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Abstract

Most engineering design problems involve optimizing a number of often conflicting performance measures in the
presence of multiple constraints. Traditional vector optimization techniques approach these problems by generating a
set of Pareto-optimal solutions, where any specific objective can be further improved only at the cost of degrading one
or more other objectives. The solutions obtained in this manner, however, are only single points within the space of all
possible Pareto-optimal solutions and generally do not indicate to designers how small deviations from predicted de-
sign parameters settings affect the performance of the product or the process under study.

In this paper we introduce a new approach to robust design based on the concept of inductive learning with regres-
sion trees. Given a set of training examples relating to a multiobjective design problem, we demonstrate how a multi-
variate regression tree can utilize an information-theoretic measure of covariance complexity to capture optimal, tradeoff
design surfaces. The novelty of generating design surfaces as opposed to traditional points in the design space is that
now designers are able to easily determine how the responses of a product or process vary as design parameters change.
This ability is of paramount importance in situations where design parameter settings need to be modified during the
lifetime of a productprocess due to various economic or operational constraints. As a result, designers will be able to
select optimal ranges for design parameters such that the product’s performance indices exhibit minimal or tolerable
deviations from their target values. To highlight the advantages of our methodology, we present a multiobjective ex-
ample that deals with optimum design of an electric discharge machi&b1) process.

Keywords: Pareto-optimality; Regression Trees; Robust Design; Entropy; Inductive Learning

1. INTRODUCTION ming, utility theory, etc.(Hwang & Masud, 1979 or
statistical approach of multivariate analysis of variance
Most engineering design problems involve optimizing sev-(MANOVA ), which is used extensively in the area of qual-
eral often noncommensurate performance indi@sgec- ity control (Harris, 1985. Regardless of their underlying
tives). The problem of finding an optimum vector-valued methodological differences, these techniques generate
objective is commonly referred to agctor optimization Pareto-optimal solutions that lack two crucial characteris-
in the literature, and solutions of such problem are calledics: First, these solutions are represented as “points” in
noninferior or Pareto-optimal Determination of Pareto- both the space of design variabléadependent param-
optimal solutions in a given optimization task requires find-eterg and objectivegdependent parametgrsnd second,
ing a vector of optimal objectives where an individual the obtained solutions are rigid in that they do not provide
objective can be further improved only at the cost of de-any understanding of the complex nature of the underlying
grading at least one other objectiffdwang & Masud, 1979; problem that is to be solved.
Chankong & Haimes, 1983 Typically, vector optimiza- To clarify, in many real-world situations, either due to
tion utilizes mathematical programming, goal program-processing limitations or economic factors, it is nearly im-
possible to pinpoint a singular point as an optimum design

. . , vector. For example, setting a beam’s diameter at 3.3 mm
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ufacturing proces¢e.g., 3.3+ 0.1 mm. To deal with such  or IPRT, is that they are designed for univariate regression
variations, designers need to consider two factoyhidw  and cannot easily handle multiobjective optimization, which
unexpected deviations from an optimum design degrade theequires simultaneous optimization of several responses.
overall performance of a product, and 2ow the perfor- In this paper, we present a new framework within which
mance of the product under study can become least sensnultiobjective optimization is accomplished through induc-
tive to such deviations. These considerations are the focdion of multivariate regression trees. Particularly, we present
point of the field of robust desigtPhadke, 198p a tree partitioning algorithm that utilizes an information-

Importantly, in terms of obtaining an understanding oftheoretic measure of covariance complexiBozdogan,
the nature of the problem at hand, traditional mathematical 990 to transform highly convoluted regression surfaces
and statistical techniques only identify the quantitative inputinto a number of simpler and smaller subsurfaces. It will be
output behavior of a system that is to be optimized. In othedemonstrated that these subsurfaces are minimal volume
words, a conventional optimizer recommends to designerlyper-ellipsoidalor simply, ellipsoidal regions in the fea-
a Pareto-optimal design vector without conveying what acsible space of objectives and constraints with three impor-
tually constitutes the optimality of the generated solution.tant properties: First, they are mapped from hyper-rectangular
If designers need to get a better understanding of the undedesign regions and not singular design points; second, the
lying optimization knowledge, they need to iterate a partic-degree of interaction among system responses in a given
ular optimizer several times to determine how deviationsellipsoid is minimal; and third, aa posteriorianalysis of
from the recommended design affect the overall product perthe discovered regions allows designers to select noninfe-
formance indices. rior solutions that satisfy their preferences.

Having stated the two major disadvantages of the tradi-
tlpnal approaches to multiobjective optlmlzatlon,_we NOW,  \1ULTIVARIATE REGRESSION TREES
discuss what kinds of tools are needed to potentially rem-
edy the situation. The actual learning of the optimizationThe basic elementforinducing a multivariate regression tree
knowledge in a given task is crucial in that not only it al- is a setoftraining examples that provides a capsule view into
lows determination of optimal settings of design variablesthe relationship between design variableslependent pa-
it also allows systematic examination of alternative designmametergand objectivegconstraintsdependent parameters
scenarios. The learning process, which can be defined aghe inductive learner uses these examples as a source of
acquisition, assimilation and restructuring of knowledge, hagknowledge and incrementally decomposes a complexregres-
received a great deal of attention from researchers in theion surface into a number of simpler regression subsur-
field of artificial intelligence(Al) (Shavlik & Dietterich, faces. This piecewise model decomposition is accomplished
1990. For example, symbolic search techniques based ohy successive partitioning of the training population at each
the MOA* algorithm (Bradley & White, 199], although level of the tree in an attempt to identify minimal-volume
limited in their applicability to real-world problems, were optimal clustersinthe response region. The minimal-volume
developed as multiobjective generalizations of the heuristicequirement for a product’s response is important in that
search algorithm A*, it guarantees that design variations due to operational or

Another viable Al approach to multiobjective optimiza- manufacturing limitations will not drastically deteriorate
tion is machine learning, or more specifically, inductive product performance. The following provides more details re-
learning(Carbonell et al., 1987 Assuming that the input- garding the induction process.
output components of a systedire., a product or a process Given a learning sample= {(X,,Y;),- - -,(X,, Y)}, where
can be described as a set of attribute-value design vectorsach training examplé€X;,Y;) associates a design vector
an inductive learner can inspect this set and discover highliX; = (x;,,- - -, X;y) With a specific response vectdf =
complex relationships between system inputs and output§y;,,- - -, ¥;,), the learning algorithm generates a prediction
and represent them in forms that can easily be examined byle d:R" — RP that is a mapping from the-dimensional
designers. Decision-tree classifi¢@uinlan, 1986, classi- space of design variable@ttributes to the p-variate
fication and regression tre€GART) (Breiman etal., 1984  objectivegconstraints space.
and inductive partitioning with regression tred®RT) Initially, all k training examples, denoted by population
(Shien & Joseph, 1992re some of the more widely used N(u,3) with mean vectou and covariance matri¥, re-
inductive learning systems. The common operational charside at the root of an empty tree. Following a divide-and-
acteristic of all these methods is that they view induction axonquer approach, the root node is partitioned into two left
a form of optimization(Rendell, 199D, and right nodes, such thlet of the originalk examples fall

By nature, decision trees are best suited for classificatioin the left node and the remainirkg cases fall in the right
purposes and cannot be directly applied to regression. Re&tode, hencé = k; + k, (see Fig. 1 The splitting of a par-
gression trees, on the other hand, can manipulate the readnt into two offspring nodes is accomplished by selecting
valued continuum of responses and are more suitable faan attribute and a threshold for partitioning the attribute’s
knowledge discovery in multiobjective optimization. The range into two region§Fayyad & Irani, 1992 Among all
major limitation of regression-tree algorithms, such as CARTpossible attributéhreshold pairs, the pair that results in the
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variance complexity metric measures how the individual sub-
components of a model or a system interact with one another.
In the case of multivariate regression trees, we use a tree as
a representative of an underlying model that is to be cap-
tured through the induction process. The main underlying
assumption in our approach is that a continuous, multivar-
iate joint density functiorf (Y) with a mean vectoju =

(e, -+, ;p) @and ap X p positive, semidefinite covariance
matrix 3, can be defined as:

x, < threshold x, > threshold

Fig. 1. Splitting of a tree node.

FOY) = Ty, Yp) = (2) 7053|0080 0¥,

2
“best” split, where the resulting left and right nodes maxi- @

mize some measure of fitness, is selected and the node \jghereY ~ Np(1,3).

split accordingly. Themarginal entropy Hy;) andjoint entropyH(Y), can

The process of partitioning is then recursively appliedthen be expressed using E¢3) and(4) as follows:
to all newly generated nodes until some stopping criterion

is met. In our case, to ensure nonsingularity>ofa multi- oo
variate heuristic that dictates that the number of examples H(¥) = —E[log(f(y;)]= _ﬁ f(y;) log(f(y))dy. (3
in a node has to be at least as large as the number of re- *

sponses was use@nanadesikan, 1977Further, after a H(Y) = —E[logf(Y)]

tree is completely grown in the prescribed manner, some

type of pruning will prove beneficial should the problem _ _fm o J°° F (Y o) 10G(F(yare -, yo)) v,

of overspecialization cause detrimental effects on overall —oo —oo

efficiency of the learning systertQuinlan, 1986.

Upon completion of the learning phase, the induced tree s )
contains a number of paths, each starting from the root and
ending in a terminal node or leaf. Each path pinpoints a re-
gression subsurface by the virtue of examples that are corﬁt-y'

tained in its leaf. These examples define an ellipsoidal cIuste'PteraCt]lorT betW(_aen \llagafk_)lg%,- o Yp ar|1d e(;q_or_esses Itin _
E in the p-variate response region: terms of the previously defined marginal and joint entropies:

As regards the information-theoretic measure of complex-
Bozdogan defines the quantityY) as the measure of

p
E={yeRPI(y— 'S (y—u) =0} ) L(Y) = 1(yz, -+, Yp) = 2 H(Y) = H(ys, -+, Yp)- 5)
=1

wherep is the center of the ellipsoid, is the ellipsoid ma- ) ) o o .

trix, which is positive and semidefinite, aiP is the Eu- Given the previous definition of joint entropil,(Y) is com-

clidean space qf dimensions. The goodness of these cluster®Uted as:

is then determined by a partitioning technique that is based oy

on Bozdogan’s concept of multivariate entropy. H(Y) = 0.5plog(2m) + 0.5log %] + 0.5E[(Y — w) Z7(Y = w)].
Note that the node-attribute tests along a particular path (6)

of an induced tree act as intersecting hyperplanes that to-

gether define a hyper-rectangular region in the feasible de-

sign space. Our primary objective is to map minimal entropy

ellipsoids in objectives space from such hyper-rectangles x 'l

Figure 2 illustrates an example where the feasible design

region is identified by geometric constrains g,, andgs. 2 g

The inductive learner, denoted by the predia6X), maps R
an identified rectangular region to an optimal elliptical re- T

gion in the objectives space.

2.1. Covariance complexity

Bozdogan's information-theoretic measure of covariance 1 S
Com'plex.lty is typically used for selection a.nd evaluation of rig. 2. Mapping of feasible subregions iR" to optimal clusters in
multivariate modelg§Bozdogan, 1990 Basically, the co- RP(n=2,p=2).
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And by observing that the expected value of the quadrati@t each level of partitioning then a given node’s population
form in Eq. (6) follows a Chi-squared distribution with  of responses is divided into two subpopulations such that

degrees of freedom: the covariance complexity of each of the two resulting sub-
populations is minimal.
E[Y-w)'S " (Y-w]=E[x3]=p @) It is implied from examining Eq(15) that trace and de-

terminant of dispersion matrix play key roles in minimiza-
we easily obtain the following two expressions for the jointtion of C,: Minimization of trace results in clusters where
and marginal entropiesii(Y) and H(y,), respectively individual variances are as small as possible; and minimi-

(j—1,---,p. zation of the determinant helps locate regions where inter-
action among responses is minimal. The determinant of the
H(Y) = 0.5plog(27) + 0.5log=| + 0.5p (8) dispersion matrix has another important characteristic, which

will be discussed in the next section.
H(y;) = 0.5log(27) + 0.5log(o{?) + 0.5 (9)

The total amount of interaction arformational complexity 2.2. Optimal response clusters

1(Y)is defined as: In Section 2.1 we showed that our partitioning algorithm is

biased toward minimal entropy clusters. To satisfy robust
design and multiobjective optimization requirements, we
need to verify two additional properties for generated ellip-

CO(E) = l(yl!' : ‘pr)

P
= 2 [log(2m) + 0.5log(s}?) + 0.5] — 0.5 log(27) soids: minimal volume criterion and Pareto optimality.
1=t In terms of the minimal volume requirement, further ex-
—0.5l0g3| — 0.5p, (100  amination of Eq(15) reveals that minimization o€,(%)
during the tree induction process also identifies clusters that
which in turn reduces to: have minimalgeneralized variancg>|. Assuming that a

cluster’s response vectors form a parallelotope, as itis a typ-
P p ical view in the case oN-space representation of multivar-
0.5> [log(0;*)] — 0.5log%| = 0.5l0g]] (0;?) — 0.5 log%|. iate observations, the generalized variance is defined as the
= = square of thep-dimensional “volume” of such parallelo-
(1)  toped Tatsuka, 1971l Minimization ofC, (), therefore, re-
sults in identification of minimal volume response clusters
But because the geometric mean of the individual varianceshere a product is least sensitive to design perturbations.

of,---,04 can be manipulated as: To address Pareto-optimality of clusters, we first assume,
without loss of generality, the general problem of simulta-
Elo ﬁ > p 12 neously minimizingp responses. The following definitions
209 j:1”1 are then adopte(Hwang & Masud, 1978

. ) . DEFINITION 1. Avectoru = (Uy,- - -,Uy) is said to ben-
and also because of the following inequality relation be-t, iy to (dominated byvectorv = (v,,- - -,v,) if and only
tween the arithmetic and geometric means of the individuaj; v; < (1---pho =u O3 €1, 1 p}\,vP< u

1 ’ ) i — i 1 ’ 1 [

variances:
DerINITION 2. Vectorsu andv are said to be noninfe-

12 LA, p rior to each other if neitheu is inferior tov nor v is infe-
521‘71 = jl;[lffi 13 riorto u.

As an example of noninferiority, consider Fig. 3. Here,
vectorsu = (f¥, ") andv = (f, ), which lie on the
boundary of the feasible regigiPareto front~), are non-

o inferior to each other becaus$g > ", butfy < f;'.
_g Iog[} > sz] —0.5l0g3). (14) Definitions 1 and 2 are suitable for sm_gular response vec-
Pj= tors, but they need to be extended to discuss noninferiority
of ellipsoidal regions. Thus, we define two clusté&;sand
The sum of variances is E(L4) is thetrace (tr) of the co-  E, to benoninferiorif their centersu, andu, are noninfe-
variance matrix%, so Bozdogan's final expression for the rior to each other in the sense of Definition 2, and that they

we can maximize the total amount of information ghii)
by rewriting C,(X) as:

measure of covariance complexity becomes: contain portions of the Pareto front that may or may not be
overlapping. Given the fact that there are infinitely many
tr(z 1 i
Cuz)= 2 Iog[ ( )] ~Liogs). (15  Pareto solutions, the centers of clustBsandE, may be
2 2 far enough from each other such that each cluster contains
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5 3.1. Ellipsoidal design centering
. Feasible region

The ellipsoidal method for feasible region approximation is
a numeric approach that, based on assumptions of multinor-
mal distribution of its random variables and convexity of
the feasible region, generates a sequence of ellipsoids of de-
creasing volumeAbdel-Malek & Hassan, 1991These el-
lipsoids have the properties that they are bounded within
the feasible region and that they all converge to a single
ellipsoid whose center is the proposed design center. Com-
> /i putation of the final ellipsoid is facilitated by a linear search
that essentially relies on a single quadratic equation to ap-
proximate the boundary of a region defined by several non-
linear constraints. Obtained design ellipsoids in this manner
can be viewed as nominal parameter values that maximize
distinct segments of the Pareto front. If cluster centers areither the tolerances on parameters or the yield for an as-
too close, however, they may contain overlapping sectionsumed distribution of parameters around their nominal
of the Pareto front. values.

The notion of noninferiority of clusters, as discussed Our methodology is different from design centering in
above, is only the first step in approaching a multiobjectivethe sense that we conduct the search for minimal volume
optimization problem. To select a set of candidate noninfeellipsoids in thep-variate space of objectivésonstraints
rior solutions and negotiate tradeoffs between them, a deand not in the space of design parameters. Other major dif-
cision process also needs to be developed. ferences between the two techniques ajeour technique

In general, depending on how the computation of trade€does not operate under the assumption of feasible region
off solutions is conducted, multiobjective optimization can convexity; 2 multivariate induction process discovers hyper-
be categorized aa priori, interactive (progressive, ora  rectangular design regions RI', which identify ellipsoids
posteriori (Chankong & Haimes, 19831In the first cat- inthe response surfa€’; and 3 the regression-tree method
egory, decision-maker’s preferences are first built into thaés symbolic and allows designers to easily examine a gen-
system and then the search for the Pareto frontier proerated tree and discover how changing a design parameter
ceeds; in the second category, decision-making and optsetting affects the behavior of a product.
mization are interleaved; and finally, in the third category,
an optimizer produces a set of candidate noninferior solu-
tions before designers express any preferences. Our aé—‘

proach combines elements frompriori anda posteriori  The second related work, concurrent subspace optimization
articulation techniques as follows: In its priori phase, (CSSOQ, is a multidisciplinary design optimizatigiMDO)
the induction process progressively attempts to locate mi”fechnique(Lokanathan et al., 1995n which complex de-
imal volume clusters in the response region as discusseggns are decomposed into subsystems that can be opti-
before. It is conceivable that not all of the generated clus;pizeq independently and concurrentlyokanathan et al.,
ters conform to designers’ preferences. Therefore, duringggg . specifically, in the area of integrated circuit fabrica-
_thea posterlorlphgse designers indicate their preferencesjon coordination of process and circuit design activities is
in the form of desired ranges for product responses, and chajlenging problem that often requires satisfying con-
the algorithm automatically searches a generated tree fQfic(ing objectives. CSSO allows circuit and process sub-
noninferior ellipsoids whose range of responses are withiry,, e optimization modules to proceed independently while
user-defined margins. An added benefit of this type of searchtempting to optimize some global function. This type of
is that it serves as an inverse mapping by which designergecomposition, however, requires that a subsystem be able
can determine how a product's geometry changes as varfy gpproximate how design changes made in its own do-
ous performance regions in the objectives space argain will affect the value of a global objective. These local
considered. approximations are handled by solving global sensitivity
equations that rely on gradient information of system out-
3. RELATED WORK puts with respecF to sys.tem. inputs. Each subspace then stores
a number of design points in a central database, generally in
In this section we discuss three approaches that in principahe direction that improves local subspace performance. At
are related to our methodology for region approximation:the end of subspace optimization, a coordination mecha-
First, ellipsoidal design centering; second, concurrent subrism constructs a response surface using the visited design
space optimization; and third, the general framework of repoints by each subspace, negotiates tradeoffs, and performs
sponse surface methodology. global optimization using the set of all design variables.

Fig. 3. Tradeoff vectorsi andw.

2. Concurrent subspace optimization
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The similarity between the method of CSSO and ours ignultiple regression, the method of steepest ascent for se-
that they both seek to find estimates of optimum conditiongquentially moving toward the optimum response follows.
by decomposing highly nonlinear response surfaces into @he obtained surface is then used in three wayso e-
number of simpler subsurfaces. The differences between trecribe how design variables affect the respongéo Beter-
two methods, however, are numerous: mine the interrelationships among the design variables; and

3) to describe combined effect of all design variables on the

1. computational complexity of recursive partitioning responséGiovanni, 1983.

with multivariate regression trees, similar to that of  Unfortunately, multiresponse surface analysis is not as
decision tree classifief®uinlan, 1988, is a function  developed as its univariate counterpdyers et al., 1989

of dimensions of the training séte., number of train-  In principle, an RSM-based optimizer uses fractional fac-
ing examples in a tree node and number of design varitorial experiments, thus requiring far fewer samplings of the
ables and does not rely on computation of numerically design and objectives spaces than does our approach. In terms
expensive gradient information; of computational complexity, the regression-tree’s symbolic-

2. the visited set of design points in our approach is stati¢nodel-building approach is numerically less intensive than

and does not Change as Optimization progresses; the method of least squares, which is used for estimation of

3. we map feasible regions in objectives space from fea[egressmn coefficientsMurthy, 1995.

sible regions in design variables space;
4. the regression tree’'s decomposition of a response suft- A DESIGN EXAMPLE

face relies on statistical properties of a product’s per-n this section, we present a canonical example relating to
formance indices and is performed automaticallyoptimization of an electric-discharge-machinigPM) pro-

without any user intervention; and cess(Osyczka, 198/ Before discussing the actual results,
5. CSSOisinherently a multidisciplinary, distributed op- however, three crucial issues that are directly related to per-
timization technique. formance evaluation of a learning system must be closely

examined: 1 preparation of training and testing cases,
So, our divide-and-conquer approach could potentially de?) variance stabilization for our parametric partitioning rule,
compose any response surface into as many subsurfaceswBich relies exclusively on at least the assumption of nor-
possible without the need to distinguish among the in-mal distribution of the underlying multivariate observa-
volved optimization disciplines. To avoid repetition here, tions, and 3 the regression error analysis.
we refer the reader to Section 2.0 to verify this last point.

4.1. Resampling techniques

3.3. Response surface methodology (RSM) An important step toward construction and evaluation of a

Generally, utilization of RSM within the framework of uni- 1€arning system is the preparation of training and testing
variate product optimization assumes that a resparise ;amples. An obvious solution is to perform training and test-
function of a set of design variables, - - -, x, and that the g on the same set of data and computeapgarent error

function can be approximated in some region ofteaising  'ate, which can be a highly overoptimistic estimate of a learn-

a first-order polynomial model: ing system’s performance. A statistically rigorous tech-
nique for producing more accurate error estimateanslom
n=Bo+BiXe+ -+ + BnXn (16) subsamplingwhere a data set is randomly divided into in-
dependent trainingesting samples, and the overall error es-
or a second-order model: timate is computed as the average of the error rates obtained

from independent test casédl/eiss & Kulikowski, 199).
_ 2 Methods such asfold cross-validation are particularly use-
7= Fot Z'Bi X zﬁ" X %,ZB" X% @D flin situations where the training and testing samples are
scarce, and a moderately sized sample must serve as the train-
should there be a strong evidence of curvilinearity or intering and testing sets. For example, in many real-world ap-
action among system inputs and outpMiyers etal., 1988  plications, designers have to rely on finite element analysis
Note that poor model parameters in RSM result in low cor-to assess various design scenarios. Due to numeric-intensive
relation coefficienR?. nature of such analytical operations, only smaller sets of
After a series of statistically balanced experimdisad- training examples can be produced over reasonably tolera-
ke, 1989 has been conducted and design sample points havkde amounts of time.
been collected, model approximation is carried out using Inthe EDMP design example the system responses were
ordinary least squares for estimation of the coefficightd  knownin closed form, thus we were able to produce any num-
the regression model. Upon discovering a “fit” model usingber of training and testing cases. Given two design variables
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X, andx, subject to certain constraintsee Section 4)4we  data is that instead of using nonparametric tests of signifi-
uniformly sampled the design regitxy, x,) in 900 pointsand  cance, parametric models can still be used while the under-
obtained the needed trainiftgsting vectors. This sample was lying data are readily represented in terms of their respective
thenrandomly shuffled and divided into the two defs,and ~ ranks.

T,000f size 200 and 700, respectively. Thelsgj,was used In this work, both types of power transformation, namely
in its entirety for generating regression trees, and regressiding and rank transformations, were attempted. The empiri-
errors were computed using the 3gj,. This entire process cal results obtained indicated that the log transformed data
of random selection of training samples, learning, and testproduced far more accurate results than the rank-ordered
ing was repeated a total of five times so that results could beata, presumably because of log linearization of the convo-
presented with 95% confidenedistribution. In this par-  luted response surfaces. The results presented in Section 4.4
ticular example, empirical studies indicated training sam-are entirely based on stabilizations achieved through log
ples smaller than 20@e., 200 function evaluatiopgere not  transformations.

able to convey enough information to the learning algo-

rithm. In general, the issue of how large a sample should be

to achieve certain learning accuracy is addressed by the fiell.3. Regression error analysis

of computational learning theor§Shavlik & Dietterich,

1990. This issue is beyond the scope of our paper, but &he error analysis used for univariate regression tree mod-
relevant exampléMehrotra et al., 1991 which finds the els such as CARTBreiman et al., 198/or IPRT (Shien &
bounds on the number of samples needed for performindoseph, 1992is based on the correlation coefficieRt,
neural learning, addresses the various salient issues. ~ which measures how much of variation in a responsan

be explained by a regression. Given a learning sarhple
consisting of vectoréX,,y;),- - -,(Xy, Vi), whereX; andy;,
respectively, denote a design vector and a single response,
When building linear models, a crucial consideration is withwe estimate the errdRE" of the generated predictaras:

the effects of violations of distributional assumptions in
multivariate statistical analysiglahn, 1971. The paramet-

ric splitting rule used in this work is derived under at least
the assumption of multivariate normality, which ensures that
the data vectors are independent random samples from a pop-
ulation in which any linear combination of the variables in
the data vector is norma”y distributed. In reality, however,wherey is the mean an@i is the Computed estimate fgr

it may not be possible to satisfy the normality requirement(i_e_,yi =d(X)).

due to the skewed distributional nature of the gathered data. To accommodate this type of ana|ysis for our multivari-

A common solution for this situation is to use one of two ate models, the fo”owing extension was imp|emented_ The
types of variance stabilization techniquésg transforma-  overall regression surface in our approach is decomposed
tion andrank transformation. into a number of simpler regression subsurfaces, each of

The log transformation is a powerful technique thatwhich is represented by a number of training examiiess
smoothes the underlying data distribution in such a way thag|usters. Let us assume that during the testing phase of a
the log of a non-normal response is more likely to follow or yree, a test caseX;,Y,) falls in the leafl identified by the
approaCh normal distribution, while the Original responsénormal popu|atiom|(ul ,El)_ The We|ghted Euclidean dis-
will then have a lognormal distributiofHahn, 1971 Fur-  tance between response vectmand clusteMN' is called

ther, aside from elimination of some of the nonlinear com-the Mahalanobissquared distance, and is defined Bser-
ponents of the original responses, the log-transformed datg, 1974):

causes the arithmetic means to be transformed into geomet-
ric means, which are better indicators of central tendencies
of a population. Log transformation are routinely used in
the field of optimization especially in the area of quality
control (Phadke, 198P Unlike the traditional Euclidean distance measure, which is
The rank-transformation procedures, on the other handyased on the assumption of equal variance among all re-
apply usual parametric procedures to the ranks of the datsponses, the Mahalanobis distance takes into consideration
instead of the data themselvé8wick, 1985. The rank- the noncommensurate nature of responses and therefore ac-
transformed data better approximate normal distribution dueommodates intercorrelations among the responses, as well
to the fact that ranks are drawn from a populatipatural  as possible differences among their varian@@sanadesi-
number$ where individual members have equal probabil-kan, 1977. Note that the\? statistic reduces to unweighted
ity of occurrence. Another advantage of rank transformectuclidean distance if the identity matrixeplaces.

4.2. Variance stabilization

2 —9)?
RE*(d) =1-R?= -

E(yi -9)?

A2(Y,NY) = (% = ) S0 — ) (19
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Considering Eq(19), we compute the overall error for remaining three design variables were subject to the follow-
an induced regression tree usimgest cases as follows:  ing constraints:

li AN 20 500= T; = 2000
mSo 64=1=128
whereN' is the leaf in which the test cadefalls. 125= T, = 250. (25)
4.4, The EDM process The preparation of the training and testing samples in this

example was performed as described in Section 4.1. After
The example presented here deals with optimization of agompletion of the learning phase, relative regression errors
electric discharge machiningEDM) process(Osyczka,  with 95% confidence were computed.
1984). In this process, the main input quantities are pulse The range of responses for the four objective functions
duration (T;), pulse interval(Ty), amplitude of the dis- in the EDM process along with the predicted and verified
charge currentl ), erosion diametef¢) and erosion depth  pareto-optimal solutions are summarized in Tables 1 and
(g9). The optimization process for the four objective func- 2, respectively. Note that the first solution appearing in
tions can formally be stated as: Table 2 was obtained by Osyczka using an ordinary vector
optimization technique. Our solutions, on the other hand,
are superior to conventional solutions in that they clearly
Maximize metal removal rateQ, (mm®/min) identify optimal design regions with a predicted target value

L for each of the four objectives.
Minimize electrode wea® (% . .
8 (%) To test the true nettle of our technique, we decided to ver-

Minimize machine power consumptioN,\W) ify the predicted optimum solutions by generating an arbi-
Minimize surface roughnesi, (mm), trarily large number of designs within each recommended
design surface and compute the means and standard devia-
where dependencies between input and output quantitiagons of the resulting responses. For example, consider the
were experimentally determined through a series of statisfirst regression solution that appears in Table 2. Here, we
tical regression analyses with the following results: predict that the three design parameters of discharge cur-
rent amplitude(l), pulse duration(T;), and pulse interval
(To) can optimally vary within the following intervals:

Objectives

Qu — e11.744| 0.206+0.032InT; +0.022 InT+0.205 Ing

1}71.555&0.047 InTy+0.276 Ingp+0.05 Ing

64=1=72
T, 0-1741n¢—0.107+0.155 g 4 ~1.067-0.124 Ingy —0.742 (21) 1732= T, = 2000
212=T, = 250,

§= e781.5051 5.634-0.349 InT;—0.335InT;+0.119 In¢+0.174 Ing
and that the resulting vector respons¢2433, 0.23, 3758,

0.170x 10 3). We verified this solution by generating ap-
proximately 2000 design points within the predicted opti-

-I-i3.72&0.551 InTp—0.334In¢+0.253 Ing

To 0207 N0 T200970.207In0 g 12.21570. 11 Inag 3102 (22 mum design surface and found the means and standard
R, = @20.97]) ~1676+0.224nT,~0.027 InTo+0.135 In—0.001 Ing gs\;i?:i_ofjl()fghleg;isggggis go(%iolio%g?, 3-.27i 9603}
+ 141, 0. + 0. . Itis eviden
T —1.99-0.085 InT,~0.027 In$—0.017 Ing that designers now have a clear view of what ranges of val-
' ues can be selected for the design variables. And more im-
TO—O.17 In¢p—1.551+0.155 Ing ¢—1.967—O.345 Ing g—2.387. (23)

N = e70.663|1.34170.066InT|70.119InT0+0.140Ind>+0.84ErO.058Ing
Table 1. Range of responses in the feasible region ([64,128],

7,0-230+0.071InT(—0.048 In¢>+0.016 Ing [500, 2000], [125, 250])
|
TO—O.197 Ing+0.845-0.058 Ing ¢O.557—0.003 |nggo.005. (24) Response Minimum Maximum
o . S Q, 1994 6797
To realistically reduce the size of the search space in this s 0.21 13.14
problem, it was assumed that the selection of the optimal N 2838 7202
machining conditions is fixed for the workpiece with diam-  Ra 0.000161 0.0012

eter¢ = 68 mm and deptly = 6 mm. Furthermore, the
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Table 2. Predicted versus verified optimal solutions generated for the EDMP example

Predicted Pareto-optimal

Optimum settings for design variables Verified Pareto-optimal
Method (LT, To) (Q,,8,N,R, X 10°3)
Osyczka (64, 2000, 125 (2458, 0.24, 3727, 0.376
(2458, 0.24, 3727, 0.37%6
Multivariate regression tre@ solutions ([64, 72,[1732, 2000, [212, 25() (2433, 0.23, 3758, 0.170
(2490+ 154, 0.27+ 0.03, 3777+ 141, 0.193+ 0.014
([64, 69, [1732, 2000, [162,187) (2475, 0.24, 3774, 0.253
(2490+ 95, 0.27+ 0.02, 3777+ 91, 0.270+ 0.017)
([64, 77, [1732, 2000, [237,25Q) (2559, 0.24, 3874, 0.167
(2585+ 218, 0.28+ 0.03, 3862+ 195, 0.183+ 0.009
([64, 73, [1732, 2000, [187,212) (2508, 0.24, 3815, 0.217

(2562 + 159, 0.28+ 0.03, 3835+ 146, 0.232+ 0.014)

portantly, variations within the design surfaearious design Finally, to compute the accuracy of the generated solu-
scenariogproduce process responses, all of which are comtions, we repeated the regression error analysis a total of
pletely within tolerable margins from their expected targetfive times for learning samples of size 200, which resulted
values. The other three solutions in Table 2 were also genin an overall error rate of 0.0% 0.0103 with 95% confi-
erated in a similar fashion and further demonstrate the utildence. The four regression solutions that appear in Table 2
ity of our approach. Figure 4 depicts the design regionsvere extracted from one of the five generated trees with a
identified by these four solutions. regression error of 0.038 0.0087. In general, most of the

100

Fig. 4. The four optimal design regions from Table 2.
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induced trees produced accurate and optimal designs, mdstyyad, U.M., & Irani, K.B(1992. On the handling of continuous-valued

; ; St At attributes in decision tree generatidtachine Learning 8(1)87-102.
of which were omitted due to space limitation. Giovanni, M.(1983. Response surface methodology and product optimi-
zation.Food Technology 1,141-45.
Gnanadesikan, R1977). Methods for statistical data analysis of multi-

5. CONCLUSION variate observations. John Wiley & Sons, Inc., New York.

. . . . . Hahn, G.J(197)). How abnormal is normalitydournal of Quality Tech-
Inthis paper, we |nt.rod.uce.d anew metthologywnhm W!’]ICh nology 3 (1) 18-22. Y v
the problem of multiobjective optimization is transformed into Harris, R.J(1985. A primer of multivariate statistigspp. 331-333. Aca-

induction of multivariate regression trees. In contrasttoaho%wgﬁg‘igprgsfﬂ’ggja “Aegfg;g Multiple objective decision making:

of conventional techniques, our approach to optimization of- \ethods and applications. Irecture Notes in Economics and Math-
fers several advantages:dn induced regression tree maps  ematical SystemsSpringer-Verlag, New York.

hyper-rectangular design regions to minimal-volume ellip--okanathan, A.N., Brockman, J.B., & Renaud, 18995. A multidisci-
plinary optimization approach to integrated circuit designiversity

soids within the space of objectives and constraintde2 of Notre Dame, Computer Science Technical Report Series §p-5
cause of the minimal-volume criterion, the designed products 1-21.

e ; kanathan, A.N., Brockman, J.B., & Renaud, J296. A Methodology
and processes are least sensitive to unexpected design pb‘? for Concurrent Fabrication Procgs3ell Library Optimization.Proc.

turbations; 3the generalizations obtained by aregressiontree  33rq Ann. Conf. Design Automation Cqrg25-830.
allow designersto have a better understanding of complex invehrotra, K.G., Mohan, C.K., & Ranka, 81991). Bounds on the number

; ; ; ; ; _ of samples needed for neural learnifgEE Transactions on Neural
terrelationships that exist between design variables and prod Networks 2(6)548-558,

uct responses; and éna posteriorianalysis of a generated Murthy, S.(1995. On growing better decision trees from data. PhD Dis-
tree helps locate noninferior regions where a product’s per- sertation. Johns Hopkins University Press, Baltimore, MD.

fadi ; ) Myers, R.H., Khuri, A.l., & Carter, W.H(1989. Response surface meth-
formance indices conform to designers’ preferences. odology: 1966-1988Technometrics 31(2137-157.

To illustrate advantages of our approach, we presented @syczka, A(1984. Multicriterion optimization in engineeringEllis Har-
multiobjective design problem that dealt with optimization  wood Limited. Chichester, W. Sussex, UK.

of an EDM process and compared our results to those OHD_hadke, M(1989. Quality engineering using robust desid®rentice Hall,
Englewood Cliffs, NJ.

tained through conventional vector optimization. Quinlan, J.R(1986. Induction of decision treedachine Learning 181—
108.
Rendell, L.(1990. Induction as optimizationEEE Transactions on Sys-
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