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Kleitman’s conjecture concerning the ‘Kleitman–West problem’ is false for 3-element subsets.

1. The problem

We are concerned here with the graph

G = Gn,k = (Vn,k,En,k), where Vn,k =

(
[n]

k

)
and En,k =

{{A,B} : A,B ∈ Vn,k with |A ∩ B| = k − 1
}

.

For any set of vertices A ⊂ ([n]
k

)
we introduce the set of boundary edges

B(A) =
{{A,B} ∈ En,k : A ∈ A and B ∈ Ac

}
, (1.1)

where Ac =
(

[n]
k

)
rA is the complement of A.

The edge-isoperimetric problem consists of determining, for every positive integer N,

the quantity

b(N) = bn,k(N) = min

{
|B(A)| :A ⊂

(
[n]

k

)
, |A| = N

}
(1.2)

and the corresponding optimal configurations.

The problem was stated in [2] and analysed there for k = 2. It is known as the

Kleitman–West problem (see, for instance, pp. 60–61 of [6], pp. 370–371 of [7] and p. 1298

of [3]; Larry Harper [5] gave it this name, because West told him that he had heard it

from Kleitman).

2. The conjecture

First observe that, instead of considering the boundary of A, one can look at the inner

edges of A and define

I(A) =
{{A,B} ∈ En,k : A,B ∈ A}, (2.1)
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because by the regularity of the graph G we have

i(N) = in,k(N) = max
{
|I(A)| :A ⊂ ([n]

k

)
, |A| = N

}
= 1

2

(
N k(n− k)− b(N)

)
.

Also, I(Ac) = En,k r (I(A) ∪ B(A)
)

and therefore i
((
n
k

)−N) =
(
n
k

) − i(N) − b(N).

Finally, by complementation in [n],

in,k(N) = in,n−k(N).

Therefore it suffices to consider k 6 n
2
.

Now, Kleitman wrote in [7], pp. 370–371 (where his w, X, and S are our N, A,

and
(

[n]
k

)
), ‘There is an obvious conjecture: Suppose 2k 6 n; if w 6

(
n−1
k−1

)
take only sets

containing the first element; if
(
n
k

)
> 2w > 2

(
n−1
k−1

)
take all sets containing the first element.

Since the condition is symmetric between X and SrX and hence between w and
(
n
k

)−w,

this construction handles one element completely; leaving a problem that can be handled

recursively by the same construction on the remaining n − 1 element set. The proposed

optimal configurations do not “nest” inside one another here, which interferes with many

methods of proof.’ The same conjecture can also be found in [6] and [3].

Remark. For k = 2 the conjecture is true by Theorem AK, the main result of [2].

3. An auxiliary result

The lemma below can be found as Theorem 1 in [1] and was obtained independently, but

earlier, in [4]. Still, we prove it, because the arguments are short.

Denote by L(n, k) = (Sn,k;6) the lattice defined by

Sn,k =
{

(x1, . . . , xk) : 1 6 x1 < x2 . . . < xk 6 n, xi ∈ Z+
}

and (x1, . . . , xk) 6 (x′1, . . . , x′k)⇔ xi 6 x′i(1 6 i 6 k).
For xk = (x1, . . . , xk) ∈ Sn,k , the rank of xk is defined as |xk| =

∑k
i=1 xi and, for

W ⊂ Sn,k , let ‖W‖ =
∑

xk∈W |xk|. In addition we let A = {x1, . . . , xk} ∈ ([n]
k

)
, with

elements labelled in increasing order, correspond to xk = Φ(A) = (x1, . . . , xk) ∈ Sn,k , and,

similarly, A ⊂ ([n]
k

)
to Φ(A) =

{
Φ(A) : A ∈ A}.

Using for A and 1 6 i < j 6 n the following ‘pushing to the left’ or so-called switching

operator Si,j , which is frequently employed in combinatorial extremal theory,

Si,j(A) =

{ (
A r {j}) ∪ {i}, if (A r {j}) ∪ {i} /∈ A, j ∈ A, and i /∈ A,
A, otherwise,

one can prove by standard arguments that for every fixed N there is anA ⊂ ([n]
k

)
, |A| = N,

which is left-compressed (that is, stable under all switching operations) and satisfies

|I(A)| = i(N). It is also easy to see that such left-compressed families correspond to

downsets in L(n, k).

Lemma. For fixed N ∈ Z+, maximizing |I(A)| for A ⊂ ([n]
k

)
, |A| = N, is equivalent to

finding a downset W in L(n, k) with |W | = N and maximal ‖W‖.
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Proof. Assume that A ⊂ ([n]
k

)
, |A| = N, and W = Φ(A) is a downset in L(n, k). For

every xk ∈W there are exactly

(xi+1 − xi − 1)

(
k − i

k − 1− i
)

= (xi+1 − xi − 1)(k − i) (3.1)

yk s with yk 6 xk , whose first i components coincide with those of xk and whose (i+ 1)st

component does not, and for which A and B satisfy |A ∩ B| = k − 1, if xk = Φ(A) and

yk = Φ(B). (Here x0 = 0.)

By (3.1), for xk = Φ(A) fixed, there is a total of

k−1∑
i=0

(xi+1 − xi − 1)(k − i) =

k∑
i=1

(k − i+ 1)xi −
k−1∑
i=0

(k − i)xi −
k−1∑
i=0

(k − i)

=

k∑
i=1

xi −
(
k + 1

2

)
= |xk| −

(
k + 1

2

)
(3.2)

B s with Φ(B) = yk 6 xk , {A,B} ∈ En,k , and with Φ(B) ∈ A, because Φ(A) is a downset.

Consequently,

|I(A)| = ∑
xk∈W

|xk| −
(
k + 1

2

)
|A| = ‖W‖ −

(
k + 1

2

)
N. (3.3)

Thus the lemma follows, because A can be assumed to be left-compressed.

4. A counterexample for k = 3

Let k = 3, N =
[(
n
3

)− (n−2
3

)]− (n− 3)− (n− 2), and let n be sufficiently large. Then the

conjecture gives a configuration A =A1 r (A2 ∪A3), where

A1 =
{
A : A ∩ {1, 2} 6= φ

}
,

A2 =
{{2, 3, n}, {2, 4, n}, . . . , {2, n− 2, n}, {2, n− 1, n}},

A3 =
{{2, 3, n− 1}, {2, 4, n− 1}, . . . , {2, n− 2, n− 1},

{2, n− 4, n− 2}, {2, n− 3, n− 2}},
and where W = Φ(A) =S1 r (S2 ∪S3), with

S1 = Φ(A1) =
{

(x, y, z) ∈ Sn,3 : x = 1, 2
}
,

S2 = Φ(A2) =
{

(2, 3, n), (2, 4, n), . . . , (2, n− 2, n), (2, n− 1, n)
}
, and

S3 = Φ(A3) =
{

(2, 3, n− 1), (2, 4, n− 1), . . . , (2, n− 2, n− 1),

(2, n− 4, n− 2), (2, n− 3, n− 2)
}
.

It is obviously better than the other candidate given by the conjecture (of ‘complement

form’ but with the same cardinality) when n is large enough (cf. Theorem AK and the

lemma). On the other hand, we define A′ =A1 r (A2 ∪A′3) for A′3 =
{{1, 2, n}, {1, 3, n},

{1, 4, n}, . . . , {1, n− 2, n}, {1, n− 1, n}}. Then Φ(A′) is a downset in L(n, k) and, for W ′ =

Φ(A′) and S′3 = Φ(A′3),
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‖W ′‖ − ‖W‖ = ‖S3‖ − ‖S′3‖
=
[
(2 + 3 + n− 1) + (2 + 4 + n− 1) + . . .+

(2 + n− 2 + n− 1) + (2 + n− 4 + n− 2) + (2 + n− 3 + n− 2)
]

−
[
(1 + 2 + n) + (1 + 3 + n) + (1 + 4 + n) + . . .+

(1 + n− 2 + n) + (1 + n− 1 + n)
]

= n− 10 > 0, if n > 10. (4.1)

Thus (3.3) and (4.1) show that |I(A′)| can be arbitrarily much larger than |I(A)|, if n

is arbitrarily large. So the conjecture is false for k = 3.

5. Final remarks

This example first appeared in [1], where in the case k = 3 we solve the isoperimetric

problem for ‘good’ parameters N, that is,

N =

(
n

3

)
−
(
m

3

)
6

1

2

(
n

3

)
, for some m ∈ Z+, or

(
m′

3

)
>

1

2

(
n

3

)
, for some m′ ∈ Z+.

We arrived at the edge-isoperimetric problem via [2] and while writing on it in [1] did

not know Kleitman’s conjecture about it. We remark that our positive results in [1] are

obtained by embedding Sn,3 into R3 and then treating the continuous version by analytic

methods. Subsequently we became acquainted with Harper’s closely related paper [4],

solving a continuous version of the ‘Kleitman–West problem’.

It may be of interest to point out the difference between [1] and [4].

(a) In the limiting process n − k → ∞ of [4] the unit cubes get concentrated at single

points, so that the objects may be smoothly embedded in continuous spaces, whereas

in [1] the volume of the unit cube is comparable to the volumes of the objects for

fixed n, which makes things more complicated.

(b) Harper applies variational methods and we just use elementary calculus, which causes

a further complexity of our proof. Nevertheless, it may be possible to greatly simplify

Harper’s proof along our lines.

We do not wish to publish the preprint [1] in its present form, as we feel it is incomplete.

However, several requests have made it clear to us that the counterexample is of great

interest for people working in this area, and therefore we are making it known without

further delay.

References

[1] Ahlswede, R. and Cai, N. (1993) On edge-isoperimetric theorems for uniform hypergraphs.

Preprint 93–018, Diskrete Strukturen in der Mathematik SFB 343, Universität Bielefeld.

[2] Ahlswede, R. and Katona, G. (1978) Graphs with maximal number of adjacent pairs of edges.

Acta Math. Hungar. 32 97–120.

[3] Frankl, P. (1995) Extremal set systems. In Handbook of Combinatorics, Vol. II (R. L. Graham,

M. Grötschel and L. Lovász, eds), North-Holland, pp. 1293–1330.

https://doi.org/10.1017/S0963548399003909 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548399003909


A Counterexample to Kleitman’s Conjecture for an Edge-Isoperimetric Problem 305

[4] Harper, L. H. (1991) On a problem of Kleitman and West. Discrete Math. 93 169–182.

[5] Harper, L. H. Oral communication, September 1997.

[6] Kleitman, D. J. (1979) Extremal hypergraph problems. In Surveys in Combinatorics, Proceedings

of the 7th British Combinatorial Conference (B. Bollobás, ed.), Vol. 38 of London Math. Society

Lecture Notes, Cambridge University Press, pp. 44–65.

[7] Kleitman, D. J. (1991) Extremal problems on hypergraphs. In Extremal Problems for Finite
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