
On utility of inductive learning in multiobjective
robust design

BABAK FOROURAGHI
Computer Science Department, Saint Joseph’s University, Philadelphia, PA 19131

(Received December 1, 1997;Accepted October 26, 1998!

Abstract

Most engineering design problems involve optimizing a number of often conflicting performance measures in the
presence of multiple constraints. Traditional vector optimization techniques approach these problems by generating a
set of Pareto-optimal solutions, where any specific objective can be further improved only at the cost of degrading one
or more other objectives. The solutions obtained in this manner, however, are only single points within the space of all
possible Pareto-optimal solutions and generally do not indicate to designers how small deviations from predicted de-
sign parameters settings affect the performance of the product or the process under study.

In this paper we introduce a new approach to robust design based on the concept of inductive learning with regres-
sion trees. Given a set of training examples relating to a multiobjective design problem, we demonstrate how a multi-
variate regression tree can utilize an information-theoretic measure of covariance complexity to capture optimal, tradeoff
design surfaces. The novelty of generating design surfaces as opposed to traditional points in the design space is that
now designers are able to easily determine how the responses of a product or process vary as design parameters change.
This ability is of paramount importance in situations where design parameter settings need to be modified during the
lifetime of a product0process due to various economic or operational constraints. As a result, designers will be able to
select optimal ranges for design parameters such that the product’s performance indices exhibit minimal or tolerable
deviations from their target values. To highlight the advantages of our methodology, we present a multiobjective ex-
ample that deals with optimum design of an electric discharge machining~EDM! process.
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1. INTRODUCTION

Most engineering design problems involve optimizing sev-
eral often noncommensurate performance indices~objec-
tives!. The problem of finding an optimum vector-valued
objective is commonly referred to asvector optimization
in the literature, and solutions of such problem are called
noninferior or Pareto-optimal. Determination of Pareto-
optimal solutions in a given optimization task requires find-
ing a vector of optimal objectives where an individual
objective can be further improved only at the cost of de-
grading at least one other objective~Hwang & Masud, 1979;
Chankong & Haimes, 1983!. Typically, vector optimiza-
tion utilizes mathematical programming, goal program-

ming, utility theory, etc.~Hwang & Masud, 1979! or
statistical approach of multivariate analysis of variance
~MANOVA !, which is used extensively in the area of qual-
ity control ~Harris, 1985!. Regardless of their underlying
methodological differences, these techniques generate
Pareto-optimal solutions that lack two crucial characteris-
tics: First, these solutions are represented as “points” in
both the space of design variables~independent param-
eters! and objectives~dependent parameters!; and second,
the obtained solutions are rigid in that they do not provide
any understanding of the complex nature of the underlying
problem that is to be solved.

To clarify, in many real-world situations, either due to
processing limitations or economic factors, it is nearly im-
possible to pinpoint a singular point as an optimum design
vector. For example, setting a beam’s diameter at 3.3 mm
may not be possible either due to machine processing lim-
itations or presence of high degrees of variability in the man-
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ufacturing process~e.g., 3.36 0.1 mm!. To deal with such
variations, designers need to consider two factors: 1! how
unexpected deviations from an optimum design degrade the
overall performance of a product, and 2! how the perfor-
mance of the product under study can become least sensi-
tive to such deviations. These considerations are the focal
point of the field of robust design~Phadke, 1989!.

Importantly, in terms of obtaining an understanding of
the nature of the problem at hand, traditional mathematical
and statistical techniques only identify the quantitative input-
output behavior of a system that is to be optimized. In other
words, a conventional optimizer recommends to designers
a Pareto-optimal design vector without conveying what ac-
tually constitutes the optimality of the generated solution.
If designers need to get a better understanding of the under-
lying optimization knowledge, they need to iterate a partic-
ular optimizer several times to determine how deviations
from the recommended design affect the overall product per-
formance indices.

Having stated the two major disadvantages of the tradi-
tional approaches to multiobjective optimization, we now
discuss what kinds of tools are needed to potentially rem-
edy the situation. The actual learning of the optimization
knowledge in a given task is crucial in that not only it al-
lows determination of optimal settings of design variables,
it also allows systematic examination of alternative design
scenarios. The learning process, which can be defined as
acquisition, assimilation and restructuring of knowledge, has
received a great deal of attention from researchers in the
field of artificial intelligence~AI ! ~Shavlik & Dietterich,
1990!. For example, symbolic search techniques based on
the MOA* algorithm ~Bradley & White, 1991!, although
limited in their applicability to real-world problems, were
developed as multiobjective generalizations of the heuristic
search algorithm A*.

Another viable AI approach to multiobjective optimiza-
tion is machine learning, or more specifically, inductive
learning~Carbonell et al., 1987!. Assuming that the input-
output components of a system~i.e., a product or a process!
can be described as a set of attribute-value design vectors,
an inductive learner can inspect this set and discover highly
complex relationships between system inputs and outputs
and represent them in forms that can easily be examined by
designers. Decision-tree classifiers~Quinlan, 1986!, classi-
fication and regression trees~CART! ~Breiman et al., 1984!,
and inductive partitioning with regression trees~IPRT!
~Shien & Joseph, 1992! are some of the more widely used
inductive learning systems. The common operational char-
acteristic of all these methods is that they view induction as
a form of optimization~Rendell, 1990!.

By nature, decision trees are best suited for classification
purposes and cannot be directly applied to regression. Re-
gression trees, on the other hand, can manipulate the real-
valued continuum of responses and are more suitable for
knowledge discovery in multiobjective optimization. The
major limitation of regression-tree algorithms, such as CART

or IPRT, is that they are designed for univariate regression
and cannot easily handle multiobjective optimization, which
requires simultaneous optimization of several responses.

In this paper, we present a new framework within which
multiobjective optimization is accomplished through induc-
tion of multivariate regression trees. Particularly, we present
a tree partitioning algorithm that utilizes an information-
theoretic measure of covariance complexity~Bozdogan,
1990! to transform highly convoluted regression surfaces
into a number of simpler and smaller subsurfaces. It will be
demonstrated that these subsurfaces are minimal volume
hyper-ellipsoidal~or simply, ellipsoidal! regions in the fea-
sible space of objectives and constraints with three impor-
tant properties: First, they are mapped from hyper-rectangular
design regions and not singular design points; second, the
degree of interaction among system responses in a given
ellipsoid is minimal; and third, ana posteriorianalysis of
the discovered regions allows designers to select noninfe-
rior solutions that satisfy their preferences.

2. MULTIVARIATE REGRESSION TREES

The basic element for inducing a multivariate regression tree
is a set of training examples that provides a capsule view into
the relationship between design variables~independent pa-
rameters! and objectives0constraints~dependent parameters!.
The inductive learner uses these examples as a source of
knowledge and incrementally decomposes a complex regres-
sion surface into a number of simpler regression subsur-
faces. This piecewise model decomposition is accomplished
by successive partitioning of the training population at each
level of the tree in an attempt to identify minimal-volume
optimal clusters in the response region. The minimal-volume
requirement for a product’s response is important in that
it guarantees that design variations due to operational or
manufacturing limitations will not drastically deteriorate
product performance.The following provides more details re-
garding the induction process.

Given a learning sampleL 5 $~X1,Y1!,{{{,~Xk,Yk!%, where
each training example~Xi ,Yi ! associates a design vector
Xi 5 ~xi1,{{{, xin! with a specific response vectorYi 5
~ yi1,{{{, yip!, the learning algorithm generates a prediction
rule d:Rn r Rp that is a mapping from then-dimensional
space of design variables~attributes! to the p-variate
objectives0constraints space.

Initially, all k training examples, denoted by population
N~m,S! with mean vectorm and covariance matrixS, re-
side at the root of an empty tree. Following a divide-and-
conquer approach, the root node is partitioned into two left
and right nodes, such thatk1 of the originalk examples fall
in the left node and the remainingk2 cases fall in the right
node, hencek 5 k1 1 k2 ~see Fig. 1!. The splitting of a par-
ent into two offspring nodes is accomplished by selecting
an attribute and a threshold for partitioning the attribute’s
range into two regions~Fayyad & Irani, 1992!. Among all
possible attribute0threshold pairs, the pair that results in the
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“best” split, where the resulting left and right nodes maxi-
mize some measure of fitness, is selected and the node is
split accordingly.

The process of partitioning is then recursively applied
to all newly generated nodes until some stopping criterion
is met. In our case, to ensure nonsingularity ofS, a multi-
variate heuristic that dictates that the number of examples
in a node has to be at least as large as the number of re-
sponses was used~Gnanadesikan, 1977!. Further, after a
tree is completely grown in the prescribed manner, some
type of pruning will prove beneficial should the problem
of overspecialization cause detrimental effects on overall
efficiency of the learning system~Quinlan, 1986!.

Upon completion of the learning phase, the induced tree
contains a number of paths, each starting from the root and
ending in a terminal node or leaf. Each path pinpoints a re-
gression subsurface by the virtue of examples that are con-
tained in its leaf. These examples define an ellipsoidal cluster
E in thep-variate response region:

E 5 $ y [ Rp 6~ y 2 m!'S21~ y 2 m! $ 0%, ~1!

wherem is the center of the ellipsoid,S is the ellipsoid ma-
trix, which is positive and semidefinite, andRp is the Eu-
clidean space ofpdimensions. The goodness of these clusters
is then determined by a partitioning technique that is based
on Bozdogan’s concept of multivariate entropy.

Note that the node-attribute tests along a particular path
of an induced tree act as intersecting hyperplanes that to-
gether define a hyper-rectangular region in the feasible de-
sign space. Our primary objective is to map minimal entropy
ellipsoids in objectives space from such hyper-rectangles.
Figure 2 illustrates an example where the feasible design
region is identified by geometric constraintsg1, g2, andg3.
The inductive learner, denoted by the predictord~X !, maps
an identified rectangular region to an optimal elliptical re-
gion in the objectives space.

2.1. Covariance complexity

Bozdogan’s information-theoretic measure of covariance
complexity is typically used for selection and evaluation of
multivariate models~Bozdogan, 1990!. Basically, the co-

variance complexity metric measures how the individual sub-
components of a model or a system interact with one another.
In the case of multivariate regression trees, we use a tree as
a representative of an underlying model that is to be cap-
tured through the induction process. The main underlying
assumption in our approach is that a continuous, multivar-
iate joint density functionf ~Y! with a mean vectorm 5
~m1,{{{,mp! and ap 3 p positive, semidefinite covariance
matrix S can be defined as:

f ~Y! 5 f ~ y1, . . . ,yp! 5 ~2p!20.5p 6S620.5e20.5~Y2m!'S21~Y2m!,

~2!

whereY; Np~m,S!.
Themarginal entropy H~ yj ! andjoint entropyH~Y!, can

then be expressed using Eqs.~3! and~4! as follows:

H~ yj ! 5 2E @ log~ f ~ yj !!# 5 2E
2`

`

f ~ yj ! log~ f ~ yj !!dyj . ~3!

H~Y! 5 2E @ log f ~Y!#

5 2E
2`

`

{{{E
2`

`

f ~ y1, . . . ,yp! log~ f ~ y1,{{{, yp!!dy1,

{{{,dyp. ~4!

As regards the information-theoretic measure of complex-
ity, Bozdogan defines the quantityI ~Y! as the measure of
interaction between variablesy1,{{{, yp and expresses it in
terms of the previously defined marginal and joint entropies:

I ~Y! 5 I ~ y1,{{{, yp! 5 (
j51

p

H~ yj ! 2 H~ y1,{{{, yp!. ~5!

Given the previous definition of joint entropy,H~Y! is com-
puted as:

H~Y! 5 0.5p log~2p! 1 0.5 log6S61 0.5E @~Y2 m!'S21~Y2 m!# .

~6!

Fig. 1. Splitting of a tree node.

Fig. 2. Mapping of feasible subregions inRn to optimal clusters in
Rp~n 5 2, p 5 2!.
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And by observing that the expected value of the quadratic
form in Eq. ~6! follows a Chi-squared distribution withp
degrees of freedom:

E @~Y2 m!'S21~Y2 m!# 5 E @xp
2# 5 p ~7!

we easily obtain the following two expressions for the joint
and marginal entropies,H ~Y! and H ~ yj !, respectively
~ j 2 1,{{{, p!.

H~Y! 5 0.5p log~2p! 1 0.5 log6S61 0.5p ~8!

H~ yj ! 5 0.5 log~2p! 1 0.5 log~sj
2! 1 0.5 ~9!

The total amount of interaction orinformational complexity
I ~Y! is defined as:

Co~S! 5 I ~ y1,{{{, yp!

5 (
j51

p

@ log~2p! 1 0.5 log~sj
2! 1 0.5# 2 0.5 log~2p!

2 0.5 log6S62 0.5p, ~10!

which in turn reduces to:

0.5(
j51

p

@ log~sj
2!# 2 0.5 log6S6 5 0.5 log)

j51

p

~sj
2! 2 0.5 log6S6.

~11!

But because the geometric mean of the individual variances
s1

2,{{{,sp
2 can be manipulated as:

p

2
logF)

j51

p

sj
2G1/p

~12!

and also because of the following inequality relation be-
tween the arithmetic and geometric means of the individual
variances:

1

p (
j51

p

sj
2 $ F)

j51

p

sj
2G1/p

~13!

we can maximize the total amount of information gainI ~Y!
by rewritingCo~S! as:

p

2
logF 1

p (
j51

p

sj
2G2 0.5 log6S6. ~14!

The sum of variances is Eq.~14! is thetrace ~tr! of the co-
variance matrixS, so Bozdogan’s final expression for the
measure of covariance complexity becomes:

Co~S! 5
p

2
logF tr ~S!

p G 2
1

2
log6S6. ~15!

At each level of partitioning then a given node’s population
of responses is divided into two subpopulations such that
the covariance complexity of each of the two resulting sub-
populations is minimal.

It is implied from examining Eq.~15! that trace and de-
terminant of dispersion matrix play key roles in minimiza-
tion of Co: Minimization of trace results in clusters where
individual variances are as small as possible; and minimi-
zation of the determinant helps locate regions where inter-
action among responses is minimal. The determinant of the
dispersion matrix has another important characteristic, which
will be discussed in the next section.

2.2. Optimal response clusters

In Section 2.1 we showed that our partitioning algorithm is
biased toward minimal entropy clusters. To satisfy robust
design and multiobjective optimization requirements, we
need to verify two additional properties for generated ellip-
soids: minimal volume criterion and Pareto optimality.

In terms of the minimal volume requirement, further ex-
amination of Eq.~15! reveals that minimization ofCo~S!
during the tree induction process also identifies clusters that
have minimalgeneralized variance, 6S6. Assuming that a
cluster’s response vectors form a parallelotope, as it is a typ-
ical view in the case ofN-space representation of multivar-
iate observations, the generalized variance is defined as the
square of thep-dimensional “volume” of such parallelo-
topes~Tatsuka, 1971!. Minimization ofCo~S!, therefore, re-
sults in identification of minimal volume response clusters
where a product is least sensitive to design perturbations.

To address Pareto-optimality of clusters, we first assume,
without loss of generality, the general problem of simulta-
neously minimizingp responses. The following definitions
are then adopted~Hwang & Masud, 1979!:

Definition 1. A vectoru 5 ~u1,{{{,up! is said to bein-
ferior to ~dominated by! vectorvvvv5 ~v1,{{{,vp! if and only
if ;i [ $1,{{{, p%, vi # ui ∧ 'i [ $1,{{{, p%6vi , ui .

Definition 2. Vectorsu andvvvv are said to be noninfe-
rior to each other if neitheru is inferior tovvvv nor vvvv is infe-
rior to u.

As an example of noninferiority, consider Fig. 3. Here,
vectorsu 5 ~ f1

u , f2
u! and vvvv 5 ~ f1

v , f2
v !, which lie on the

boundary of the feasible region~Pareto frontF!, are non-
inferior to each other becausef1

v . f1
u , but f2

v , f2
u .

Definitions 1 and 2 are suitable for singular response vec-
tors, but they need to be extended to discuss noninferiority
of ellipsoidal regions. Thus, we define two clustersE1 and
E2 to benoninferior if their centersm1 andm2 are noninfe-
rior to each other in the sense of Definition 2, and that they
contain portions of the Pareto front that may or may not be
overlapping. Given the fact that there are infinitely many
Pareto solutions, the centers of clustersE1 andE2 may be
far enough from each other such that each cluster contains
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distinct segments of the Pareto front. If cluster centers are
too close, however, they may contain overlapping sections
of the Pareto front.

The notion of noninferiority of clusters, as discussed
above, is only the first step in approaching a multiobjective
optimization problem. To select a set of candidate noninfe-
rior solutions and negotiate tradeoffs between them, a de-
cision process also needs to be developed.

In general, depending on how the computation of trade-
off solutions is conducted, multiobjective optimization can
be categorized asa priori, interactive~ progressive!, or a
posteriori ~Chankong & Haimes, 1983!. In the first cat-
egory, decision-maker’s preferences are first built into the
system and then the search for the Pareto frontier pro-
ceeds; in the second category, decision-making and opti-
mization are interleaved; and finally, in the third category,
an optimizer produces a set of candidate noninferior solu-
tions before designers express any preferences. Our ap-
proach combines elements froma priori and a posteriori
articulation techniques as follows: In itsa priori phase,
the induction process progressively attempts to locate min-
imal volume clusters in the response region as discussed
before. It is conceivable that not all of the generated clus-
ters conform to designers’ preferences. Therefore, during
the a posterioriphase designers indicate their preferences
in the form of desired ranges for product responses, and
the algorithm automatically searches a generated tree for
noninferior ellipsoids whose range of responses are within
user-defined margins. An added benefit of this type of search
is that it serves as an inverse mapping by which designers
can determine how a product’s geometry changes as vari-
ous performance regions in the objectives space are
considered.

3. RELATED WORK

In this section we discuss three approaches that in principal
are related to our methodology for region approximation:
First, ellipsoidal design centering; second, concurrent sub-
space optimization; and third, the general framework of re-
sponse surface methodology.

3.1. Ellipsoidal design centering

The ellipsoidal method for feasible region approximation is
a numeric approach that, based on assumptions of multinor-
mal distribution of its random variables and convexity of
the feasible region, generates a sequence of ellipsoids of de-
creasing volume.~Abdel-Malek & Hassan, 1991!. These el-
lipsoids have the properties that they are bounded within
the feasible region and that they all converge to a single
ellipsoid whose center is the proposed design center. Com-
putation of the final ellipsoid is facilitated by a linear search
that essentially relies on a single quadratic equation to ap-
proximate the boundary of a region defined by several non-
linear constraints. Obtained design ellipsoids in this manner
can be viewed as nominal parameter values that maximize
either the tolerances on parameters or the yield for an as-
sumed distribution of parameters around their nominal
values.

Our methodology is different from design centering in
the sense that we conduct the search for minimal volume
ellipsoids in thep-variate space of objectives0constraints
and not in the space of design parameters. Other major dif-
ferences between the two techniques are: 1! our technique
does not operate under the assumption of feasible region
convexity; 2! multivariate induction process discovers hyper-
rectangular design regions inRn, which identify ellipsoids
in the response surfaceRp; and 3! the regression-tree method
is symbolic and allows designers to easily examine a gen-
erated tree and discover how changing a design parameter
setting affects the behavior of a product.

3.2. Concurrent subspace optimization

The second related work, concurrent subspace optimization
~CSSO!, is a multidisciplinary design optimization~MDO!
technique~Lokanathan et al., 1995! in which complex de-
signs are decomposed into subsystems that can be opti-
mized independently and concurrently~Lokanathan et al.,
1996!. Specifically, in the area of integrated circuit fabrica-
tion, coordination of process and circuit design activities is
a challenging problem that often requires satisfying con-
flicting objectives. CSSO allows circuit and process sub-
space optimization modules to proceed independently while
attempting to optimize some global function. This type of
decomposition, however, requires that a subsystem be able
to approximate how design changes made in its own do-
main will affect the value of a global objective. These local
approximations are handled by solving global sensitivity
equations that rely on gradient information of system out-
puts with respect to system inputs. Each subspace then stores
a number of design points in a central database, generally in
the direction that improves local subspace performance. At
the end of subspace optimization, a coordination mecha-
nism constructs a response surface using the visited design
points by each subspace, negotiates tradeoffs, and performs
global optimization using the set of all design variables.

Fig. 3. Tradeoff vectorsu andvvvv.
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The similarity between the method of CSSO and ours is
that they both seek to find estimates of optimum conditions
by decomposing highly nonlinear response surfaces into a
number of simpler subsurfaces. The differences between the
two methods, however, are numerous:

1. computational complexity of recursive partitioning
with multivariate regression trees, similar to that of
decision tree classifiers~Quinlan, 1986!, is a function
of dimensions of the training set~i.e., number of train-
ing examples in a tree node and number of design vari-
ables! and does not rely on computation of numerically
expensive gradient information;

2. the visited set of design points in our approach is static
and does not change as optimization progresses;

3. we map feasible regions in objectives space from fea-
sible regions in design variables space;

4. the regression tree’s decomposition of a response sur-
face relies on statistical properties of a product’s per-
formance indices and is performed automatically
without any user intervention; and

5. CSSO is inherently a multidisciplinary, distributed op-
timization technique.

So, our divide-and-conquer approach could potentially de-
compose any response surface into as many subsurfaces as
possible without the need to distinguish among the in-
volved optimization disciplines. To avoid repetition here,
we refer the reader to Section 2.0 to verify this last point.

3.3. Response surface methodology (RSM)

Generally, utilization of RSM within the framework of uni-
variate product optimization assumes that a responseh is a
function of a set of design variablesx1,{{{, xn and that the
function can be approximated in some region of thex’s using
a first-order polynomial model:

h 5 b0 1 b1 x1 1 {{{ 1 bn xn ~16!

or a second-order model:

h 5 b0 1 (
i

bi xi 1 (
i

bii xi
2 1 (

i,j
(

j
bij xi xj ~17!

should there be a strong evidence of curvilinearity or inter-
action among system inputs and output~Myers et al., 1989!.
Note that poor model parameters in RSM result in low cor-
relation coefficientR2.

After a series of statistically balanced experiments~Phad-
ke, 1989! has been conducted and design sample points have
been collected, model approximation is carried out using
ordinary least squares for estimation of the coefficientsb of
the regression model. Upon discovering a “fit” model using

multiple regression, the method of steepest ascent for se-
quentially moving toward the optimum response follows.
The obtained surface is then used in three ways: 1! to de-
scribe how design variables affect the response; 2! to deter-
mine the interrelationships among the design variables; and
3! to describe combined effect of all design variables on the
response~Giovanni, 1983!.

Unfortunately, multiresponse surface analysis is not as
developed as its univariate counterpart~Myers et al., 1989!.
In principle, an RSM-based optimizer uses fractional fac-
torial experiments, thus requiring far fewer samplings of the
design and objectives spaces than does our approach. In terms
of computational complexity, the regression-tree’s symbolic-
model-building approach is numerically less intensive than
the method of least squares, which is used for estimation of
regression coefficients~Murthy, 1995!.

4. A DESIGN EXAMPLE

In this section, we present a canonical example relating to
optimization of an electric-discharge-machining~EDM! pro-
cess~Osyczka, 1984!. Before discussing the actual results,
however, three crucial issues that are directly related to per-
formance evaluation of a learning system must be closely
examined: 1! preparation of training and testing cases,
2! variance stabilization for our parametric partitioning rule,
which relies exclusively on at least the assumption of nor-
mal distribution of the underlying multivariate observa-
tions, and 3! the regression error analysis.

4.1. Resampling techniques

An important step toward construction and evaluation of a
learning system is the preparation of training and testing
samples. An obvious solution is to perform training and test-
ing on the same set of data and compute theapparent error
rate, which can be a highly overoptimistic estimate of a learn-
ing system’s performance. A statistically rigorous tech-
nique for producing more accurate error estimates israndom
subsampling, where a data set is randomly divided into in-
dependent training0testing samples, and the overall error es-
timate is computed as the average of the error rates obtained
from independent test cases~Weiss & Kulikowski, 1991!.
Methods such ask-fold cross-validation are particularly use-
ful in situations where the training and testing samples are
scarce, and a moderately sized sample must serve as the train-
ing and testing sets. For example, in many real-world ap-
plications, designers have to rely on finite element analysis
to assess various design scenarios. Due to numeric-intensive
nature of such analytical operations, only smaller sets of
training examples can be produced over reasonably tolera-
ble amounts of time.

In the EDMP design example the system responses were
known in closed form, thus we were able to produce any num-
ber of training and testing cases. Given two design variables
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x1 andx2 subject to certain constraints~see Section 4.4!, we
uniformly sampled the design region~x1, x2! in 900 points and
obtained the needed training0testing vectors.This sample was
then randomly shuffled and divided into the two setsL200and
T700of size 200 and 700, respectively. The setL200was used
in its entirety for generating regression trees, and regression
errors were computed using the setT700. This entire process
of random selection of training samples, learning, and test-
ing was repeated a total of five times so that results could be
presented with 95% confidence~t-distribution!. In this par-
ticular example, empirical studies indicated training sam-
ples smaller than 200~i.e., 200 function evaluations! were not
able to convey enough information to the learning algo-
rithm. In general, the issue of how large a sample should be
to achieve certain learning accuracy is addressed by the field
of computational learning theory~Shavlik & Dietterich,
1990!. This issue is beyond the scope of our paper, but a
relevant example~Mehrotra et al., 1991!, which finds the
bounds on the number of samples needed for performing
neural learning, addresses the various salient issues.

4.2. Variance stabilization

When building linear models, a crucial consideration is with
the effects of violations of distributional assumptions in
multivariate statistical analysis~Hahn, 1971!. The paramet-
ric splitting rule used in this work is derived under at least
the assumption of multivariate normality, which ensures that
the data vectors are independent random samples from a pop-
ulation in which any linear combination of the variables in
the data vector is normally distributed. In reality, however,
it may not be possible to satisfy the normality requirement
due to the skewed distributional nature of the gathered data.
A common solution for this situation is to use one of two
types of variance stabilization techniques:log transforma-
tion andrank transformation.

The log transformation is a powerful technique that
smoothes the underlying data distribution in such a way that
the log of a non-normal response is more likely to follow or
approach normal distribution, while the original response
will then have a lognormal distribution~Hahn, 1971!. Fur-
ther, aside from elimination of some of the nonlinear com-
ponents of the original responses, the log-transformed data
causes the arithmetic means to be transformed into geomet-
ric means, which are better indicators of central tendencies
of a population. Log transformation are routinely used in
the field of optimization especially in the area of quality
control ~Phadke, 1989!.

The rank-transformation procedures, on the other hand,
apply usual parametric procedures to the ranks of the data
instead of the data themselves~Zwick, 1985!. The rank-
transformed data better approximate normal distribution due
to the fact that ranks are drawn from a population~natural
numbers! where individual members have equal probabil-
ity of occurrence. Another advantage of rank transformed

data is that instead of using nonparametric tests of signifi-
cance, parametric models can still be used while the under-
lying data are readily represented in terms of their respective
ranks.

In this work, both types of power transformation, namely
log and rank transformations, were attempted. The empiri-
cal results obtained indicated that the log transformed data
produced far more accurate results than the rank-ordered
data, presumably because of log linearization of the convo-
luted response surfaces. The results presented in Section 4.4
are entirely based on stabilizations achieved through log
transformations.

4.3. Regression error analysis

The error analysis used for univariate regression tree mod-
els such as CART~Breiman et al., 1984! or IPRT~Shien &
Joseph, 1992! is based on the correlation coefficientR2,
which measures how much of variation in a responsey can
be explained by a regression. Given a learning sampleL
consisting of vectors~X1, y1!,{{{,~Xk, yk!, whereXi andyi ,
respectively, denote a design vector and a single response,
we estimate the errorRE* of the generated predictord as:

RE*~d! 5 12 R2 5
(

i
~ yi 2 [y1!2

(
i

~ yi 2 Sy!2
, ~18!

where Sy is the mean and[yi is the computed estimate foryi

~i.e., [yi 5 d~Xi !!.
To accommodate this type of analysis for our multivari-

ate models, the following extension was implemented. The
overall regression surface in our approach is decomposed
into a number of simpler regression subsurfaces, each of
which is represented by a number of training examples~leaf
clusters!. Let us assume that during the testing phase of a
tree, a test case~Xi ,Yi ! falls in the leafl identified by the
normal populationNl ~m l ,Sl !. The weighted Euclidean dis-
tance between response vectorYi and clusterNl is called
theMahalanobissquared distance, and is defined as~Ever-
itt, 1974!:

D2~Yi ,Nl ! 5 ~Yi 2 m l !
'Sl

21~Yi 2 m l !. ~19!

Unlike the traditional Euclidean distance measure, which is
based on the assumption of equal variance among all re-
sponses, the Mahalanobis distance takes into consideration
the noncommensurate nature of responses and therefore ac-
commodates intercorrelations among the responses, as well
as possible differences among their variances~Gnanadesi-
kan, 1977!. Note that theD2 statistic reduces to unweighted
Euclidean distance if the identity matrixI replacesS.
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Considering Eq.~19!, we compute the overall error for
an induced regression tree usingm test cases as follows:

1

m(
i51

m

D~Yi ,Nl !, ~20!

whereNl is the leaf in which the test caseYi falls.

4.4. The EDM process

The example presented here deals with optimization of an
electric discharge machining~EDM! process~Osyczka,
1984!. In this process, the main input quantities are pulse
duration ~Ti !, pulse interval~T0!, amplitude of the dis-
charge current~I !, erosion diameter~f! and erosion depth
~g!. The optimization process for the four objective func-
tions can formally be stated as:

Objectives:

Maximize metal removal rate,Qv ~mm30min!

Minimize electrode wear,d ~%!

Minimize machine power consumption,N~W!

Minimize surface roughness,Ra ~mm!,

where dependencies between input and output quantities
were experimentally determined through a series of statis-
tical regression analyses with the following results:

Qv 5 e11.744I 0.20610.032 lnTi10.022 lnT010.205 lng

Ti
21.55510.047 lnT010.276 lnf10.05 lng

T0
20.174 lnf20.10710.155 lng f21.06720.124 lng20.742. ~21!

d 5 e281.509I 5.63420.349 lnT020.335 lnTi10.119 lnf10.174 lng

Ti
3.72620.551 lnT020.334 lnf10.253 lng

T0
20.207 lnf113.60910.207 lng f12.21920.71 lngg23.102. ~22!

Ra 5 e20.971I 21.67810.224 lnTi20.027 lnT010.135 lnf20.001 lng

Ti
21.9920.085 lnT020.027 lnf20.017 lng

T0
20.17 lnf21.55110.155 lng f21.96720.345 lng g22.387. ~23!

N 5 e20.663I1.34120.066 lnTi20.119 lnT010.140 lnf10.84520.058 lng

Ti
0.23010.071 lnT020.048 lnf10.016 lng

T0
20.197 lnf10.84520.058 lng f0.55720.003 lngg0.005. ~24!

To realistically reduce the size of the search space in this
problem, it was assumed that the selection of the optimal
machining conditions is fixed for the workpiece with diam-
eter f 5 68 mm and depthg 5 6 mm. Furthermore, the

remaining three design variables were subject to the follow-
ing constraints:

500# Ti # 2000

64 # I # 128

125# T0 # 250. ~25!

The preparation of the training and testing samples in this
example was performed as described in Section 4.1. After
completion of the learning phase, relative regression errors
with 95% confidence were computed.

The range of responses for the four objective functions
in the EDM process along with the predicted and verified
Pareto-optimal solutions are summarized in Tables 1 and
2, respectively. Note that the first solution appearing in
Table 2 was obtained by Osyczka using an ordinary vector
optimization technique. Our solutions, on the other hand,
are superior to conventional solutions in that they clearly
identify optimal design regions with a predicted target value
for each of the four objectives.

To test the true nettle of our technique, we decided to ver-
ify the predicted optimum solutions by generating an arbi-
trarily large number of designs within each recommended
design surface and compute the means and standard devia-
tions of the resulting responses. For example, consider the
first regression solution that appears in Table 2. Here, we
predict that the three design parameters of discharge cur-
rent amplitude~I!, pulse duration~Ti!, and pulse interval
~T0! can optimally vary within the following intervals:

64 # I # 72

1732# Ti # 2000

212# T0 # 250,

and that the resulting vector response is~2433, 0.23, 3758,
0.1703 1023!. We verified this solution by generating ap-
proximately 2000 design points within the predicted opti-
mum design surface and found the means and standard
deviations of the responses to be~24906154, 0.276 0.03,
37776 141, 0.1933 1023 6 0.0143 1023!. It is evident
that designers now have a clear view of what ranges of val-
ues can be selected for the design variables. And more im-

Table 1. Range of responses in the feasible region ( [64,128],
[500, 2000], [125, 250])

Response Minimum Maximum

Qv 1994 6797
d 0.21 13.14
N 2838 7202
Ra 0.000161 0.0012
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portantly, variations within the design surface~various design
scenarios! produce process responses, all of which are com-
pletely within tolerable margins from their expected target
values. The other three solutions in Table 2 were also gen-
erated in a similar fashion and further demonstrate the util-
ity of our approach. Figure 4 depicts the design regions
identified by these four solutions.

Finally, to compute the accuracy of the generated solu-
tions, we repeated the regression error analysis a total of
five times for learning samples of size 200, which resulted
in an overall error rate of 0.056 0.0103 with 95% confi-
dence. The four regression solutions that appear in Table 2
were extracted from one of the five generated trees with a
regression error of 0.0386 0.0087. In general, most of the

Table 2. Predicted versus verified optimal solutions generated for the EDMP example

Method
Optimum settings for design variables

~I,Ti ,T0!

Predicted Pareto-optimal
Verified Pareto-optimal
~Qv ,d,N,Ra 3 1023 !

Osyczka ~64, 2000, 125! ~2458, 0.24, 3727, 0.376!
~2458, 0.24, 3727, 0.376!

Multivariate regression tree~4 solutions! ~ @64, 72# , @1732, 2000# , @212, 250# ! ~2433, 0.23, 3758, 0.170!
~24906 154, 0.276 0.03, 37776 141, 0.1936 0.014!

~ @64, 69# , @1732, 2000# , @162,187# ! ~2475, 0.24, 3774, 0.253!
~24906 95, 0.276 0.02, 37776 91, 0.2706 0.017!

~ @64, 77# , @1732, 2000# , @237,250# ! ~2559, 0.24, 3874, 0.167!
~25856 218, 0.286 0.03, 38626 195, 0.1836 0.009!

~ @64, 73# , @1732, 2000# , @187,212# ! ~2508, 0.24, 3815, 0.217!
~25626 159, 0.286 0.03, 38356 146, 0.2326 0.014!

Fig. 4. The four optimal design regions from Table 2.
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induced trees produced accurate and optimal designs, most
of which were omitted due to space limitation.

5. CONCLUSION

In this paper, we introduced a new methodology within which
theproblemofmultiobjectiveoptimization is transformed into
induction of multivariate regression trees. In contrast to a host
of conventional techniques, our approach to optimization of-
fers several advantages: 1! an induced regression tree maps
hyper-rectangular design regions to minimal-volume ellip-
soids within the space of objectives and constraints; 2! be-
cause of the minimal-volume criterion, the designed products
and processes are least sensitive to unexpected design per-
turbations; 3! the generalizations obtained by a regression tree
allow designers to have a better understanding of complex in-
terrelationships that exist between design variables and prod-
uct responses; and 4! ana posteriorianalysis of a generated
tree helps locate noninferior regions where a product’s per-
formance indices conform to designers’ preferences.

To illustrate advantages of our approach, we presented a
multiobjective design problem that dealt with optimization
of an EDM process and compared our results to those ob-
tained through conventional vector optimization.
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