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Abstract
The paper works within the framework of punctual computability, which is focused on eliminating
unbounded search from constructions in algebra and infinite combinatorics. We study punctual number-
ings, that is, uniform computations for families S of primitive recursive functions. The punctual reducibility
between numberings is induced by primitive recursive functions. This approach gives rise to upper semi-
lattices of degrees, which are called Rogers pr-semilattices. We show that any infinite, uniformly primitive
recursive family S induces an infinite Rogers pr-semilattice R. We prove that the semilattice R does not
have minimal elements, and every nontrivial interval inside R contains an infinite antichain. In addition,
every non-greatest element from R is a part of an infinite antichain. We show that the �1-fragment of the
theory Th(R) is decidable.

Keywords: Theory of numberings; upper semilattice; Rogers semilattice; primitive recursion; Friedberg numbering; decid-
ability; online computation; punctual structure

1. Introduction
For a countable set S , a numbering of S is a surjective map ν from the set of natural numbers
ω onto S . Since the 1950s, computable numberings for families of computably enumerable (c.e.)
sets have been extensively studied by computability theorists.

Consider a family S of c.e. sets. A numbering ν of the family S is computable if the set

{〈n, x〉 : n ∈ω, x ∈ ν(n)}
is c.e. The family S is computable if it has a computable numbering. Informally speaking, the
computability of S means that there is a procedure which provides a uniform enumeration of the
family S .

A measure of relative complexity is provided by the notion of reducibility between number-
ings: A numbering ν is reducible to another numbering μ, denoted by ν ≤μ, if there is total
computable function f (x) such that ν(n)=μ(f (n)) for all n ∈ω. In other words, there is an algo-
rithmic procedure which, given a ν-index of an object from S , computes a μ-index for the same
object.

The notion of reducibility induces the Rogers upper semilattice (or Rogers semilattice for short)
of a computable family S : This semilattice contains the degrees of all computable numberings
of S . As usual, here we assume that two numberings have the same degree if they are reducible
to each other. Rogers semilattices are widely used as a tool to classify properties of computable
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numberings for different families. For known results on computable numberings, the reader is
referred to the seminal monograph (Ershov 1977) and the papers (Ershov 1999; Eršov 1973, 1975,
1977).

Goncharov and Sorbi (1997) started developing the theory of generalized computable num-
berings. Their approach initiated a fruitful line of research, which is focused on numberings for
families of sets which belong to various levels of recursion-theoretic hierarchies: the arithmeti-
cal hierarchy (Badaev et al. 2006; Bazhenov et al. 2019c; Podzorov 2008), the Ershov hierarchy
(Badaev and Lempp 2009; Goncharov et al. 2002; Herbert et al. 2019; Ospichev 2015), the analyt-
ical hierarchy (Bazhenov et al. 2019d, 2020b; Dorzhieva 2019), etc. We refer the reader to Badaev
and Goncharov (2008, 2000) for further background on numberings in these hierarchies.

In general, one can say that the theory of numberings is one of the branches of computable
or effective mathematics. This research area aims to understand and calibrate the algorithmic
content of mathematical objects. The roots of this direction go back to the introduction of non-
recursive mathematical methods at the beginning of the 20th century, as discussed in Metakides
and Nerode (1982). Working within the framework of effective mathematics, the theory of
numberings generally employs the Turing computability model.

This paper is inspired by the recent developments in computable structure theory: Kalimullin
et al. (2017) proposed a general framework for online computations in algebraic and combina-
torial structures. The key object of this framework is the notion of a punctual (or fully primitive
recursive) structure. An infinite structure S in a finite signature is punctual if the domain of S is
equal to ω, and the basic functions and relations of S are primitive recursive.

The notion of punctuality essentially eliminates all instances of unbounded search in Turing
computable algorithms. This feature allows one to mimic a large class of “on-line” algorithms, that
is, algorithms which have to make decisions on the fly. A typical example of such an algorithm is
online coloring, say, of a tree: given the n-th vertex of an input tree, you have to decide its color
right at the moment (you cannot wait for the (n+ 1)-th vertex to appear).

Our paper employs the punctuality paradigm of Kalimullin et al. (2017) in the studies of
numberings.

Definition 1. Let S be a family of total functions acting from ω to ω. We say that a numbering ν
of the family S is punctual if the function:

gν(n, x) := (ν(n))(x)

is primitive recursive. A family S is punctual if it has a punctual numbering.

Informally, the punctuality of S means that one can promptly (and uniformly) compute every
function from S . The punctuality approach requires that we have to modify the notion of the
reduction between numberings accordingly:

Definition 2. Let ν and μ be numberings. We say that ν is punctually reducible to μ, denoted by
ν ≤pr μ, if there is a primitive recursive function f : ω→ω such that

ν(n)=μ( f (n)), for all n ∈ω.
In this case, we say that f punctually reduces ν to μ.

In a natural way, Definitions 1 and 2 induce the notion of Rogers pr-semilattice for a punctual
family S , denoted by Rpr(S ), see Section 2.1 for a formal definition.

The paper is arranged as follows. Section 2 provides the necessary preliminaries. In partic-
ular, we show that every finite punctual family induces a one-element Rogers pr-semilattice
(Proposition 3). So, in the rest of the paper, we work only with infinite punctual families S .
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In Section 3, we introduce the notion of a strongly punctually decidable numbering (Definition 5),
which plays a key role in most of our constructions.

Section 4 gives our first example of a punctual priority construction: we show that below an
arbitrary degree from Rpr(S ), one can find an infinite descending chain (Theorem 16). This fact
already provides a contrast with the classical case of computable numberings: for example, the
Rogers semilattice of a computable family T0 = {∅} ∪ {{k} : k ∈ω} has a least element.

Section 5 proves that every non-greatest degree from Rpr(S ) is a part of an infinite antichain
(Theorem 20). In Section 6, we consider intervals inside Rpr(S ). We prove that every interval
[a<pr b] inside Rpr(S ) contains an infinite antichain (Theorem 24). Note that the standard
recursion-theoretic methods show that the classical Rogers semilattice of the family T0 has an
initial segment containing precisely two degrees. We also establish that the �1-fragment of the
theory Th(Rpr(S )) is decidable (Corollary 25).

Section 7 shows that there are infinite Rogers pr-semilattices which are lattices (Theorem 27).
This contrasts with the result of Selivanov (1976): he established that a classical infinite Rogers
semilattice cannot be a lattice. On the other hand, we build a Rogers pr-semilattice which contains
a minimal pair (Proposition 29).

Section 8 discusses the existence of greatest elements. We provide examples of Rogers
pr-semilattices with greatest element (Lemma 33) and without greatest element (Theorem 31).

In Section 9, Theorem 35 builds an infinite punctual family S such that:

(a) every punctual numbering ν of S is ≡pr-equivalent to a strongly punctually decidable
numbering, and

(b) S contains only characteristic functions of one-element sets.

We conclude our paper with Section 10, which discusses some results on punctual Friedberg
numberings.

The paper is an extended version of the conference paper (Bazhenov et al. 2020a). New mate-
rial in this paper includes the following. Subsection 3.1 introduces the notion of a persistently
decidable family and discusses its properties. The material of Section 5 is new: it provides a gen-
eralization of Theorem 4.1 of Bazhenov et al. (2020a). Almost everything in Section 6 is new: the
only old material is the formulation of Theorem 23 – in Bazhenov et al. (2020a) it was given as
Theorem 6.1 (without a proof). In Section 7, Theorem 27 is a generalization of Proposition 5.1
of Bazhenov et al. (2020a). Note that Proposition 29 was given without a proof in Bazhenov et al.
(2020a) (see Proposition 5.2 there). Theorem 31 generalizes Proposition 6.1 of Bazhenov et al.
(2020a). Sections 9 and 10 are new.

2. Preliminaries
Given a total function f : ω→ω and a nonzero natural numberm, by f |mwe denote the following
tuple:

f |m := (f (0), f (1), . . . , f (m− 1)).

For a set A⊆ω, by χA we denote the characteristic function of A. For a pair of natural numbers
(k, �), the value 〈k, �〉 is its standard Cantor index, that is,

〈k, �〉 = (k+ �)(k+ �+ 1)
2

+ k.

2.1 Theory of numberings
Let ν be a numbering of a family S0 and μ be a numbering of a family S1. It is easy to see that
the condition ν ≤μ implies that S0 is a subfamily of S1. Clearly, if ν ≤pr μ, then ν ≤μ.
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Numberings ν andμ are equivalent, denoted by ν ≡μ, if ν ≤μ andμ≤ ν. The punctual equiv-
alence ≡pr is defined in a similar way. The numbering ν ⊕μ of the family S0 ∪ S1 is defined as
follows:

(ν ⊕μ)(2x)= ν(x), (ν ⊕μ)(2x+ 1)=μ(x).
It is not difficult to obtain the following fact (see, e.g., Proposition 3 in Ershov 1977, p. 36). If
� ∈ {≤,≤pr} and ξ is an arbitrary numbering, then

(ν � ξ & μ� ξ ) ⇔ (ν ⊕μ� ξ ).
Let S be a punctual family of functions. By Compr(S ), we denote the set of all punctual num-

berings of S . Since the relation ≡pr is a congruence on the structure (Compr(S );≤pr,⊕), we
use the same symbols ≤pr and ⊕ on numberings of S and on ≡pr-equivalence classes of the
numberings.

The quotient structure Rpr(S ) := (Compr(S )/≡pr ;≤pr ,⊕) is an upper semilattice. We call
the structure Rpr(S ) the Rogers pr-semilattice of the punctual family S .

Let T be a family of total (Turing) computable functions acting from ω to ω. A numbering ν
of the family T is computable if the function gν from Definition 1 is computable. Note that this
definition is consistent with the notion of computable numbering discussed in the introduction:
if we identify functions from T with their graphs, then we will get precisely the same notions.

We say that a family T is Turing computable if it has a computable numbering. The definition
of Rogers semilattice Rc(T ) is obtained in a similar way to the semilattice Rpr(S ), modulo the
following modification: one needs to consider all computable numberings of T and the standard
reducibility ≤ between them.

Another way to look at things is the following. Suppose that T is still a Turing computable
family of total functions, but our reducibility is punctual. This gives rise to another Rogers semi-
lattice R(c,pr)(T ). In this setting, the semilattices Rpr(S ) constitute a special case of R(c,pr)(T ).
Throughout the paper, we give several comments on how our results on Rpr(S ) could be
extended to a more general case of R(c,pr)(T ).

2.2 The punctuality paradigm
Kalimullin et al. (2017) noted that many known proofs from polynomial time structure theory
(see, e.g., the survey Cenzer and Remmel 1998) are focused on making the operations and rela-
tions on a given algebraic structure S primitive recursive, and then observing that the obtained
presentation of S is in fact computable in polynomial time.

Kalimullin et al. (2017) proposed that a reasonable “online” presentation of a structure must
minimally satisfy the following: a countably infinite structure is punctual if its domain equals ω
and the operations and predicates of the structure are (uniformly) primitive recursive. Roughly
speaking, the intuition behind this notion is the following: punctual presentations do not allow
any delays – or in other words, there are no instances of truly unbounded search.

Nowadays, the theory of punctual structures is a flourishing research direction. Its intricate
constructions have provided a deep insight into the algorithmic complexity of isomorphisms
(Downey et al. 2020a,b; Melnikov and Ng 2019). The developed techniques found applications in
the theory of automatic structures (Bazhenov et al. 2019b). For further results on punctual struc-
tures, the reader is referred to the surveys (Bazhenov et al. 2019a; Downey et al. 2021; Melnikov
2017).

The restricted Church–Turing thesis for primitive recursive functions says the following:
A function is primitive recursive if and only if it can be described by an algorithm that uses
only bounded loops. Informally speaking, one needs to eliminate all instances of while ... do,
repeat ... until, and goto in a Pascal-like programming language.

Our proofs will exploit the restricted Church–Turing thesis without an explicit reference.
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Let k be a nonzero natural number. We fix a computable list (p(k)e )e∈ω of all k-ary primitive
recursive functions. We emphasize that the list is computable, but it cannot be primitive recursive.
Nevertheless, the following function can be treated as a punctual object:

p(k)e [t](x̄) :=

⎧⎪⎨⎪⎩
p(k)e (x̄), if the value p(k)e (x̄) is computed in

at most t computational steps,
undefined, otherwise.

Without loss of generality, one may also assume the following: if p(k)e (x̄) is equal to N, then for
any t ≤max (e, x̄,N), the value p(k)e [t](x̄) is undefined. The formal details can be recovered from
Bazhenov et al. (2019a, Section 10).

If k= 1, then we omit the superscript – we write pe in place of p(1)e . For e ∈ω, we define a
numbering ρe:

(ρe(k))(x) := p(2)e (k, x).
It is clear that (ρe)e∈ω is a computable list of all punctual numberings.

2.3 Semilattices for finite families
We note the following – when a punctual family S is finite, the situation is very simple:

Proposition 3. Let S be a finite punctual family. Then the semilattice Rpr(S ) contains precisely
one element.

Proof. Suppose thatS = {f0, f1, . . . , fm}. We fix a natural numberN such that the strings fi|N and
i≤m are pairwise different.

It is sufficient to establish the following fact: for arbitrary punctual numberings ν and μ of S ,
one can build a function g, which punctually reduces ν to μ.

The desired g is constructed as follows. We fix indices ai, i≤m, such that μ(ai)= fi. For an
arbitrary index k ∈ω, we promptly find the number j≤m such that ν(k)|N = fj|N. Then we define
g(k) := aj.

3. Strongly Punctually Decidable Numberings
In this section, we introduce the notion of a strongly punctually decidable numbering and discuss
its properties. This notion will play a key role in most of our further constructions.

The background behind the notion comes from some classical results of the theory of number-
ings. An arbitrary numbering ν is traditionally associated with an equivalence relation ην on ω –
the relation ην is defined as follows:

m ην n ⇔ ν(m)= ν(n).
Sometimes, the relation ην is called the numeration equivalence of ν.

A numbering ν is called negative if the relation ην is co-c.e., that is, ην is the complement of a
c.e. set. A numbering ν is decidable if the relation ην is (Turing) computable. A numbering ν is
Friedberg if ην is the identity relation.

Let T be an infinite, Turing computable family of functions. Mal’cev (1965) showed that
every computable numbering of T is negative. Ershov (1967) proved that for any computable
numbering ν of T , there is a computable Friedberg numbering μ of T such that μ≤ ν.

The notion of a strongly punctually decidable numbering comes from a “punctual version” of
the results of Mal’cev and Ershov. First, we note the following:
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Observation 4. If ν is a punctual numbering, then ν is negative.

Indeed, this fact easily follows from the result of Mal’cev (1965). After that, we introduce our
new notions:

Definition 5. We say that a numbering ν is punctually decidable if the relation ην is primitive
recursive.

A punctually decidable numbering ν is strongly punctually decidable (or spd for short) if every
ην-equivalence class C satisfies the following: either C contains only one element, or C = [0]ην .

Roughly speaking, the intuition behind the notion of an spd numbering is as follows. When
one builds a punctual algebraic structure P , one of the basic strategies is “time-filling”: while
we wait for some Turing computable (not necessarily primitive recursive) process to finish its
computations, we still have to promptly construct larger and large finite pieces of P . Typically,
this is achieved via copying some (relatively) simple parts of a given punctual structure A .
For example, if A = (ω, s, 0), where s is the successor function, then one could promptly take
fresh numbers and declare that inside our P , they are equal to 0P , sP (0P ), sP (sP (0P )), . . . ,
s(n)P (0P ), . . . .

The notion of an spd numbering mirrors the time-filling strategy. In general, the construc-
tion of a punctual Friedberg numbering for a given punctual family S could be impossible (see
Proposition 38 in the last section). Nevertheless, “stalling” the construction process by defining

ν(1) := ν(0), ν(2) := ν(0), . . . , ν(n) := ν(0), . . . ,

allows to build an spd numbering for S .
We prove the following general result about numberings:

Proposition 6.

(i) If ν is a punctually decidable numbering, then any μ≤pr ν is also punctually decidable.
(ii) If ν is a punctually decidable numbering, then there is a spd numbering μ such that μ≡pr ν.
(iii) If ν is a negative numbering of a familyS , then there is a spd numberingμ of the same family

such that μ≤pr ν.

Proof. (i) Suppose that ν is a punctually decidable numbering, and a function f punctually reduces
μ to ν. Then clearly, we have

(k ημ �) ⇔ (f (k) ην f (�)).

Since ην is primitive recursive, the relation ημ is also primitive recursive.
(ii) Let ν be a punctually decidable numbering. We define a new numbering μ as follows:

μ(0) := ν(0), μ(k+ 1) :=
{
ν(k+ 1), if (∀i≤ k)¬[(i, k+ 1) ∈ ην],
ν(0), if (∃i≤ k)[(i, k+ 1) ∈ ην].

Since the relation ην is primitive recursive, a unary relation

R(k) := (∃i≤ k)[(i, k+ 1) ∈ ην]
is also primitive recursive. Using this fact, it is easy to show that the numbering μ is spd, and
μ= ν ◦ f for a primitive recursive function f . Moreover,

ν(k+ 1)=
{
μ(k+ 1), if (∀i≤ k)¬[(i, k+ 1) ∈ ην],
μ(0), otherwise;
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hence, ν ≤pr μ. Therefore, we deduce that μ≡pr ν.
(iii) Let ν be a negative numbering of a familyS . By item (ii), it is sufficient to find a punctually

decidable numbering μ of S such that μ≤pr ν.
Since the numbering ν is negative, the set

Iν := {n ∈ω : (∀i< n)(ν(i) �= ν(n))}
is computably enumerable. Choose a primitive recursive function h(x) such that range(h)= Iν .
Then it is not hard to show that the numbering μ := ν ◦ h is punctually decidable. Hence, μ has
the desired properties.

The following consequence of Proposition 6 will play a crucial part in our constructions:

Corollary 7. If ν is a punctual numbering of a family S , then there is a spd numbering μ ∈
Compr(S ) such that μ≤pr ν.

3.1 Punctual families with spd numberings
After Proposition 6 and Corollary 7 are obtained, it is natural to consider the following problem:

Problem 8. We say that a punctual familyS is persistently decidable if every punctual numbering
of S is punctually decidable. Characterize persistently decidable families.

First, we observe the following easy sufficient condition for being persistently decidable.

Definition 9. We say that a punctual familyS is strongly finitely discrete (or sf-discrete for short)
if there exists a natural number N such that for any functions f , g ∈ S , the following conditions are
equivalent:

f = g ⇔ f |N = g|N.

Lemma 10. Every sf-discrete punctual family S is persistently decidable.

Proof. Let ν be an arbitrary punctual numbering of S . It is clear that we have

(k ην �) ⇔ ν(k)|N = ν(�)|N,

and this condition is primitive recursive.

Note that every finite punctual family is sf-discrete.

Example 11. A simple example of an infinite sf-discrete family is the family containing the
following functions: for i ∈ω,

gi(x)= i, for all x.

Second, we obtain a sufficient condition for being not persistently decidable.

Definition 12. Let ν be a punctual numbering of a family S . We say that a primitive recursive
function f is a quickly spoiling limit point for ν if it satisfies the following: there is a primitive
recursive function sp(n, t) such that for any n,

ν(sp(n, 0))|n= ν(sp(n, 1))|n= f |n and ν(sp(n, 0)) �= ν(sp(n, 1)).

The intuition behind the definition is as follows. Consider a construction, which promptly
defines a function g(x) bit by bit. A default action of this construction is copying the function
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f – we put g(0) := f (0), g(1) := f (1), g(2) := f (2), . . . . Then the function sp(n, t) always provides
two different opportunities for a quick “diagonalization”: at any stage s, one can abandon copying
f and set either g := ν(sp(s, 0)) or g := ν(sp(s, 1)).

Observation 13. Let ν be a punctual numbering of a familyS , and letμ be a punctual numbering
of a family T . If f is a quickly spoiling limit point for ν, then f is also quickly spoiling for ν ⊕μ.

Example 14. A simple example for Definition 12 can be recovered as follows. Consider a punctual
Friedberg numbering:

ν(k) := χ{k}.

Then the function f := χ∅ is a quickly spoiling limit point for ν. This is witnessed by a function
sp satisfying sp(n, 0) := n+ 1 and sp(n, 1) := n+ 2. Note that in this example, f is the unique limit
point of S in the Cantor space 2ω.

Proposition 15. Suppose that ν is a punctual numbering of a family S , and f is a quickly spoiling
limit point for ν. Then the family S is not persistently decidable.

Proof. Choose a primitive recursive function sp(n, t), which witnesses the spoiledness of f . Let A
be a computable set which is not primitive recursive. Fix two primitive recursive functions p(x)
and q(x) such that A= range(p) and A= range(q).

We define a punctual numbering μ of some subfamily S0 ⊆ S . An informal idea of the
construction is as follows. Consider a number k ∈ω. We look at two quick listings A={
p(0), p(1), p(2), . . .

}
and A= {q(0), q(1), q(2), . . . }, and we wait for the first stage s0, at which

we see that k appeared on one of the two lists. At every stage s< s0, the functions μ(2k) and
μ(2k+ 1) just copy (the initial segments of) the limit point f . At the stage s0, we consider two
cases:

(1) If k ∈A, then we put μ(2k)=μ(2k+ 1) := ν(sp(s0, 0)).
(2) If k �∈A, then we set μ(2k) := ν(sp(s0, 0)) and μ(2k+ 1) := ν(sp(s0, 0)).

The properties of the function sp(n, t) ensure that the described construction builds a punctual
numbering, and every function μ(�) belongs to S . Moreover, we deduce that

k ∈A ⇔ μ(2k)=μ(2k+ 1).

Since the set A is not primitive recursive, the numbering μ cannot be punctually decidable.
For the sake of completeness, we provide a more formal description of the construction. We

build the numbering μ and auxiliary prompt functions u(k, s) and w(k, s). We put μ(k)(0)= f (0)
and u(k, 0)=w(k, 0)= −1 for all k ∈ω.

At a stage s+ 1, for each k we proceed as follows:

(1) If u(k, s)≥ 0, then we put u(k, s+ 1) := u(k, s) and w(k, s+ 1) :=w(k, s). Otherwise, we
check the following conditions:
– If k ∈ {p(0), p(1), . . . , p(s+ 1)}, then set u(k, s+ 1)=w(k, s+ 1) := sp(s+ 1, 0).
– If k ∈ {q(0), q(1), . . . , q(s+ 1)}, then define u(k, s+ 1) := sp(s+ 1, 0) and w(k, s+ 1) :=
sp(s+ 1, 1).

– Otherwise, do not change the values of u and v.
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(2) Define

μ(2k)(s+ 1) :=
{
ν(u(k, s+ 1))(s+ 1), if u(k, s+ 1)≥ 0,
f (s+ 1), if u(k, s+ 1)= −1;

μ(2k+ 1)(s+ 1) :=
{
ν(w(k, s+ 1))(s+ 1), if w(k, s+ 1)≥ 0,
f (s+ 1), if w(k, s+ 1)= −1.

This concludes the description of the construction. The argument given before the description
shows that μ promptly indexes some subfamily S0 of S , and the numbering μ is not punctually
decidable. Therefore, the numbering μ1 := ν ⊕μ belongs to Compr(S ), and μ1 is not punctually
decidable. Hence, the family S is not persistently decidable.

In general, it seems that Problem 8 is pretty hard to solve. After the reader familiarizes them-
selves with further punctual constructions, in Section 9, we will build an infinite, persistently
decidable family S such that:

• For every function f ∈ S , range(f )⊆ {0, 1}. This implies that S is not sf-discrete.
• The familyS has a unique limit point f in the Cantor space, and this f is primitive recursive.
By Proposition 15, f cannot be quickly spoiling for any punctual numbering ν of S .

4. Warming Up: Absence of Minimal Elements
The section contains an introduction to punctual priority constructions: we give a detailed proof
of the result below, which serves as a good starting point.

Theorem 16. Let S be an infinite punctual family. Then the semilattice Rpr(S ) does not contain
minimal elements. Consequently, the structure Rpr(S ) is infinite.

Proof. Let α be a punctual numbering of S . By Corollary 7, there is a spd numbering ν ∈
Compr(S ) such that ν ≤pr α. In order to prove the theorem, we build a numberingμ ∈ Compr(S )
such that μ≤pr ν and ν �≤pr μ.

Our construction will satisfy the following series of requirements:

Pe: The function pe does not punctually reduce ν to μ.

The key difference between our construction and a typical priority argument (of recursion
theory) is the following: our requirements do not injure each other, and we will satisfy only one
requirement Pe at a time.

Strategy for Pe. Suppose that the Pe-strategy starts working at a stage se of the construction, and
Ne is the least index such that the object μ(Ne) is still undefined at the beginning of the stage se.

We wait until the first stage t> se with the following properties:

(a) There is a (least) number we ≤ t such that we ≥ e, ν(we) �= ν(0), and we have not used the
object ν(we) in our definition of μ before.

(b) For this particular we, the value pe[t](we) is already defined.

Note that checking whether ν(we) is equal to ν(0) is a punctual procedure, since the numbering ν
is spd.
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While waiting for this t to appear, we should not delay the definition of the numbering μ, so,
one by one, we put

μ(Ne) := ν(0), μ(Ne + 1) := ν(0), μ(Ne + 2) := ν(0), . . . .
When the desired stage t is achieved, we proceed as follows:

(1) For each k≤ pe(we), if the object μ(k) is still undefined, then put μ(k) := ν(0).
(2) Letm be the least index such that at this moment, μ(m) is still undefined. Set μ(m+ �) :=

ν(�), for every �≤we.

It is clear that the described actions ensure that the requirement Pe is forever satisfied: our
choice of the witness we guarantees that we have ν(we) �=μ(pe(we)).

The construction is arranged as follows: we start the P0-strategy and wait until it is satisfied.
When P0 is satisfied, we immediately start the P1-strategy. After P1 is satisfied, we start P2, etc.

Verification. Since the family S is infinite, each strategy Pe will eventually find its witness we,
and after that, Pe will eventually become satisfied. Therefore, we deduce ν �≤pr μ.

The constructed numbering μ is punctual: indeed, for an index k ∈ω, one can just look at the
stage k+ 1 of the described construction. At this stage k+ 1, we can promptly find an index r(k)
such that μ(k) is equal to ν(r(k)). This shows the punctuality of μ, and furthermore, the function
r punctually reduces μ to ν.

Informally speaking, the punctuality of μ is ensured by elimination of unbounded searches:
Surely, the Pe-strategy wants to “catch” a particularly good stage t, but this quest for t does
not delay the construction at all – while doing the t-search, our definition of μ just executes a
straightforward filler action (copying ν(0) for appropriate μ-indices).

Now it is enough to show that the numbering μ has an index for every element of S . This is
ensured by the assignment μ(m+ �) := ν(�) given above – after satisfying Pe, μ copies the long
initial segment ν(0), ν(1), . . . , ν(we).

The classical result of Khutoretskii (1971) shows that for any computable family T , its semi-
lattice Rc(T ) is either one element or infinite. Proposition 3 and Theorem 16 together imply that
the punctual setting exhibits a similar behavior:

Corollary 17. For an arbitrary punctual family S , its Rogers pr-semilattice is either one element
or infinite.

For a Turing computable family of total functions T , we consider the semilattice R(c,pr)(T )
defined in Section 2.1. A simple analysis of the proof of Theorem 16 shows the following:

Corollary 18. If T is a Turing computable infinite family of total functions, then the semilattice
R(c,pr)(T ) does not contain minimal elements.

Proof Sketch. In the construction of Theorem 16, one builds a new numbering μ only by looking
at the ν-indices, that is, we always declare that μ(k) := ν(�k) for some �k ∈ω, and we never really
work with the “internal content” of our functions ν(�k). By working with the internal content,
here we mean the following: say, one can choose to define

μ(0)(0)= ν(�0)(m0), μ(0)(1)= ν(�1)(m1), μ(0)(2)= ν(�2)(m2), . . . ,
that is, to copy different finite pieces from different functions ν(�t), t ∈ω.

This observation implies that the constructed new numbering μ is a Turing computable
numbering of our family T such that μ≤pr ν and ν �≤pr μ.
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5. Antichains
In this section, we establish that any non-greatest element of a Rogers pr-semilattice is a part of an
infinite antichain. First, we prove the following.

Theorem 19. Let S be an infinite punctual family. Let α and μ be punctual numberings of S
such that μ<pr α, that is, μ≤pr α and α �≤pr μ. Then there is a numbering ν ∈ Compr(S ) such
that ν ≤pr α and ν is ≤pr-incomparable with μ.

Proof. We apply Corollary 7 and fix a spd numbering μ̃ of the family S such that μ̃≤pr μ. Our
numbering ν will copy different pieces of α and μ̃. Choose a function fμ̃, which punctually reduces
μ̃ to α.

We satisfy the following series of requirements:

Pe: pe : μ̃ �≤pr ν, that is, pe does not punctually reduce μ̃ to ν.
Qi: pi : ν �≤pr μ.

The Pe-requirements ensure that μ̃ �≤pr ν. Since μ̃≤pr μ, this implies μ �≤pr ν.
We also have a global requirement

R: ν is punctually reducible to α.

Informally, this will be satisfied via the following action: at a stage s, we promptly define the value
fν(s) such that ν(s)= α(fν(s)).

We fix a (punctual) ordering of requirements: P0 <Q0 < P1 <Q1 < . . . . This means that we
will satisfy P0, then Q0, then P1, etc.

The Pe-strategy. By the background action of the Pe-strategy, we mean the following: whenever
we are waiting for some object to be found, we do not delay our construction, and we just put

ν(N) := μ̃(0), ν(N + 1) := μ̃(0), ν(N + 2) := μ̃(0) . . . ,

starting with an appropriate indexN. ThisN is typically clear from the context (recall theNe from
Theorem 16).

The strategy Pe waits until the first (large enough) stage t with the following properties:

(a) There are N + 1 indices a0, a1, . . . , aN such that ai ≤ t and the objects μ̃(ai) are pairwise
different. Recall that the relation ημ̃ is primitive recursive, so this condition can be verified
in a prompt way.

(b) For each i≤N, the value pe(ai)[t] is defined.

When this t is found, we compute M :=max (pe(a0), pe(a1), . . . , pe(aN)). For every k≤M, if
ν(k) is still undefined, then we put ν(k) := μ̃(0).

Consider the finite set F := {j : j≤M}. On one hand, it is clear that the family {ν(j) : j ∈ F}
contains at most N different objects. On the other hand, there are (N + 1) different functions
μ̃(ai), i≤N, and pe(ai) ∈ F for all i.

Therefore, we deduce that pe cannot punctually reduce μ̃ to our ν, and the Pe-requirement is
satisfied.

The Qi-strategy. Suppose that the strategy starts working at a stage s0 of the construction. Let
M0 be the least index such that ν(M0) is still undefined. We put

ν(M0 + k) := α(k) for every k≤ s0.

This action ensures that every object from the family S eventually obtains a ν-index.
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Put N :=M0 + s0 + 1. The background action of the Qi-strategy is as follows – it defines

ν(N) := α(0), ν(N + 1) := α(1), ν(N + 2) := α(2), . . . .

We wait until the first stage t such that there are an index w0 ≤ t and a number L≤ t with the
following properties:

• The value pi(w0)[t] is defined.
• The object ν(w0) is defined.
• We have ν(w0)|L �=μ(pi(w0))|L.
If these w0 and L are found, then ν(w0) �=μ(pi(w0)). This shows that pi does not reduce ν to μ,

and the Qi-strategy is satisfied.
Now we only need to show that the desired stage t will be eventually reached. Toward a contra-

diction, assume that there is no such stage t. Then for everyw and L, we have ν(w)|L=μ(pi(w))|L.
In other words, the function pi punctually reduces ν toμ. Then our background actions imply that

α(x)= ν(N + x)=μ(pi(N + x)) for all x ∈ω;
hence α ≤pr μ, which contradicts the conditions of the theorem.

The construction is arranged similarly to Theorem 16: our requirements are satisified one by
one, according to their priority ordering.

Verification.We have already shown that every requirement will be eventually satisfied; hence,
the numberings ν and μ are ≤pr-incomparable. Moreover, our description of a Qi-strategy
guarantees that ν provides an index for every element from S .

Note that there is a primitive recursive function fν(x) such that ν = α ◦ fν . This is ensured by the
background actions: at each stage, we promptly set either ν(x) := μ̃(0)= α(fμ̃(0)) or ν(x) := α(�x)
for appropriately chosen index �x. Therefore, the numbering ν has desired properties.

A not too difficult modification of Theorem 19 provides the following result:

Theorem 20. LetS be an infinite punctual family. Let α andμ be punctual numberings ofS such
that μ<pr α. Then there is a computable list (νk)k∈ω of punctual numberings of S such that:

(a) for every k, νk ≤pr α and νk is ≤pr-incomparable with μ;
(b) the numberings νk are pairwise ≤pr-incomparable.

Corollary 21. If μ is a non-greatest element of a Rogers pr-semilattice R, then μ is a part of an
infinite antichain inside R.

Proof of Theorem 20. Here we discuss a construction, which builds only two ≤pr-incomparable
punctual numberings ν0 and ν1. This construction admits a straightforward generalization to the
case of countably many incomparable elements. We use the same notation as in Theorem 19.

For ε ∈ {0, 1}, we need to satisfy the following requirements:

Rε : νε is punctually reducible to α.
Pεe : pe : μ̃ �≤pr νε .
Qεi : pi : νε �≤pr μ.

N0
j : pj : ν0 �≤pr ν1.

N1
j : pj : ν1 �≤pr ν0.
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The strategies for the requirements Rε , Pεe , andQεj are essentially the same as those in the proof
of Theorem 19. Since N1-requirements are similar to N0-requirements, it is sufficient to discuss
only a N0

j -strategy.

The N0
j -strategy. The background action of the strategy is the following: we put

ν0(N) := μ̃(0), ν0(N + 1) := μ̃(1), ν0(N + 2) := μ̃(2), . . .
ν1(N) := μ̃(0), ν1(N + 1) := μ̃(0), ν1(N + 2) := μ̃(0), . . .

Our strategy waits until the first stage t with the following properties:

(a) There are N + 1 indices b0, b1, . . . , bN such that N ≤ bi ≤ t and the objects ν0(bi) are pair-
wise different. Since the numbering μ̃ is spd and (in the background) ν0(N + x)= μ̃(x),
these indices will eventually appear.

(b) For each i≤N, the value pj(bi)[t] is defined.

When the number t is found, we set M :=max{pj(bi) : i≤N}. For each k≤M, if the value
ν0(k) is still undefined, then put ν0(k) := μ̃(0). We work with ν1(k), k≤M, in a similar way.

An argument similar to the one given in the description of the Pe-strategy (Theorem 19) shows
that pj does not punctually reduce ν0 to ν1.

As usual, our construction fixes some punctual ordering of all requirements (except R0 and
R1) and satisfies these requirements one by one. The requirements R0 and R1 are satisfied via
“global” actions. The verification proceeds similarly to Theorem 19. This concludes the proof of
Theorem 20.

Similarly to Corollary 18, the proof of Theorem 20 implies the following:

Corollary 22. Let T be a Turing computable infinite family of total functions, and let μ be a
non-greatest element in the semilattice R(c,pr)(T ). Then μ is a part of an infinite antichain inside
R(c,pr)(T ).

6. Density
In this section, we consider intervals inside a Rogers pr-semilattice Rpr(S ). First, we prove that
the poset Rpr(S ) is dense:

Theorem 23. LetS be an infinite punctual family. Suppose that ν andμ are punctual numberings
of S such that ν <pr μ. Then there is a numbering ξ ∈ Compr(S ) such that ν <pr ξ <pr μ.

Proof. Fix a function f , which provides a punctual reduction ν ≤pr μ. We build a punctual
numbering α of some subfamily S0 ⊆ S , while satisfying the following requirements:

R: α is punctually reducible to μ.
Pe: pe : α �≤pr ν.
Qi: pi : μ �≤pr α⊕ ν.

These requirements are enough for our goals: indeed, assume that all requirements are satisfied
and consider the punctual numbering ξ := α⊕ ν of the whole family S . Then clearly, we have
ν ≤pr ξ ≤pr μ. The Pe-requirements guarantee that ξ �≤pr ν. The Qi-requirements ensure μ �≤pr ξ .

As in Theorem 19, the R-strategy acts globally: at a stage s, we promptly define the value gα(s)
with α(s)=μ(gα(s)).

https://doi.org/10.1017/S0960129522000093 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000093


Mathematical Structures in Computer Science 177

The Pe-strategy. Suppose that the strategy starts working at a stage s0, and N is the least index
with α(N) still being undefined.

The background action of the Pe-strategy is as follows. We propagate

α(N) :=μ(0), α(N + 1) :=μ(1), α(N + 2) :=μ(2), . . . .

We wait for the least stage s1 > s0 such that there is a number w≤ s1 with the following
properties:

• The object α(w) is already defined, and α(w)=μ(gα(w)). The verification will demonstrate
that given w, the desired μ-index gα(w) can be calculated in a prompt way.

• The value pe[s1](w) is defined.
• By the stage s1, we have already witnessed that μ(gα(w)) �=μf (pe(w)).

The last item requires a little bit of clarification: How does one check such a condition?
Recall that by Observation 4, the numbering μ is negative. In other words, the set{

(k, �) : μ(k) �=μ(�)
}
is c.e., and hence, it can be enumerated by a punctual function. Thus, if

our gα(w) and f (pe(w)) are μ-indices of different objects, then we will eventually witness this fact.
We emphasize the following: If the desired stage s1 is found, then the requirement Pe will be

forever satisfied. Indeed, we know that α(w)=μ(gα(w)) �=μf (pe(w))= ν(pe(w)), and hence, pe
cannot punctually reduce α to ν. Thus, after the stage s1, one can proceed to working with other
requirements.

The Qi-strategy. Again, we assume that the strategy starts working at a stage s0, and N is the
least index with α(N) still undefined.

The background action of Qi is propagating the following:

α(N) := ν(0)=μ(f (0)), α(N + 1) := ν(1)=μ(f (1)), . . . .

Wait for the least stage s1 > s0 such that there is a number w≤ s1 satisfying:

• The value pi[s1](w) is defined.
• If the value pi(w) is even, then the object α(pi(w)/2) is already defined. Set

�(w) :=
{
f (�pi(w)/2�), if pi(w) is odd,
gα(pi(w)/2), if pi(w) is even.

Here, again, we assume that α(k)=μ(gα(k)).
• By the stage s1, we have already witnessed that μ(w) �=μ(�(w)).

If such a stage s1 is found, then the requirement Qi will be satisfied. Indeed, we witness that

μ(w) �=μ(�(w))=
{
μf (�pi(w)/2�), if pi(w) is odd,
μgα(pi(w)/2), if pi(w) is even

}

=
{
ν(�pi(w)/2�), if pi(w) is odd,
α(pi(w)/2), if pi(w) is even

}
= (α⊕ ν)(pi(w)).

The construction is arranged as follows. We fix the ordering of our requirements P0 <Q0 <
P1 <Q1 < . . . , and satisfy them one by one.

Verification. It is clear that α(x)=μ(gα(x)), where gα is a primitive recursive function.
This is ensured by our background actions: we always promptly set either α(N) :=μ(�N) or
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α(N) := ν(�N)=μ(f (�N)) for appropriately chosen index �N . Hence, α ≤pr μ, and the strategy
descriptions above are well defined.

In order to finish the proof, we need to establish the following fact: every requirement is
eventually satisfied.

Toward a contradiction, assume that there is the least requirement T, which is never satisfied.
There are two possible cases.

Case 1. Assume that T = Pe for some e ∈ω. This implies that the desired stage s1 of the
Pe-strategy is never found. Therefore, for each index w, we have α(w)=μ(gα(w))=μf (pe(w))=
ν(pe(w)).

Since the Pe-strategy works forever, for some fixed index N, we have α(N + �)=μ(�), for all
� ∈ω. Therefore,

μ(�)= α(N + �)= ν(pe(N + �)).

This means that μ≤pr ν, which gives a contradiction.

Case 2. Suppose that T =Qi. The desired s1 of theQi-strategy cannot be found, and this implies
that for every index w, we have μ(w)=μ(�(w))= (α⊕ ν)(pi(w)).

The background actions of the Qi-strategy ensure that there is N such that α(N +m)= ν(m),
for allm ∈ω. This shows that α ≤pr ν, since for each k<N, one can nonuniformly find a ν-index
of the object α(k). Hence, we have

μ≤pr α⊕ ν ≤pr ν,

which contradicts the conditions of the theorem.
Therefore, we deduce that every requirement is satisfied. This concludes the proof of

Theorem 23.

With a little bit more work, we obtain the following result.

Theorem 24. LetS be an infinite punctual family. Suppose that ν andμ are punctual numberings
of S such that ν <pr μ. Then there is a computable list (ξi)i∈ω of numberings such that:

(a) ξi ∈ Compr(S ) and ν <pr ξi <pr μ.
(b) For any non-empty finite sets F and G, we have⊕

i∈F
ξi ≤pr

⊕
j∈G

ξj ⇔ F ⊆G.

Proof. First, we give a detailed construction for only two incomparable numberings ξ0 and ξ1.
After that, we discuss the modifications that are needed for the general case.

We use the same notation as in Theorem 23. We build punctual numberings α0 ∈ Compr(S0)
and α1 ∈ Compr(S1) for some subfamilies S0 and S1 of the family S . We satisfy the following
requirements:

R0: α0 ≤pr μ via a function gα0 .

R1: α1 ≤pr μ via a function gα1 .

N0
e : pe : α0 ⊕ ν �≤pr α1 ⊕ ν.

N1
i : pi : α1 ⊕ ν �≤pr α0 ⊕ ν.
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Then the numberings ξ0 := α0 ⊕ ν and ξ1 := α1 ⊕ ν have all the desired properties. Indeed, R0
ensures that ξ0 ≤pr μ. It is obvious that ν ≤pr ξ0. The N0

e - and N1
i -requirements guarantee that ξ0

and ξ1 are ≤pr-incomparable. Hence, it is clear that ν <pr ξj <pr μ for j ∈ {0, 1}.
It is sufficient to discuss only an N0

e -strategy: The Rj-satisfaction is similar to Theorem 23, and
an N1

i -strategy is essentially the same as that for N0
e .

The N0
e -strategy. Suppose that the strategy starts working at a stage s0, andM is the least index

with both α0(M) and α1(M) undefined.
Our background action defines

α0(M) :=μ(0), α0(M + 1) :=μ(1), α0(M + 2) :=μ(2), . . . ;
α1(M) := ν(0)=μf (0), α1(M + 1) := ν(1)=μf (1), α1(M + 2) := ν(2)=μf (2), . . .

We wait for a stage s1 > s0 such that there is w≤ s1 with the following properties:

• The object α0(w)=μ(gα0 (w)) is already defined.
• The value pe[s1](2w) is defined.
• By the stage s1, we have already witnessed that

μgα0 (w) �=
{
μgα1 (pe(2w)/2), if pe(2w) is even,
μf (�pe(2w)/2�), if pe(2w) is odd

}
= (α1 ⊕ ν)(pe(2w)).

If this stage s1 is found, then the N0
e -requirement is satisfied: indeed, we have

(α0 ⊕ ν)(2w)= α0(w)=μgα0 (w) �= (α1 ⊕ ν)(pe(2w)).
We show that s1 will be eventually reached. Toward a contradiction, assume that there is no

such s1. Then we deduce the following:

(1) μ(x)= α0(M + x) for all x ∈ω.
(2) The function q(k) := pe(2k) provides a punctual reduction from α0 to (α1 ⊕ ν).
(3) ν(x)= α1(M + x) for all x. By nonuniformly choosing a finite set of ν-indices, one can

construct a punctual reduction from α1 to ν.

These facts together imply that μ≤pr α0 ≤pr α1 ⊕ ν ≤pr ν. Thus, μ is punctually reducible to ν,
which gives a contradiction.

The construction is arranged in a straightforward way. It is not hard to prove that the require-
ments R0 and R1 are satisfied. We showed above that every Nεe , where ε ∈ {0, 1}, will be eventually
satisfied. This concludes the discussion for the case of two incomparable numberings ξ0 and ξ1.

The general case is obtained as follows. Here, for every k ∈ω and every non-empty finite set
F ⊂ω, we need to satisfy the requirements:

Rk: αk ≤pr μ via a function gαk .

Nk,F
e : If k �∈ F, then pe : αk ⊕ ν �≤pr (

⊕
j∈F αj)⊕ ν

Then one can show that the numberings ξk := αk ⊕ ν satisfy the theorem.
The Nk,F

e -strategy is similar to theN0
e -strategy described above, modulo its background actions.

For all j ∈ F and � �∈ F ∪ {k}, here we put
αk(M) :=μ(0), αk(M + 1) :=μ(1), αk(M + 2) :=μ(2), . . . ;
αj(M) := ν(0), αj(M + 1) := ν(1), αj(M + 2) := ν(2), . . . ;

α�(M) :=μ(0), α�(M + 1) :=μ(0), α�(M + 2) :=μ(0), . . . .
All other modifications are pretty straightforward. This concludes the proof of Theorem 24.
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As a consequence, we obtain the following:

Corollary 25. LetS be an infinite punctual family. Suppose that ν andμ are punctual numberings
of S such that ν <pr μ. Then every finite upper semilattice is isomorphically embeddable into the
interval [degpr(ν); degpr(μ)] inside Rpr(S ) (this embedding preserves suprema). In particular, this
implies that the �1-fragment of the theory Th(Rpr(S )) (in the signature of upper semilattices) is
decidable.

Proof Sketch. It is sufficient to show that every finite Boolean algebra (treated as an upper
semilattice) can be isomorphically embedded into the interval [degpr(ν); degpr(μ)].

Let B be a finite Boolean algebra with precisely n+ 1 atoms. Consider the sequence (ξi)i∈ω
constructed in Theorem 24. Then it is not hard to prove that the subsemilattice of Rpr(S ) with
domain {

degpr(ν)
}

∪ {
degpr

( ⊕
j∈Fξj

) : F �= ∅, F ⊆ {0, 1, . . . , n}}
is isomorphic to B.

Corollary 26. Let T be a Turing computable infinite family of total functions, and let ν <pr μ

be Turing computable numberings of T . Then the interval [degpr(ν); degpr(μ)] inside R(c,pr)(T )
contains an infinite antichain.

Proof Sketch. We follow the proof of Theorem 24. The only nontrivial detail is the following: recall
that in Theorem 23, we use the fact that the numbering μ is negative. In this corollary, our μ is a
Turing computable numbering, and it is also negative.

7. Lattices
Note that Corollary 25 implies that for arbitrary infinite punctual families S0 and S1, the
�1-fragments of the theories Th(Rpr(S0)) and Th(Rpr(S1)) are the same. In this section, we wit-
ness that this is not the case already for the �2-fragments. On the one hand, we show that some
Rogers pr-semilattices are lattices (Theorem 27). On the other hand, some semilattices contain
minimal pairs (Proposition 29).

Selivanov (1976) obtained the following classical result: for any computable family T , if the
semilattice Rc(T ) is infinite, then it cannot be a lattice. This section illustrates that the result of
Selivanov cannot be transferred to the punctual setting.

Our first theorem shows that persistently decidable families S (see Problem 8) exhibit a pretty
tame behavior.1

Theorem 27. Let S be an infinite persistently decidable family. Then the structure Rpr(S ) is an
infinite lattice.

Proof. Given two punctual numberings ν and μ of S , we build their infimum α.
First, notice the following: since the familyS is persistently decidable, the equivalence relation

ην⊕μ is primitive recursive. Therefore, given k, � ∈ω, one can promptly compute whether the
equality ν(k)=μ(�) is true: indeed, ν(k)=μ(�) if and only if (2k, 2�+ 1) ∈ ην⊕μ.

For each s ∈ω, at the stage s, we will promptly define an index ws such that α(s)= ν(ws).
At a stage s of the construction, we find a finite subset of ω:

I[s] := {
k≤ s : (∃�≤ s)[ν(k)=μ(�)] & (∀k′ < k)[ν(k′) �= ν(k)]

}
.

It is not hard to show that the procedure of finding I[s] is punctual.
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We (punctually) search for the least number z ∈ I[s] such that z �∈ {wt : t< s}. If such a number
z exists, then put ws := z and α(s) := ν(z). Otherwise, set ws := 0 and α(s) := ν(0).

The construction of α is described. It is not difficult to prove that the numbering α is punctual.
Moreover, since we have ⋃

s
I[s]= {k : (∀k′ < k)[ν(k′) �= ν(k)]},

α indexes the whole family S . In addition, the function s �→ws provides a punctual reduction
from α to ν.

We prove that α ≤pr μ. Fix a number a0 with μ(a0)= ν(0). A punctual reduction g from α to
μ is defined as follows:

• If wx = 0, then put g(x) := a0.
• If wx �= 0, then notice that wx ∈ I[x], and hence, one can promptly find an index �≤ x with
μ(�)= ν(wx). We set h(x) := �.

In order to finish the proof, we need to establish the following fact: suppose that β ≤pr ν via a
function g0, and β ≤pr μ via a function g1. Then β is punctually reducible to α.

Since the numbering β ⊕ ν is punctually decidable, we deduce that for k, � ∈ω, one can quickly
compute whether β(k)= ν(�) holds.

Let x ∈ω. If β(x)= ν(0), then one can nonuniformly choose an α-index for ν(0), and this
is enough for us. Assume that β(x) �= ν(0). It is clear that there exists k such that k ∈ Îx :=
I[ max (g0(x), g1(x))] and β(x)= ν(k). Let M be the greatest element of Îx. One can show that
there is (the least) index � such that α(�)= ν(k), and

�≤max (g0(x), g1(x))+M + 1.

Thus, this � can be found in a prompt way, and one can construct a punctual reduction from β

to α.

Remark 28. It is unclear whether one can obtain an analog of Theorem 27 for some semilat-
tice R(c,pr)(T ), where T is an infinite Turing computable family of total functions. For such a
family T , one can easily construct a Turing computable numbering ν such that the equivalence
ην is not primitive recursive.

Indeed, let μ be some fixed computable numbering of the family T such that μ(0) �=μ(1).
Then for an arbitrary computable, not primitive recursive set X ⊆ω, we define

νX(2k+ 1)=μ(k), νX(2k)=
{
μ(0), if k �∈ X,
μ(1), if k ∈ X.

The numbering νX is computable, and ηνX is not primitive recursive.

Our second result gives an example of a Rogers pr-semilattice, which is not a lattice:

Proposition 29. There exists an infinite punctual family S such that the semilattice Rpr(S )
contains a minimal pair. Consequently, Rpr(S ) is not a lattice.

Proof. Our family S is defined via its punctual Friedberg numbering: for k, � ∈ω, we set
ν〈k, 0〉 := χ{2k} and ν〈k, �+ 1〉 := χ{2k,2�+1}.

The degree of the numbering ν will be one of the components of the minimal pair. Now we
build the other component: it will be induced by a Friedberg numbering μ.

Fix a non-computable c.e. setW, and a primitive recursive function q with range(q)=W.
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For each number k ∈ω, the construction of the “k-th layer” μ〈k, ·〉 proceeds as follows.
Beforehand, set the values:

μ〈k, 0〉(2k) := 1 and μ〈k, 0〉(2m) := 0
for allm �= k.

Consider a stage s of the construction. If k �∈ {q(0), q(1), . . . , q(s)}, then put
μ〈k, 0〉(2s+ 1) := 0 and μ〈k, s+ 1〉 := χ{2k,2s+1}.

Suppose that s0 is the least stage with k ∈ {q(0), q(1), . . . , q(s0)}. Then we set
μ〈k, 0〉 := χ{2k,2s0+1}, μ〈k, s0 + 1〉 := χ{2k}, μ〈k, t + 2〉 := χ{2k,2t+3},

for all t ≥ s0. After the stage s0, we stop the construction of this particular k-th layer.
It is not hard to show that the constructed μ belongs to Compr(S ), and μ is Friedberg. We

need to prove that the degrees of ν and μ form a minimal pair inside Rpr(S ).
Toward a contradiction, assume that there is a punctual numbering α of S with punctual

reductions f : α ≤pr ν and h : α ≤pr μ. Consider a c.e. set
V := {k ∈ω : ∃x(f (x)= h(x)= 〈k, 0〉)}.

Clearly, for a number k ∈V and the corresponding x, we have ν(f (x))=μ(h(x))= χ{2k}. Since μ
is a Friedberg numbering, the function χ{2k} has a unique μ-index ek.

Note that the construction ensures the following:

• If k ∈V , then ek = 〈k, 0〉 and k �∈ range(q)=W.
• If k �∈V , then for every x ∈ω, the condition α(x)= χ{2k} implies f (x)= 〈k, 0〉 and h(x) �=

〈k, 0〉. Hence, ek = 〈k, s0 + 1〉 for some s0 ∈ω, and k ∈W.

Thus, we deduce that V =W, which contradicts the choice ofW.

Remark 30. Note that the family S and its numbering ν (from the proposition above) have
countably many quickly spoiling limit points (in the sense of Definition 12).

(a) The function χ∅ �∈ S is quickly spoiling – this is witnessed by the function sp(n, t) with
sp(n, 0)= 〈n+ 1, 0〉 and sp(n, 1)= 〈n+ 2, 0〉.

(b) For k ∈ω, the function χ{2k} is quickly spoiling. The witness can be defined as follows:
sp(n, 0)= 〈k, n+ 2〉 and sp(n, 1)= 〈k, n+ 3〉.

Therefore, the family S is not persistently decidable.

8. Existence of the Greatest Element
In this section, we provide examples of Rogers pr-semilattices with greatest element and without
greatest element. This gives another difference in the�2-fragments of the first-order theories.

Theorem 31. Let S be an infinite punctual family, and let ν be its punctual numbering. Suppose
that there exists a quickly spoiling limit point f for ν such that f �∈ S . Then the semilattice Rpr(S )
does not have a greatest element.

Proof. Fix a primitive recursive function sp(n, t) witnessing the spoiledness of the limit point f .
Let μ be an arbitrary punctual numbering of the family S . In order to prove the theorem, we

build a punctual numbering α of some subfamily S0 ⊆ S such that α �≤pr μ. Indeed, the existence
of such α is sufficient for us, since this implies that μ≤pr μ⊕ α and μ⊕ α �≤pr μ.
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We satisfy the series of requirements:

Pe: pe : α �≤pr μ.

The Pe-strategy. Choose the least w such that we have not talked about the object α(w) before.
Wait for the least stage s such that:

• the value pe[s](w) is defined, and
• our computations have already provided a number N ≤ s with μ(pe(w))|N �= f |N.

Since f does not belong to the family S , such a stage s will be eventually reached.
While waiting for this s, just propagate

α(w)(0) := f (0), α(w)(1) := f (1), α(w)(2) := f (2), . . . .
When the stage s and the correspondingN are found, defineM as the least number such thatM ≥
N and the value α(w)(M) is still undefined. Using the spoiledness of f , we promptly set α(w) :=
ν(sp(M, 0)).

This procedure is well defined, and it satisfies the Pe-requirement: indeed, we have
μ(pe(w))|M �= f |M = ν(sp(M, 0))|M = α(w)|M.

The construction is arranged in a straightforward manner. We note that in order to ensure the
punctuality of α, the Pe-strategy also has to implement some simple background actions – for
example, one by one, we set α(w+ 1) := ν(0), α(w+ 2) := ν(0).

Clearly, α indexes a subfamily ofS . Since every Pe is eventually satisfied, we have α �≤pr μ.

Remark 32. Note that the family from Example 14 and the family from Proposition 29 both
satisfy the conditions of Theorem 31.

We give an example of an infinite punctual family such that its Rogers pr-semilattice has the
greatest element.

Lemma 33. Consider the family S from Example 11 – it can be defined via its punctual Friedberg
numbering: for i ∈ω,

ν(i)(x)= i for all x ∈ω.
Any punctual numbering μ ∈ Compr(S ) is punctually reducible to ν.

Proof. Let μ be a punctual numbering of S . Then a punctual reduction from μ to ν is provided
by the function h(k) :=μ(k)(0).

We leave the following question open:

Problem 34. Is it true that for any sf-discrete family S , the semilattice Rpr(S ) contains the
greatest element?

9. Persistently Decidable Families Revisited
Here we prove the result, which was announced at the end of Subsection 3.1:

Theorem 35. There exists an infinite, persistently decidable family S such that for every function
f ∈ S , there is a number k ∈ω with f = χ{k}. Consequently, the family S has a unique limit point
g = χ∅ in the Cantor space.
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Proof. Recall that (ρe)e∈ω is the computable list of all punctual numberings (see Subsection 2.2).
Without loss of generality, we assume that for every e and x, range(ρe(x))⊆ {0, 1}.

The desired family S is constructed via its punctual numbering ν. Beforehand, we put ν(0) :=
χ{0}.

We satisfy the following series of requirements:

Re: If ρe is a numbering of S , then ηρe is primitive recursive.

We fix an ordering of the requirements: R0 < R1 < R2 < . . . .
At a stage s, the Re-readiness level is the maximal number t ≤ s such that for every x≤ t and

every z ≤ t + 2, the value ρe(x)(z)[s] is defined. Note that the Re-readiness level tends to infinity.
At a stage s, we define the construction readiness level cr[s] ∈ω. We put cr[0] := 1. The intuition

behind this parameter is as follows. We want to add a fresh element g to the family S . This g will
be always chosen as either χ{cr[s]} or χ{cr[s]+1}. The choice of the g is motivated by the following: we
want to diagonalize against a requirement Re with the highest priority – this is done via ensuring
that ρe does not index the family S (to be elaborated below).

The construction. Consider stage s+ 1. We work with the requirements R0, R1, . . . , Rcr[s]. For
e≤ cr[s], let rl(e) be the Re-readiness level at the stage s+ 1.

If there is x≤ rl(e) such that the string ρe(x)|rl(e) contains at least two ones, then the
Re-requirement is declared inactive. If Re is inactive, then it is forever satisfied: indeed, we
have already witnessed that the function ρe(x) cannot be the characteristic function of a
one-element set.

We compute the parameter:

r :=min{rl(e) : e≤ cr[s], and Re is still active}.
If r< cr[s], then put ν(s+ 1) := ν(0) and proceed to the next stage.

Suppose that r ≥ cr[s]. Then, we define cr[s+ 1] := cr[s]+ 2. We search for the least e≤ cr[s]
such that there is x≤ cr[s] with

ρe(x)|(cr[s]+ 2)= χ{cr[s]}|(cr[s]+ 2) or ρe(x)|(cr[s]+ 2)= χ{cr[s]+1}|(cr[s]+ 2).

If these e and x exist, we put

ν(s+ 1) :=
{
χ{cr[s]+1}, if ρe(x)|(cr[s]+ 2)= χ{cr[s]}|(cr[s]+ 2),
χ{cr[s]}, otherwise.

In this case, we say that Re is successfully defeated. The requirement Re is declared forever inactive,
and Re is satisfied – our construction ensures that ρe(x) does not belong to S .

If there are no such e and x, then ν(s+ 1) := χ{cr[s]}. This concludes the description of the
construction.

Verification. It is not hard to show that ν is a punctual numbering. The construction ensures
that for any x ∈ω, there is a number k such that ν(x)= χ{k}.

Since for each e, the Re-readiness level tends to infinity, we have cr[s]−−−→
s→∞ ∞. This implies

that the numbering ν indexes an infinite family S . Now it is sufficient to establish the following
fact.

Claim 1. If ρe is a numbering of the family S , then the equivalence relation ηρe is primitive
recursive.

Proof. Let ρe ∈ Compr(S ). It is clear that the requirement Re is never declared inactive. Let s0 be
the first stage with the following properties:
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(a) cr[s0]≥ e.
(b) If a requirement Ri, where i< e, is declared inactive at some stage s∗, then this s∗ is strictly

less than s0.

Given numbers x< y, we describe a prompt procedure, which checks whether ρe(x)= ρe(y). If
y≤ s0, then this checking is realized nonuniformly.

Suppose that y> s0. Compute the strings σ := ρe(x)|y and τ := ρe(y)|y. There are two cases:
Case 1. If one of the strings σ or τ contains 1, then it is clear that

ρe(x)= ρe(y) ⇔ σ = τ .

Case 2. Otherwise, we have σ = τ = χ∅|y. We argue that in this case, our construction ensures
that ρe(x)= ρe(y).

Toward a contradiction, assume that ρe(x) �= ρe(y). Since ρe indexes the family S , there are
numbers k, �≥ y such that k �= �, ρe(x)= χ{k}, and ρe(y)= χ{�}. Without loss of generality, one
may assume that k< �.

It is not hard to show that there is a unique ν-index s∗ > 0 such that ν(s∗)= χ{�}. Using the
description of the construction, we deduce the following properties (at the stage s∗):

• � ∈ {cr[s∗ − 1], cr[s∗ − 1]+ 1}.
• s∗ ≥ rl(e)≥ r ≥ cr[s∗ − 1] ∈ {�, �− 1}; hence s∗ ≥ �− 1≥ k≥ y> s0.
• Since s∗ − 1≥ s0, we have cr[s∗ − 1]≥ cr[s0]≥ e.
• cr[s∗ − 1]≥ y.

Summarizing, at the stage s∗ > s0, we have e≤ cr[s∗ − 1] and y≤ cr[s∗ − 1] such that

ρe(y)= χ{cr[s∗−1]} or ρe(y)= χ{cr[s∗−1]+1}.

Recall that after stage s0, no additional requirement Ri with i< e can become inactive. Therefore,
at the stage s∗, we successfully defeat Re, and ρe does not index S . This contradicts the choice
of ρe. Therefore, we deduce that the equality σ = τ = χ∅|y implies ρe(x)= ρe(y).

So, we established that the two discussed cases provide a prompt procedure for checking if
(x, y) ∈ ηρe . Therefore, the numbering ρe is punctually decidable.

Claim 1 shows that our family S is persistently decidable. This concludes the proof of
Theorem 35.

After the first version of the paper was submitted, Sergey Goncharov introduced the following
simple example of a persistently decidable family which is not sf-discrete.

Example 36. Goncharov. The family S contains the following functions: for each k ∈ω,
g0k (0)= k+ 1, g0k (x+ 1)= 0 for all x;
g1k (0)= k+ 1, g1k (k+ 1)= 1, g1k (x)= 0 for x �∈ {0, k+ 1}.

Since g0k (k+ 1) �= g1k (k+ 1) for all k, it is clear that the family S is not sf-discrete.
On the other hand, let f and h be arbitrary functions from the family S . Then f = h if and

only if f (0)= h(0) and f (f (0))= h(h(0)). This implies that every punctual numbering of S is
punctually decidable; hence, the family S is persistently decidable.
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10. Friedberg Numberings
Recall that a numbering ν is Friedberg if ην equals to the identity relation. Friedberg numberings
consitute an important classical object of study. One of the reasons behind this is the follow-
ing fact: one can show that for any computable family T , an arbitrary computable Friedberg
numbering of T induces a minimal element inside the semilattice Rc(T ).

We have already seen that this fact fails in the punctual setting: recall that an infinite Rpr(S )
is downward dense (Theorem 16). Essentially, the reason behind this is the following fact: the
inverse of a primitive recursive function is not necessarily primitive recursive. Furthermore, one
can obtain the following:

Proposition 37. Let S be a punctual family, and let ν be a punctual Friedberg numbering of S .
Then below the degree of ν (inside Rpr(S )), one can build

(a) An infinite descending chain of degrees, such that each of them is induced by a Friedberg
numbering.

(b) An infinite antichain of degrees, such that each of them is induced by a Friedberg numbering.

Proof Sketch. First, we observe the following simple fact: If ν and μ are Friedberg numberings of
S , and a function f provides a punctual reduction from ν to μ, then f is a primitive recursive
permutation of ω.

Let α be a punctual Friedberg numbering of S .
(a) It is known that there is a primitive recursive permutation f of ω such that its inverse f−1

is not primitive recursive (Kuznecov 1950, a proof sketch in English can be found, for example,
in Paolini et al. 2016). This implies that the sequence:

μ0 := α ◦ f , μ1 :=μ0 ◦ f , . . . , μk+1 :=μk ◦ f , . . .
induces a strictly ≤pr-descending chain below α.

(b) Informally speaking, here one needs to modify the proof of Theorem 20. In the nota-
tions of the theorem, we need to build two Friedberg numberings ν0 and ν1, while satisfying the
requirements Rε , N0

j , and N1
j .

The numberings νi, which are being constructed, copy different pieces of the given Friedberg
numbering α. We modify the N0

j -strategy appropriately.

The new N0
j -strategy. Let M be the least index such that the object α(M) has not been used in

the construction yet. The background action is the following: we put

ν0(N) := α(M), ν0(N + 1) := α(M + 1), ν0(N + 2) := α(M + 2), . . .
ν1(N) := α(M + 1), ν1(N + 1) := α(M + 2), ν1(N + 2) := α(M + 3), . . .

Our strategy waits until the first stage t with the following properties: The value pj(N)[t] is
defined, and the object ν1(pj(N)) is also defined.

When the number t is found, it is clear that the N0
j -requirement is satisfied: we have

ν0(N)= α(M) �= α(�)= ν1(pj(N)),

where � ∈ω \ {M}.
Note that we have a little technical problem here: since we require ν1 ∈ Compr(S ), we need

to provide a unique ν1-index k such that ν1(k)= α(M). Surely, this should be done after the
N0
j -requirement is satisfied. It is not difficult to resolve this problem via a careful arrangement

of the construction. Proposition 37 is proved.
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Recall that below any (Turing) computable negative numbering of an infinite family, one can
always find a computable Friedberg numbering (see Section 3). This fact fails in the punctual
setting:

Proposition 38. There is an infinite punctual family S , which does not have punctual Friedberg
numberings.

Proof. Choose an infinite c.e. set W, which cannot be the range of a primitive recursive injective
function. For the sake of completeness, we sketch the construction of such a setW.

The desired setW is built in stages. Note that these stages have to be arranged in a non-punctual
way. At a stage e, we define finite setsW[e] and V[e].

Stage e+ 1. Find the least index k such that:

• either the string pe|k witnesses that pe is not injective,
• or there are two indices � andm with �,m≤ k and {pe(�) �= pe(m)} ⊆ω \ (W[e]∪V[e]).

If these indices are found, then put pe(�) intoW and pe(m) into V .
It is not hard to show that bothW and V are infinite,W ∩V = ∅, and for any injective pe, we

have range(pe) �=W. This concludes the construction ofW.
Choose a primitive recursive (non-injective) function hwith range(h)=W. The desired family

S is defined via its punctual numbering: for i, x ∈ω, set (ν(i))(x) := h(i).
Assume thatμ is a punctual Friedberg numbering ofS . Then the primitive recursive injection

ψ(i) := (μ(i))(0) satisfies range(ψ)=W, which contradicts the choice of the setW.
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