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In this paper, we apply information theoretic measures to voting in the U.S. Senate in 2003.

We assess the associations between pairs of senators and groups of senators based on the

votes they cast. For pairs, we use similarity-based methods, including hierarchical clustering

and multidimensional scaling. To identify groups of senators, we use principal component

analysis.We also apply a discretemultinomial latent variablemodel that we have developed. In

doing so,we identify blocs of cohesive voterswithin the Senate and contrast it with continuous

ideal point methods. We find more nuanced blocs than simply the two-party division. Under

the bloc-voting model, the Senate can be interpreted as a weighted vote system, and we

are able to estimate the empirical voting power of individual blocs through what-if analysis.

1 Introduction

There are two possible ways to summarize roll call data for analysis. The first method
popular among political scientists is spatial modeling, and the second favored by computer
scientists is dependence modeling. This paper offers a combined approach to demonstrate
that alternative techniques are available to reveal the underlying structure of vote choice.

Spatial modeling measures the similarities between votes of different legislators as ideal
points in some ideological space. These spatial modeling approaches dominate in
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contemporary political science. Special purpose models are normally used and they usually
postulate a model of rational decision making. Most notably, Poole and Rosenthal (1997,
2007) have developed several static and dynamic versions of their nominal three-step
estimation, or NOMINATE, model to locate individual legislators’ ideal points in one- or
two-dimensional space depending on the Congress being analyzed (see also Davis, Hinich,
and Ordeshook 1970). In effect, NOMINATE algorithms reduce a series of nominal-level
observations—yea, nay, present, or no vote—to interval-level representations along latent
dimensions. The first dimension usually uncovers the liberal-conservative preference and
the second region a social issues preference (McCarty, Poole, and Rosenthal 2001).

In the corresponding votingmodel, legislators try tomaximize their utility, and the voting
process is interpretedas theattemptof each legislator todecide about the roll call basedonhis/
her ideal point. In thismodel, it is the similarity in ideal points that accounts for the similarities
betweenlegislators’votes.Thesemodelscanbeevaluatedbycomparingthetruevoteswith the
votes predicted by themodel. The ideal points canbe obtainedbyoptimizationwith either the
optimal classification algorithm (Poole 2000) or the Bayesian modeling (Clinton, Jackman,
and Rivers 2004b). Not all approaches to ideal points postulate a model of decision making
(Lawson, Orrison, and Uminsky 2003; de Leeuw 2003). Poole and Rosenthal’s method has
proven to be an enormous contribution to explaining the ideological structure of legislative
votes and can be applied across time, legislative institutions, and electoral systems.

Data reduction techniques developed in information science are available to political
scientists and are a second approach to modeling party competition and coalition forma-
tion. The second way to summarize roll call data is to focus purely on modeling the cor-
relations between individual senators through dependence modeling.

Dependence modeling measures correlations that can arise from similar ideological
positions and preferences, frompersonal acquaintances, or from vote trading. In the absence
of data to distinguish between these reasons, we simply model dependencies and use the
results to suggest directions for future research. Our method encompasses both spatial and
dependence approaches, but we will use only general purpose models that do not postulate
amodel of decisionmaking. An ideological ideal point is only one reasonwhy relationships
might be observed, and the flexibility of our approach accommodates a wider variety of
explanations for vote choice. Our goal is to apply a wide variety of analytical methods
and approaches to the data on Senate roll calls to observe patterns that emerge from the data.

In our first set of analyses, we examine the dependencies between pairs of senators and
provide graphical representations of dissimilarity and clustering based on these results. We
then evaluate the influence of individual senators and pairs of senators from each state on
vote outcomes.

In our second set of analyses, we focus on relationships among groups of senators. We
use principal component analysis (PCA) to empirically explore the effect of not voting and
then introduce a discrete PCA model to identify voting blocs within the Senate. We use
what-if analysis to evaluate bloc behavior and bloc voting power. We intend to describe the
methods used for inferring the structure of similarities and illustrate them on the 2003
proceedings of the U.S. Senate.

2 Similarity-Based Methods

The Library of Congress maintains the THOMAS database of legislative information. One
type of information that is available are the records of Senate roll calls. For each roll call,
the database provides a list of votes cast by each of the 100 senators. There were 459 roll
calls in the first session of the 108th Congress during 2003. For each of those, the vote of
every senator is recorded in three ways: ‘‘yea,’’ ‘‘nay,’’ and ‘‘not voting.’’ The outcome of
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the roll call is treated in the same way as the vote of an individual senator, with positive
outcomes (Bill Passed, Amendment Germane, Motion Agreed to, Nomination Confirmed,
Guilty, etc.) corresponding to yea and negative outcomes (Resolution Rejected, Motion to
Table Failed, Veto Sustained, Joint Resolution Defeated, etc.) corresponding to nay. Each
senator and the outcome can be interpreted as variables taking values in each roll call.

To evaluate dependencies between pairs of senators, we use Shannon’s theory of infor-
mation. According to Shannon, communication involves a sender, a channel of informa-
tion, and a decoder who receives the message. Following Shannon’s model, we identify the
components of the communication process and we posit that the senator is the sender, or
encoder, the vote the channel of communication, and the vote outcome the decoder. Our
binary measure of vote choice, pro and con, is also consistent with Shannon’s binary model
of the communication process and allows us to use his measure of information and
uncertainty, which he labeled entropy, and his measure of mutual information to evaluate
interdependence (Shannon 1948).

An important element of Shannon’s theory is the level of variance in the communication
process that has the capacity to cloud the communication. Shannon labels this variance
entropy. Shannon’s entropy does not appear to havemuch in commonwith similarity in vot-
ingpatterns, given that entropy corresponds tohighvariance.However,wehave ameasure of
mutual information that quantifies similarity between two variables X and Y (each variable
signifying a senator) bymeasuring the reduction in uncertainty in oneof themafter providing
information about the value of the other variable. In our particular example, if we are able to
predict senatorX’s vote after having learned senatorY’s vote, theywill bemodeled as similar.

Consider having a variable of interest, Y with a certain amount of entropy, H(Y). We
provide another variable, X. The remaining amount of entropy in Yafter having learned the
value of X is described by conditional entropy H(YjX). And H(YjX) is always lower or equal
to H(Y) and the difference H(Y) 2 H(YjX) is the same as I(X;Y), the mutual information
between X and Y.

Thus, mutual information quantifies similarity between X and Y through measuring the
reduction in uncertainty in either of these two variables after providing information about
the value of the other variable. In our particular example, if we are able to predict senator
X’s vote after having learned senator Y’s vote, they will be modeled as similar. In sum,
entropy does not tell us much about similarity but mutual information does. High entropy
would just signify a balanced voting record, equal number of nay and yea votes, whereas
low entropy would signify a tendency to vote yea only or nay only.

Considering two senators and ignoring the cases when at least one of them did not cast
a vote, there can be four joint outcomes: (1) yy—both voted yea; (2) nn—both voted nay;
(3) yn—the first senator voted yea, the second nay; and (4) ny—just the opposite. We will
use the count #nn to indicate the number of roll calls with outcome nn, while the sum of
counts for all four outcomes is N.

There are two basic models that could describe the voting process of two senators. In
the first, we assume that the senators are not voting independently either because of sim-
ilar judgment, similar opinion, an explicit agreement, or even for strategic considerations
unrelated to agreement. The vote may be based on reciprocity or bargaining. The prob-
ability of outcome nn in this dependence-assuming model is estimated as pnn 5 #(nn)/N.
The second model assumes that the votes of both senators are independent. The probability
of a joint outcome nn, pnn is therewith a product of the probability that the first senator
voted n, pn* 5 pnn 1 pny, and the probability that the second senator voted n, p*n 5 pnn 1

pyn. The dependence-assuming model predicts the probability of the joint outcome nn as
pnn 5 pnn, whereas the independence-assuming one as /nn 5 pn*p*n.
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The entropy of a set of outcomes X given its probabilistic model p is

HðX; YÞ 5 2
X
i

pilog2pi

and is measured in bits. The higher the entropy, the less constrained is the phenomenon it
describes. If X and Yare the two senators, the entropy of the dependence-assuming model p
is H(X, Y), whereas the entropy of the independence-assuming model / is H(X) 1 H(Y).
Here, H(X) is based on only two outcomes with probabilities pn* and py*. Model / cannot
be more constrained than model p, which can be noted as H(X, Y)< H(X)1 H(Y). Mutual
information is the difference of the two models’ entropy I(X;Y)5 H(X)1 H(Y)2 H(X, Y).
Mutual information can also be interpreted as the relative entropy or Kullback–Leibler
divergence between the dependence- and the independence-assuming models

IðX; YÞ 5 Dðpjj/Þ 5
X

a2fn;yg

X
b2fn;yg

pablog2

�
pab
/ab

�
:

The greater the mutual information between their votes, the greater the similarity be-
tween the two senators in the sense that we knowmore about the vote of one if we know the
vote of the other. It also follows that if two senators always vote in an opposite way, they
will also appear similar according to this measure of distance, although in our observations,
this hypothetical event does not occur. In practice, there are many cases when even senators
who generally vote differently from one another vote in the same way on successful bills.

Mutual information is always greater or equal to zero and less or equal to the joint
entropy H(X, Y). We can therefore express it as a percentage of H(X, Y), and the larger
it is, the more entangled the two senators. Based on this notion, Rajski’s (1961) distance
can be defined as follows:

dðX; YÞ 5 12
IðX; YÞ
HðX; YÞ:

It is a metricized version of mutual information.1

2.1 Dissimilarity Matrices

Rajski’s distance as plain numbers provides little insight. However, we can provide the
distances between all pairs of senators in the form of a graphical matrix (Fig. 1). Dissim-
ilarity matrices are clearer if senators with low Rajski’s distance are adjacent to one an-
other. The color can be used to indicate the proximity: the darker the closer. To performing
the sorting, we have employed an agglomerative hierarchical clustering algorithm (Kaufman
and Rousseeuw 1990) with the weighted average linkage method, following the approach
of Jakulin and Bratko (2003). In our hierarchical clustering process, the algorithm begins
with all data points representing different clusters. Larger groups are then formed based on
similarities in the data points. We choose this method to avoid the a priori assumptions
about the number of clusters that are required for the partitioning method and to avoid
the overlapping clusters produced by the fuzzy clustering method. We use no theoretical

1The following analyses are performed using several different programs. We use Python, which is an object-
oriented programming language that can be used for quantitative analysis; Orange, which is an interactive
data-mining program; and SPING (Simple Platform Independent Graphics), a cross-platform cross-media
graphics library. Cluster analysis is performed using CLUSFIND, and blocs were created using multinomial
PCA software for discrete PCA.
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assumptions to anticipate the number of clusters or membership overlap. We employed the
hierarchical clustering algorithm agnes (Kaufman and Rousseeuw 1990). Two large clus-
ters and one group of moderate senators from each party clustered above the outcome
can be identified visually from Fig. 1. The major clusters correspond to the political parties
even though party information was not used in the computation of distance. Of interest is
also Senator Kerry (D-MA) who is in the center of the Democrats, while the descending
dark line also indicates that he was more similar than other Democrats to the Republicans.
This outcome is the result of selective voting on Senator Kerry’s part. He voted in a fraction
of votes compared with the others, and specifically, he voted in those cases where there was
less disagreement between the two parties. Thus, a general purpose visualization method
helped us identify an artifact that might deserve a closer focused study.

2.2 Clustering

We can further summarize the dissimilarity matrix in a compact way using the same clus-
tering algorithm described in Section 2.1. The resulting dendrogram in Fig. 2 clearly dis-
tinguishes between Democrats and Republicans, with the only exception being Senator

Fig. 1 The symmetric dissimilarity matrix graphically illustrates Rajski’s distance between all pairs
of senators based on their votes in 2003.
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Miller (D-GA). There are further subgroups within each major cluster, and it can be seen
that there are many pairs of senators from the same state that cast similar votes. The cluster
height indicates the compactness of the cluster. To the right of the figure, bars depict the five
blocs resulting from discrete latent variable analysis that wewill present in Section 3.2. The
dark blocks indicate a high degree of membership.

2.3 Similarity and Outcomes in the Senate

Wemodel dependence further to analyze the relationship between senators’ votes and vote
outcomes in the chamber. In this section, we ask which senators are most likely to vote in
a way that is consistent with the chamber outcome. We have evaluated similarity among
legislators, and we now evaluate similarity between legislators and chamber outcomes. We
then repeat this for the states’ two senators and outcomes.

Using our concept of dependence, we label the similarity between a vote choice and the
outcome as influence. In our analysis, a senator whose votes vary consistently with the
outcome will be considered influential and a senator whose votes are statistically indepen-
dent of the outcome will be considered uninfluential. Influence in this case may mean that
the senator is able to cause the outcome, but we acknowledge that congruence between vote
choice and outcome may be alternatively explained by legislators ideal points, party dis-
cipline, state interests, reciprocity between senators, or a desire to claim credit for a suc-
cessful outcome. However, for simplicity, we begin with the notion of influence.

Although Rajski’s distance could be employed, it is more informative to use mutual
information (MI) as the proportion of outcome uncertainty explained. If outcome is
denoted by variable Y, and the senator by variable X, the proportion of outcome uncertainty
the variable X explains is I(X;Y)/H(Y) and can be expressed as a percentage. It is always
between 0 and 1, as the smallest of individual entropies min{H(X), H(Y)} forms the upper
bound of MI.

Table 1 contains theMI score between the senator and the outcome. This percentage can
be expressed as a percentage by dividing it with the entropy of outcome–this also gets rid
of the dependence of MI on the overall rate of agreement in the Senate. The column showing
agreement (AG) is the proportion of votes when a senator agreed with the Senate outcome.
Here, the cases where the senator did not vote are not ignored and reduce the senator’s AG
rate. The column labeled NV shows the proportion of non-voting for a particular senator.

Table 1 shows influence of individual party members and states on the outcome of the
roll call. For the states, the joint variable, composed of two senators votes, is based on the
following vote situations: (1) both voting yea, (2) both voting nay, (3) one of them voting
yea, (4) one of them voting nay, and (5) counter voting (cancellation) or neither voting.
This reduced set of outcomes is based on the assumption that all votes are alike. Not mak-
ing this symmetry, assumption could cause the model to be underspecified on a limited
amount of data and the influence measure unreliable.

In Table 1, the results show that the MI scores may diverge from the AG scores. This can
depend on individual senators, such as the case of Breaux (D-LA) who has a modest MI

Fig. 2 In the hierarchical clustering of senators based on their pairwise Rajski’s distance, we can
identify two major clusters, the Republican and the Democratic, with a smaller cluster of Republican
senators in the center. Cluster height indicates the compactness of the cluster. Tall clusters are less
compact and short clusters more compact. The bars on the right-hand side depict the five blocs
resulting from latent variable analysis (Section 3.2).
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Table 1 The influence of individual senators and states demonstrates that the Democrats were
relatively uninfluential in 2003. The numbers are all percentages or proportions: MI, normed by
the outcome entropy (I(X;Y)/H(Y)); AG, the agreement probability (pyy 1 pnn); NV, probability of

not voting

Continued
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Table 1 (Continued)
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score of 3.4, but an AG score of 64.7. The divergence can also be the result of nonvoting,
as in the case of Graham (D-FL) and Kerry (D-MA). The influence of individual senators
and states demonstrates that as it is measured here, Democratic senators were relatively
uninfluential in 2003.

3 Component-Based Models

Although similarity is a local notion of dependence, components are global variables that
can be seen as being the causes of the similarity between senators. Namely, in the presence
of a large number of correlations between senators, it is difficult to try modeling each cor-
relation directly. Instead, the correlations can be captured by inferring some kind of mem-
bership (such as opinion membership, party membership, or bloc membership), which is
the cause of the similarity. In this section, we will review several alternative methods that
are based on the idea that vote correlations may be inferred from membership in such
groups and not simply from an individual senator’s underlying policy preferences.

3.1 Principal Component Analysis

The task of the ubiquitous Principal Component Analysis (PCA) or Karhunen–Loeve transfor-
mation (Press et al. 1992) is to reduce the number of dimensions, while retaining thevariance
ofthedata.Withdimensionreduction, theobjectiveisnot tocrushdifferentpoints togetherbut
remove correlations. The remaining subset of dimensions is a compact summaryof variation
in the original data. The reduction can be denoted as u 5 W(x 2 m), where u is a two-di-
mensional ‘position’ of a senator in a synthetic vote space obtained by a linear projection
W from the V-dimensional representation of a senator.

The roll call data is represented as a J � V matrix P5 {pj,v}. The J rows are senators and
the V columns are roll calls. If pj;t is 1, the jth senator voted yea in the tth roll call, and if it
is21, the vote was nay. If the senator did not vote, some values need to be imputed, and we
used three different approaches to missing votes, explained below.

3.1.1 Not Voting and Imputation

Similarity is readily understood as something that can only be studied in the presence of
both values at once. However, for component-based models, the issue of senators not vot-
ing is more pertinent than it is for similarity-based models given that most latent variable
models’ mathematical form does not allow for missing values as one possible represen-
tation of not voting. Therefore, it is necessary to choose a method for addressing the prob-
lem of missing data. One approach is to model not voting as one of the variable values (as
we have done in the analysis of influence in Section 2.3), but our preliminary analysis
revealed no particularly interesting intersenator patterns. We adopt an alternative approach
that is to try to predict whether a senator’s vote be yea or nay, even if he did not cast the
vote. This operation is usually referred to as imputation.

There are three possible interpretations of what the senator meant when not voting that
are of theoretical interest. Although it is not possible to definitively infer the true intention
only with the given data, we model the three alternatives to evaluate the influence of each
on the outcome.

� Absence: The senator did not vote because he/she was not able to vote. However,
knowing how other senators voted, we can impute the vote the senator was expected
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to make in such a context. We predict the missing vote with the knowledge derived
from similarities in those roll calls when the senator did vote. Most methods follow
this approach and exercise the ‘‘missing at random’’ assumption. Using bootstrap or
Bayesian methods allows an estimate of uncertainty about the imputation, as can be
seen in Clinton, Jackman, and Rivers (2004a).

� Submission: The senator did not vote because he/she knew that he/she disagreed with
the outcome but could not affect it. Here, we impute the opposite of what the outcome
will be.

� Stratagem: The senator did not vote because he/she agrees with the majority vote.
This option is taken either because he/she lacks the information to properly decide or
because he/she would not want to reveal the agreement with the majority.

Figure 3 illustrates the difference in results caused by different interpretations of not vot-
ing. In the top image, it is possible to see that the absence imputation places Senators Kerry
(D-MA), Lieberman (D-CT), Edwards (D-NC), and Graham (D-FL) who were all Dem-
ocratic presidential candidates in the midst of the Democratic cluster. On the other hand,
the outlying cases in both the submission and stratagem imputation (middle and bottom
images) are the candidates. If the stratagem imputation is used, Senator Kerry appears to be
the most moderate Democrat. The ambiguity of the true position of Senator Kerry has been
previously recognized by political scientists (Clinton, Jackman, and Rivers 2004a). If the
submission imputation is used, the Democratic presidential candidates form their own clus-
ter. If stratagem imputation is used, we can also observe a quasiunidimensional polariza-
tion. The different reasons for nonvoting are of interest for various reasons, and we find that
modeling choices can influence the substantive conclusions.

3.2 Discrete PCA

Another basic approach for investigating multidimensional data, such as a senator’s voting
patterns, is to use the probabilistic version of PCA (Tipping and Bishop 1999) but to re-
place the continuous-valued variables with fully discrete ones. We have recently developed
a discrete multinomial version of these methods (the connection to PCA appears in Buntine
and Jakulin 2004). In this version of PCA, we model the full set of votes for each senator
using several voting patterns. A voting pattern gives the propensity to vote in a particular
way and assumes independence between individual senators’ votes.

One simple model of this kind is to break up the Senate into two blocs, Republican and
Democrat, say, and to consider the probabilities for these separately with voting patterns.
We are interested in more nuanced models that might exist beyond this basic two-party
model. Are the blocs within the Republican party itself? Is there an independently minded
bloc across party lines? Since most senators tend to vote with their party as a rule, these
nuances need to be additions to some basic party modeling.

A simple additivemodel for blocs (Buntine and Jakulin 2004) is as follows: each senator
has a proportional membership in K blocs, given by a probability vector (f1, . . ., fK) that
sums to 1. Each bloc k has its own voting pattern represented as a vector (pki;y; p

k
i;n) for i 2

Votes. The probability for a particular subset of votes Votes# 4 Votes given by this pattern
is ti: i 2 Votes# is

Q
i2Votes# pi;ti . Thus, a senator’s voting probabilities can be modeled as

independent probabilities: for the ith vote, this gives
P

k51;...;K fkp
k
i;ti and as before we mul-

tiply these values together for the likelihood of the senator’s full set of votes given the
model: L 5

Q
i2Votes#

P
k51;...;K fkp

k
i;ti .
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Fig. 3 PCA can be performed with absence imputation (top), submission imputation (middle), or the
stratagem imputation (bottom).
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This simple style of an additive model for blocs has a rapidly growing history in applied
statistical modeling and appears under many names and in different disciplines: grade of
membership (Woodbury and Manton 1982) used for instance in the social sciences, demo-
graphicsandmedical informatics,genotypeinferenceusingadmixtures(Pritchard,Stephens,
and Donnelly 2000), probabilistic latent semantic indexing (Hofmann 1999), and multiple
aspect modeling for document analysis, while a Poissonvariant is referred to as nonnegative
matrix factorization (Lee and Seung 1999) has been suggested for image analysis.

These methods and models all correspond to a discrete version of PCA but with the least
squares fitting procedure replaced by discrete fitting algorithms. The voting patterns cor-
respond to the components. The methodological challenge in this approach is to deal with
the unknown bloc proportions (f1, . . ., fK) for each senator. These are called latent or hidden
variables and are distinct for each senator. Thus, they provide an additional (K 2 1)100
free variables, one for each senator, that a nave fitting procedure could potentially use in
optimization to overfit the data and thus produce poor models.

This technique uses methods from inferential statistics to deal with this overfitting chal-
lenge; previous methods presented here have used descriptive statistics or nonparametric
methods. One can estimate the voting patterns and the bloc membership proportions for
each senator using a general statistical algorithm called Gibbs sampling (Geman and
Geman 1984): Because we do not actually know the true values for either the bloc voting
patterns or the each senators’ bloc proportions, we simply resample each parameter in turn
from the senators’ actual voting records, conditional to other parameters of the previous
iteration. Pritchard, Stephens, and Donnelly (2000) show that sampling and averaging all
the variables during this process provides good estimates of the quantities involved.

As yet, we have not mentioned the choice of K. For a fixed K, the product of the voting
probabilities across senators,

Q
s2Senators Ls, can be used. However, this is sampled data.

Importance sampling in Gibbs allows us to estimate the evidence term for the model and
create an unbiased estimate of the quality of the model for the fixed K (Buntine and Jakulin
2004). In this type of sampling, the expected value of u() is estimated using:

Exph�pðhÞðuðhÞÞ 5
P

n uðhnÞpðhnÞ=qðhnÞP
n pðhnÞ=qðhnÞ

:

This is the importance sampler for evidence that minimizes estimation variance. It is
not only a local estimate of variance but also a local estimate of evidence. With Gibbs
sampling, it takes the form:

pðr1; . . . ; rI
����discretePCA;KÞ � 1

K!

NP
n 1

�
p
�
r1; . . . ; rN

��Xn;K
�:

Using multinomial principal component analysis, we obtain the following negative log-
arithms to the base 2 of the model’s likelihood for K 5 4, 5, 6, 7, 10: 9448.6406, 9245.8770,
9283.1475, 9277.0723, 9346.6973. We see that K 5 5 is overwhelmingly selected over all
others, with K 5 4 being far worse. This means that with our model, we best describe the
roll call votes with the existence of five blocs. Fewer blocs do not capture the nuances as
well, whereas more blocs would not yield reliable probability estimates given such an
amount of data. A bloc can also be interpreted as a discrete ideological position, with sen-
ators distributed around them.

Again, the blocs uncovered by this procedure are also summarized in the bars in the
columns to the right of Fig. 2. We see here three Republican blocs and two Democrat blocs.
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The ordering A–E should not be seen as an ideological axis: the Republican bloc B may be
seen as more extreme as the Republican bloc A.

It is interesting to observe the relationship between the final outcome and the blocs. In
a procedure we outline in Section 3.3, we show that bloc A has all the influence here: 80%
of the vote outcome is contributed from this one bloc. Moreover, the small Democratic bloc
D contributed another 15%, three times its proportion in the Senate. The Republican bloc B
with 16% of the Senate contributes a mere 5% to the vote outcome.

3.3 Voting Power and Analysis of Blocs

There are numerous possible causes for formation of blocs. One interpretation is that blocs
arise from different ideologies. The multimodal distribution suggests that rather than a con-
tinuous ideological dimension, bloc formation can be better understood as a prisoner’s
dilemma where a subset of voters may gain voting power over the others by forming a co-
alition (Gelman 2003).

We can now perform several kinds of analyses that would otherwise not have been pos-
sible without identifying discrete blocs other than party labels. The first type of analysis
covers the cohesion within a bloc and the dissimilarities between blocs. Some blocs may be
more cohesive in the sense that the voting is more bloc aligned. Furthermore, individual
blocs can be similar or dissimilar, as senators are. We explore the cohesion and bloc sim-
ilarity in Sections 3.3.1 and 3.3.2.

One senator cannot affect the situation very much alone: rarely is one able to change the
outcome of a roll call by one vote. However, once the component model identifies the blocs
voting in a similar way across a number of roll calls, we can investigate the influence of
changed behavior of a group.We usewhat-if analysis to study two kinds of altered behavior
in Sections 3.3.3 and 3.3.4: bloc abstention and bloc elimination. Either approach yields
a list of roll calls for which it is deemed that the behavior of a bloc has affected the
outcome.

3.3.1 Bloc Cohesion

The blocs revealed by the latent variable model are probabilistic. We cannot say that a par-
ticular senator belongs to a single bloc. Instead, we can only speak about a probability of
belonging to a particular bloc. This probability is assumed to be fixed across all the roll
calls. If there are K blocs, the membership is (fs,1, . . ., fs,K) for senator s. To obtain the
number of yea votes in bloc k for roll call i, we use the following formula:

# yi;k5
X

s2Senators who voted ‘Yea’ini

fs;k:

The same approach is used to compute the number of nay and not voting senators in each
bloc.

Our treatment of blocs is empirical and descriptive in the sense that we examine the roll
call data, identify similarities, and postulate the existence of blocs under some kind of
a statistical model.

Cohesion of a bloc is quantified by the similarity of votes cast by individual members of
the bloc in a particular roll call. Agreement index (Hix, Noury, and Roland 2005) captures
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the level of agreement within a party, yi of whose members voted yea, ni voted nay, and ai

did not vote in the roll call i:

AIi : 5
max

n
yi; ni; ai

o
2

yi1ni1ai2maxfyi;ni;aig
2

yi1ni1ai
:

The agreement index ranges from 0 (perfect disagreement) to 1 (perfect agreement). It is
not very different in meaning from entropy of any senator in the bloc given the probabilistic
model with three outcomes based on the bloc as a whole, however. Such entropy measures
how well we can predict an average senator of the bloc given the number of votes in
the bloc as a whole. Entropy is thus a disagreement index: H

�
X̂i

�
if X̂i is the aggre-

gate vote of the bloc in roll call i, with a possible probabilistic model being

PðX̂iÞ 5 ½pyi ; pni ; pai � 5
h

yi
yi1ni1ai

; ni
yi1ni1ai

; ai
yi1ni1ai

i
. The uniform distribution achieves

the maximum value of log2 k, where k is the number of outcomes (three in this case),
and we can divide the entropy disagreement index by it to scale it in the range from 0 (per-
fect agreement) to 1 (perfect disagreement). Table 2 illustrates the agreement of individual
blocs and both parties, along with the size of bloc k, which is simply the sum of member-
ship probabilities

P
s ff ;k. The Democrats had lower cohesion than the Republicans, but

both parties were internally considerably more cohesive than the Senate as a whole.
The high internal cohesion of our blocs indicates that the bloc membership is not arbitrary.
The minor blocs C and D with lower cohesion allow larger blocs A, B, and E to have higher
cohesion. This finding has substantive applications to questions of party ideology, party
discipline, or majority status.

3.3.2 Bloc Dissimilarity

It is possible to identify roll calls where two blocs were most dissimilar. Rice’s index of
party dissimilarity (Rice 1928) is the absolute difference between the proportion of Dem-
ocrats voting yea and the proportion of Republicans voting yea in a given roll call. Using
Rice’s index, we can sort the roll calls by difference between a pair of blocs, and an ex-
ample for Republican blocs A and B is shown in Table 3.

Table 2 The agreement index AI and the entropy disagreement index H quantify the cohesion of
blocs and parties in the U.S. Senate. The small pair of Democratic moderate bloc D and Republican
moderate bloc C have low agreement and a small number of senators, whereas the Republican bloc B
has a higher agreement than the Republican majority A. The ranking except for C and D is the same
with either criterion, AI, or entropy

Bloc
P

i
AIi

#i

P
i
HðX̂iÞ

ð#iÞlog23
Votes

All 0.490 0.577 100
Republican 0.895 0.188 51
Democratic 0.783 0.381 48
A 0.892 0.209 35.3
B 0.900 0.180 14.0
C 0.753 0.356 3.1
D 0.747 0.355 5.4
E 0.812 0.336 42.4
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We can employ the earlier methodology of using mutual information also for this task.
Let us consider each senator connecting two variables, X indicates the vote probabilities as
in P

�
X̂i

�
, whereas M indicates the bloc membership. The mutual information between

these two variables measures the relevance of bloc membership to predicting the vote prob-
abilities. It is helpful to express mutual information as a percentage of the outcome entropy.
However, Rice’s index appears to be more useful for identifying votes of difference, as
mutual information gives a relatively high dissimilarity score to the cases where one bloc
voted unanimously while another did not. The absolute difference in the proportions of
senators voting yea is more intuitive.

3.3.3 Bloc Abstention

We compare each outcome with the outcome that would arise if no member of the bloc
voted. This usually pinpoints issues that did not get majority support but were nearly unan-
imously supported by a particular bloc. The list of issues whose outcomewould be affected
most by the abstention of Democrat bloc D is shown in Table 4. Using the criterion of how
many outcomes would change with abstention, we can compute a particular kind of an
empirical voting power index. Namely, if the abstention affects the outcome, the bloc cast
a decisive vote.

Table 3 For these issues, the votes of Republican blocs A and B differed most. The gray bars on the
left indicate the proportion of yea votes in a particular bloc (black—100% ‘‘yea’’), the ‘‘o.’’ signifies

the outcome of the vote, whereas the Rice index of party dissimilarity is shown on the right

A B C D E Republican Democrat

Votes affected 226 133 5 14 57 251 60
Changes per member 6.4 9.5 1.6 2.6 1.3 4.9 1.25
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For example, abstention in bloc D would change the outcome in 14 issues. If these 14
issues are distributed over the 5.4 members of the bloc, the index is 2.6. The most influ-
ential bloc through abstention is not the largest, but the second largest bloc B. This is con-
sistent with the observation that larger blocs are not necessarily more influential (Gelman,
Katz, and Bafumi 2004), in contrast, to theories that assume random voting (e.g., Banzhaf
1965). The bloc B with the highest power per vote has 14.0 votes, which is the closest of
all to the theoretically optimal number of approximately 14 votes under the prisoner’s
dilemma with the random voting model (Gelman, Katz, and Bafumi 2004).

At the same time, we see that each party as a whole is less influential than its blocs, just
as claimed in Gelman (2003): the Republican blocs affected 4.9 issues per vote, whereas
the Democrat blocs affected 1.25 issues per vote. But it is also clear that the Republican
blocs together affected 4.18 times as many issues as Democrat blocs, with less than 10%
more votes. In highly polarized situations, the winner takes almost all. Of course, our dis-
cussion is preliminary, merely demonstrating that how the voting power analysis can be
done with a discrete PCA model. Any detailed discussion of voting power should be per-
formed in a more extensive study.

3.3.4 Bloc Elimination

We compare the outcome with the outcome that would arise if a minority bloc voted in the
sameway as the majority bloc of the same party.We examined three such cases: B voting as
A would have affected four outcomes, C voting as A would affect eight outcomes, and D
voting as E would affect nine outcomes. We can consider these indices as objective meas-
ures of party dissimilarity, as we only count those differences that would have affected the

Table 4 The outcomes of roll calls in this list are shown in column o. If, however, bloc D abstained
from voting, the column o# would indicate the outcome, which may differ
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outcome. In that sense, the difference between D and E is more important than the dif-
ference between A and C. The issues where the D–E difference has affected the outcome
are shown in Table 5.

4 Conclusions

We have investigated the first session of the 108th Senate from both a local pairwise per-
spective viewing pairs of senators and a global perspective viewing voting blocs within the
Senate. We found that data analysis methods developed for computer science and the nat-
ural sciences were useful also in political science.

That senators from the same state tend to vote similarly is one conclusion from our
analysis of similarity and influence. We also demonstrated that the handling of missing
votes and the assumptions made about the reasons for senators’ missed votes do have
an impact on empirical conclusions about a senator’s position within the chamber. Our
results show that highly dependent votes reflect the presence of blocs in the U.S. Senate
and we can use the discrete PCA model to empirically identify them. This way enables the
modeling the U.S. Senate as a weighted electoral system. For empirical analysis of voting

Table 5 The outcomes of several roll calls would have changed if the Democratic minority bloc D
voted cohesively with the Democratic majority bloc E. The D–E difference mattered most for the

following issues
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power, we employed the what-if approach, investigating the potential changes in the out-
come if the bloc as a whole abstained from voting. We find agreement between our em-
pirical framework and the theoretical treatment in Gelman (2003): blocs are generally more
influential than parties, but a member of a larger bloc is generally not necessarily more
influential than a member of a smaller one if the voting power is distributed evenly to
individual members. If we only allow two blocs, the Democratic and the Republican,
we find that the Republican bloc affected almost 4.2 times as many issues as the Demo-
cratic bloc, with less than 10% more votes. Similar observations can be drawn from the
estimates of voting power derived for individual senators and states through the informa-
tion theoretic analysis in Section 2.3.

Our analysis can only capture a small part of what happens in the U.S. Senate. We
performed no selection of votes, using them all. Finally, although we do not claim orig-
inality in empirically examining vote similarity (such as the rice index of cohesion that
appeared almost a century ago; Rice 1928), our contribution has been the application
of computing power and new software tools from computer science. In the application
of these various methodologies with a limited a priori theory, we have identified several
directions for new theory and further empirical analysis.
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