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Direct numerical simulation is performed for the interaction between a deformable
free surface and the homogeneous isotropic turbulent flow underneath. The Navier–
Stokes equations subject to fully nonlinear free-surface boundary conditions are
simulated by using a pseudospectral method in the horizontal directions and a finite-
difference method in the vertical direction. Statistically, steady turbulence is generated
by using a linear forcing method in the bulk flow below. Through investigation of
cases of different Froude and Weber numbers, the present study focuses on the
effect of surface deformation of finite amplitude. It is found that the motion of the
free surface is characterized by propagating waves and turbulence-generated surface
roughness. Statistics of the turbulence field near the free surface are analysed in detail
in terms of fluctuations of velocity, fluctuations of velocity gradients and strain rates
and the energy budget for horizontal and vertical turbulent motions. Our results
illustrate the effects of surface blockage and vanishing shear stress on the anisotropy
of the flow field. Using conditional averaging analysis, it is shown that splats and
antisplats play an essential role in energy inter-component exchange and vertical
transport.

1. Introduction
The physics of free-surface turbulence is important to numerous environmental and

engineering applications including air–sea exchange of mass, heat and momentum,
ship hydrodynamics and remote sensing and many industrial equipments involving
gas–liquid flows. The interaction between a free surface and the turbulent flow
underneath is a complex process. On one hand, the surface is deformed by the turbu-
lence from below, resulting in surface roughness and waves. On the other hand, the
turbulence is subject to the unique constraints of the free surface on the fluid motion,
namely the kinematic boundary condition (KBC) requiring that the surface remains
material, and the dynamic boundary conditions (DBCs) imposing the stress balance
at the free surface. Our understanding of free-surface turbulence is much less than
its counterpart of turbulence at a solid wall, and there is a critical need for its study.

Because of its importance, the problem of free-surface turbulence started to receive
considerable attention recently in theoretical, numerical and experimental studies.
Notably, Hunt & Graham (1978) and Hunt (1984) used the rapid distortion theory
to establish a theoretical framework. Two surface layers, an inner viscous layer and
an outer source layer, were identified, and the variation of turbulence spectrum near
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the surface was analysed. Teixeira & Belcher (2000) extended the theory of Hunt–
Graham to include viscous effect. Turbulence dissipation near the free surface was
studied. Magnaudet (2003) showed that at high Reynolds numbers, the theory is still
the leading-order approximation for the long-term evolution of the turbulence near a
shear-free boundary.

Accompanied by the developments in the theoretical analysis, substantial
information on the details of the flow field has been obtained from simulations
and measurements. In numerical study, usually three types of flows are simulated:
open-channel flow (e.g. Lam & Banerjee 1988; Handler et al. 1993; Komori et al. 1993;
Borue, Orszag & Staroselsky 1995; Hodges & Street 1999; Nagaosa 1999; Nagaosa
& Handler 2003), shear flow under a free surface (e.g. Dimas & Triantafyllou 1994;
Tsai 1998; Shen et al. 1999) and decaying isotropic turbulence with a free-slip plate
suddenly inserted (e.g. Perot & Moin 1995; Walker, Leighton & Garza-Rios 1996). For
a mechanistic study, these three flows have their advantages and disadvantages. The
open-channel flow is statistically steady and it corresponds directly to numerous
laboratory measurements (e.g. Rashidi 1997; Kumar, Gupta & Banerjee 1998;
Smolentsev & Miraghaie 2005). The effect of the channel bottom is, however, difficult
to separate from the dynamics at the free surface, especially when the Reynolds
number is not sufficiently large (cf. the discussion of Calmet & Magnaudet 2003). The
shear flow provides many theoretical advantages for the study of flow instability and
evolution (Dimas & Triantafyllou 1994; Shen, Triantafyllou & Yue 2000). However,
as it is unsteady, many ensemble runs are needed for the convergence of turbulence
statistics. The decaying isotropic turbulence has the advantage of being simple
and fundamentally important for theoretical analysis. However, the unsteadiness
in the flow and the lack of energy input require a large number of ensemble
simulations.

In the present study, we perform direct numerical simulation (DNS) of free-
surface turbulence with a new flow configuration, which is statistically steady and
homogeneous in the bulk flow below. Isotropic turbulence is generated by the linear
forcing method of Lundgren (2003), which supplies turbulence energy in a controllable
manner with many of the fundamental properties of isotropic turbulence preserved
(Rosales & Meneveau 2005; Guo & Shen 2009). We note that although the Reynolds
number in the current DNS does not match the higher values in experiments,
the present problem setting has the potential, with the implementation of large-
eddy simulation, to correspond directly to experiments of free-surface homogeneous
turbulence generated by stirring grids or random jets (e.g. Brumley & Jirka 1987;
Herlina & Jirka 2008; Variano & Cowen 2008). The present paper serves as the first
step towards the numerical study of maintained isotropic turbulence interacting with
a free surface.

Besides the statistically steady and homogeneous turbulence, another feature of
the present study is the emphasis on the effect of free-surface deformation with
finite amplitude. Fully nonlinear free-surface boundary conditions are used in our
simulation, and a systematic investigation on the effect of Froude and Weber numbers
is performed. We note that most of the previous numerical and theoretical studies on
free-surface turbulence focused on two extreme cases: flat surfaces (e.g. Leighton et al.
1991; Handler et al. 1993; Pan & Banerjee 1995; Walker et al. 1996) and air–water
highly mixed flow (e.g. Hong & Walker 2000; Brocchini & Peregrine 2001; Brocchini
2002; Watanabe, Saeki & Hosking 2005). For the situation where the surface has a
finite deformation, although effects such as surface vorticity have long been recognized
(e.g. Lugt 1987; Longuet-Higgins 1998; Lundgren & Koumoutsakos 1999; Dopazo,
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Figure 1. Schematics of isotropic turbulence interacting with a deformable free surface.

Lozano & Barreras 2000; Dabiri & Gharib 2001), simulations have been rare. Borue
et al. (1995) considered small surface deformation and used linearized free-surface
boundary conditions to study the one-way effect of turbulence on surface wave
motion. Also using linearized surface boundary conditions, Shen et al. (1999) showed
that the non-zero Froude number affects inter-component energy transfer. Hodges &
Street (1999) performed large-eddy simulation, with nonlinear free-surface boundary
conditions, for open-channel turbulent flows with and without finite-amplitude surface
waves. They found that in the presence of surface waves, the vertical motion of the
turbulence near the free surface is enhanced, and the turbulent velocity fluctuations
are wave-phase-dependent. They also found that resonant short-crested waves can be
generated in the cross-channel direction.

This paper is organized as follows. In § 2, we introduce the problem definition and
the numerical method. In § 3, we discuss the surface properties of the flow. In § 4, we
study the effect of the free surface on turbulence statistics. In § 5, we study the effect
of the characteristic flow structures of splat and antisplat on turbulence anisotropy
and the influence of the surface deformation. Finally, we present the conclusions
in § 6.

2. Problem definition and numerical method
2.1. Problem definition

We consider DNS of a three-dimensional incompressible turbulent water flow below
a deformable free surface. As shown in figure 1, isotropic turbulence is generated in
the centre region of the computational domain. The turbulence is transported to the
near-surface region and interacts with the free surface. We focus on the case where
there is no strong wind above the free surface and the air motion is driven by the
water flow. As a result, the effect of the air on the free surface is much smaller than
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that of the water. For simplification, we set the domain above the free surface to be
vacuum, because this approximation causes only small differences from the viewpoint
of gravity and surface tension of the interface.

In numerical simulations, isotropic turbulence is usually generated by energy
injection at low wavenumbers in the spectral space. For the present problem, however,
the inhomogeneity in the vertical direction prevents the use of Fourier transform. To
overcome this difficulty, we use the linear forcing method introduced by Lundgren
(2003) to generate turbulence, wherein a force proportional to the instantaneous
velocity fluctuation is added to the momentum equations in the physical space. To
avoid the generation of spurious interfacial phenomena, this force vanishes near the
free surface according to

f = a0Fb [zc] u. (2.1)

Here u is the instantaneous velocity, which is the same as the turbulent velocity
fluctuation because there is no mean flow; a0 is the force parameter at the centre of
the computational domain. The force distribution function Fb[zc] varies with zc, the
vertical distance to the centre of the computational domain, as (Guo & Shen 2009)

Fb[zc] =

⎧⎪⎪⎨⎪⎪⎩
1 zc � lb, bulk region,

1

2

(
1 − cos

[
π

ld
(zc − lb − ld)

])
lb < zc � lb + ld , damping region,

0 zc > lb + ld , free region,

(2.2)

where lb is half of the vertical length of the bulk region and ld is the length of the
damping region (figure 1).

2.2. Governing equations and boundary conditions

In the present study, the frame of reference has axes x, y and z (also denoted as x1,
x2 and x3), with x and y horizontal and z vertical. The +z points upwards, with the
z = 0 plane coinciding with the undisturbed free surface.

The governing equations for the velocity components ui (also denoted as u, v or
w) are the Navier–Stokes equations

∂ui

∂t
+

∂(uiuj )

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

+ a0Fb [zc] ui, i = 1, 2, 3, (2.3)

and the continuity equation

∂ui

∂xi

= 0. (2.4)

Here and hereafter, unless otherwise indicated, all variables are normalized by a
characteristic length scale L and a characteristic velocity scale U , the choice of which
is discussed in § 2.4. The dynamic pressure p is normalized by ρU 2, where ρ is the
density. The Reynolds number is defined as Re= UL/ν, with ν the kinematic viscosity.

At the free surface, the KBC is

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
− w =0 at z = η. (2.5)

Here η is the elevation of the free surface. The DBCs are given as follows.
(a) At the free surface, the tangential stresses vanish:

t1 · [Γ ] · nT = 0, t2 · [Γ ] · nT = 0. (2.6)
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Figure 2. Sketch plot of the algebraic mapping that transforms the irregular Cartesian space
(x, y, z, t) confined by the free surface to a rectangular computational domain (ξ, ψ, ς, τ ).

In the above equation, [Γ ] is the stress tensor expressed as Γ ij = −Pδij + (ui,j + uj,i)/

Re. Here δij is the Kronecker delta and P = p − z/Fr2, where the Froude number is
defined as Fr = U/

√
gL, with g the gravitational acceleration. And n is the unit vector

normal to the free surface pointing to the vacuum side; t1 and t2 are unit vectors
tangential to the free surface. They are expressed as

n =

(
−ηx, −ηy, 1

)√
η2

x + η2
y + 1

, t1 =
(1, 0, ηx)√

η2
x + 1

, t2 =

(
0, 1, ηy

)√
η2

y + 1
. (2.7)

In (2.6), nT denotes the transpose of n.
(b) At the free surface, the force balance in the surface-normal direction gives

n · [Γ ] · nT =
1

We

(
1

R1

+
1

R2

)
, (2.8)

where We = ρU 2L/γ is the Weber number, with γ the surface tension coefficient; and
1/R1 and 1/R2 are the principal curvatures of the surface that satisfy

1

R1

+
1

R2

=

(
1 + η2

x

)
ηyy +

(
1 + η2

y

)
ηxx − 2ηxηyηxy(

1 + η2
x + η2

y

)3/2
. (2.9)

At the bottom z = −H , a free-slip boundary condition is imposed as
∂u/∂z = ∂v/∂z = 0 and w = 0. In the horizontal directions, the periodic boundary
condition is applied.

2.3. Numerical scheme

In the simulation of free-surface turbulence, a major issue is that the surface geometry
is irregular and it changes with time. In the present study, we employ a boundary-
fitted grid. The irregular space (x, y, z, t) confined by the free surface is transformed
to a rectangular computational domain (ξ, ψ, ς, τ ) using an algebraic mapping (Guo
& Shen 2009):

τ = t, ξ = x, ψ = y, ς =
z + H

η + H
. (2.10)

A sketch plot of the mapping is shown in figure 2. With this transform, the vertical
dimension is normalized by η+H , while the horizontal dimensions are kept the same.
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From the physical space to the computational space, the vertical grid lines remain
vertical and the grid points along these lines are stretched.

Using the chain rule, we have

∂

∂t
=

∂

∂τ
− ςηt

η + H

∂

∂ς
,

∂

∂x
=

∂

∂ξ
− ςηx

η + H

∂

∂ς
,

∂

∂y
=

∂

∂ψ
− ςηy

η + H

∂

∂ς
,

∂

∂z
=

1

η + H

∂

∂ς
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.11)

The governing equations and the boundary conditions are then rewritten in terms
of (ξ, ψ, ς, τ ) (Guo & Shen 2009). The numerical scheme we use is based on the
fractional-step method discussed in Kim & Moin (1985). We use a second-order
Crank–Nicholson scheme for the viscous terms and a second-order Adams–Bashforth
scheme for the convective terms. The surface elevation is advanced in time with a
second-order Runge–Kutta scheme. For space discretization, in the ξ and ψ directions,
we use a pseudospectral method with Fourier series; in the ς direction, we use a
second-order finite-difference scheme on a staggered grid (Harlow & Welch 1965).
Numerical details of our DNS and its validation are provided in Guo & Shen (2009)
and Guo (2010).

We note that the algebraic mapping (2.10) is not conformal. As pointed out
by Hodges & Street (1999), who used an orthogonal and boundary-fitted grid to
simulate dynamically evolving free-surface flows, conformal mapping is accurate and
expensive, and is unnecessary for problems with small surface elevations. In addition,
Nielsen & Skovgaard (1990) and Sankaranarayanan & Spaulding (2003) showed that
the error caused by the non-orthogonality of the grid is acceptable when the grid
distortion angle is less than 40◦. The angle is one order of magnitude smaller in the
current problem. Therefore, for the present study, we choose the algebraic mapping
for simplicity.

2.4. Computational parameters

In the present study, the dimensionless computational domain size is Lx × Ly ×
H = 2π × 2π × 5π. In other words, the characteristic length scale L is set to be 1/(2π)
of the horizontal domain size. The vertical lengths of the bulk region, the damping
region and the free region are 3π, π/2 and π/2, respectively. As shown by Guo &
Shen (2009), for the linear forcing magnitude variation given by (2.2), this choice
of region lengths produces a (2π)3 cubic of isotropic turbulence at the centre of
the computational domain, which serves as a reservoir for homogeneous turbulence
supply. In their isotropic and homogeneous simulation cases, Rosales & Meneveau
(2005) showed that the integral length scale of turbulence, L∞, is 19 % of the domain
size for the range of Reλ = urmsλ/ν ∈ (30, 153) tested (our Reλ is within this range).
Here Reλ is the Taylor-scale Reynolds number; the superscript ‘rms’ denotes the
root-mean-square value; and λ is the Taylor scale.

The characteristic velocity scale U is not set ad hoc (Rosales & Meneveau 2005).
Instead, it is determined by the characteristic length scale chosen and the value of a0

(set to be 0.1 in the present study; note that 1/a0 is a time scale as shown in (2.3)).
Based on the theory of isotropic turbulence, in the bulk flow, if balance between the
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dissipation rate and the rate of energy injection by the linear force is assumed, it can
be shown that urms = 3a0L∞ (which is confirmed by the numerical data; for details
see Guo & Shen 2009). Finally, we set Re in (2.3) to be 1000 in our DNS.

The above analysis is for the isotropic turbulence in the bulk flow. Towards the
free surface, the magnitude of the linear forcing diminishes according to (2.2) and the
turbulence level decays over the damping region and the free region. At the centre of
the free region (z = −π/4), we found urms = 0.090, λ= 0.339 and Reλ = 30.39 (details
are given in Guo & Shen 2009 with empirical parametrizations provided in (38) there).
We remark that as will be shown in the subsequent sections, the flow at z = −π/4
is considered to be representative of the isotropic turbulence before it interacts with
the free surface. For the isotropic turbulence at z = −π/4, we can obtain the integral
scale as L∞ = λReλ/15 = 0.69 (Tennekes & Lumley 1972).

In previous experiments of stirring-grid turbulence under a free surface, it is
conventional to quantify a turbulent Reynolds number defined as ReL = urms(2L∞)/ν
(following Tennekes & Lumley 1972). The value of ReL is 365.7 in Brumley & Jirka
(1987) (for the case they studied in detail), and ranges from 282 to 974 in McKenna
& McGillis (2004) and from 260 to 780 in Herlina & Jirka (2008). In our simulation,
ReL at the centre of the free region is only 123.2 because of the limitation of DNS to
low Reynolds numbers. The large difference in the Reynolds number makes the direct
comparison between our DNS and measurements in the literature difficult. Neverthe-
less, in the following sections, we will make qualitative comparison when possible.

In the present study, we use a 128 × 128 × 348 grid. The total grid number is
relatively small compared with that of modern simulations with rectangular domain
(e.g. Sullivan & Patton 2008), because of the substantial increase in the computational
cost caused by the boundary-fitted grid. Our grid is evenly distributed in the horizontal
directions, with the grid size ∆x =∆y = 2π/128 = 0.049. In the vertical direction, the
grid is clustered towards the free surface. The maximum grid size is ∆z,max = ∆x =0.049
below the free region, and the minimum is ∆z,min = 0.0025 at the free surface. The

thickness of the free-surface viscous layer is estimated as Lν = L∞/Re1/2
L =0.062

(Brumley & Jirka 1987). Hodges & Street (1999) pointed out that 5 grid points
are needed within the viscous layer, and they used 10 points in their simulation. In
the current study, 12 points exist inside the viscous layer. As will be shown in the
subsequent sections, the surface layer structure is resolved adequately.

On the basis of the theory of isotropic homogeneous turbulence (Tennekes &
Lumley 1972), we estimate the Kolmogorov scale at the centre of the free region
as ηK ∼ λ/(151/4Re1/2

λ ) ≈ 0.031, which is comparable to ∆x . To ensure that all the
dynamically important structures of the turbulence are resolved, we have tested with
a finer 256×256×575 grid and a coarser 64×64×170 grid. Figure 3(a, b) shows that
the difference of the result of the current 128 × 128 × 348 grid from the coarser grid
result is noticeable, while that from the finer grid result is negligibly small. Therefore,
the current resolution is necessary and adequate to obtain grid-independent results.

The values of Fr and We, which govern the surface deformation, are listed in
table 1 for the simulation cases in the present study. We note that the fluctuation
of the surface elevation, ηrms , is relatively small. The presence of the water and
the vacuum is intermittent in a thin region near z = 0, which we define as the
surface intermittency layer (in addition to the aforementioned surface source layer
and surface viscous layer). For the cases considered in our study, we found that the
volume fraction of the water is larger than 98 % below z = −2ηrms , which we define
as the lower boundary of the intermittency layer. From the ηrms value listed in table 1,
we see that the intermittency layer is very thin in the present study.
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Case Fr2 We kcr ηrms Ep/(2ηrmsẼ
k,d̃=0) Ep/(2ηrmsẼ

k,d̃=−π/4)

A1 0.1 40 20 0.00337 0.374 0.520
B0 0.2 ∞ ∞ 0.00722 0.383 0.386
B1 0.2 40 14.14 0.00658 0.343 0.359
B2 0.2 20 10 0.00626 0.321 0.348
C1 0.8 40 7.07 0.0158 0.234 0.231

Table 1. Free surface parameters considered in the present study.
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Figure 3. Comparison of (a) surface elevation spectrum, and (b) vertical profile of turbulent
kinetic energy for case B1 among different DNS resolutions: ——, a 64 × 64 × 170 grid; – – – ,
a 128 × 128 × 348 grid; – · – · – , a 256 × 256 × 575 grid. The details for the quantification of
the surface elevation spectrum and the turbulent kinetic energy are discussed in §§ 3.1 and 4.1,
respectively.

To illustrate flat-surface results, we use the case of A1, of which the surface elevation
is the smallest among the cases listed in table 1. It should be pointed out that ideally,
simulation with an exactly flat surface should be used, which requires another code
with different free-surface boundary condition formulation and numerical scheme. To
eliminate the difference caused by the numerical methods, we decide to stay with the
same code using a sufficiently small Fr to ensure the comparison is faithful. We also
remark that Fr as small as possible would be preferred; however, we found that the
term z/Fr2 in the DBC may amplify the numerical errors associated with η and thus
deteriorate the results. As will be shown in § 4.1, the case of A1 is an acceptable proxy
because the result of turbulence statistics is close to the previous flat-surface results,
whereas for other cases listed in table 1 the effect of surface deformation is noticeable.

In the present study, we first run the simulation for 17 large-eddy turnover times
(based on the quantities in the bulk flow) to ensure the turbulence is fully developed
under the linear forcing and is independent of the initial flow field (Rosales &
Meneveau 2005). We then continue the simulation for another 48 turnover times,
which is equivalent to about 20 large-eddy turnover times based on the quantities
in the free region. Because the flow is statistically steady, turbulence statistics can
be obtained with samples taken at different times. In other words, it is not required
to have ensemble runs like the previous free-surface simulations of unsteady sheared
turbulence or decaying homogeneous turbulence reviewed in § 1.
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Figure 4. Normalized frequency–wavenumber spectrum of the surface elevation for the cases
of (a) C1 and (b) B1: ——, dispersion relationship (3.2); – – – , characteristic frequency based
on the fully nonlinear KBC (3.3); – · – · – , characteristic frequency based on the linearized
KBC (3.4).

3. Surface deformation and waves
3.1. Surface waves and turbulence-induced roughness

In free-surface turbulence, the deformable surface is disturbed by the turbulence
underneath. The free surface can respond passively, in the form of surface roughness,
to the local pressure fluctuation in the turbulent flow. It can also have a large elevation
caused by the impingement of coherent turbulence structures such as splats on the
surface; the large surface deformation then propagates away in the form of surface
waves. Tryggvason (1988) showed that short waves can be generated by a vortex
sheet below a free surface. Borue et al. (1995) studied the characteristic frequency
of turbulence and the frequency spectrum of surface elevation in an open-channel
flow. Teixeira & Belcher (2006) used the rapid distortion theory to study the wave
generation caused by the turbulence in air and water, and found the latter dominant
in the wave generation process. Savelsberg & van de Water (2009) quantified in detail
gravity–capillary waves in a channel with turbulence excited by an active grid.

For the current case in which the surface is excited by the homogeneous turbulence
from below, we have observed surface roughness in the form of dimples (associated
with surface-connected vortices) as well as scars (associated with near-surface
horizontal vortices), consistent with the review by Sarpkaya (1996). We have also
observed propagating surface waves generated by the large disturbance of coherent
turbulence structures, mainly splats impinging on the free surface (not shown here due
to space limitation; the direct observation is also supported by the statistical result
of the spatial–temporal correlation of surface divergence and surface elevation).

Next, we examine these two types of surface deformation through the frequency–
wavenumber spectrum of the surface elevation

ΦN
η (|k|, σ ) =

1

(2π)3 · (ηrms)2

∫
T

∫
S

η (x, t) η (x + r, t + τ ) · e−i(k · r+στ ) dr dτ. (3.1)

Here T is the sampling duration, S denotes the horizontal plane and the overline (̄ )
denotes averaging. Figure 4 shows ΦN

η for the representative cases of C1 and B1. For

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

15
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010001539


42 X. Guo and L. Shen

case C1, which has the largest surface deformation, energy is concentrated on two
ridges in the contour plot, one with relatively high frequency and the other with low
frequency. For the case of B1, the two ridges still exist, with the high-frequency one
manifesting in the region of small values of wavenumber k and frequency σ .

It is found that the two ridges correspond to propagating surface waves and
turbulence-induced surface roughness, respectively. To show the waves, we consider
the dispersion relationship for small-amplitude deep-water waves:

σ =

√
k

Fr2
+

k3

We
, (3.2)

which is plotted in figure 4 as solid lines. The dispersion relationship coincides with
the high-frequency ridge at low k, signifying the existence of surface waves at large
scales. We remark that because of the use of the periodic boundary condition in our
simulation, standing waves may be formed (Dommermuth 1994; Guo & Shen 2009).
We examined the energy of propagating and standing waves, and found the latter
is one to two orders of magnitude smaller than the former. Therefore, the evidence
of large-scale waves obtained from the frequency–wavenumber spectrum is not a
numerical artifact.

In figure 4, the dispersion relationship does not manifest in the spectrum contours
when k is large. This is not surprising, because short waves are quickly damped due
to viscous dissipation, which are effective at large k.

To investigate the surface roughness associated with the turbulence motion, we
quantify a characteristic frequency of η at each k as

σ =

√
Ψη (k)

Ψηt
(k)

. (3.3)

We also consider the expression used by Borue et al. (1995):

σ =

√
Ψη (k)

Ψw (k)
. (3.4)

In both (3.3) and (3.4), a one-dimensional spatial spectrum is defined as

Ψq

(
|k|

)
=

1

(2π)2

∫
S

q (x, t) q (x + r, t) · e−ik · r dr. (3.5)

The difference between (3.3) and (3.4) is that the former takes into account the
nonlinearity of the surface motion (ηt = w − uηx − vηy), while the latter is a linearized
approximation (ηt ≈ w).

Figure 4 shows that (3.3) corresponds to the low-frequency ridge. We note that the
agreement is approximate and is in the average sense. For example, at low k, for all
the cases including the ones not shown in figure 4 because of space limitation, the
ridge exists at a frequency slightly lower than the prediction by (3.3); at high k, the
ridges in the cases of B2 (not shown) and C1 have higher and lower σ , respectively.
In general, the nonlinear expression (3.3) works better than the linearized one (3.4).
The difference between (3.3) and (3.4) becomes larger as k increases, indicating the
nonlinear effect at large k. We note that the importance of surface nonlinearity was
recently shown by Savelsberg & van de Water (2009) using their measurement.

In summary, the frequency–wavenumber spectrum of surface elevation shows that
the surface deformation can be related to the dispersion relationship for surface waves
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and the nonlinear-KBC-based characteristic frequency for turbulence-induced surface
roughness. The waves exist mainly at small k. The turbulence-induced roughness
occurs over a wide range of k because of the turbulent motions at the corresponding
scales. As shown in figure 4, at small k, the frequencies between the two types of
surface deformation is close to each other, indicating that waves may be excited by
turbulence structures at large scales. At large k, the gap between the two frequencies
becomes large. As a result, turbulence-induced roughness dominates at large k, and
small-scale waves are dissipated by the turbulence underneath rather than excited by
it (see e.g. Kitaigorodskii & Lumley 1983; Olmez & Milgram 1992; Teixeira & Belcher
2002; for the detailed process of wave–turbulence interaction, which is beyond the
scope of the present paper, more analysis is needed and will be performed in our
future study).

3.2. Spatial statistics of surface deformation and dependence on Fr and We

The surface deformation depends on gravity and surface tension, of which the effects
are related to Fr and We, respectively. Their relative importance is associated with a
critical wavenumber (Phillips 1958):

kcr =

√
We

Fr2
. (3.6)

The values of kcr of the simulation cases in the present study are listed in table 1.
The physical meaning of kcr can be understood by considering a sinusoidal surface
deformation with wavenumber k and amplitude ak . The (dimensionless) density of
gravitational potential energy is

Êg (k) =
1

2Fr2
· 1

S

∫
S

η2 dx dy =
a2

k

4Fr2
. (3.7)

For small ak , the density of surface tension potential energy is

Êγ (k) =
1

We

∫
S

⎡⎣√1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2

− 1

⎤⎦ dx dy

≈ 1

We
· 1

2S

∫
S

[(
∂η

∂x

)2

+

(
∂η

∂y

)2
]

dx dy =
k2a2

k

4We
. (3.8)

Therefore, the ratio between the two types of potential energy is

Êγ (k)

Êg (k)
≈ Fr2

We
k2 =

(
k

kcr

)2

. (3.9)

When k < kcr , Êg(k) is larger than Êγ (k); whereas when k > kcr , Êγ (k) is larger.

In this study, we examine Êg(k) and Êγ (k) as functions of k using the simulation
data of η. For the results to be more insightful, we decompose η into a wave
component (denoted by the subscript ‘wave’) and a turbulence roughness component
(denoted by the subscript ‘turb’). The decomposition is performed on the basis of
the frequency–wavenumber spectrum discussed in § 3.1, with the boundary between
the wave and turbulence regions defined as the fastest descending line in the valley

separating the two ridges. The obtained Êg,wave(k) and Êg,turb(k) are plotted in figure 5
for the cases of A1, B1, B2 and C1 (case B0 does not have surface tension). Note that
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Figure 5. (a) Êg,turb(k) and (b) Êg,wave(k), both normalized by (2ηrmsẼ
k,d̃ =0): ——, case A1;

– · – · – , case B1; · · · · · · , case B2; – · · – · · – , case C1. The critical wavenumber kcr is
marked as: �, case A1; �, case B1; �, case B2; �, case C1.

Êγ,wave(k) and Êγ,turb(k) can be obtained, respectively, from Êg,wave(k) and Êg,turb(k)
on the basis of (3.9).

In figure 5, the location of kcr is marked by a symbol for each case. The potential

energy density is normalized by (2ηrmsẼk,d̃ =0). Here Ẽk,d̃ =0 = [(ũrms

d̃ =0
)2 + (ṽrms

d̃ = 0
)2 +

(w̃rms

d̃ =0
)2]/2 is the density of the kinetic energy at the free surface; d̃ denotes the

signed distance to the free surface, with the minus sign corresponding to the waterside

(see Appendix A). The quantity (2ηrmsẼk,d̃ = 0) gives a measure of the kinetic energy
contained in the intermittency layer (of which the thickness can be quantified as
2ηrms; see § 2.4). Let Ep denote the density of the total potential energy

Ep =

∫ [
Êg,wave (k) + Êg,turb (k) + Êγ,wave (k) + Êγ,turb (k)

]
dk. (3.10)

Table 1 shows that Ep is about 23.4–38.3 % of (2ηrmsẼk,d̃ =0) for the cases considered
in the present study. For reference, we also show in table 1 the normalization using

(2ηrmsẼk,d̃ = −π/4), that is, on the basis of the interior kinetic energy (cf. § 4). The
difference between these two methods of normalization is caused by the vertical
variation of the kinetic energy near the free surface, which is affected by the surface
deformation (discussed in § 4).

First, we compare the gravitational potential energy and the surface tension
potential energy for both the wave and turbulence components. Equation (3.9)

indicates that Êg(k) dominates Êγ (k) when k < kcr . Because the linearly forced
turbulence has the largest energy at the smallest wavenumber (Rosales & Meneveau
2005), the excited surface deformation decreases monotonically as k increases. As
a result, more potential energy is associated with the gravity than that with the
surface tension. In a way similar to (3.10), we define the total potential energy for
each component, namely Eg,wave , Eg,turb, Eγ,wave and Eγ,turb; their ratios to Ep are
listed in table 2. It shows that the weight of the total surface tension potential
energy Eγ =Eγ,wave + Eγ,turb in Ep increases as kcr decreases, with the minimum
Eγ /Ep ≈ 1.4 % for case A1 and the maximum Eγ /Ep ≈ 8.4 % for case C1.
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Case Eg,wave/Ep Eg,turb/Ep Eγ,wave/Ep Eγ,turb/Ep

A1 0.0217 0.964 0.000290 0.0143
B1 0.0316 0.951 0.000615 0.0169
B2 0.0293 0.930 0.00319 0.0376
C1 0.102 0.813 0.0191 0.0652

Table 2. The ratios of gravitational and surface tension energy associated with wave and
turbulence motions to the total potential energy.

The surface tension potential energy dominates the gravitational potential energy
for k > kcr only. Although the total potential energy associated with the surface tension
is relatively low as discussed above, it can change the appearance of the free surface
substantially. From cases B0 to B1 to B2, Fr2 is fixed at 0.2 while We changes from
∞ to 40 to 20; we found that the instantaneous surface becomes much smoother (not
plotted), and the kurtosis of the surface elevation reduces from 3.29 to 3.19 to 2.33.

Equations (3.7)–(3.8) show that the gravitational potential energy scales with the
square of the surface elevation divided by Fr2, while the surface tension potential
energy scales with the square of the surface slope divided by We. Between two flows,
if they have the (Fr, We) combinations such that the resultant values of kcr are

identical, the partition between Êg(k) and Êγ (k) would be the same. If we have the
additional conditions that the excitations of the underlying turbulence on the free

surface are the same (i.e. Êp(k)/(2ηrmsẼk,d̃ = −π/4) is identical) and that the difference
caused by the energy redistribution among different wave modes is negligible, the
surface fluctuation would scale with Fr2 and We. While the kcr value may be adjusted
with (Fr, We) changed, the above-mentioned additional conditions may not be easy to
satisfy. In this study, we did not find a simple scaling law for the surface fluctuation
that is applicable to the general situations.

Next, we compare the potential energy associated with the waves to that associated
with the turbulence-induced surface roughness. For the cases of A1, B1 and B2, figure 5
shows that the former is much lower than the latter, especially at high wavenumbers.

Therefore, although energy of the order of (2ηrmsẼk,d̃ =0) can be transferred to the
potential energy, only a small portion is turned into waves. Table 2 shows that the
weights of Ewave =Eg,wave + Eγ,wave in Ep are 2.2 %, 3.2 % and 3.2 % for cases A1,
B1 and B2, respectively. In the case of C1, on the other hand, the waves become
much more pronounced, with Ewave/Ep increasing to 12.1 %. For low to intermediate

k, Êg,wave(k) and Êγ,wave(k) of case C1 are much elevated compared with other cases
(figure 5). This result is consistent with the previously discussed figure 4, which shows
that case C1 has a distinct wave ridge in the frequency–wavenumber spectrum.

We note that for the dominant wave components, the wave phase speed cp is about
one order of magnitude larger than the turbulent velocity fluctuation ũrms

d̃ = 0
(details

about its quantification are given in § 4). Table 3 lists the values of cp/ũrms

d̃ = 0
for the

first five wave modes. On the other hand, because of the small wave amplitude,
the orbital velocity of the waves is about two orders of magnitude smaller than
the turbulence fluctuation (also shown in table 3). Not surprising, the distortion effect
of the waves on the turbulence (Teixeira & Belcher 2002) is thus negligibly small in
the current problem.
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cp/ũrms

d̃ = 0
uorb(k)/ũrms

d̃ = 0

Case k = 1 k = 2 k = 3 k =4 k = 5 k = 1 k = 2 k =3 k = 4 k = 5

A1 17.6 12.5 10.3 8.96 8.10 0.0159 0.00851 0.00533 0.00517 0.00393
B1 14.4 10.2 8.47 7.45 6.80 0.0212 0.0128 0.00763 0.00644 0.00388
B2 14.1 10.1 8.48 7.58 7.04 0.0481 0.0176 0.00680 0.00462 0.00278
C1 7.46 5.43 4.64 4.25 4.05 0.0470 0.0381 0.0395 0.0313 0.0226

Table 3. The ratios of wave phase velocity and orbital velocity to the horizontal velocity
fluctuation at the surface, for wave modes k = 1–5.

4. Turbulence statistics
In this section, we discuss the effect of the free surface on the statistics of the

turbulent flow underneath. It is helpful to summarize here the thickness of the
various surface layers quantified in § 2.4. The source layer thickness is quantified by
the integral length scale of the underlying turbulence (at z = −π/4) (Hunt & Graham
1978), which is approximately 0.69 in the current problem. For the viscous layer, its
thickness is approximately 0.062. The intermittency layer has the thickness of 2ηrms ,
which is small in the present study (ranging from 0.0067 to 0.032 for the cases listed
in table 1).

The DNS data are obtained on the surface-following computational grid of
the algebraic mapping discussed in § 2. While such a grid is computationally
convenient, the discrete data need to be transformed to other coordinates for a
better interpretation of the flow physics. In the present study we use two approaches
for flow statistics.

The first approach expresses the statistics as functions of the distance from the free
surface, and projects the flow quantities into the local surface-normal and surface-
tangential directions. The details of the data transform are provided in Appendix A.
This approach is complex, but it has the advantage of being able to capture the
vicinity of the free surface and to express the results in terms of the directions normal
and tangential to the local surface. We use it in §§ 4.1 and 4.2 for relatively simple
turbulence statistics.

The analysis of the kinetic energy budget in § 4.3 is more complex, and a fixed
Cartesian coordinate system has to be used. To avoid the complexity associated with
the intermittence of the fluid phase at the free surface, we perform analysis for the
region below z = −2ηrms only. In this second approach, linear interpolation in the
vertical direction is used when the DNS data are transformed from the computational
grid to the Cartesian grid.

4.1. Velocity fluctuations and turbulent kinetic energy

We first examine the profiles of the fluctuations of horizontal and vertical velocity
components and turbulent kinetic energy shown in figure 6. Here and hereafter,
the tilde denotes the projection into the local surface-normal and surface-tangential
directions (Appendix A). We normalize the results by the values at the centre of the

free region d̃ = −π/4, which is just outside the source layer. The turbulence there
is nearly isotropic, and we use it as a reference to investigate the anisotropy of the
near-surface flow.

From figure 6(b), we see that the vertical velocity fluctuation decreases towards the

surface over the region d̃ > −0.5, because the surface restrains the vertical motion of
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Figure 6. Vertical profiles of normalized (a) surface-tangential velocity fluctuation,

(b) surface-normal velocity fluctuation and (c) turbulent kinetic energy Ẽk near the free
surface: ——, case A1; – · – · – , case B1; – · · – · · – , case C1.

the fluid. For the horizontal velocity fluctuation (figure 6a), it increases towards the
surface. This increase has been observed in experiments (see e.g. Brumley & Jirka
1987; McKenna & McGillis 2004; Variano & Cowen 2008) and simulations (see

e.g. Walker et al. 1996). Over the region d̃ > −0.5, the horizontal velocity increases
by about 45 %, which is consistent with the results of Brumley & Jirka (1987) and
Walker et al. (1996) and is larger than the 22 % increase predicted by the inviscid
rapid distortion theory of Hunt & Graham (1978). Near the surface, in addition to
the energy redistribution from the vertical to horizontal velocity components, the
change in viscous dissipation also contributes to the variation in velocity fluctuations.
The dynamic free-surface boundary condition of vanishing surface-tangential stresses
results in significant reduction of the viscous dissipation (Teixeira & Belcher 2000). As
a result, the kinetic energy accumulates near the free surface (figure 6c), which leads
to a larger increase of horizontal velocities towards the surface than the prediction of
Hunt & Graham (1978).

We note that the case of A1 has an appreciable increase in the kinetic energy
towards the free surface. This increase resembles the result of a flat free surface of
Walker et al. (1996), and is different from other cases with relatively larger surface
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deformation. In our investigation of the influence of the surface deformation on the
statistics of the near-surface turbulence, we found that among the cases listed in
table 1, Fr has a relatively larger effect than We does. For simplicity, here we focus on
the comparison among cases A1, B1 and C1. As Fr increases, the blockage effect of
the surface decreases. At the free surface, the horizontal velocity fluctuation decreases,
and the vertical velocity fluctuation increases. The increase of kinetic energy towards
the free surface becomes less significant as the surface becomes more flexible. This
phenomenon will be revisited in §§ 4.2 and 5.

4.2. Fluctuations of velocity gradients

Next, we study the fluctuations of velocity gradients. On the basis of the horizontal
isotropy of the current problem, there are five independent velocity gradients as far
as statistics are concerned: ∂ũ/∂x̃, ∂ũ/∂ỹ, ∂ũ/∂z̃, ∂w̃/∂x̃ and ∂w̃/∂z̃.

Figure 7(a, b) shows the profiles of ∂ũ/∂x̃ and ∂w̃/∂z̃ fluctuations. They increase
as the free surface is approached, signifying the blockage effect of the surface. As
the surface becomes more flexible, the blockage effect is reduced and the increase
becomes less significant. It is worth mentioning that at a flat free surface, the value of
(∂w̃/∂z̃)rms is

√
2 times that of (∂ũ/∂x̃)rms , which can be proved using the rapid

distortion theory. The proof is given in Appendix B. This implies that the
correlation between ∂ũ/∂x̃ and ∂ṽ/∂ỹ is zero at the surface, because from continuity
(∂w̃/∂z̃)2 = (∂ũ/∂x̃)2 + (∂ṽ/∂ỹ)2 + 2(∂ũ/∂x̃)(∂ṽ/∂ỹ). For the cases simulated in the
present study, it is found that the correlation coefficient between ∂ũ/∂x̃ and ∂ṽ/∂ỹ

at the free surface is very small (ranging from 0.0055 to 0.014). The surface values
of (∂w̃/∂z̃)rms/(∂ũ/∂x̃)rms are within 0.7 % error of

√
2. Therefore, the prediction of

the rapid distortion theory is still valid for the surface deformations considered in the
present study.

We next examine the variation of (∂w̃/∂x̃)rms shown in figure 7(c). For the case
of A1, which has the smallest surface deformation, (∂w̃/∂x̃)rms decreases towards the
surface as expected, because of the constraint of the surface on the vertical motion.
As the free surface becomes more flexible, the reduction rate decreases (see the inset
of figure 7c). For the case of C1, (∂w̃/∂x̃)rms even increases slightly very close to the
free surface, resulting in an appreciable surface value.

The behaviour of (∂ũ/∂z̃)rms (figure 7d ) is also interesting. Towards the surface,

it increases first, reaches its maximum value at around d̃ = −0.1 and then decreases

drastically over the region d̃ > −0.1. The first increase of (∂ũ/∂z̃)rms is associated with
the increase of ũ towards the surface discussed earlier (figure 7d also shows that when
the surface becomes more flexible, the vertical variation of (∂ũ/∂z̃)rms becomes less
significant). As the surface is further approached, however, the shear-free DBC makes
∂ũ/∂z̃ + ∂w̃/∂x̃ diminish. As a result, ∂ũ/∂z̃ and ∂w̃/∂x̃ are negatively correlated at
the free surface, and their root-mean-square values are the same (shown in the insets
of figure 7c,d ). Because of the small surface value of (∂w̃/∂x̃)rms , (∂ũ/∂z̃)rms has a
sharp reduction over a thin near-surface region, which is the viscous layer (Hunt &
Graham 1978; Walker et al. 1996; Shen et al. 1999).

The profile of (∂ũ/∂ỹ)rms is shown in figure 7(e). It does not change much as the free
surface is approached, and the dependence on the surface deformation is relatively
weak.

Having discussed the velocity gradients, we next examine the strain rate components
s̃ij = (∂ũi/∂x̃j + ∂ũj /∂x̃i)/2. It is straightforward to note the equivalence of s̃rms

11 and
s̃rms
22 with (∂ũ/∂x̃)rms and s̃rms

33 with (∂w̃/∂z̃)rms . Similar to (∂ũ/∂ỹ)rms , the effect of the
free surface on s̃rms

12 is small (results not shown here). Only s̃rms
13 (̃srms

23 is the same) needs
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Figure 7. Normalized fluctuation profiles of (a) ∂ũ/∂x̃, (b) ∂w̃/∂z̃, (c) ∂w̃/∂x̃, (d ) ∂ũ/∂z̃,
(e) ∂ũ/∂ỹ and (f ) s̃13. The insets in (c) and (d ) show a zoom view of the near-surface region.
——, case A1; – · – · – , case B1; – · · – · · – , case C1.

discussion. As shown in figure 7(f ), because of the shear-free boundary condition,
s̃rms
13 is zero at the free surface regardless of whether the surface is flexible or not. The

vanishing of the surface-tangential shear stress has been regarded as the major reason
for the reduction of viscous dissipation and thus the increase of turbulent kinetic
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energy near a free surface (Perot & Moin 1995; Walker et al. 1996; Shen et al. 1999;
Teixeira & Belcher 2000). For the deformable free surfaces considered in the present
study, we did not find much change in the magnitude of the near-surface reduction
of the dissipation. Therefore, the less significant increase of turbulent kinetic energy
when the surface becomes more flexible, shown in figure 6(c), is caused by other
reasons, which will be discussed in § 5.

4.3. Budget of kinetic energy of horizontal and vertical turbulent motions

In this section, we study the budget of turbulent kinetic energy for horizontal and
vertical motions. The analysis is performed on the Cartesian coordinate system for the
one-phase fluid below the intermittency layer. As pointed out earlier, the intermittency
layer is very thin in the present study. The dynamics within the intermittency layer
will be investigated in our future study for more suitable cases with much larger
surface deformations.

The equations for the evolution of u2 and w2 are derived from the Navier–Stokes
equations as (Tennekes & Lumley 1972)

∂u2

∂t︸︷︷︸
I

= 2p
∂u

∂x︸ ︷︷ ︸
II

+
1

Re

∂2u2

∂z2︸ ︷︷ ︸
III

− 2

Re

∂u

∂xk

∂u

∂xk︸ ︷︷ ︸
IV

− ∂

∂z
u2w︸ ︷︷ ︸
V

, (4.1)

∂w2

∂t︸︷︷︸
I

= 2p
∂w

∂z︸ ︷︷ ︸
II

+
1

Re

∂2w2

∂z2︸ ︷︷ ︸
III

− 2

Re

∂w

∂xk

∂w

∂xk︸ ︷︷ ︸
IV

− ∂

∂z
w3︸ ︷︷ ︸

V

− 2
∂

∂z
pw︸ ︷︷ ︸

VI

. (4.2)

Here the overline denotes the plane average on Cartesian coordinate. Term I is the
rate of change in time, which is negligibly small because the flow is statistically
steady. Term II is pressure–strain correlation; term III is viscous diffusion; term IV
is viscous dissipation; term V is turbulent transport (caused by velocity fluctuations);
and term VI is pressure-induced transport. Because there is no mean flow in the
present problem, ui is the same as u′

i , and the superscript ′ is omitted here. We
also note that the production by the linear forcing does not show in (4.1) and (4.2),
because the forcing is set to zero near the surface (2.2). Nevertheless, it should be
pointed out that in the present problem, turbulence is generated in the bulk flow and
is then transported to the near-surface region. Therefore, the process is different from
the decaying turbulence case in Perot & Moin (1995) and Walker et al. (1996).

As shown in figure 8(a), far away from the free surface, the budget of u2

is dominated by two processes: velocity fluctuation transports energy from the
turbulence generation region below towards the surface; meanwhile, u2 loses energy
via the viscous dissipation.

As the free surface is approached, the other two terms become important too:
the pressure–strain correlation is positive, corresponding to the energy transfer from
the vertical velocity component to the horizontal ones; viscous diffusion has large
negative value, indicating that u2 is transported from near the surface to the region
below by molecular diffusion. Viscous dissipation continues to reduce u2. Towards
the surface, its magnitude first increases slightly and then decreases. This variation is
consistent with the viscous rapid distortion theory of Teixeira & Belcher (2000), the
experimental result of Brumley & Jirka (1987) and the numerical results of Perot &
Moin (1995), Walker et al. (1996) and Shen et al. (1999). Turbulent transport increases
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Figure 8. Budget terms in the evolution equations for (a) u2 and (b) w2. In both (a) and (b),
——, pressure–strain correlation; – – – , viscous diffusion; – · – · – , viscous dissipation; · · · ·
· · , turbulent transport; – · · – · · – , pressure transport. The case of B1 is shown here.

sharply towards the free surface over the region z > −0.1. This corresponds to the
upwelling in the near-surface region, which will be discussed in detail in § 5.1.

The budget for w2 is shown in figure 8(b). Away from the surface (z < −0.1), the
budget of w2 is dominated by turbulent transport, viscous dissipation and pressure
transport. As in the case of u2, w2 is transported from below by turbulent velocity
fluctuation. In addition to viscous dissipation, pressure fluctuation also reduces w2 in
the region below z ≈ −0.1. The pressure transport term is absent in the u2 equation.

Close to the surface (z > −0.1), the pressure transport becomes positive and
increases rapidly, indicating that pressure fluctuation plays an important role in
the budget of w2. The transport associated with velocity fluctuation, on the other
hand, decreases towards the surface because the vertical velocity is reduced by the
surface blockage. The viscous diffusion is positive close to the surface. Because of
the small value of w2 near the surface, molecular diffusion transports w2 from the
region below to the near-surface region. The pressure–strain correlation term, which
has been discussed in the u2 budget, transfers energy from the vertical motion to
the horizontal. The magnitude of viscous dissipation for w2 remains about the same
above z = −0.1, consistent with Brumley & Jirka (1987), Perot & Moin (1995), Walker
et al. (1996) and Teixeira & Belcher (2000). As the surface is approached, ∂w/∂x and

∂w/∂y decrease, while ∂w/∂z increases (cf. figure 7). The net effect is that the w2

dissipation does not vary much near the surface.
In this section, only the result of case B1 is shown. Comparison with other cases

for the effect of surface deformation will be discussed in § 5.3.

5. Contribution of splats and antisplats to u2 and w2 budget and effect of
surface deformation

In § 4, we have discussed the flow anisotropy and the plane-averaged statistics of u2

and w2 budget. To gain more understanding on the physical process, in this section
we study the effects of the coherent flow structures of splat (upwelling) and antisplat
(downwelling), which are the characteristics of free-surface turbulence (see e.g. Pan &
Banerjee 1995; Perot & Moin 1995).
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5.1. Variable interval spatial average results of splats

We use conditional averaging to study splats first. The approach used in the present
study is the variable interval spatial average (VISA) method (cf. Kim 1983; Jeong
et al. 1997), with the surface divergence chosen as the detection variable. The sampling
criterion is set to be the surface divergence being positive and its local maximum of
variance exceeding five times the plane root-mean-square value. Details of our VISA
procedure are given in Shen, Yue & Triantafyllou (2004). As in § 4.3, the analysis is
performed on Cartesian coordinate below the intermittency layer.

Figure 9 shows the VISA results on a vertical cross-section passing the centre of
the splat. The splat can be seen from the velocity vectors plotted in figure 9(a). We
discuss pressure–strain correlation, turbulent transport and pressure transport, which
are found to be strongly dependent on the splat.

As shown in figure 9(a), the pressure–strain correlation, 2〈p∂u/∂x〉VISA, is maximum

at the centre of the splat at the free surface, signifying energy redistribution from w2 to
u2 there. Here 〈 〉VISA denotes the conditional average result obtained from VISA. At
the free surface, the energy redistribution occurs mainly over the region −0.3 <x < 0.3.
In the vertical direction, the energy transfer occurs from the free surface down to
z = −0.1, consistent with the pressure–strain correlation profile shown in figure 8.

Figure 9(b) shows that the turbulent transport of u2, −〈∂u2w/∂z〉VISA, is positive
and maximum at the splat centre at the free surface. When a splat occurs a large
amount of energy associated with the horizontal fluid motion is brought to the
near-surface region by the vertical fluid motion. This result is consistent with figure 8.
Figure 9(b) also shows that the shape and dimension of the turbulent transport region
are relatively similar to those of the pressure–strain correlation.

Turbulent transport for w2, −〈∂w3/∂z〉VISA, is also enhanced by splats (figure 9c).
In contrast with the case of −〈∂u2w/∂z〉VISA, the maximum occurs below the

surface, because the vertical velocity at the surface is greatly suppressed. For w2,
pressure transport, −2〈∂pw/∂z〉VISA, also contributes to its increase at the splat
region (figure 9d ). The pressure transport has its negative centre around z = −0.15
and becomes positive around z = −0.06. Large pressure transport is located above
the region of large turbulent transport. Therefore, for the energy associated with the
vertical motion, both the turbulent velocity fluctuation and the pressure fluctuation
contribute to the transport from the deep region towards the free surface. This result
is again consistent with the plane-averaged profiles shown in figure 8.

To quantify the contribution of splats to the total energy budget, we define an
effective area of splat events selected by the VISA method, using the criterion
that the surface divergence is greater than half of the plane root-mean-square
value. It is found that with only 9.0 % of the area of the z = −2ηrms plane close
to the free surface, the integrated value of 2〈p∂u/∂x〉VISA, −〈∂u2w/∂z〉VISA and
−2〈∂pw/∂z〉VISA are respectively 121 %, 145 % and 118 % of the integrals over
the whole plane, signifying the dominant role played by the splats. Note that the
values larger than 100 % means that they are offset by the counter-effect at non-splat
regions.

To show the effect of splats on flow anisotropy, we plot 〈u2〉VISA and 〈w2〉VISA

in figure 9(e, f ). At the splat, the vertical motion below the surface is effectively
turned into the horizontal direction near the free surface. Under the action of the
pressure–strain correlation and the turbulent transport (figure 9a, b), 〈u2〉VISA reaches
its maximum value around x = ±0.22 at the surface.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

15
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010001539


Interaction of deformable free surface with homogeneous turbulence 53

–0.03

0.01
0.03

0.02 0.01
0.02

0.04

–0.01 –0.06 –0.02 0.02 0.060.01 0.03

(a)

z

(u2 + w2)1/2 = 0.2

–0.4 –0.2 0 0.2 0.4
–0.4

–0.3

–0.2

–0.1

0

0.1 (b)

–0.4 –0.2 0 0.2 0.4
–0.4

–0.3

–0.2

–0.1

0

0.1

0.
02

0.
02

3.5

2.8

2.1

2.8 3.5

2.8

0.7

1.
4

1.4

0.7

1.4
2.12.8

2.8

3.5

2.
8

2.
1

2.1

0.02

0.06

0.02

0.040.
04

0.02

–0
.02

–0
.0

4

–0
.0

2

0.04 0.06

–0.06 –0.02 0.02 0.06–0.06 –0.02 0.02 0.06

(c)

z

–0.4 –0.2 0 0.2 0.4
–0.4

–0.3

–0.2

–0.1

0

0.1 (d)

–0.4 –0.2 0 0.2 0.4
–0.4

–0.3

–0.2

–0.1

0

0.1

(e)

z

x x
–0.4 –0.2 0 0.2 0.4

–0.4

–0.3

–0.2

–0.1

0

0.1 (f)

–0.4 –0.2 0 0.2 0.4
–0.4

–0.3

–0.2

–0.1

0

0.1

0 1.4 2.8 4.20 1.4 2.8 4.2

Figure 9. VISA results of splats. On the vertical cross-section passing the splat centre, contours
of (a) pressure–strain correlation 2〈p∂u/∂x〉VISA, (b) turbulent transport −〈∂u2w/∂z〉VISA, (c)
turbulent transport −〈∂w3/∂z〉VISA, (d ) pressure transport −2〈∂pw/∂z〉VISA, (e) 〈u2〉VISA and
(f ) 〈w2〉VISA are plotted. In (a), the velocity vectors are shown at every four grid points in
the vertical direction for better visualization. In (e) and (f ), the results are normalized by the
corresponding plane-averaged values at z = −π/4, where the flow is nearly isotropic. The case
of B1 is shown here.

5.2. VISA results of antisplats

Next, we use VISA to analyse antisplats. The procedure is the same as in the splat case,
the only change being that the sampling is now for negative instead of positive surface
divergence. However, it should be emphasized that the splats and the antisplats are
very different in their instantaneous appearance (cf. Pan & Banerjee 1995, figure 5;
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Figure 10. VISA results of antisplats. The notation is the same as in figure 9.

Perot & Moin 1995, figure 8; Shen et al. 2004, figure 5). Unlike splats, which usually
have a simple round shape on the surface, antisplats are often distributed over a
long and narrow band with a highly irregular geometry. After the VISA averaging
over many antisplat structures with different orientations, the conditionally averaged
flow field becomes isotropic. Therefore, caution must be taken not to mistake the
round structure in the VISA field for the geometry of the individual antisplats, which
is much more complex (this is not a concern for splats because of the relatively
simple geometry of their individual appearance). The results in this section are for the
statistics of the average effect of the antisplats, not for the study of their topology.

Figure 10 plots the VISA results of the antisplats. The velocity vectors in figure 10(a)
indicate clearly the transfer from horizontal to vertical motions. As for splats, it is
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found that the pressure–strain correlation and the turbulent transport play an essential
role in the u2 budget; for the w2 budget, in addition to these two terms, pressure
transport is also important. It should be noted that these terms are of opposite sign
to those in the splat case.

Figure 10(a) plots the pressure–strain correlation term, 2〈p∂u/∂x〉VISA. It is negative

near the free surface, indicating that there is energy redistribution from u2 to w2. This
effect offsets the energy transfer from the vertical to horizontal motions occurring
at the splats. Distribution of the turbulent transport for u2, namely −〈∂u2w/∂z〉VISA,
is plotted in figure 10(b). It is negative near the free surface, corresponding to the
transport of u2 from the near-surface region to the region below.

For w2, in addition to the pressure–strain correlation 2〈p∂w/∂z〉VISA (not plotted
because it can be deduced from 2〈p∂u/∂x〉VISA in figure 10a), the transport caused by

pressure and velocity fluctuations also plays an important role in the budget of w2 near
the free surface. Figure 10(d ) shows that the pressure transport −2〈∂pw/∂z〉VISA is
negative very close to the surface, while figure 10(c) shows that the turbulent transport
−〈∂w3/∂z〉VISA has significant negative values some distance below the surface. They

together transport w2, which is gained from u2 through the pressure–strain correlation,
from the near-surface region to the deep region.

As in the splat case, we define an effective area for the antisplats selected for the
conditional average. These antisplat events occupy 8.6 % of the horizontal plane
at z = −2ηrms . Their contributions to the pressure–strain correlation, the turbulent
transport for u2, and the pressure transport for w2 over the entire plane are −19 %,
−38 % and −18 %, respectively. All these percentage numbers have the minus sign,
because their role is to offset the overall energy transfer that mainly occurs at the
splats shown earlier.

Finally, 〈u2〉VISA and 〈w2〉VISA are shown in figure 10(e, f ). The 〈u2〉VISA is maximum
at the surface away from the antisplat core, corresponding to the large inward
horizontal motion. At the antisplat, the horizontal motion is turned into the vertical
direction, resulting in enhanced 〈w2〉VISA below the surface. This process counters that
in the splat case.

5.3. Dependence on surface deformation

In §§ 5.1 and 5.2, it is shown that splats and antisplats strongly affect the pressure–
strain correlation and transport in the budget of u2 and w2. We next discuss the
effect of surface deformation on these processes. It is noted that to show comparison,
results for different cases can be plotted in the same way as in figures 9 and 10.
Alternatively, we adopt here a more compact way, used in Shen et al. (1999) to show
the surface distributions of the budget terms conditioned upon the quantity

Dn ≡ (∂u/∂x + ∂v/∂y) /(∂u/∂x + ∂v/∂y)rms

q/qrms
. (5.1)

Here q = (u2 + v2 + w2)1/2. The representation using Dn can indicate different stages
of the splat and antisplat processes effectively. At the centre of splats, the surface
divergence ∂u/∂x + ∂v/∂y is large, while q is small near the stagnation point. As a
result, Dn has large positive values. For the same reason, it has large negative values
at the core of antisplats. In between splats and antisplats, ∂u/∂x + ∂v/∂y is small
while q is large because of along-surface fluid motions, resulting in small values of
Dn. We use 〈 〉cond to denote the results conditioned on Dn.

Figure 11 plots the surface values of the pressure–strain correlation and the
turbulent transport for u2 as functions of Dn. As shown, 〈2p∂u/∂x〉cond is positive
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Figure 11. Variations of (a) pressure–strain correlation 〈2p∂u/∂x〉cond , and (b) turbulent
transport 〈−∂u2w/∂z〉cond as functions of Dn during the splat and antisplat processes for the
cases of: ——, A1; – · – · – , B1; – · · – · · – , C1.
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Figure 12. Profiles of (a) pressure–strain correlation 2p∂u/∂x, and (b) turbulent transport

−∂u2w/∂z: ——, case A1; – · – · – , case B1; – · · – · · – , case C1.

at splats and negative at antisplats, consistent with figures 9(a) and 10(a). We note
that the variation in the splat and antisplat regions is not symmetric in figure 11(a),
with the antisplat side being weaker. As pointed out by Perot & Moin (1995), after
a splat event, the fluid motion along the surface is dissipated by viscosity before an
antisplat occurs. It is the imbalance between splats and antisplats that results in the
net inter-component energy transfer from w2 to u2.

Figure 11(a) shows that as Fr increases, the surface blockage effect and hence the
pressure–strain correlation are reduced significantly. Shen et al. (1999) found that
even a small value of Fr can cause noticeable difference from the flat-surface case in
pressure–strain correlation. The results obtained here further show that the surface
deformation can affect the pressure–strain correlation significantly. Figure 12(a) shows
the vertical profile of the plane-averaged statistics 2p∂u/∂x (plotted up to z = −2ηrms

as in § 4.3) for the cases of A1, B1 and C1, which shows the reduction in magnitude
as Fr increases.
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The surface distribution of the turbulent transport term for u2, 〈−∂u2w/∂z〉cond ,
is plotted in figure 11(b). It is positive over the splat region and negative over the
antisplat region, consistent with the results shown in figures 9(b) and 10(b). We also
note that the upward transport in the splat region is larger than the downward
transport in the antisplat region. As shown in figure 8(a), the overall effect is that u2

is transported from the flow below to the near-surface region.
We note that turbulent transport 〈−∂u2w/∂z〉cond does not vary with Dn

monotonically. On the splat side, as Dn increases, the turbulent transport increases
to a maximum value around Dn = 1 and then decreases. Similarly, on the antisplat
side, the minimum occurs around Dn = −1. This phenomenon can be understood
as follows. At the free surface, the main contribution to 〈−∂u2w/∂z〉cond is
〈−u2∂w/∂z〉cond = 〈u2(∂u/∂x + ∂v/∂y)〉cond . For it to be significant, both u and
∂u/∂x + ∂v/∂y need to be large. From the definition of Dn, we see that a large
Dn value occurs when ∂u/∂x + ∂v/∂y is large but u is small. Only at an intermediate
value of Dn does the combined effect of ∂u/∂x + ∂v/∂y and u make the turbulent
transport maximum.

Comparing the different curves in figure 11(b), we see the turbulent transport is
sensitive to the surface deformation. As Fr increases, the magnitude of the turbulent
transport decreases. This can also be seen in the comparison of the plane-averaged
statistics −∂u2w/∂z among cases A1, B1 and C1 plotted in figure 12(b).

Figure 11 is for the u2 budget. For w2, the corresponding terms can be deduced from
the u2 results, and are not plotted separately here. The pressure–strain correlation
〈2p∂w/∂z〉cond can be deduced from 〈2p∂u/∂x〉cond shown in figure 11(a). The
turbulent transport 〈−∂w3/∂z〉cond at the free surface is negligibly small because

of the small vertical motion there. We also note that for w2, at the free surface, the
pressure–strain correlation term is nearly balanced by the pressure transport term
(see (4.2) and figure 8b). The roles of pressure–strain correlation and pressure transport
in the near-surface w2 evolution can be summarized as follows: over the splat region,
the energy loss of w2 (to u2) via the pressure–strain correlation is supplied by the
pressure transport of w2 from below; and over the antisplat region, the energy gain
of w2 (from u2) is transported away through the pressure transport. This result is
consistent with the discussion in §§ 5.1 and 5.2.

The above-discussed result shows the effect of surface deformation, which is
important for the understanding of the difference in the turbulent kinetic energy
among different cases shown in figure 6. For a flat free surface, the increase of the
kinetic energy towards the surface has been attributed to the reduction of viscous
dissipation owing to the vanishing of surface-tangential stress (Perot & Moin 1995;
Walker et al. 1996; Shen et al. 1999; Teixeira & Belcher 2000). When the surface
is deformable, the vanishing of shear stress still holds in the local surface-tangential
directions. As a result, we do not observe much change in the viscous dissipation
when the surface flexibility increases. Alternatively, it is the pressure–strain correlation
and turbulent transport of u2 that are reduced noticeably as the surface deformation
increases, as shown in this section. As a result, the near-surface accumulation of u2

and hence the kinetic energy (figure 6) becomes less significant compared with the
flat-surface case. Finally, we note that the above explanation still holds if viewed from
the total kinetic energy directly, because the pressure–strain correlation for horizontal
velocities is balanced by that for the vertical velocity, while the latter is again nearly
balanced by the pressure transport at the free surface as discussed earlier (in other
words, from the viewpoint of the budget for the turbulent kinetic energy, it would be
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the transport due to velocity and pressure fluctuations that causes the variation of
turbulent kinetic energy at the surface).

6. Conclusions
In this study, we have used DNS to investigate the interaction between a deformable

free surface and a homogeneous turbulent flow below. We use a linear forcing
method to generate statistically steady, isotropic turbulence in the bulk flow. This
problem setting has the theoretical advantage of being simple and fundamental, and
it corresponds to laboratory experiments using tanks with stirring grids or random
jets. To the best of our knowledge, this is the first time such a configuration has
been set up in numerical simulation (before this, the closest numerical simulation
in the literature was decaying isotropic turbulence being suddenly inserted with a
free-slip plate). The present study serves as the first step towards a comprehensive
understanding of this type of canonical problem.

It is found that the surface deformation is characterized by propagating waves
and turbulence-induced roughness, which are shown in the frequency–wavenumber
spectrum of the surface elevation. The waves are manifested mainly at low
wavenumbers by the correspondence to the dispersion relationship. The turbulence-
induced roughness appears at all wavenumbers. Its motion can be approximately
represented by a characteristic frequency using the free-surface nonlinear KBC. For
the cases considered in this study, the surface potential energy is 23.4–38.3 % of the
kinetic energy contained in the intermittency layer. Of the potential energy, a small
fraction (ranging from 2.2 % to 12.1 % in our simulation cases) is associated with
waves. Through simulations of cases with different Froude and Weber numbers, we
have also shown the roles of gravity and surface tension in the surface deformation.
Their relative importance is related to a critical wavenumber that is defined on
the basis of the Fr and We values. For the current problem, most of the surface
potential energy (91.6–98.6 %) is associated with the gravity. The surface tension
effect becomes dominant at high wavenumbers, and it affects the smoothness of the
surface.

To study the effect of the free surface on the turbulence underneath, we have
examined the fluctuations of velocity, velocity gradients and strain rate in the vicinity
of the free surface. Their surface-normal and surface-tangential components are
investigated as functions of the distance to the free surface. Effects of both the
blockage effect and the vanishing of shear stress at the surface on the flow anisotropy
are shown. It is found that compared with a flat shear-free surface, the surface
deformation may make a noticeable difference to some of the turbulence statistics.
For example, the horizontal velocity fluctuation increases by about 45 % towards a
flat surface, while it increases by only 20 % in the case of C1, which has the largest
surface deformation in our study. For the horizontal and vertical turbulent motions,
we have studied their energy budget on a Cartesian coordinate system. It is found that
for u2, the turbulent velocity fluctuation transports energy from the bulk flow towards
the free surface. Near the surface, u2 gains energy from w2 through pressure–strain
correlation. Viscous dissipation decreases towards the free surface. Viscous diffusion
transports u2 from the near-surface region to the lower region. For w2, in addition to
the turbulent velocity fluctuation, pressure fluctuation also plays an important role in
the transport process. Because w2 decreases towards the free surface, viscous diffusion
contributes to the transport of energy to the near-surface region, which is offset by
viscous dissipation at the free surface.
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To further gain insights into the inter-component transport and transfer processes
of turbulent kinetic energy near the free surface, we have performed VISA conditional
averaging for the characteristic flow structures of splat and antisplat to show their
importance. In our VISA, although splats occupy only 9 % of the area of the
z = −2ηrms plane close to the surface, they contribute to respectively 121 %, 145 %
and 118 % of the total values of pressure–strain correlation, turbulent transport for
u2 and pressure transport for w2 over the entire plane. Antisplats that occupy 8.6 %
of the area, on the other hand, offset respectively 19 %, 38 % and 18 % of these terms.
Finally, we have used conditional averaging on the basis of the splat and antisplat
processes to show that the surface deformation affects the pressure–strain correlation
and the transport appreciably, which reduces the accumulation of horizontal velocity
fluctuations and turbulent kinetic energy at the free surface compared with the
flat-surface case.

Support by the Office of Naval Research on this research is gratefully acknowledged.
We would also like to thank the referees for their valuable comments, which gave us
significant help in improving the previous version of this paper.

Appendix A. Projection to the local surface-normal and surface-tangential
directions

Let d̃ denote the signed distance from the free surface, with the minus sign
corresponding to the waterside. Following Kang, Fedkiw & Liu (2000), for any

spatial point with d̃ , we define the unit vector normal to the iso-surface of d̃ as

ẽ3 =
∇d̃

|∇d̃|
, (A 1)

and the two unit vectors tangential to the iso-surface of d̃ as

ẽ1 =
(0, 1, 0) × ẽ3

|(0, 1, 0) × ẽ3| , ẽ2 = ẽ3 × ẽ1. (A 2)

We note that the choice of ẽ1 and ẽ2 is not unique. For the current problem, there is
no preference for their choice because of the horizontal isotropy; here we choose ẽ1

to be on the (x, z) plane simply for convenience.
We project a vector B (such as velocity and vorticity) and a tensor [s] (such as

stress and strain rate) to the directions of ẽ1, ẽ2 and ẽ3 as

B̃i = βijBj , s̃ij = smnβimβjn. (A 3)

Here the tilde denotes the projected quantities; and βij = ẽi · ẽj . In the present study,

statistics are performed over the iso-surface of d̃ . Linear interpolation is used when
data are transformed from the discrete computational grid.

Appendix B. Analysis of (∂u/∂x)rms and (∂w/∂z)rms at a flat free surface using
the rapid distortion theory

On the basis of the rapid distortion theory analyses by Hunt & Graham (1978)
and Teixeira & Belcher (2000), the variances of velocity derivatives can be obtained
as follows.
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(a) Velocity derivatives in the horizontal directions:(
∂ui

∂xα

)2

=

∫ ∫ ∫
k2

αM
∗
ik (k, z, t)Mil (k, z, t)Φ (H )

kl dk1 dk2 dk3. (B 1)

(b) Velocity derivatives in the vertical direction:(
∂ui

∂z

)2

=

∫ ∫ ∫
∂M∗

ik (k, z, t)

∂z

∂Mil (k, z, t)

∂z
Φ

(H )
kl dk1 dk2 dk3. (B 2)

Here, i = 1, 2 or 3; α = 1 or 2; the superscript ‘∗’ denotes the complex conjugate. Near
the free surface, because the variation of (∂u/∂x)rms and (∂w/∂z)rms is mainly caused
by the blockage effect of the surface (i.e. the viscous correction is relatively weak;
cf. Teixeira & Belcher 2000), we use the matrix Mij of Hunt & Graham (1978) for
simplicity:

Mαα = eik3z (no summation on α),

Mα3 =
ikα√

k2
1 + k2

2

e−
√

k2
1+k2

2z,

M33 = eik3z − e−
√

k2
1+k2

2z.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B 3)

The remaining components of Mij are zero. In (B 1) and (B 2), Φ
(H )
ij is the velocity

spectrum of the undistorted isotropic, homogeneous turbulence underneath (cf. Hinze
1959; Teixeira & Belcher 2000):

Φ
(H )
ij =

(
δij − kikj

k2

)
E (k)

4πk2
, (B 4)

where k =
√

k2
1 + k2

2 + k2
3 and E(k) is the turbulence energy spectrum underneath.

Substituting (B 3) and (B 4) into (B 1) and (B 2) and taking the limit of z approaching
zero, we obtain(

∂uα

∂xα

)2

=

∫ ∫ ∫
k2

1

E (k)

4π
dk1 dk2 dk3 (no summation on α),(

∂w

∂z

)2

=

∫ ∫ ∫ (
k2

1 + k2
2

) E (k)

4π
dk1 dk2 dk3.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B 5)

Comparing the two equations in (B 5) and using the fact that the flow is horizontally
isotropic, we conclude that (∂w/∂z)2 is twice (∂u/∂x)2 at a flat free surface. Therefore,
the surface value of (∂u/∂x)rms is

√
2 times that of (∂w/∂z)rms .
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