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Abstract

Data on the interposition of the immunoreactive nerve cords in Cercaria parvicaudata
Stunkard & Shaw, 1931 (Trematoda: Renicolidae) and its chaetotaxy were obtained. The ner-
vous system of C. parvicaudata was described using immunostaining of 5-hydroxytryptamine
and FMRFamide immunoreactive nerve elements. The morphology and distribution of sen-
sory receptors were analysed using scanning electron microscopy and the silver nitrate
impregnation technique. Our integrated approach to the study of the nervous system revealed
a clear colocalization of surface papillae with nerve cords and commissures in C. parvicaudata.
The structure of the nervous system in C. parvicaudata differs partly from the classical model
that defines the entire nomenclature of chaetotaxy.

Introduction

Cercariae have a variety of behavioural responses that increase the likelihood of encountering a
suitable host and maximising transmission success (Haas, 1994). The majority of continuously
swimming cercariae have specialized locomotion as well as various taxes and kineses; these
features are necessary for reaching the ‘host space’ and the ‘host time’ and successfully infect-
ing the host (Combes et al., 1994; Snyder & Janovy, 1996; Haas, 2003; Morley, 2012; Selbach &
Poulin, 2018). The nervous system and sensory receptors are essential to these processes.

The chaetotaxy of cercariae frequently attracts attention because of its taxonomic value.
Since the advent of the silver nitrate impregnation technique a wealth of data on the topology
of sensory receptors has been accumulated. It has become apparent that chaetotaxy is a repro-
ducible and species-specific trait; it also highlights several patterns in the topology of surface
receptors among families (Richard, 1971; Bayssade-Dufour et al., 1993; Manafov, 2010). The
nomenclature of sensory papillae was developed assuming their colocalization with the orthog-
onal nerve cords (Richard, 1971; Bayssade-Dufour, 1979). This idea was extrapolated to apply
to all cercariae. Currently there are not enough data on the structure of the nervous system in
xiphidiocercariae. An analysis of their chaetotaxy with a detailed description of the nervous
system is presented only in a couple of studies (Grabda-Kazubska & Moczoń, 1981, 1990).
Reconstruction of the nervous system and chaetotaxy combined with morphological data
are presented only for cercariae of Alassogonoporus sp. (Bogéa & Caira, 2001).

In comparison with other representatives of Microphalloidea, the cercariae of family
Renicolidae have numerous plesiomorphic features such as a simple small stylet, a large num-
ber of penetration glands and excretory system organization (Stunkard, 1950; Odening, 1971;
Galaktionov & Dobrovolskij, 2003). In this regard Cercaria parvicaudata Stunkard & Shaw,
1931 (Renicolidae) is an interesting study object due to its phylogenetic position within the
evolutionary advanced superfamily (Tkach et al., 2001; Olson et al., 2003).

We redescribed the nervous system of C. parvicaudata with the immunostaining of
5-hydroxytryptamine (5-HT) and FMRFamide immunoreactive nerve elements. We analysed
the morphology and distribution of sensory receptors with scanning electron microscopy
(SEM) and the silver nitrate impregnation technique. All new data were analysed together
to describe the colocalization of sensory papillae with nerve cords.

Material and methods

Littorina littorea Linnaeus, 1758 was collected from the intertidal zone in the Chupa Inlet of
the Kandalaksha Gulf (White Sea, Russia) in June 2018. Snails were tested for infection in sep-
arate dishes filled with seawater. Cercariae that emerged from three infected snails were
observed with a Leica DM1000 microscope and were identified as C. parvicaudata
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(Microphalloidea, Renicolidae). The larvae were collected in small
drops of seawater and fixed for further studies.

Distribution of sensory receptors was detected using the stand-
ard method of silver nitrate impregnation (Ginetsinskaya &
Dobrovolskij, 1963). Cercariae were fixed in a 5% solution of sil-
ver nitrate for an hour in the dark at 4 °C. Then the cercariae were
washed in distilled water and transferred to glycerol. Ten samples
were studied with a Leica DM1000 microscope.

To study the tegumental surface and the morphology of sen-
sory receptors, cercariae were fixed in a 2.5% solution of glutaral-
dehyde in 0.05 M sodium cacodilate buffer (SCB) with
post-fixation in a 2% solution of osmium tetroxide in 0.05 M

SCB. Then the samples were dehydrated and dried at a critical

point using a Leica EM CPD300 station. Images of 22 samples
were obtained with a Tescan MIRA3 LMU scanning electron
microscope (10 nm platinum sputtering by Jeol JEE-420D).

For immunostaining studies, 52 samples were fixed in a 4%
solution of paraformaldehyde in seawater for 6 h at 4 °C, and
then washed in 0.1 M phosphate buffered saline (PBS). Next, the
samples were kept in 5% Triton X100 solution in PBS for 24 h
and in a 1% solution of bovine albumin in PBS for 6 h at 4 °C.
All specimens were divided into three groups that were treated
with the following antibody solutions in the 0.1% Triton X100
in PBS: rabbit anti-5-HT (S5545 Sigma) (1:1000), rabbit
anti-FMRFamide (AB15348 EMD Millipore) (1:1000) and a mix-
ture of mouse anti-acetylated α-tubulin (T6793 Sigma) (1:500)

Fig. 1. Scanning micrographs of the anterior end of C. parvicaudata. (a) The ventral surface (scale 15 µm); (b) surface of the oral sucker (scale 5 µm) with insertions
(scale 2 µm); (c) Cmo papillae in the oral cavity (scale 1 µm); (d) spongy papilla in CI group (scale 0.5 µm); (e) sensory receptors in CI and StV groups (scale 1 µm); (f)
papillae in CII, CIII groups (scale 1 µm); (g, h) papillae in St2 + St3 groups (scale 1 µm). Arrows, spines; ci, cilia; noCi, non-ciliate papillae; sp, spongy papillae; st,
stylet; tco, tegumental collar.
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and mouse anti-tyrosinated α-tubulin (T9028 Sigma) (1:500). All
cercariae were incubated in primary antibodies for 24 h at 4 °C
then washed in 0.1% Triton X100 in PBS. Then they were incu-
bated in the secondary anti-rabbit CF™488 (SAB4600044
Sigma) or anti-mouse CF™647 (SAB4600182 Sigma) antibodies
for 8 h at 4 °C. Samples were washed in PBS and transferred to
glycerol. The images were obtained with a scanning confocal
microscope Leica TCS SP5 MP.

Results

The tegument of C. parvicaudata is creased and contains small
spines measuring approximately 1.5 µm (figs 1–3), the tail is
devoid of them (fig. 3d, f). The mouth opening and the ventral
sucker are both armed with a double row of large spines measur-
ing 2 µm (figs 1b, c and 2b, e).

The description of the chaetotaxy (fig. 4, table 1) is based on
data obtained using the silver nitrate impregnation technique,
SEM and anti-α-tubulin immunostaining. There are three ‘C’ cir-
cles at the anterior end of the body (figs 1 and 4c). The first circle
CI directly surrounds the oral opening. In the oral opening, we
observed small uniciliate papillae (0.5 µm) that we marked as

Cmo (figs 1c and 4c). Within the arcs of CI, CII and CIII, similar
uniciliate receptors are situated; the cilia length ranges from 0.3 to
1 µm. Each papilla is surrounded by a tegumental collar that
ranges from 0.5 to 2 µm in width. Among the 13 receptors of
CI there are two that are surrounded by folded tegumental collars
(fig. 1b, d). These papillae have a spongy apex that protrudes from
a 0.5 µm pore in the tegumental plate. Such sensory structures
were found only in one sample; the others had tegumental folds
in their place (fig. 1b insertions). There are both uniciliate and
non-ciliate receptors of the CII and CIII groups (fig. 1e, f).
Among the receptors of the StDL groups (fig. 4a) both single uni-
ciliate (with cilia lengths from 0.3 to 8 µm) and paired uniciliate
papillae were found (fig. 3b, e).

Sensory receptors are arranged in a serial pattern on the rest of
the body surface, especially on the dorsal side (fig. 4a). Among the
dorsal papillae there are three almost identical ‘A’ series (9AID,
9AIID, 8-10AIIID) of similar uniciliate receptors (cilia length
from 1 to 10 µm) (fig. 3e, g). The lateral sensory papillae of
each dorsal ‘A’ group are paired and united by a common tegu-
mental collar (fig. 3c, e, g). Such paired papillae are also observed
in the MD, MV, PIID and PIIID zones, where the ciliae lengths in
each pair are 1 µm and 5 µm (figs 3d and 4a). The caudal pair of

Fig. 2. Scanning micrographs of the ventral surface of C. parvicaudata. (a) General view of the ventral surface (scale 15 µm); (b, e) the surface of acetabulum (scale
5 µm); (c) sensory receptor in the inner S circle (S1) of acetabulum (scale 0.5 µm); (d) papillae in AIV, AIIV, AIIIV groups (scale 5 µm); (f) sensory receptor in the outer
S circle (S2) of acetabulum (scale 1 µm); (g) the MV sensory papillae (scale 1 µm); (h) the PI sensory papillae (scale 0.5 µm). Arrows, spines; ci, cilia; noCi, non-ciliate
papillae; tco, tegumental collar.
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receptors includes uniciliate papillae; the length of the cilia is
0.7 µm (fig. 3f). The axis between the caudal sensory endings is
slightly oblique to the longitudinal axis of the tail (figs 4a and 5b).

The sensory receptors on the acetabulum form two ‘S’ cir-
cles. The inner circle consists of nine small uniciliate receptors
that have 1 µm-long cilia, while the outer circle contains six
convex short papillae (figs. 2b, c, e, f and 5c). Receptors of
the outer circle are surrounded by a wide convex tegumental
collars and the length of their cilia does not exceed 0.5 µm
(fig. 2f).

The 5-HT immunoreactive neurons and nerve cords form a
metameric orthogonal construction (fig. 6a–c). Fourteen 5-HT
neurons were found in the body and two in the tail. The bilobed
cerebral ganglion with four pairs of 5-HT neurons is situated
behind the oral sucker on the frontal plane of the body (fig.
6b). The other three pairs of neurons are located alongside the
ventral nerve cords. Three pairs of longitudinal nerve cords are
linked by transverse commissures (fig. 6a, c). In the preacetabular
region three ventral commissures are located at equal intervals.
The ventral longitudinal nerve cords and the last preacetabular

Fig. 3. Scanning micrographs of the dorsal surface of C. parvicaudata. (a) General view of the dorso-lateral surface (scale 10 µm); (b) sensory receptors in StDL
group (scale 5 µm); (c) the paired sensory receptors in AIIID group (scale 1 µm); (d) the PIIID paired papillae (scale 1 µm); (e) sensory receptors in AID group
and the last StDL papillae (scale 5 µm); (f) single caudal papilla (scale 0.5 µm); (g) sensory receptors in AIID, AIIID groups (scale 5 µm). Arrows, spines; ci, cilia;
cp, caudal papilla; ct, caudal tegument; pcs, paired uniciliate sensory receptors; tco, tegumental collar.
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Fig. 4. Chaetotaxy of C. parvicaudata. (a) General view of the dorsal surface; (b) general view of the ventral surface; (c) complete picture of the ventral C-region
chaetotaxy (silver impregnation combined with SEM).

Fig. 5. Anti-α-tubulin immunostaining of C. parvicaudata (scale 20 µm). (a) General view of the ventral plane of anti-α-tubulin immunoreactive structures; (b) gen-
eral view of the dorsal plane of anti-α-tubulin immunoreactive structures; (c) nerve endings of the acetabulum (scale 10 µm). Arrows, sensory receptors (several
groups that have been accurately identified are marked); fc, flame cells; gd, penetration glands ducts; cp, caudal papilla (dotted line, the contour of the body).
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ventral commissure form a plexus in the ventral sucker (fig. 6b).
Two ventral and two dorsal nerve cords are located in the tail (fig.
6b). They are a continuation of the body’s ventral and the dorsal
longitudinal nerve cords.

The FMRFamide immunoreactive elements (fig. 6d, e) are dis-
tributed in a pattern similar to that of the 5-HT ones. The ventral
FMRFamide immunoreactive longitudinal nerve cords are the
most developed and continue into the tail. There are seven ven-
tral, four dorsal and five lateral transverse commissures.

Discussion

The silver nitrate impregnation technique is a standard for visu-
alization of chaetotaxy in cercariae (Ginetsinskaya &
Dobrovolskij, 1963; Antonelli et al., 2014). Some sensory recep-
tors become visible due to silver nitrate but are lost in scanning
electron microscope images (Bogéa & Caira, 2001a) and vice
versa (Denisova & Shchenkov, 2018) (table 1). Using immunos-
taining alone also does not give entirely accurate results (fig. 5,
table 1). SEM is the most reliable approach for investigating the
surface receptors, because this method enables detection of both
the position and morphology of papillae. Based on these data it
is possible to suggest the role of the individual receptor
(Žd’árská & Nebesářová, 2003; Antonelli et al., 2014). It is
assumed that receptors with long cilia respond to low mechanical
stimuli, such as water currents, and are localized on the dorsal
surface (Bogéa & Caira, 2001, 2001b), especially in AD groups
(fig. 3e, g). Sensory papillae with short cilia and a high tegumental
collar are more often located on the ventral surface (figs 1f and
2d, c, f), which is directly in contact with the substrate. The tegu-
mental collar is considered important for tactile mechanorecep-
tion (Bogéa & Caira, 2001).

Sensory papillae of C. parvicaudata are mainly represented by
uniciliate nerve endings surrounded by the tegumental collars
(figs 1–3). This type of papillae is common among both cercariae
and adults of various digenean families (Bogéa & Caira, 2001,
2001a, b; Sohn et al., 2002; Žd’árská & Nebesářová, 2003;
Antonelli et al., 2014). The sensory endings of the oral sucker
of C. parvicaudata are also of the same type (fig. 1e, g, h).
Unlike some other stylet cercariae (Denisova & Shchenkov,
2018), this species does not have complex and polyciliate recep-
tors in the ‘St’ groups. However, in the first circle of ‘C’ groups
of C. parvicaudata we observed spongy papillae with powerful
extensible tegumental collars (fig. 1d). Such structures are
described in cercariae for the first time; however, they may be
similar to the papillae of some miracidia (Dunn et al., 1987;
Semyonov, 1991; Tykhomirov, 2000). A number of other non-
ciliate papillae on the ventral surface look like smooth tegumental
tubercles and have small apertures (figs 1f and 2d). Non-ciliate
receptors have been repeatedly described in other cercariae,
where they were suggested to act as mechanoreceptors (Žd’árská
& Nebesářová, 2003).

S2 circle receptors are characterized by a large and extensible
tegumental collar and short cilia (fig. 2e, f). The similar sensory
receptors are located on the acetabulum of the cercariae of
Renicola sp. NZ (O’Dwyer et al., 2014). However, they were
described as non-ciliate papillae, although the detailed morph-
ology was not presented.

In summary, C. parvicaudata has at least five morphological
types of sensory receptors: type 1 – single uniciliate papillae
(cilia length from 0.3 to 10 µm) with a small closely fitting teg-
mental collar (e.g. fig. 2c); type 2 – single non-ciliate papillae
(e.g. fig. 1f, noCi); type 3 – paired uniciliate papillae (cilia length
1 µm and 5 µm) grouped by a common tegumental collar (e.g. fig.
3c, d, pcs); type 4 – spongy papillae of the CI group (fig. 1d); type
5 – S2 uniciliate papillae surrounded by a large folded tegumental
collars (fig. 2f).

The chaetotaxy of C. parvicaudata is similar to that of other
renicolid cercariae (table 2). Distinctive features of C. parvicaudata
are the same number and morphology of papillae among its dorsal
groups ‘A’ (figs 3e, g and 4a, tables 1 and 2). The serial pattern
is also characteristic of the ventral receptor groups (fig. 4b).

Table 1. The comparative analyses of chaetotaxy of C. parvicaudata based on
different approaches (silver nitrate impregnation, SEM and anti-α-tubulin
immunostaining). Total amount of sensory papillae in the entire region is
highlighted with bold font, one half from the number of receptors in the
region is in regular font. The chaetotaxy described in accordance with the
nomenclature proposed by Richard (1971).

Group of papillae AgNO3 SEM α- tubulin

Cmo 0 5 5

CI 11 13 7(8)

CII 4 9(10) 3(4)

CIII 5 6 2(3)

StV 2(3) 2(3) not identified

St1 1(2) 1 not identified

St2+St3 2(3) 5 not identified

StDL 8(9) 8(9) about 8

AID 2 + 5 + 2 2 + 5 + 2 2

AIL 1 1 0

AIV 1 1 0

AIID 2 + 5 + 2 2 + 5 + 2 1(2)

AIIL 1 1 0

AIIV 2(1) 3(4) 4

AIIID 2 + 4(5) + 2 2 + 2 + 4 + 2 0

AIIIL 1 0 0

AIIIV 2 2 1

MD 2(2 + 1) 2(2 + 1) 1

ML 4(3) 0 0

MV 3 3 3

PID 2 + 1 2 + 1 0

PIL 1(2) 0 0

PIV 1 1 1

PIID 0 0 0

PIIL 3 1 1

PIIV 0 0 0

PIIID 2 2 2

PIIIL 2(3) 0 0

PIIIV 0 0 0

Caudal 2 2 2

S1 6 9 7-8

S2 6 6 7-6
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Fig. 6. 5-HT and FMRFamide immunostaining of C. parvicaudata (scale 20 µm). (a) General view of the ventral 5-HT immunoreactive nerve elements; (b) general
view of the 5-HT immunoreactive elements in the plane of the ganglion; (c) general view of the dorsal 5-HT immunoreactive nerve elements; (d) general view of the
ventral FMRFamide immunoreactive nerve cords; (e) general view of the FMRFamide immunoreactive elements in the plane of the ganglion. *neuron; clc, caudal
longitudinal nerve cord; dlc, dorsal longitudinal nerve cord; G, ganglion; llc, lateral longitudinal nerve cord; p, sucker plexus; tc, transverse commissure; vlc, ventral
longitudinal nerve cord (dotted line, the contour of the body of the larva).
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The presence of the ‘St’ and AID groups in renicolid cercariae are
typical for representatives of Microphalloidea (Richard, 1971).

The process of ‘cephalization’ and the quantitative prevalence of
papillae surrounding the stylet and oral opening have been revealed
for Pleurogenidae, Lecithodendriidae and Microphallidae families
(Bayssade-Dufour et al., 1993;Manafov, 2010). Compared to the cer-
cariae of these families,C. parvicaudata and other renicolid cercariae
have a small number of receptors among ‘C’ and ‘St’ groups. C. par-
vicaudata has a regular pattern in arrangement of dorsal groups of
papillae (AID, AIID, AIIID, MD, PID, PIIID) and a large number
of sensory receptors in acetabular groups (9S1, 6S2) (fig. 4a, tables
1 and 2). The caudal pair of papillae in C. parvicaudata is oblique
to the longitudinal axis of the tail (figs 4a and 5b, table 2). Thus,
the topology of this group is close to that in representatives of

Plagiorchioidea (UD group), while in Microphalloidea the caudal
pair is located strictly across the longitudinal axis of the tail (UDL
group) (Richard, 1971; Bayssade-Dufour et al., 1993).

The distribution of receptors in regions discussed above has
never been observed in broad range of cercariae of
Microphalloidea. Owing to the wide variety of chaetotaxy in
Microphalloidea (Manafov, 2010), it is almost impossible to
trace homology of the specific sensory groups without having
data on the colocalization of sensory papillae and nerve cords
in numerous species of cercariae.

The present immunocytochemical study of C. parvicaudata
has revealed clear colocalization of surface sensory receptors
with nerve cords and commissures (fig. 7). The StDL, AIV,
AIIV, AIIIV, MV, PIV and PID groups of sensory papillae are

Table 2. The number and topology of sensory papillae in some conservative groups in three renicolid cercariae, including new data on C. parvicaudata. The
chaetotaxy described in accordance with the nomenclature proposed by Richard (1971).

Group of receptors C. parvicaudata (present study)
Renicola roscovita (after: Richard, 1971

with changes)

Renicola sp. NZ (after:
O’Dwyer et al., 2014 with

changes)

Cmo 5 10 10

CI 13 13 10

StDL (either) 8 (16) 8 (16) no data, but exist

AID 9 9 no data, but exist

AIID 9 9 no data, but exist

AIIID 9 no data, but exist

S1 9 uniciliate 8 6 uniciliate

S2 6 uniciliate 6 6 non-ciliate

MD no data, but exist

PIIID no data

Caudal no data
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localized where the longitudinal nerve cords pass (fig. 7 vlc, dlc).
The most exact coincidence in the localization is observed
between the AID, AIID and AIIID receptors and the dorsal trans-
verse commissures (fig. 7 dlc, dtc2, dtc3, dtc4). The lateral sensory
endings of the dorsal groups (morphological type 4) are located at
the junctions of each longitudinal dorsal cord with a commissure
(fig. 7 dlc, dtc2, dtc3, dtc4, dtc5, dtc6).

The model of the nervous system of cercariae proposed by
Richard (1971) coincides with the orthogon in the broad sense of
the term (Richter et al., 2010). However, such a pattern has not
yet been described in any real nervous system of cercariae.
According to our data, the location of nerve elements of C. parvi-
caudata differs from the hypothetical pattern of the nervous system
(Richard, 1971) (table 3). These differences primarily concern the

Fig. 7. The reconstruction of 5-HT immunoreactive nerve elements and chaetotaxy within the regions of C. parvicaudata body at the dorso-lateral and ventro-lateral
planes. ac, acetabulum; dlc, dorsal longitudinal nerve cord; llc, lateral longitudinal nerve cord; n, neuron; os, oral sucker; p, sucker plexus; tc, ventral (v-) or dorsal
(d-) transverse commissure with serial number; vlc, ventral longitudinal nerve cord (red arcs, regions of the body, purple dots, surface sensory papillae).
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position of cerebral ganglion and the unequal numberof ventral and
dorsal commissures (fig. 7, table 3). Nevertheless, C. parvicaudata
has an almost ‘regular rare’ orthogonal pattern (Kotikova, 1991)
of the nervous system that resembles the hypothetical pattern.
Such interposition of the nerve cords and commissures is just one
of the orthogonal modifications that differ in the stylet larvae stud-
ied so far (Grabda-Kazubska&Moczoń, 1981; Bogéa &Caira, 2001;
Tolstenkov et al., 2011, 2012; Terenina&Gustafsson, 2014). Among
the stylet cercariae whose nervous systems have been described,
only the Haplometra cylindracea (Plagiorchiidae) had nerve cords
and commissures that had been distributed closely to the intended
scheme (Grabda-Kazubska & Moczoń, 1981).
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