability algebras) are bïınterpretable.

Indeed we have already mentioned that the probability algebra is definable in the
corresponding random variable space. Conversely, using a somewhat more involved
argument, one can interpret, in a probability algebra F , the space of random
variables L1(F , [0, 1]), such that forM � Pr and N � RV :

M = FL1(M,[0,1]), N = L1
(
FN , [0, 1]

)
.

Definition 3.1. Let A be a probability algebra. An n-dimensional distribution
over A is an L1(A , [0, 1])-valued Borel probability measure � on Rn (�-additive
in the L1 topology, and �(Rn) is the constant function 1 ∈ L1(A , [0, 1])). The
space of all n-dimensional distributions over A will be denoted DRn (A ). For a
Borel set B ⊆ Rn, we denote by DB(A ) the space of n-dimensional conditional
distributions which, asmeasures, are supported byB (we shall only use this notation
for B = [0, 1]n).
Let X̄ be an n-tuple of real-valued random variables. The joint conditional dis-

tribution of X̄ over A denoted here by � = dist(X̄ |A ) (and by c · (A ) dist(X̄ ) in
[12]) is the n-dimensional distribution over A given by

�(B) = P[X̄ ∈ B|A ], B ⊆ Rn Borel.
Recall that a net (Xi)i∈I ⊆ L1(A , [0, 1]) converges in the weak topology to X if

for every Y ∈ L1(A , [0, 1]), E[XiY ]→ E[XY ]. The net (Xi) converges to X in the
strong topology if it converges in L1.

Definition 3.2. Following [12, Proposition 1.8], say that a net (�i )i∈I of
n-dimensional distributions over A converges weakly (strongly) to � if for every
continuous function � : Rn → [0, 1] we have ∫ �(x̄) d �i (x̄)→ ∫

�(x̄) d �(x̄) weakly
(strongly).

Let us make two remarks regarding this last condition. As we said earlier, if
� : [0, 1]m → [0, 1] is continuous then the map X̄ �→ �(X̄ ) is uniformly definable
in models of RV . Second, by the Stone-Weierstraß Theorem, every continuous �
can be arbitrarily well approximated by polynomials. It follows that it is enough to
consider only monomial test functions x̄α =

∏
xαii , where α ∈ Nm.

Theorem 3.3. Let X̄ be anm-tuple in a model ofARV , A a set,A = �(A). Then
the joint conditional distribution dist(X̄ |A ) depends only on tp(X̄ /A). Moreover, the
map

� : tp(X̄ /A) �→ dist(X̄ |A )
is a homeomorphismbetween Sm(A) (equippedwith the logic topology)andD[0,1]m (A )
equipped with the topology of weak convergence.

Proof. The first assertion, as well as the injectivity of �, are shown in [11]. Let Ω
be the Stone space of the underlying Boolean algebra ofA . This is a compact, totally
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disconnected space, and A is canonically identified with the algebra of clopen sets
there. LetD0 ⊆ D[0,1]m(A ) consist of all those � such that, for some finite partition
{Bi}i<k ofΩ, and for all BorelC ⊆ [0, 1]m, the function �(C ) is constant on eachBi .
In other words, � ∈ D0 can be written as

∑
1Bii , where each i is an ordinary

Borel probability measure on [0, 1]m.
First, we claim that D0 is dense in D[0,1]m(A ). Indeed, for � ∈ D[0,1]m (A ),
Y ∈ L1(A , [0, 1]), α ∈ Nm and ε > 0 let

U�,Y,α,ε =
{
�� :

∣∣∣∣E
[
Y

∫
x̄α d �(x̄)

]
− E

[
Y

∫
x̄α d��(x̄)

]∣∣∣∣ < ε
}
.

Aweak neighbourhoodU of � always contains a finite intersection
⋂
i<k U�,Yi ,αi ,3ε .

For each Yi find a step function Zi such that |Zi − Yi | < ε, so U contains⋂
i<k U�,Zi ,αi ,ε . Let {Bj}j<� be a finite partition of Ω on which each Zi is constant,
and let j be the average of � on Bj : j(C ) =

E[1Bj �(C )]
P[Bj ]

. Then �� =
∑
1Bjj ∈

U ∩D0.
Second, we claim that every � =

∑
i<k 1Bi i ∈ D0 (where {Bi} is a partition of

Ω) lies in the image of �. Indeed, let Ω′ = Ω× [0, 1]m, and define a probability Borel
measure Ω′ by

�(C ) =
∑
i<k

(P× i)
(
C ∩ (Bi × [0, 1]m)

)
.

Clearly, the projection on the first component Ω′ → Ω is measure-preserving, so
M = L1

(
(Ω′, �), [0, 1]

)
is a model of RV which contains (a copy of) A, and we

may embedM ⊆ N � ARV . Let X̄ : Ω′ → [0, 1]m be the projection on the second
component. Then, X̄ ∈Mm ⊆ Nm and � = dist(X̄ |A ) = � tp(X̄ /A).
Third, we claim that � is continuous. Indeed, let Y ∈ L1(A , [0, 1]) = dcl(A) and
α ∈ Nm. Since the map X̄ �→ X̄ α is uniformly definable, the map X̄ �→ E[YX̄α] is
an definable by a formula over A, which will be denoted E[Yx̄α]. If p = tp(X̄ /A)
and � = dist(X̄ |A ) = �p then

E[Yx̄α ]p(x̄) = E[YX̄α ] = E
[
Y

∫
x̄α d �(x̄)

]
.

Thus, the map p �→ E [Y ∫
x̄α d (�p)(x̄)

]
is continuous in p, and by definition of

weak convergence, � is continuous.
Since Sm(A) is compact andD[0,1]m(A ) Hausdorff, and given our three claims, �
is a homeomorphism. 
From this point onwards we identify m-types over A with m-dimensional condi-
tional distributions over �(A). In particular, from now on we shall omit � from the
notation, writing

∫
dp(x̄) where before we wrote

∫
d (�p)(x̄). Strong convergence

of conditional distributions also has a model-theoretic counterpart which prove in
several stages, see Theorem 3.10 and Theorem 6.1.

Corollary 3.4 (Quantifier Elimination toMoments). Modulo the theory ARV ,
the m-ary formulae are exactly the (possibly infinite) continuous combinations of
the E[x̄α]. In particular, every formula can be approximated arbitrarily well by finite
continuous combinations of these.
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Proof. By the theorem, the map p �→ (
E[x̄α ]p

)
α∈Nm is a topological embedding

� : Sm(∅) ↪→ [0, 1]N
m

. If ϕ(x̄) is any formula, then it can be identified with a
continuous function ϕ : Sm(∅) → [0, 1], which, by Tietze’s Extension Theorem,
can be written as ϕ̂ ◦ � for some continuous ϕ̂ : [0, 1]Nm → [0, 1]. The statement
follows. 
Corollary 3.5. Every sequence (�n)n ⊆ D[0,1]m(A ) admits a sub-sequence which

converges weakly.

Proof. First of all, we may assume that A is separable, since we may replace
it with �

({
�n

(∏
i<m[0, qi ]

)}
n∈N,q̄∈Qm

)
. Then Sm(A ) is compact and admits a

countable basis, so every sequence there admits a converging sub-sequence. 
In case we wish to consider distributions of R-valued random variables we need

to be a little more careful.

Definition 3.6. A family of distributions C ⊆ DRm (A ) is tight if for every ε > 0
there is R ∈ R such that ‖�([−R,R]m)‖1 > 1− ε for all � ∈ C.
We say that a family of m-tuples of random variables is bounded in measure if

their respective joint distributions form a tight family.

Remark 3.7. In [5], the first author pointed out (in a somewhat different form-
alism) that given any “modulus of tightness”, the family of real-valued random
variables respecting this modulus is interpretable as an imaginary sort in ARV
(or APr).

Let � : [−∞,∞]→ [0, 1] be any Borel map. For � ∈ DRm(A ), we may view � as
a member of D[−∞,∞]m and then let �∗� ∈ D[0,1]m(A ) denote the image measure
under �, i.e., �∗�(B) = �

(
(� × · · · × �)−1[B]).

Lemma 3.8. Let (�n)n ⊆ DRm (A ) be any sequence, and let � : [−∞,∞] → [0, 1]
be a homeomorphism. Then (�n)n converges weakly inDRm (A ) if and only if it is tight
and (�∗�n)n converges weakly in D[0,1]m(A ).

Proof. For R > 0, let �R : Rm → [0, 1] be continuous with 1[−R,R]m ≤ �R ≤
1[−R−1,R+1]m . Notice that the sequence is tight if and only if, for every ε > 0 there is
an R such that ‖ ∫ �R d �n‖1 > 1− ε for all n.
For left to right, assume that �n → � weakly. Then �∗�n → �∗� weakly (since

there are fewer test functions). In addition, for each ε > 0 there exists R0 such
that ‖ ∫ �R0 d �‖1 > 1 − ε. By assumption ‖ ∫ �R0 d �n‖1 → ‖ ∫ �R0 d �‖1, so for
some n0 we have ‖

∫
�R0 d �n‖1 > 1 − ε for all n ≥ n0. We can then find R1

such that ‖ ∫ �R1 d �n‖1 > 1 − ε for all n < n0. Let R = max(R0, R1). Then
‖ ∫ �R d �n‖1 > 1− ε for all n and the sequence is tight.
For right to left, we assume that the sequence is tight and that �∗�n → �� weakly

in D[0,1]m(A ). Then there exists � ∈ D[−∞,∞]m(A ) such that �∗� = �� and �n →
� weakly in D[−∞,∞]m(A ). By tightness, for each ε > 0 there is R such that
‖ ∫ �R d �n‖1 > 1−ε for all n. By weak convergence we obtain ‖ ∫ �R d �‖1 ≥ 1−ε.
We conclude that �(Rm) = 1, i.e.,  ∈ DRm (A ), as desired. 
Corollary3.9 ([12, Theorem 1.7]). Every tight sequence inDRm (A ) has aweakly

converging sub-sequence.
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We wish to relate the topology of strong convergence of conditional distributions
to a topology on the corresponding space of types. As a first approximation, we
prove:

Theorem 3.10. LetA be a set of parameters, and identify Sm(A)withD[0,1]m (�(A))
as above. Then the topology of d -convergence (of types) refines that of strong
convergence (of distributions), which in turn refines that ofCb-convergence (of types).

Proof. Let us first show that d -convergence implies strong convergence. LetM
be a large model containing A, and let α ∈ Nm. Then the map Mm → L1(�(A)),
X̄ �→ E[X̄ α|�(A)] is continuous, where both spaces are equipped with the usual
L1 metric. It follows that the map (Sm(A), d ) → L1(�(A)), p �→ ∫

x̄α dp(x̄) is
continuous.
We now prove that strong convergence implies Cb-convergence. For this purpose
we need to show that for every formulaϕ(x̄, ȳ), themap that associatesp �→ Cbϕ(p)
is continuous when equipping Sm(A) with the topology of strong convergence. By
Corollary 3.4, it is enough to show this where ϕ(x̄, ȳ) = E[x̄αȳ� ]. Indeed, let
X̄ , X̄ ′ ∈ Mm, p = tp(X̄ /A), p′ = tp(X̄ ′/A), f = E[X̄ α |�(A)], f′ = E[X̄ ′α|�(A)].
Then for each Ȳ ∈ dcl(A)k we have∣∣ϕ(X̄ , Ȳ )− ϕ(X̄ ′, Ȳ )

∣∣ =∣∣E[Y�(f − f′)]
∣∣ ≤ ‖f − f′‖1,

so d
(
Cbϕ(p),Cbϕ(p′)

) ≤ ‖f − f′‖1, and p �→ Cbϕ(p) is continuous in strong
convergence. 
Later, in Theorem 6.1, we show that all three agree.

§4. SFB theories and beautiful pairs. In order to show that the three topologies
referred to in Theorem 3.10 agree, we need to show that the canonical base topology
agrees with the distance on Sm(A).

Definition 4.1. We say that a theory T is strongly finitely based (SFB) if for
every model M � T and every n, the topologies TCb and Td agree on Sm(M )
(this does not change if we allow any algebraically closed set A instead ofM ).

We recall from Section 2 that the canonical base of a type p ∈ Sm(M ) lies in an
infinitary imaginary sort SCbm =

∏
ϕ∈Φm SCbϕ of M , where Φm is some sufficient

set of formulae as per Notation 2.1. Let Cm(M ) ⊆ SMCbm consist of those tuples
which actually arise as canonical bases of types over M . It is not difficult to see
that Cm(M ) is a type-definable set, and uniformly so in all models of T (see [10,
Lemma1.3]). Since the type canbe recovered from its canonical base, themapCbM,m
is injective, and by definition the canonical base map Cb: (Sm(M ),TCb)→ Cm(M )
is a homeomorphism.

Proposition 4.2. Assume that T is SFB. Then T is ℵ0-stable.
Proof. LetM be a separable model and let m ∈ N. Since Φm is countable, SMCbm
is separable, and so is its subset Cm(M ). Therefore,TCb is separable on Sm(M ), and
by SFB, (Sm(M ), d ) is separable. 
Our next goal is to give a general criterion for SFB. For this, let us recall a few
facts regarding definable sets in continuous logic.
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Definition 4.3. LetM be any structure,X ⊆M a possibly large subset,A ⊆M
a set of parameters. We say that X is (A-)definable in M if it is closed and the
predicate d (x,X ) is definable (over A).

Definable subsets ofMn are defined similarly.
Let us also recall the following result, due to the third author. For a proof see

[13, Section 1].

Fact 4.4 (Ryll-Nardzewski Theorem for metric structures). Let T be a theory in
a countable language. Then the following are equivalent:

(i) T is ℵ0-categorical, i.e., admits a unique separable model up to isomorphism.
(ii) T is complete and for eachm ∈ N, the metric topology and the logic topology
on Sm(T ) agree.

(iii) T is complete and the metric topology and the logic topology on S�(T ) agree.

In particular, in an ℵ0-categorical theory, every type-definable setX is definable (since
the map tp(x) �→ d (x,X ) is metrically continuous, and therefore continuous, so the
predicate d (x,X ) is definable).

(Notice that the separable models include any possible compact model of T , so
ℵ0-categoricity implies completeness by Vaught’s Test.)
In particular, if T is ℵ0-categorical, then Cm is a definable set, i.e., Cm(M ) is

uniformly definable is all models of T . Definability of sets is most often used as
follows:

Fact 4.5 ( [8, Fact 1.7] or [2, Theorem 9.17]). Let M be a structure, X ⊆ M
a closed, possibly large subset, A ⊆ M a set of parameters. Then the following are
equivalent:

(i) The set X is A-definable.
(ii) For every formula ϕ(x, ȳ) (possibly over A), the predicate �(ȳ) =
infx∈X ϕ(x, ȳ) is definable by a formula over A as well.

Let us now recall a few facts regarding Poizat’s beautiful pairs [16]. We define
an elementary pair of models of T to be a pair (M,N), where N ≺ M � T . We
view such a pair as a structure (M,P) in LP = L ∪ {P}, where P is a new 1-
Lipschitz unary predicate symbol measuring the distance to N , and we may also
writeN = P(M ). A beautiful pair of models of T is an elementary pair (M,P) such
that P(M ) is |L|+-saturated, and M is ℵ0-saturated over P(M ). We define TP as
the LP -theory of all beautiful pairs of models of T . If saturated models of TP are
not beautiful pairs (which may happen, for example, if T is a classical stable theory
with the finite cover property), then (continuous) first order logic is not adequate
for the consideration of the class of beautiful pairs. (On the other hand, positive
logic always provides an adequate framework, see [3].) If saturated models of TP
are beautiful pairs then continuous first order logic is adequate and we shall say that
the class of beautiful pairs of models of T is almost elementary.

Fact 4.6. Assume thatT isℵ0-categorical, ormore generally, that Cm is a definable
set for all m. Then the class of beautiful pairs of models of T is almost elementary.

Proof. See [10, Theorem 4.4]. To sketch the argument, one can always express
that (M,P) is an elementary pair. Since Cm is definable, one can quantify over it and
express that for every p ∈ Sm(M ) (i.e., for every canonical base of such type), and
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every finite subset A ⊆ M , sufficiently good approximations (uniform, in finitely
many formulae) of the restriction p�A∪P are realised in M . This is true in every
beautiful pair, and conversely, if (M,P) is sufficiently saturated and satisfies this
theory then p�A∪P is actually realised, so (M,P) is beautiful. 
Lemma 4.7. Let (M,P) be an elementary pair of models and ϕ(x̄, ȳ) ∈ Φm. Then
the map ā �→ Cbϕ(ā/P) is uniformly definable in (M,P), i.e., its graph is definable
by a partial type which does not depend on (M,P).
Proof. The graph of z = Cbϕ(x̄/P) is defined by:

P(z) = 0 & sup
ȳ∈P

∣∣ϕ(x̄, ȳ)− dx̄ϕ(ȳ, z)∣∣ = 0.
(See also [10].) 
It follows that for every m we have a uniformly definable map � : (M,P)m →

Cm(P) inducing a continuous function �̂ : Sm(TP) → SCbm (T ) given as follows
(here SCbm (T ) is the space of types in the sort SCbm ).

� : ā �→ Cb(ā/P),

�̂ :tpLP (ā) �→tp(Cb(ā/P)) = tp(�(ā)). (2)

Fact 4.8. Let (M,P) and (N,P) be two beautiful pairs of models of T and let
ā ∈M and b̄ ∈ N be two m-tuples. Then ā ≡LP b̄ if and only if �(ā) ≡ �(b̄), i.e., if
and only if �̂(ā) = �̂(b̄).
Proof. One direction holds since �̂ is well defined. The converse is proved as
for [16, Théorème 4], checking that the family of finite partial maps f : M → N
such that �(domf) ≡ �(imgf) forms a back-and-forth system between (M,P)
and (N,P). 
Proposition 4.9. Assume the class of beautiful pairs of models of T is almost
elementary. Then the map �̂ defined above is a homeomorphic embedding.
Proof. We have already observed that �̂ is a continuous map from a compact
space into a Hausdorff space. Therefore, all we need to show is that it is inject-
ive. Let (M,P), (N,P) � TP , ā ∈ Mm , b̄ ∈ Nm , and assume that �̂(ā) = �̂(b̄).
We may replace both (M,P) and (N,P) by |L|+-saturated elementary extensions.
By assumption (M,P) and (N,P) are beautiful pairs and we may apply
Fact 4.8. 
Theorem 4.10. Let T be any stable continuous first order theory. Then TP is

ℵ0-categorical if and only if T is ℵ0-categorical and SFB.
Proof. Assume first that TP is ℵ0-categorical. Then clearly T is ℵ0-categorical
(indeed, if Sm(TP) is metrically compact then so is Sm(T )).
So fixm ∈ N and let x̄ be anm-tuple. We shall in fact prove a uniform version of
SFB, namely that for every ε > 0 there is 	 > 0 such that ifN � T andp, q ∈ Sm(N)
are such that d (Cb(p),Cb(q)) < 	 (where the distance between canonical bases is
as defined in (1)), then d (p, q) ≤ ε. For simplicity of notation we shall assume that
m = 1 and drop the bars.
Recall from Lemma 4.7 that the map � : a �→ Cb(a/P) is uniformly definable
in TP . Let r(x, y) be the partial LP-type saying that x ≡P y. Since TP is ℵ0-
categorical, the distance d (xy, r) is a definable predicate. Consider now the partial
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LP -type consisting of {d (xy, r) ≥ ε/2}∪{d(�(x), �(y)) < 	}	>0. This partial type
is contradictory, whence we obtain a 	 > 0 such that

d
(
�(x), �(y)

)
< 	 � d (xy, r) < ε/2.

We claim that this 	 is as required, i.e., if N � T , p, q ∈ S1(N), and
d
(
Cb(p),Cb(q)

)
< 	, then d (p, q) ≤ ε. Indeed, passing to an elementary extension

and taking nonforking extensions of the typeswemay assume thatN isℵ1-saturated,
and then find M � N which is |N |+-saturated, so (M,N) = (M,P) � TP is a
beautiful pair. Let C = Cb(p), D = Cb(q), so d (C,D) < 	.
By our saturation assumption there exist a, b ∈ M such that a � p and b � q,

so �(a) = C , �(b) = D, and therefore d (ab, r) < ε/2. In other words, there
exist a′b′ ∈ M such that d (ab, a′b′) < ε/2 and tp(a′/N) = tp(b′/N) = p′, say.
Therefore

d (p, q) ≤ d (p, p′) + d (p′, q) < ε/2 + ε/2 = ε.
Conversely, assume that T is ℵ0-categorical and is SFB. By the metric Ryll-

Nardzewsky Theorem, we need to show that for each m, the logic topology and
the metric topology on Sm(TP) coincide. In other words, we need to show that if
pn → p in Sm(TP), then pn →d p there.
Assume then that pn → p. Since T is ℵ0-categorical, the class of beautiful

pairs of models of T is almost elementary (Fact 4.6). By Proposition 4.9, the map
�̂ : tpLP (a) �→ tp

(
Cb(a/P)

)
is a topological embedding, so �̂(pn) → �̂(p), and

since T is ℵ0-categorical we have �̂(pn) →d �̂(p). In other words, in a sufficiently
saturated model N � T we can find infinite tuples Cn � �̂(pn) and C � �̂(p) such
that Cn → C .
Write C = {cϕ}ϕ∈Φm , and let q ∈ Sm(N) be the unique type over N such that

Cb(q) = C , i.e.,

ϕ(x, b)q = dxϕ(b, cϕ), b ∈ N,ϕ ∈ Φ(x).
Define qn ∈ Sm(N) such that Cb(qn) = Cn similarly. Then qn →Cb q by definition,
and since T is SFB qn →d q. Let an � qn and a � q witness this, so an → a in
some M � N , which we may assume to be |N |+-saturated, so (M,N) = (M,P)
is a beautiful pair. Then �(a) = C � �̂(p) implies p = tpLP (a), and similarly
tpLP (an) = pn. Thus an → a witnesses that pn → p, and the proof is complete.


The intuitive idea behind this criterion is roughly as follows. We assume that T

is ℵ0-categorical, and let (M,N) be a beautiful pair of models thereof. Then every
type in Sm(N) is realised by some ā ∈ Mm , and the map tp(ā/N) �→ tp(M,N )(ā)
is a well defined surjection Sm(N) → Sm(TP). Since formulae in TP essentially
give information about Cb(x̄/P) (compare with the more explicit approach of [10,
Section 4]), and since T is assumed to be ℵ0-categorical, the logic topology on
Sm(TP) agrees with the quotient of the canonical base topology on Sm(N). On the
other hand, the distance topology on Sm(T ) is the quotient of the distance topology
on Sm(N). Thus, the gap between the logic and distance topologies on Sm(TP)
(i.e., TP being ℵ0-categorical or not) boils down, more or less, to the gap between
the canonical base and distance topologies over a model of T (i.e., T being SFB
or not).
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In the case of classical (discrete) first order logic, the situation covered by
Theorem 4.10 boils down to the one covered by the following result of Zilber et
al.

Fact 4.11 ([15, Theorem 5.12]). An ℵ0-categorical, ℵ0-stable classical theory is
one-based.

Proposition 4.12. Let T be a classical ℵ0-categorical (and stable) theory. Then
the following are equivalent:

(i) T is SFB.
(ii) T is ℵ0-stable.
(iii) T is one based.
(iv) T is finitely based (meaning that for every m there exists k such that every
indiscernible sequence of m-tuples, is a Morley sequence over its first k
elements).

Proof. (i) =⇒ (ii). We have already seen that SFB implies ℵ0-stability.
(ii) =⇒ (iii). By Fact 4.11.
(iii) =⇒ (iv). Immediate (k = 1).
(iv) =⇒ (i). Let us fix m = 1 and the corresponding k. Then the type of an indis-
cernible sequence (of singletons) is determined by the type of the first k+1members
of that sequence, so only finitely many types of indiscernible sequences exist. On the
other hand, if (M,P) � TP and a ∈M , then tpLP (a) is determined by theL-type of
Cb(a/P), which in turn is determined by the type of a Morley sequence in tp(a/P).
We conclude that S1(TP) is finite, and by similar reasoning so is Sm(TP) for all m.
Therefore TP is ℵ0-categorical, so T is SFB by Theorem 4.10. 
Our Theorem 4.10 is therefore mostly interesting for ℵ0-categorical continuous
theories, to which Proposition 4.12 does not generalise. For the direction “one-
based =⇒ SFB” we merely observe that the proof given above does not carry over
to the metric setting. For the direction “SFB =⇒ one-based” we present below a
counter-example.

Notation 4.13. For any theory T , let TP,0 denote the theory of elementary pairs
of models of T in the language LP (which is an elementary class).
Corollary 4.14. The theory of infinite dimensional Hilbert spaces IHS is SFB.

Proof. Let IHS′P consist of IHSP,0 together with the axiom scheme expressing,
for each k, that there exist k orthonormal vectors which are orthogonal to P
(we leave the details to the reader, pointing out that since P is definable modulo
IHSP , one may quantify over it). It is then not difficult to check that every beautiful
pair of models of IHS is a model of IHS′P , so IHS

′
P ⊆ IHSP . On the other hand,

IHS′P admits (H ⊕ H1,H ) where H ∼= H1 � IHS are separable. Thus IHS′P is
complete, so IHS′P = IHSP , and IHS is SFB by Theorem 4.10. 
Corollary 4.15. The theories APr and ARV are SFB.

Proof. The argument is essentially the same as above. We define APr′P to consist
of APrP,0 along with the axiom saying thatM is atomless over P, expressible as

sup
x
inf
y
sup
z∈P

∣∣ 1
2(x ∩ z)− (x ∩ y ∩ z)

∣∣ = 0.
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Then again every beautiful pair is a model of APr′P and APr
′
P admits a unique

separable model, namely (B(X × Y ),B(X )), where X = Y = [0, 1] is equipped
with the Lebesgue measure, and the embeddingB(X ) ↪→ B(X ×Y ) is induced by
the projection X × Y � X .
Since ARV and APr are bïınterpretable, SFB follows forARV . Alternatively, the

same argument holds forARV , where atomlessness of �(M ) over �(P) is expressed
by

sup
x
inf
y
sup
z∈P

∣∣ 1
2E(x ∧ z)− E(x ∧ y ∧ z)

∣∣ = 0. 
Both of the examples above are ℵ0-categorical and ℵ0-stable, so it is natural to

expect them to satisfy some continuous analogue of one-basedness. It is not difficult
to verify that none of them is literally one-based. In fact, no known continuous
stable theory is one based, except for those constructed trivially from classical ones.
Given the examples above, and in analogy with Proposition 4.12, it stands to reason
to contend that at least for ℵ0-categorical theories, SFB is the correct continuous
logic analogue of a classical one-based theory, and one may further formalise it as
a conjecture:

Conjecture 4.16 (Zilber’s Theorem for continuous logic, naı̈ve version). Every
ℵ0-categorical ℵ0-stable theory is SFB.
Unfortunately, this conjecture has an easy counterexample:

Example 4.17. The theory ALpL of atomless Lp Banach lattices for p ∈ [1,∞)
(see [1]) is not SFB. This has already been observed in Example 2.9 using results of
[10]. This can also be observed using our criterion, as follows.
A model of ALpLP is of the form

(
Lp(X,BX , X ), Lp(Y,BY , Y )

)
, whereBY ⊆

BX (so in particular Y ⊆ X ) and Y = X �BY , such that in addition Y is atomless
and X is atomless over BY . The theory ALpLP has precisely two nonisomorphic
separable models, one where Y = X and the other where (X � Y ) > 0.
We may construct them explicitly as

(
Lp(X × Y ), Lp(X )) and (

Lp(Z × Y ),
Lp(X )

)
, where X = Y = [0, 1] ⊆ Z = [0, 2] are equipped with the Lebesgue

measure, the embedding Lp(X ) ⊆ Lp(X × Y ) is given by f′(x, y) = f(x) and
Lp(X × Y ) ⊆ Lp(Z × Y ) is given by f′(w) = f(w) for w ∈ X × Y , f′(w) = 0
otherwise.

It is worthwhile to point out that this last example is disturbing on several other
“counts”:

• It is a counter-example for Vaught’s no-two-models theorem in continuous
logic.

• Since ALpL is ℵ0-stable, ALpLP is superstable by [4], and we get a counter-
example to Lachlan’s theorem on the number of countable models of a first
order superstable theory.

Nonetheless, one may still hope to recover a version of Zilber’s Theorem for con-
tinuous logic using the notion of perturbations ofmetric structures (as introduced in
[6,7]). Natural considerations suggest that whenever adding symbols to a language
(especially to the language of an ℵ0-categorical theory) one should also study the
expanded structures up to arbitrarily small perturbations of the new symbol. Thus,
the question should not be whether ALpLP is ℵ0-categorical, but rather, whether
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it is ℵ0-categorical up to small perturbations of the predicate P (the positive non-
perturbed results for IHSP and APrP should be viewed witnessing the exceptional
structural simplicity of these theories).

Proposition 4.18. The theory ALpLP is ℵ0-categorical up to arbitrarily small
perturbations of P.

Proof. We need to show that if (M,P), (N,P) � ALpLP are separable then there
exists an isomorphism � : M → N such that |d (f,P) − d (�(f), P)| < ε for all
f ∈ M . Since ALpLP has precisely two non-isomorphic separable models, it will
suffice to show this for those two models.
Let N , M1 and M2 be the closed unit balls of Lp([0, 1]), Lp([0, 1] × [0, 1]) and
Lp([0, 2] × [0, 1]), respectively (with the Lebesgue measure). As in the example
above, we consider that N ⊆ M1 ⊆ M2. In particular, N is the set of all g ∈ M1
such that the value of g(x, y) depends only on x. Then the two non-isomorphic
models are (M1, N) and (M2, N).
Define �1 : Lp([0, 1] × [0, 1]) → Lp([0, 1] × [ε, 1]) and �2 : Lp([1, 2] × [0, 1]) →
Lp([0, 1]× [0, ε]) by:

(�1f)(x, y) = (1 − ε)−1/pf
(
x, (y − ε)/(1− ε))

(�2f)(x, y) = ε−1/pf(x + 1, y/ε).

Then �1 and �2 are isomorphisms of Banach lattices, which can be combined into
an isomorphism � = �1 ⊕ �2 : Lp([0, 2]× [0, 1])→ Lp([0, 1]× [0, 1]). This restricts
to an isomorphism of the unit balls which will also be denoted by � : M2 →M1. Let
alsoD = [0, 1]× [0, ε] and E = [0, 1]× [ε, 1], namely the supports of the images of
�2 and �1, respectively.
We claim that ��N : N →M1 is not too far from the identity. Indeed, let g ∈ N .
Then ‖g‖ ≤ 1, and we can write it as a function of the first coordinate g(x). Then
�(g) = �1(g) can be written as (1− ε)−1/pg(x)�E (x, y). For r ∈ [0, 1] let:

�(r) = 1− (1− r)1/p + r1/p.
Then:

‖g − �(g)‖ ≤ ‖g�E − (1− ε)−1/pg�E‖+ ‖g�D‖
=

(
(1− ε)−1/p − 1

)
‖g�E‖+ ‖g‖ε1/p

= ‖g‖
(
(1− ε)−1/p − 1

)
(1− ε)1/p + ‖g‖ε1/p

= ‖g‖�(ε) ≤ �(ε).
Now let f ∈M2. Then:∣∣‖f − g‖ − ‖�(f)− g‖∣∣ = ∣∣‖�(f)− �(g)‖ − ‖�(f)− g‖∣∣

≤ ‖g − �(g)‖ ≤ �(ε).
Fixing f ∈M2 while letting g ∈ N vary, we conclude that:∣∣d (�f,P)(M1,N ) − d (f,P)(M2,N )∣∣ = ∣∣d (f,N) − d (�(f), N)∣∣

≤ sup
g∈N

∣∣‖f − g‖ − ‖�(f)− g‖∣∣ ≤ �(ε).
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Since � is continuous and �(0) = 0, by taking ε > 0 small enough we can get
� : (M2, N) → (M1, N) to be as small a perturbation of the predicate P(x) =
d (x,N) as we wish. 
We therefore propose the following:

Conjecture 4.19 (Zilber’s Theorem for continuous logic). Whenever T is an
ℵ0-categorical ℵ0-stable theory (in a countable language) TP is ℵ0-categorical up to
arbitrarily small perturbations of the predicate P.

§5. Almost indiscernible sequences and sub-sequences. One of the questions stud-
ied by Berkes and Rosenthal [12] is when a sequence of random variables possesses
an almost exchangeable sub-sequence. In this section we address the corresponding
model-theoretic question, namely, when a sequence of tuples possesses an almost
indiscernible sub-sequence. For simplicity of notation, we only consider (sequences
of) singletons, but the everything we prove holds just as well for arbitrary (at most
countable) tuples.

Definition 5.1. A sequence (an)n∈N is almost indiscernible if there exists
(possibly in an elementary extension) an indiscernible sequence (bn)n∈N in the
same sort such that d (an, bn)→ 0.
Lemma 5.2. Let (an)n∈N be an almost indiscernible sequence, say witnessed by an

indiscernible sequence (bn)n∈N, and let B ⊇ (an)n. Then p = lim tp(an/B) exists
and is stationary, and Cb(p) ⊆ dcl(an)n. Moreover, (bn)n∈N is a Morley sequence in
p�Cb(p).
Proof. Let B ′ = B ∪ {bn}n. Since T is stable, r = lim tp(bn/B ′) exists and

is stationary, and (bn)n is a Morley sequence in r�Cb(r). By [9] (Lemma 4.2 and
the discussion following Proposition 5.2), Cb(r) can uniformly recovered from any
Morley sequence in r. Consider now an automorphism of an ambient monster
model which fixes (an)n . For k large enough, it will move the tail (bn)n≥k , and
therefore Cb(r), as little as we wish. Therefore, Cb(r) ⊆ dcl(an)n ⊆ dcl(B).
Clearly lim tp(an/B) = lim tp(bn/B) = r�B , so in particular the first limit exists,

call it p. Since Cb(r) ⊆ B, the type p is stationary, Cb(p) = Cb(r) ⊆ dcl(an)n.
Finally, r�Cb(r) = p�Cb(p). 
In a discrete sort, an almost indiscernible sequence is just one which is eventually

indiscernible, so having an almost indiscernible sub-sequence is the same as having
an indiscernible sub-sequence. In metric sorts, however, the two notions may differ
and it is the weaker one (namely, having an almost indiscernible sub-sequence) that
we shall study.

Definition 5.3. Let B be a set containing a sequence (an)n∈N. We say that (an)n
satisfies (∗B ) if p = lim tp(an/B) exists and is stationary, and for C = Cb(p) and
c � p we have:

tp(Ban/C )→d tp(Bc/C )
If B = {an}n we omit it and say that (an)n satisfies (∗).
Notice that property (∗B) lies between convergence of tp(an/B) in the logic

topology and convergence in d . Convergence in d would justmean that the sequence
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(an)n converges (in fact, canonical base convergence would imply the same, when
applicable, by Remark 2.6), and is therefore too restrictive for our purposes. On
the other hand, convergence in the logic topology alone is too weak: if (an) is an
arbitrary sequence contained, say, in a separableB, then by compactness there exists
a sub-sequence such that tp(ank /B) converges, so this kind of hypothesis tells us
essentially nothing about the sequence – and using stability, one may remove the
separability assumption (in a countable language). With Definition 5.3, however,
we can prove:

Theorem 5.4. If T is stable and the sequence (an)n∈N ⊆ B has a sub-sequence
satisfying (∗B) then (an)n∈N also has an almost indiscernible sub-sequence. If T is
superstable then the converse holds as well.
Moreover, if in addition q = lim tp(an/B) exists, then it is stationary and the
sequence witnessing almost indiscernibility is Morley over Cb(q).
Proof. We may assume that the sequence (an)n satisfies (∗B ), and therefore (∗).
Let A = {an}n ⊆ B and let p = lim tp(an/A), C = Cb(p), c � p, so c |
C

A.
We construct by induction on i ∈ N an increasing sequence (ni)i and copies Aici
of Ac, Ai = {ain}n, such that:
(i) d (ainj , a

i+1
nj ) ≤ 1

2i for j < i .

(i) d (ci , ai+1ni ) ≤ 1
2i .

(iii) Aici ≡C Ac.
(iv) ci |
C

c<i .

We start with A0c0 = Ac. At the ith step we already have Ai , ci , and n<i . By (∗)
there exists k such that:

d
(
tp(an<i ak/C ), tp(an<i c/C )

) ≤ 2−i .
We let ni = k, and we may assume that ni > nj for j < i . Since Ac ≡C Aici , there
exists Ai+1 � tp(A/C ) such that

d (ai+1n≤i , a
i
n<i c

i) ≤ 2−i .
This takes care of the first two requirements. Choose ci+1 � p�C such that
ci+1 |
C

Ai+1c≤i . Then the two last requirements are satisfied as well, and the
construction may proceed.
For each i , the sequence (ajni )j is Cauchy, converging to a limit b

i , and we have
d (ci , bi) ≤ 2−i+2. Also, the sequence (ci)i is indiscernible (being aMorley sequence
inp�C ), and (bi)i ≡C (ani )i . Thus (an) admits an almost indiscernible sub-sequence
(ani )i .
For the moreover part, we may again assume that the entire sequence (an)n
satisfies (∗B), since the limit type, if it exists, must be equal to the limit type of any
sub-sequence. Then the statement follows from Lemma 5.2.
For the converse we assume that T is superstable, and we may further assume
that (an)n is almost indiscernible as witnessed by an indiscernible sequence (cn)n .
By Lemma 5.2, p = lim tp(an/B) exists and is stationary, and (cn)n is a Morley
sequence over C = Cb(p). Let c � p, so c |
C

B.

Fix a finite tuple b̄ ⊆ B, and ε > 0. By superstability there exists n ∈ N such
that b̄ε |
Cc<n

cn. In other words, there exists b̄′ ≡acl(Cc<n) b̄ such that d (b̄, b̄′) ≤ ε
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and b̄′ |
Cc<n
cn. By transitivity, b̄′ |
C

cn, in which case b̄′cn ≡C b̄c. This proves
that tp(Bcn/C )→d tp(Bc/C ). Since d (an, cn)→ 0, it follows that tp(Ban/C )→d
tp(Bc/C ) as desired. 
Remark 5.5. Assume that (an)n satisfies (∗B ), with c andC as in Definition 5.3,

and let B ⊇ B ′ ⊇ (an)n . By the proof of Theorem 5.4, there exists a Morley
sequence (ck)k in tp(c/C ) which witnesses that a sub-sequence (ank )k is almost in-
discernible. By Lemma 5.2 it follows thatC ⊆ dcl({an}n), and therefore (∗B′) holds
(so in particular (∗B) =⇒ (∗)).
In addition, the condition (∗B) is equivalent to:
There exists a stationary type p ∈ S(B) such that if C = Cb(p) and c � p then
tp(Ban/C )→d tp(Bc/C ).

Indeed, this already implies that tp(an/B)→ tp(c/B).

§6. The model-theoretic contents of Berkes and Rosenthal [12]. The main motiv-
ation for the present paper is to give a formal model-theoretic account of several
results of Berkes and Rosenthal [12], which have a strong model-theoretic flavour.
In Section 3, we have already related some probability-theoretic notions to model-
theoretic ones. While we characterised the weak topology on distributions/types,
we left a gap in the characterisation of the strong topology, which, with Section 4,
we can now complete:
Theorem 6.1. Let A be a set of parameters, and identify Sn(A) with Dn(�(A)) as

above. Then the topologies of d -convergence, Cb-convergence (of types) and strong
convergence (of distributions) agree.
Proof. By Theorem 3.10 and Corollary 4.15. 
At this stage we have the necessary tools to address themain result (Theorem 2.4)

of Berkes and Rosenthal [12]. A word of caution is in place, regarding the fact that
Berkes and Rosenthal consider R-valued random variables, whereas model theory
canonly dealwith uniformly bounded randomvariables (or,more generally, families
bounded in measure), and the literature treats [0, 1]-valued ones. In Section 3 only
topological (and not, say, algebraic) properties ofRwere actually used, so we could
simply compose with some fixed homeomorphism � : R → (0, 1). The same holds
in what follows with one exception, namely exchangeability, which we shall treat
explicitly in Lemma 6.7.
The following definitions were given in [12] for sequences of single random

variables. We give the obvious extensions to sequences of tuples of a fixed length.

Definition 6.2. Let (X̄n)n∈N be a sequence of m-tuples of random variables,
X̄n = (Xn,0, . . . , Xn,m−1).
(i) Let C ⊇ �({Xn,i}n,i) be any probability algebra with respect to which
all the Xn,i are measurable. Then the sequence is determining in C if the
sequence dist(X̄n|C ) converges weakly in DRm(C ). (We use an alternative
characterisation from [12, Proposition 2.1].)

(ii) Let (X̄n)n be a determining sequence of C -measurable random variables,
and let � ∈ DRm(C ) be the limit distribution. Then the limit tail algebra

[12, p. 474] of (X̄n)n is �(�) = �
({
�
(∏
(−∞, qi)

)}
q̄∈Qm

)
⊆ C .
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(iii) The sequence is exchangeable if the joint distribution (over the trivial algebra)
of any k distinct tuples of the sequence depends only on k.

(iv) The sequence is almost exchangeable if there is an exchangeable sequence
(Ȳn)n∈N such that

∑
n,i |Xn,i − Yn,i | <∞ almost surely.

While Berkes and Rosenthal consider the ambient probability algebra as fixed
(this is in particular apparent in their definition of a determining sequence), the
model-theoretic setting suggests that we allow it to vary. Conveniently, this has no
effect on the definitions:

Fact 6.3. A sequence (X̄n) is determining in some C ≥ C0 = �
({X̄n}n) if and

only if it is determining in C0. Therefore, from now we just say that a sequence is
determining.

Proof. that if �n are conditional distributions over C0 and � a conditional dis-
tribution over C ⊇ C0, then �n → � weakly as conditional distributions over C
if and only if � is in fact over C0 and �n → � weakly as conditional distributions
over C0. 
By Theorem 3.3, (X̄n)n is determining (in C , say) if and only if the sequence(
tp(�X̄n/C )

)
n
converges in Sm(C ) to some tp(�Ȳ /C ), where Ȳ is Rm-valued ran-

dom variables (we recall that � : R→ (0, 1) is a homeomorphism fixed throughout).
On the other hand, if we only know that

(
tp(�X̄n/C )

)
n
converges in Sm(C ), saywith

limit tp(Z̄/C ), then Z̄ consists of [0, 1]m-valued random variables, so Ȳ = �−1Z̄
consists of [−∞,∞]m-valued random variables, which need not necessarily be
Rm-valued.

Lemma 6.4. Let (X̄n)n be an Rm-valued sequence, and let C ⊇ �({X̄n}n). Then
the sequence is determining if and only if:

(i) The sequence
(
tp(�X̄n/C )

)
n
converges in Sm(C ); and :

(ii) The sequence (X̄n)n is bounded in measure.

Proof. Immediate from Lemma 3.8. 
Proposition 6.5 ( [12, Theorem 2.2]). Every sequence of Rm-valued random
variables which is bounded in measure has a determining sub-sequence.

Proof. Immediate from Corollary 3.9. 
Clearly, a sequence (X̄n)n is exchangeable if and only if it is an indiscernible set
(or more precisely, if and only if the (0, 1)m-valued sequence (�X̄n)n is). Since
ARV is a stable theory, every indiscernible sequence is indiscernible as a set, so
exchangeable is synonymous with indiscernible. This observation is part of the
statement of [12, Theorem 1.1]. The full statement is that an indiscernible sequence
of random variables is conditionally independent and identically distributed (i.i.d.)
over its tail field. This can also beobtained as an application toARV of the following
facts:

(i) In a stable theory, if (ān)n is any indiscernible sequence, then it is a Mor-
ley sequence over its “tail closure” C =

⋂
n dcl

eq({āk}k≥n) (follows from
[9, Theorem 5.5]).

(ii) The characterisation of dcl(A) in ARV as L1
(
�(A), [0, 1]

)
.

(iii) In models of ARV , canonical bases exist in the real sort.
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On the other hand, being almost exchangeable is not invariant under a homeo-
morphism of R with (0, 1), so something needs to be said. Recall first that inside
a bounded family of random variables, convergence in Lp is equivalent, for any
1 ≤ p <∞, to convergence in measure.
Lemma 6.6. Let � : R→ (0, 1) be any homeomorphism, and let (Xn) and (Yn) be

sequences of R-valued random variables.

(i) If
∑ |Xn − Yn| <∞ a.s. then |�Xn − �Yn| → 0 in L1.

(ii) Assume conversely that |�Xn −�Yn| → 0 in L1, and that the sequence (Yn)n is
bounded inmeasure.Then there exists a sub-sequence forwhich

∑ |Xnk−Ynk | <
∞ a.s.

Proof. For the first item, notice that � is necessarily uniformly continuous.
If

∑ |Xn − Yn| < ∞ a.s. then by standard arguments |Xn − Yn| → 0 in meas-
ure, in which case |�Xn − �Yn| → 0 in measure. Since |�Xn − �Yn| are bounded
random variables, ‖�Xn − �Yn‖1 → 0.
For the second item we assume that |�Xn − �Yn| → 0 in L1, or equivalently, in

measure, and that (Yn)n is bounded in measure. We first claim that |Xn − Yn| → 0
in measure. Indeed, let ε > 0 and let R ∈ R be such that P[|Yn | > R] < ε for all
n. Let K0 = �

[
[−R,R]], K1 = �[[−R − ε,R + ε]]. Then K0 ⊆ K◦

1 ⊆ K1 ⊆ (0, 1),
and since K1 is compact, �−1 is uniformly continuous on K1. In particular, there
exists 	 > 0 such that if x, y ∈ K1 and |x − y| < 	 then |�−1(x) − �−1(y)| < ε.
Possibly taking a smaller 	, we may assume thatK1 contains a 	-neighbourhood of
K0. Since |�Xn − �Yn| → 0 in measure, for n big enough we have |�Xn − �Yn| < 	
outside a set of probability ε. Thus, outside a set of probability 2ε we have both
|�Xn − �Yn| < 	 and img(�Yn) ⊆ K0, whereby img(�Xn) ⊆ K1 and therefore
|Xn − Yn| < ε. This concludes the proof that |Xn − Yn| → 0 in measure. It follows
that for a sub-sequence,

∑ |Xnk − Ynk | <∞ a.s. 
Lemma 6.7. Let (X̄n)n be a sequence of Rm-valued random variables.

(i) Assume that (X̄n) is almost exchangeable. Then it is bounded in measure.
(ii) Assume that (X̄n) is bounded in measure. Then it has an almost exchangeable
sub-sequence if and only if the sequence (�X̄n)n has an almost indiscern-
ible one. Moreover, in that case, the indiscernible sequence witnessing almost
indiscernibility is (0, 1)m-valued.

Proof. For the first item, it is clear that an exchangeable (and more generally,
an identically distributed) sequence is bounded in measure. Assume now that (Ȳn)n
witnesses that (X̄n)n is almost exchangeable. As in the proof of Lemma 6.6 we have
X̄n − Ȳn → 0 in measure, and the statement follows.
We now prove the second item. For left to right, we may assume that (X̄n)n is

almost exchangeable, as witnessed by (Ȳn)n. By Lemma 6.6 the sequence (�Ȳn)n
witnesses that (�X̄n)n is almost indiscernible.
For right to left, we may assume that (�X̄n)n is almost indiscernible, as witnessed

by an indiscernible sequence (�Ȳn)n (where the Yn,i are, a priori, [−∞,∞]-valued).
Let C = �

({X̄n}n). Then the limit p = lim tp(�Ȳn/C ) exists, whereby the limit
lim tp(�X̄n/C ) = p exists as well. Let �Ȳ � p. By Lemma 6.4 (X̄n)n is determining
and Ȳ is Rm-valued. Since Ȳn ≡ Ȳ (over ∅, even though not necessarily over C ),
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each Ȳn is R-valued as well. Now, again by Lemma 6.6, there exist sub-sequences
(X̄nk )k , (Ȳnk )k such that

∑ |Xnk,i − Ynk,i | <∞ a.s. 
Finally, a word regarding the limit tail algebra of a determining sequence. Let
M = L1(F , [0, 1]) be a big saturatedmodel ofARV ,C ⊆ F a sub-algebra, and let
(X̄n)n be a determining sequence of C -measurable random variables. Let Ȳ realize
the limit distribution overC , measurable inF (althoughnot necessarily inC ). Then
the tail measure algebra of (X̄n)n is precisely A = �

({E[(�Ȳ )α|C ]}α∈Nm) ⊆ C ,
which is interdefinable with Cb(�Ȳ /C ).
Now, the Main Theorem of [12] follows as a special case of our Theorem 5.4.

Theorem 6.8 ( [12, Theorem 2.4]). Let (X̄n)n be a sequence of random variables in
a probability space (Ω,C , ). Then (X̄n)n has an almost exchangeable sub-sequence
if and only if it has a determining sub-sequence whose conditional distributions (with
respect to the limit tail algebra of the sequence), relative to every set of positive
measure, converge strongly.
Moreover, if in addition (X̄n) is determining then the sequence witnessing almost
exchangeability is i.i.d. over the limit tail algebra.

Proof. We may view C as a sub-algebra of a rich atomless probability algebra
F and work inM = L1(F , [0, 1]) � ARV . Since almost exchangeable and determ-
ining sequences are bounded in measure, we may assume that (X̄n)n is bounded in
measure.
Under this assumption, the first condition is equivalent to saying that (�X̄n)n
admits an almost indiscernible sub-sequence.Regarding the second condition, a sub-
sequence (X̄nk )k is determining if and only if

(
tp(X̄nk/C )

)
k
converge to some type

p ∈ Sm(C ). In this case the limit tail algebraA is interdefinable with Cb(p), and the
conditional distributions dist(X̄nk , S|A ) converge strongly for every S ∈ C if and
only if tp(�X̄nk ,C /A ) converge in (S(A ),TCb), or equivalently, by Theorem 6.1,
in (S(A ),Td ).
Thus the statement of the theorem is equivalent to saying that the sequence
(�X̄n)n has an almost indiscernible sequence if and only if it has a sub-sequence
with the property (∗C ). This is just a special case of Theorem 5.4 (and the same for
the moreover part). 
Corollary 6.9 ( [12, Theorem 3.1]). A sequence of random variables has an
almost i.i.d. sub-sequence if and only if it has a sub-sequence whose distributions
relative to any set of positive measure converge to the same limit.

Proof. Let (X̄n)n be the sequence, and let C denote the ambient probability
algebra in the statement, and we may embed C in a modelM � ARV .
Following the same translation as above, if (X̄n)n is almost i.i.d., say as witnessed
by (Ȳn)n, then lim tp

(
�X̄n/C ) = lim tp

(
�Ȳn/C ) = p, say, and Cb(p) ⊆ dcl(∅). In

other words, if �Z̄ � p then C |
 Z̄, meaning precisely that the distribution of Z̄
relative to any nonzero member of C is the same.
Conversely, assume that lim dist(X̄n|S) = lim dist(X̄n) = , say, for every 0 �=
S ∈ C . Let Z̄ realise  independently of C . Then dist(X̄n|C )→ dist(Z̄|C ) weakly,
so the sequence is determining, and since Z̄ |
 C the limit tail algebra is trivial.
Also, since dist(X̄n|C ) → dist(Z̄|C ) weakly, we have dist(X̄n,C ) → dist(Z̄,C )
(weakly or strongly, over the trivial algebra it is the same thing), so passing to a
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sub-sequence we may assume that (X̄n)n is almost exchangeable, say witnessed by
(Ȳn)n. By the moreover part of the theorem, this sequence is i.i.d. 
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