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Large-eddy simulation of large-scale structures
in long channel flow
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We investigate statistics of large-scale structures from large-eddy simulation (LES) of
turbulent channel flow at friction Reynolds numbers Reτ = 2K and 200K (where K
denotes 1000). In order to capture the behaviour of large-scale structures properly,
the channel length is chosen to be 96 times the channel half-height. In agreement
with experiments, these large-scale structures are found to give rise to an apparent
amplitude modulation of the underlying small-scale fluctuations. This effect is
explained in terms of the phase relationship between the large- and small-scale
activity. The shape of the dominant large-scale structure is investigated by conditional
averages based on the large-scale velocity, determined using a filter width equal to
the channel half-height. The conditioned field demonstrates coherence on a scale of
several times the filter width, and the small-scale–large-scale relative phase difference
increases away from the wall, passing through π/2 in the overlap region of the mean
velocity before approaching π further from the wall. We also found that, near the wall,
the convection velocity of the large scales departs slightly, but unequivocally, from the
mean velocity.
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1. Introduction
Recent studies (Kim & Adrian 1999; Morrison et al. 2004; Guala, Hommema &

Adrian 2006; Hutchins & Marusic 2007a, b; Monty et al. 2007; Mathis, Hutchins &
Marusic 2009a) have confirmed earlier observations (Favre, Gaviglio & Dumas 1967;
Kovasznay, Kibens & Blackwelder 1970) of very long large-scale structures in the wall
region of boundary layers, channels and pipes. These structures are visually marked
by streamwise-elongated, alternating low- and high-momentum, meandering narrow
regions, with lengths exceeding 20δ (Monty et al. 2007; Hutchins & Marusic 2007a),
where δ is the boundary-layer thickness, channel half-height or pipe diameter. See
Balakumar & Adrian (2007), Monty et al. (2009) for a description of the differences
between the characteristics of these large structures in the different canonical flows.
The bursting period of these structures, 6δ/U , where U (z) is the mean velocity and z

is the height from the wall, was already noted some decades ago by Cantwell (1981),
who was reviewing the data of Rao, Narasimha & Narayanan (1971). The dynamical
significance of these large-scale structures can be seen in a scale decomposition
of relative energy content, as measured by the pre-multiplied one-dimensional
longitudinal spectrum κxEuu plotted against the log streamwise wavelength, log λx ,
where λx = 2π/κx (equal area under the curve implies equal energy contribution).
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

29
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002995


342 D. Chung and B. J. McKeon

For a boundary layer at friction Reynolds number Reτ = 7.3K (where K denotes
1000, Hutchins & Marusic 2007b), the signature of these structures is related to the
outer peak in κxEuu found at (z/δ, λx/δ) = (0.06, 6). Pipe flow studies indicate that this
peak is located near λx/δ =12–14 (Kim & Adrian 1999) or λx/δ =10 (Morrison et al.
2004). It has been proposed that the wall-normal location of this peak is located at the
middle of the log layer in the boundary layer, z+ ∝ Re1/2

τ or Re3/4
τ (Mathis et al. 2009a)

(the choice of scaling depends on whether the lower limit of the log law is Reynolds-
number-dependent) or z+ ∝ Re4/5

τ (McKeon & Sharma 2010), where the superscript +
indicates scaling in wall units: the friction velocity uτ and kinematic viscosity ν.
However, the scaling remains somewhat ambiguous.

The large-scale structures were found (e.g. Bandyopadhyay & Hussain 1984; Mathis
et al. 2009a) to modulate the amplitudes of superimposed small-scale fluctuations.
To test this idea, these authors first split the streamwise velocity into large- and
small-scale components via a temporal filter at frequency f =U (z)/δ, and then used
either a filtered and rectified small-scale signal or the Hilbert transform to determine
the envelope for the small-scale fluctuations, finally forming the correlation coefficient
between the large-scale fluctuations and the low-pass-filtered envelope of the small-
scale fluctuations. They found that, near the wall, large-scale high-speed regions carry
intense superimposed small-scale fluctuations, but this correlation is reversed above
a height that decreases in outer units with Reτ . We shall attempt to reproduce these
features in this paper.

The footprint of structures centred far from the wall provides an obvious challenge
in terms of determining appropriate convection velocities across the range of turbulent
scales, with particular importance for obtaining the correct wavenumber spectra from
temporal frequency spectra obtained by, for example, hot-wire anemometry. It has
been known for some time that convection velocities deviate from the local mean
in the near-wall region (e.g. Krogstad, Kaspersen & Rimestad 1998). The common
practice is to use Taylor’s frozen-turbulence hypothesis to map from the frequency to
the wavenumber domain, that is, to use the assumption that all structures at a given
wall distance z convect at the same scale-independent mean velocity U (z). It was
shown by a particle image velocimetry (PIV) experiment (Dennis & Nickels 2008)
that this is indeed good approximation at z/δ = 0.16 for a Reθ =4.7K boundary layer,
at least for scales smaller than their field of view, 3.2δ in space and 6.3δ/U in time.
However, note that this wall-normal distance is sufficiently far from the wall that it is
beyond the large-scale energy peak, such that any convection velocity questions are
likely to be insignificant because of the low shear in the outer region. With a field of
view larger than 20δ × 20δ/U and height down to z/δ = 0.049, we revisit the question
of whether the footprint of the large-scale structures, having centres further from the
wall, still convect at the local mean velocity near the wall.

To properly assess the dynamics of these long structures, reported to reach up
to 25δ (Monty et al. 2007), we use large-eddy simulation (LES) coupled with
a wall model (Chung & Pullin 2009). This investigation is ideally suited to the
present wall-modelled LES since its cost depends only on the number of ‘large
eddies’, which, for a channel, is Reynolds-number-independent. In contrast, the
fully resolved direct numerical simulation (DNS) is prohibitively expensive. For
reference, the most ambitious DNS of a channel flow to date is the Reτ = 2K
simulation (Hoyas & Jiménez 2006) in an Lx/δ =8π ≈ 25 channel, where Lx is the
streamwise length; a DNS investigation at higher Reτ and larger Lx of these large-
scale structures is not yet possible. Of course, the use of LES comes at the cost
of subgrid-scale (SGS) modelling, wall modelling and numerical errors, but LES
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Run Reτ Lx/δ Ly/δ h+
0 ∆x/δ ∆tuτ /δ Nx Ny Nz Nt T Uc/Lx

G1 2K 95 7.9 15 0.17 0.006 576 48 48 72 000 110
H3 200K 96 8.0 750 0.083 0.002 1152 96 96 15 800 12
G1b 2K 95 7.9 15 0.17 0.006 576 48 48 22 000 34

Table 1. LES parameters for long channel flows. Channel-transit times based on
data-recording period T and centreline velocity Uc .

is much faster (hours for simulation, minutes for post-processing) than DNS and
experiments; we hope that a controlled application of the present LES combined
with experience in the subject may shed some light on the physics of these large-scale
structures.

Details of the simulations are given in § 2 and discussion of observations are found
in § 3 before the conclusions in § 4.

2. Simulation details
In the present paper, x, y and z, respectively, denote the streamwise, spanwise and

wall-normal directions; the velocity components, u, v and w, are defined accordingly.
As full details of the LES, including the numerical method and SGS model, are given
by Chung & Pullin (2009), we only highlight the important points here. We solve
the filtered Navier–Stokes equations for the LES velocity field u using the stretched-
spiral vortex SGS model (Misra & Pullin 1997; Voelkl, Pullin & Chan 2000). To
circumvent the inhibitive cost of resolving the near-wall region (Chapman 1979),
z <h0, we use a wall model (Chung & Pullin 2009) that supplies off-wall slip-velocity
boundary conditions at h0 to the interior LES, operating in h0 < z < 2δ − h0, where
z = 0, 2δ locates the walls. In this paper, we fix h0 = 0.18 ∆z, and the slip velocity
is calculated using a wall model comprising (i) an evolution equation for the wall
shear stress derived from assuming local inner scaling for the streamwise momentum
equation and (ii) an extended form of the stretched-vortex SGS model that provides a
local log relation along with a dynamic estimate for the local von Kármán constant.
The parameters for the three LES runs are given in table 1. The grid is uniform,
∆x = ∆y = 4∆z, throughout the simulation domain. To capture the physics of long
large-scale structures, we use long a channel, Lx/δ ≈ 96, and the statistics are taken
over T Uc/Lx channel-transit times.

It was shown (Chung & Pullin 2009) that the LES-predicted statistics from the
Reτ =2K case, including means, turbulent intensities and spectra, compare reasonably
well with the DNS of Hoyas & Jiménez (2006). We show the root mean square (r.m.s.)
of the streamwise velocity fluctuations and the LES-resolved spectra in figure 1. The
points in figure 1(a) correspond to actual discretization points. Even though the total
(subgrid plus resolved) r.m.s. is within 90 % of the DNS result, its spectra plotted
in energy-content form overpredict the DNS spectra by about 20 %. As such, the
results presented here should be viewed as approximate, despite capturing energy at
significantly larger wavelengths. On the other hand, the physics reported here can
be seen as robust features of wall turbulence if they are also observed elsewhere.
As an upper-bound estimate for the present model error, consider an SGS model
constructed from random white noise. The statistics from this model are then a kind
of input–output analysis (Jovanović & Bamieh 2005) of the filtered unsteady three-
dimensional Navier–Stokes equations. White-noise spectra notwithstanding, we now
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Figure 1. Comparison between DNS data of Hoyas & Jiménez (2006) and present Reτ = 2K
channel flow LES, run G1b (table 1).

know that this simple model is capable of capturing many aspects of the large-scale
structures (McKeon & Sharma 2010). Therefore, we expect the present results, from
the more realistic SGS model, to be even better at capturing the dynamics of the
large-scale structures.

In order to compute correlations based on temporal averaging, a numerical rake in
runs G1 and H3, fixed in streamwise–spanwise location, is set up to record the LES
velocity u and its modelled subgrid fluctuations Txx (≡ uu − u u) at the wall-normal
locations z = nz∆z (nz = 0, 1, . . . , Nz) and time steps t = nt∆t (nt = 0, 1, . . . , Nt − 1).
Analogous correlations based on spatial averages are also computed from these runs
from a snapshot in time. The only difference between runs G1 and G1b is the
recorded data. For the latter, the three-dimensional data set, u(nx∆x, y, nz∆z, nt∆t ),
is recorded at fixed y, for nx = 0, 1, . . . , 575, nz = 0, 1, . . . , 48 and nt =0, 1, . . . , 21 999,
where ∆x/δ = 0.17, ∆z/δ = 0.041 and ∆tuτ/δ = 0.006.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

29
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002995


LES of large-scale structures in long channel flow 345

3. Discussion of observations
We discuss our observations of the LES velocity fields, with emphasis on the large

scales.

3.1. Convection velocities from spatio-temporal spectra

We begin by using the spatio-temporal data available in this study to investigate the
validity of Taylor’s hypothesis. This involves comparing the mean velocity, U , with
the scale-dependent convection velocity, Uc(κx), since these are equal where Taylor’s
hypothesis is valid.

3.1.1. Spatio-temporal spectrum

Given the autocorrelation of the streamwise velocity fluctuations,

R(ρ, τ ) = 〈u′(x, t)u′(x + ρ, t + τ )〉, (3.1)

where ρ is the streamwise separation; τ is the time delay; 〈 〉 is the ensemble average;
and u ≡ U + u′ such that 〈u′〉 =0, we define the spatio-temporal spectrum Ψ (κx, ω) as
the Fourier transform of R(ρ, τ ). That is, together they form the Fourier transform
pair, given by

Ψ (κx, ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
R(ρ, τ ) e−i(κxρ−ωτ ) dρ dτ, (3.2)

R(ρ, τ ) =

∫ ∞

−∞

∫ ∞

−∞
Ψ (κx, ω) ei(κxρ−ωτ ) dκx dω. (3.3)

When computing Ψ from the present LES simulation, a normalized Hann window
in time, W (t) =

√
2/3[1 − cos(2π t/(Mt∆t ))], where Mt∆t is discrete Fourier transform

(DFT) temporal window size, is applied to the LES-resolved velocity u before taking
the DFT because the velocity is not periodic in time. The spectrum is computed from
run G1b (table 1) (Nt = 22 000 and Mt =576), averaged across 
Nt/(Mt/2) − 1� =75
half-overlapping windows (realizations). No windowing is necessary in the periodic
streamwise direction. Explicitly, Ψ (κx, ω) = 〈û(κx, ω)û∗(κx, ω)/(∆κx

∆ω)〉, where

û(κx, ω) =
∑

t

∑
x

W (t) u(x, t)ei(κxx−ωt); (3.4)

t = (0, . . . , Mt − 1)∆t ; x =(0, . . . , Nx − 1)∆x; κx = (−Nx/2, . . . , Nx/2 − 1)∆κx
;

ω =(−Mt/2, . . . , Mt/2 − 1)∆ω; ∆κx
= 2π/Lx; ∆ω = 2π/(∆tMt ); and 〈 〉 is the ensemble

average over realizations. The wavenumber spectrum Θ(κx) and the frequency
spectrum Φ(ω) are both related to Ψ via

Θ(κx) =

∫ ∞

−∞
Ψ (κx, ω) dω =

1

2
Euu(κx), Φ(ω) =

∫ ∞

−∞
Ψ (κx, ω) dκx, (3.5)

whence the mean square of u fluctuations can be recovered from

〈u′2〉 =

∫ ∞

−∞

∫ ∞

−∞
Ψ (κx, ω) dκx dω =

∫ ∞

−∞
Φ(ω) dω =

∫ ∞

−∞
Θ(κx) dκx. (3.6)

These are even, Φ(ω) = Φ(−ω) and Θ(κx) = Θ(−κx).

3.1.2. Scale-dependent convection velocity

In this paper, the scale-dependent convection velocity, Uc(κx), is defined in terms of
a dispersion relation, ωc(κx), which, in turn, is defined in terms of Θ(κx) and Φ(ω):

Uc(κx) ≡ ωc(κx)/κx, where Θ(κx) ≡ ω′
c(κx)Φ(ωc(κx)), ω′

c(κx) ≡ dωc/dκx; (3.7)
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see also (5.2) of Monty & Chong (2009) and (6.4) of del Álamo & Jiménez (2009).
That is, ωc(κx) is the frequency-to-wavenumber mapping such that the wavenumber
spectrum Θ(κx) can be recovered from the frequency spectrum Φ(ω). In practice, we
use the computationally simpler, but analytically equivalent, form

ωc(κx) = K−1
t (Kx(κx)), Kx(κx) ≡

∫ ∞

κx

Θ(κ ′
x) dκ ′

x, Kt (ω) ≡
∫ ∞

ω

Φ(ω′) dω′, (3.8)

where Kt is monotonic and Kx(0) = Kt (0) = 〈u′2〉/2. In terms of the present LES fields,
we first compute the spatio-temporal spectrum, Ψ (κx, ω), from a two-dimensional
DFT, (3.4), and then compute Θ(κx) and Φ(ω) from (3.5) and finally compute Kx(κx)
and Kt (ω) to obtain ωc(κx). The SGS scales are not represented in this part of the
study. As summarized by del Álamo & Jiménez (2009), approximations to ωc(κx) are
often used in the literature when Ψ (κx, ω) is not available. For example, ω1(κx) (Wills
1964) effectively searches for the maximum of Ψ (κx, ω) along ω at fixed κx ,

∂UΨ (κx, κxU )|U=U1(κx ) = ∂ωΨ (κx, ω)|ω=ω1(κx ) = 0; (3.9)

ω2(κx), also computed by del Álamo & Jiménez (2009), searches for the maximum of
Ψ (κx, ω) along κx at fixed ω,

∂κx
Ψ (κx, ω)|ω=ω2(κx ) = 0; (3.10)

and the recently proposed ω3(κx) (del Álamo & Jiménez 2009) is the first moment of
Ψ (κx, ω) at fixed κx ,

ω3(κx) =

∫ ∞

−∞
ω Ψ (κx, ω) dω

/∫ ∞

−∞
Ψ (κx, ω) dω, (3.11)

and so on. None of these approximations satisfy (3.7) exactly, but these approach
ωc(κx) when the iso-contours of Ψ are locally symmetric in κx and ω/Uc(κx) about
the line ωc(κx) because, then, the first moment and the maximum of the distribution
Ψ (κx, ω) at fixed κx or ω trace out similar (but not identical) lines. Here, we observe
that this is often the case (see figure 2), but with higher asymmetry nearer the wall.
This may explain the higher discrepancy between ω1(κx), ω2(κx) and ω3(κx) as the wall
is approached, as shown in figure 2 of del Álamo & Jiménez (2009). Note that Uc(κx)
is not the convection velocity of individual eddies. To first order, ωc(κx) describes
the apparent passing frequency of the most energetic eddies with wavenumber κx ,
although this is an integral effect over the range of energetic spanwise wavenumbers.

3.1.3. Taylor’s frozen-turbulence hypothesis

Under the assumption of Taylor’s frozen-turbulence hypothesis, Uc(κx) = UT (κx) = U

and ωc(κx) = ωT (κx) = Uκx so, from (3.7), Θ(κx) = UΦ(Uκx). The strict interpretation
of Taylor’s hypothesis that all eddies at a particular wall-normal location travel at
only one velocity U can be relaxed to account for energetic eddies which travel at
U ± 
U , provided Ψ (κx, ω) is symmetric with respect to the ω =Uκx line, that is,

Ψ (κx, ω) = Ψ (ω/U, Uκx), (3.12)

because (3.12) then relates the two definitions in (3.5):

Θ(κx) ≡
∫ ∞

−∞
Ψ (κx, ω) dω =

∫ ∞

−∞
Ψ (ω/U, Uκx) dω = U

∫ ∞

−∞
Ψ (κ ′

x, Uκx) dκ ′
x ≡ UΦ(Uκx).

(3.13)
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Figure 2. Pre-multiplied spatio-temporal spectra of streamwise velocity fluctuations,
κxκtΨ/u2

τ = 0.1, 0.2, 0.3, 0.4, at various heights from Reτ =2K channel flow LES, run G1b
(table 1): , dispersion relation computed from Ψ , λt = λxω/ωc; , Taylor’s hypothesis
λt = λx .

We plot in figure 2 contours of the pre-multiplied spectrum, κxκtΨ/u2
τ versus log λx

and log λt , where λx = 2π/κx , λt =2π/κt and κt = ω/U . When Taylor’s hypothesis
is valid, contours of κxκtΨ/u2

τ should be symmetrical about the λt = λx line, or,
equivalently, ωc(κx) =ωT (κx). Observe from figure 2 that Taylor’s hypothesis is indeed
a good approximation, except near the wall, z/δ = 0.041 and 0.083, and for the
large scales, λt /δ, λx/δ > 10. Note that the LES formulation does not permit effective
examination of smaller scales or locations closer to the wall. The dispersion relation
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Figure 3. Spatio-temporal correlations of streamwise velocity fluctuations, R/u2
τ =

0.3, 0.6, 0.9, 1.2, at various heights from Reτ =2K channel flow LES, run G1b (table 1):
, dispersion relation computed from Ψ , ρt = ρxω/ωc; , Taylor’s hypothesis ρt = ρx .

line computed from Ψ , λt = λxω/ωc, appearing below (to the right) of Taylor’s
hypothesis, λt = λxω/ωT = λx ·1, implies that the convection velocity Uc(κx) = ωc(κx)/κx

is larger than the mean velocity U .
Following Dennis & Nickels (2008), we can also test the validity of Taylor’s

hypothesis in physical space by plotting the autocorrelation R defined by (3.1). Taylor’s
hypothesis is valid, or more precisely there is a straightforward conversion from the
temporal to the spatial domain, where the contours of R are symmetrical about the
ρx = ρt line, where ρt = τU . Like figure 2, R in figure 3 shows an unequivocal departure
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from Taylor’s hypothesis near the wall, z/δ = 0.041 and 0.083 and for the large scales,
ρt/δ, ρx/δ > 10. There also appears to be a slight discrepancy of the opposite sign
for the large scales at z/δ =0.5, which is more marked in the autocorrelation than
our presentation of the spectrum. The boundary-layer PIV experiment performed
by Dennis & Nickels (2008) at Reθ = 4.7K reported that Taylor’s hypothesis is still
valid at the height z/δ = 0.16 for the field of view ρ/δ < 0.29 m/0.09 m= 3.2 and
τU/δ < 1 s × 0.57 m s−1/0.09 m= 6.3. This is consistent with the present LES data
since at z/δ = 0.17 (figure 3c), R is indeed symmetrical about the ρx = ρt line, even up
to very large scales ρt/δ, ρx/δ = 20.

Consideration of spatio-temporal spectra permits some speculation about the
convection velocities of the energetic structures and the error associated with
identifying the footprint of eddies with a particular streamwise scale on the near-wall
region from temporal data. Consistent with the recent DNS studies (del Álamo &
Jiménez 2009), the LES velocity fields unequivocally indicate that the most energetic
large structures convect faster than the local mean velocity close to the wall, with the
deviation growing close to the wall. Conversely, these large structures convect slower
than the local mean velocity near the channel centre (figures 3e and 3f ). This suggests
that these eddies are ‘local’ to a region in the overlap layer, in the sense that the mean
velocity matches their convective velocity somewhere in the log region. We speculate
that the location of this velocity matching corresponds to the location of the large-
scale streamwise energy peak, which is consistent with the approximate magnitude
of the difference between ω/ωT and ω/ωc for large wavelength. This suggests that
the departure from Taylor’s hypothesis at the large scales and fixed wall units should
strengthen with increasing Reynolds number due to the increasing shear near the
wall. In other words, the departure from Taylor’s hypothesis is most easily seen (i)
at near-wall locations, (ii) at the large scales and (iii) for large Reynolds numbers.
Our Reτ =200K data set has (ii) and (iii) but not (i). This is an area of current
experimental study.

3.2. Large-scale–small-scale interaction

With the differences between the spatial and the temporal decompositions in mind,
we now describe the correlation that characterizes the interaction between the large
scales and the small scales. We first extract the large-scale fluctuations uL by applying
a sliding-window top-hat time average, centred at x, to u:

uL(x) =
1

ρ

∫ x+ρ/2

x−ρ/2

u(x ′) dx ′, (3.14)

where ρ is the width of the sliding window. A low-pass filter, (3.14), dampens
fluctuations with frequencies higher than 1/ρ. In spectral space, (3.14) is equivalent
to a multiplication by the filter sin(ρκx/2)/(κx/2). For clarity, we have suppressed
the y-, z- and t-dependence of u in this part of the discussion since these are held
constant. The small-scale fluctuations are defined to be the remaining part of the
motion, uS = u − uL. The small-scale intensity can be measured by its local r.m.s.,

ũS(x) =

(
1

ρ

∫ x+ρ/2

x−ρ/2

u2
S(x

′) dx ′
)1/2

. (3.15)

Physically, ũS measures the local envelope or intensity of small-scale fluctuations. For
example, if uS is normally distributed, 95 % of its amplitude is estimated to lie within
2ũS . If uS is not normal, ũS still measures the spread or envelope of uS . In any case,
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ũ2
S appears in the equations governing uL, obtained by applying the filter (3.14) to

the Navier–Stokes equations (see Reynolds & Hussain (1972) for a related two-scale
decomposition), which is another way to interpret ũS . Note that equivalent approaches
have been used by Bandyopadhyay & Hussain (1984) and Guala, Metzger & McKeon
(2010) to obtain similar results in a range of flows including a laboratory turbulent
boundary layer and the near-wall region of the near neutrally stable atmospheric
surface layer, respectively.

An elegant alternative to obtain the envelope of uS is via the Hilbert transform
(Mathis et al. 2009a), and this approach has led to a significant advance in
understanding of the large-scale–small-scale interactions. However, it is harder to
relate the results to the governing equations of turbulence. When calculating an r.m.s.
defined locally, (3.15), one has to contend with the inevitability that large scales
have been aliased into the small-scale signature. Perhaps a better alternative is to
use a tapered window in (3.15), alleviating some but not all of the aliasing. We
have tried this and found some minor changes, but the general picture is unaltered,
and so we decided to keep the simple definition in (3.15). The Hilbert transform
bypasses this aliasing difficulty at the enveloping stage, but the issue reappears
when one filters the envelope signal. We note that even if a perfect decomposition
can be found, nature herself does not permit it, that is, the two peaks in κxEuu

(Hutchins & Marusic 2007b) are never completely isolated, at least in Fourier
space.

In terms of LES quantities, we can write (3.14) and (3.15) as

uL(x) =
1

ρ

∫ x+ρ/2

x−ρ/2

u(x ′) dx ′, (3.16a)

ũS(x) =

(
1

ρ

∫ x+ρ/2

x−ρ/2

[
u2

S(x
′) + Txx(x

′)
]
dx ′

)1/2

, (3.16b)

where u is the resolved velocity; uS = u − uL; and Txx is the modelled subgrid
fluctuations associated with scales smaller than the numerical discretization ∆x . Using
(3.16), we now construct the normalized large-scale–small-scale correlation based on
temporal filtering:

Rρ(z) =
〈(uL − U )(ũS − 〈ũS〉)〉

〈(uL − U )2〉1/2〈(ũS − 〈ũS〉)2〉1/2
, (3.17)

where the global or ensemble average is formally given by

〈φ〉 ≡ lim
Ly,Lx→∞

1

LyLx

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2

φ(x ′, y ′) dx ′ dy ′. (3.18)

Note that the visual envelope of uS , e.g. 2ũS , does not affect Rρ because the constant
factor cancels out in the normalized correlation (3.17). In other words, Rρ does not
contain amplitude information; it does, however, contain phase information, since
it is the cosine of the angle (or phase) between uL − U and ũS − 〈ũS〉, using the
inner product 〈 〉. In practice, we obtain Rρ by replacing the integrals with sums and
ensuring the averaging area LxLy is much larger than the largest physical scale in the
flow (see table 1). The spatial correlations are calculated from runs G1 and H3 at
one snapshot in time. The temporal counterpart to (3.17), Rτ , is defined analogously,
with t and τ respectively replacing x and ρ, while holding other variables constant.
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Figure 4. Profiles of large-scale–small-scale correlations, Rτ (b, d ) and Rρ(a, c), defined by
(3.17). Filter sizes and Reτ inset. Error lines in (c) indicate convergence uncertainties from
inadequate averaging period T . Data from channel flow LES, runs G1 and H3 (table 1).

For Rτ , the wall-parallel plane average (3.18) is replaced by a long-time average over
large T .

The physical meaning of the correlations R = Rτ or Rρ is as follows. If large-
scale higher-speed regions carry higher small-scale intensity (positively correlated, in
phase), then R ≈ 1. Similarly, if large-scale higher-speed regions carry lower small-scale
intensity (negatively correlated, π out of phase), then R ≈ −1. R ≈ 0 can occur either
if there is no correlation between the large and small scales, or if they are π/2 out
of phase, which is physically the more likely option given the strong correlation for
small and large z/δ, as already demonstrated by Bandyopadhyay & Hussain (1984)
and Mathis et al. (2009a). Although the r.m.s.-based correlation coefficient (3.17) is
different from its Hilbert-transform-based counterpart in the boundary-layer study of
Mathis et al. (2009a), we expect similar qualitative features if the large-scale–small-
scale phase relationship is a universal aspect of wall-bounded flows, namely channels
and boundary layers. We note that the accuracy of Rρ and Rτ largely depends on
the accuracy of the modelled SGS stresses, which, for filter width ρ = δ, constitutes
approximately 80 % of ũS (figure 1a).

Figure 4 compares the correlations based on spatial filtering, Rρ , and correlations
based on temporal filtering, Rτ , for Reτ = 2K and Reτ = 200K and different values of
ρ and τ . Observe that near the wall, uL and ũS are positively correlated, up to R ≈ 0.4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

29
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010002995


352 D. Chung and B. J. McKeon

(the maximum in the domain we resolve, although note that the maximum value likely
increases closer to the wall), but above a certain crossing height, z/δ ≈ 0.2 for Reτ = 2K
and z/δ ≈ 0.11 for Reτ = 200K, they are negatively correlated, down to R ≈ −0.4.
The trend of decreasing crossing height with increasing Reynolds number is also
reported by Mathis et al. (2009a) for the turbulent boundary layer, with z/δ ≈ 0.07 for
Reτ = 2.8K and z/δ ≈ 0.03 for Reτ = 19K. The correlations with ρ/δ =0.33 (Reτ = 2K)
and ρ/δ = 0.17 (Reτ = 200K) in figure 4(a, c) correspond to filtering with two LES
grid points. That is, these largely represent the correlations between the resolved LES
velocity field and SGS stresses. Note that the profiles of Rρ are largely determined
by and highly sensitive to the resolved and subgrid-scale interaction. Therefore, it
is possible that the exact details of subsequent analyses presented in the paper on
the spatio-temporal relationship between the large and small scales could be highly
sensitive to the exact SGS model used. We note, however, that the overall results
show strong similarity with a range of experimental results across the full width of
the channel, suggesting that the physics behind the subgrid-scale model is at least
related to that in the fully resolved flow. In this paper, the correlations are largely
independent of filter sizes 1.7 <τU/δ, ρ/δ < 12.3, although the deviation between
Rρ and Rτ with the larger filter sizes from the one with ρ/δ = 1.7 close to the
wall is exacerbated in the spatial plots, as would be expected from the arguments
concerning Taylor’s hypothesis at the large scales in the preceding section. A small
sensitivity to filter sizes is also reported by Mathis et al. (2009a). The kick-up of
Rρ relative to Rτ for curves corresponding to ρ/δ = 7.0, 12.3 in the vicinity of
z/δ =0.45 (figures 4a and 4b) is presumably related to the convection velocity effect
demonstrated in figure 3(e). Perhaps a precise quantitative comparison is impossible
owing to the different envelope-extraction techniques and the different type of wall-
bounded flows. Note that a robust feature is that R increases slightly at the centre of
the channel, but remains negative (figure 4). This increase is also seen in boundary
layers (Mathis et al. 2009a) (and this sensitivity appears to be slightly enhanced in
the case of the spatial correlation), but the increase is from negative correlations
to positive correlations, a feature possibly related to the intermittent boundary-layer
thickness not present in channel flows, as confirmed by the recent comparison study by
Mathis et al. (2009b).

Although the large-scale–small-scale interaction was recently (Mathis et al. 2009a)
framed in terms of amplitude modulation, the results could also be discussed in
terms of the relative phase between the large and small scales, as originally posed
by Bandyopadhyay & Hussain (1984) and implied by the formulation of (3.17). We
examine this phase relationship in following section.

3.3. Conditionally averaged large-scale velocities and small-scale intensities

To gain some insight into the structure of the large-scale coherent regions and the
phase relationship between uL and ũS shown in figure 4, we now turn our attention to
conditionally averaged uL and ũS fields computed with the streamwise filter window
ρ = δ. As seen in figure 4 and in Mathis et al. (2009a), this phase relationship is
relatively unaffected by the choice of ρ.

Figure 5 shows ensemble averages, 〈uL|A1〉(
x) and 〈ũS |A1〉(
x), conditioned on
the occurrence of a large-scale low-speed event at z/δ = 0.090, A1 = uL(x×) − U < 0,
where 
x = x − x×, x+

× = (0, 0, 180) ⇔ x×/δ =(0, 0, 0.090), computed from a snapshot
of the LES run G1b (table 1). The spanwise–wall-normal view (figure 5a) has
previously been shown in figure 7(a) of Hutchins & Marusic (2007b) with the choice
z+

× = 150 from the DNS data of del Álamo et al. (2004) at Reτ ≈ 1K. For reference,
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Figure 5. Conditionally averaged streamwise velocity fields in (a, b) spanwise–wall-normal
and (c, d ) streamwise–wall-normal planes, with 〈u+

L |A1〉(
x) and 〈ũ+
S |A1〉(
x), where A1

is the low-speed event uL(x×) − U < 0 with probability P {A1} = 0.53 at x×/δ = (0, 0, 0.090):
(a, c) filled contours of |〈u+

L |A1〉−U+| = 0.1, 0.3, 0.5, 0.7, line contours of |〈ũ+
S |A1〉−〈ũ+

S 〉| = 0.01;

and (b, d ) filled contours of |〈ũ+
S |A1〉 − 〈ũ+

S 〉| = 0.01, 0.02, 0.03, 0.04, line contours of

|〈u+
L |A1〉 − U+| = 0.1. Darker to lighter shades and dashed lines for negative values. Vectors

represent in-plane velocity components. Data from snapshot of Reτ = 2K channel flow LES,
run G1b (table 1).
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the vectors in figure 5(a, b) correspond to LES discretization points. The agreement
between DNS and LES results is striking. The essential features of the DNS averages
are also seen in the present LES averages, namely (i) a splatted low-speed region
with minimum 〈u+

L |A1〉 ≈ − 0.8 and width 
y/δ ≈ 0.4 centred on x× flanked on both
sides by weaker high-speed regions with maximum u+

L ≈ 0.1; and (ii) the in-plane
large-scale swirl at ∆x/δ ≈ ±0.2, z/δ ≈ 0.2.

We report that P {A1} =0.53, implying that nearly identical figures, but with signs
reversed, are seen when we condition on the large-scale high-speed event A′

1 = uL× −
U > 0 (the complement of A1) because

0 = 〈φ〉 ≡ 〈φ|A1〉P {A1} + 〈φ|A′
1〉P {A′

1} ⇒ 〈φ|A1〉 ≈ −〈φ|A′
1〉,

(equality holds if P {A1} is exactly 1/2). Since the reversed picture, conditioned
on A′

1, exists, neighbouring high-speed regions in figure 5(a) could be interpreted as
equal-magnitude high-speed regions whose strengths have been smeared by other less-
dominant large-scale dispersive motions in the averaging process. Thus, a detailed
description of physical processes far away from x× is difficult to ascertain. One
may be tempted to believe from the conditional average fields that these structures
are aligned in the streamwise direction; instantaneous visualizations (see Monty
et al. 2007) suggest that these are in fact meandering structures, which would have
been obscured in the averaging over the periodic domain in our study. However,
this apparent meandering coherence could equally well be interpreted as adjoined
regions of shorter coherence, which are individually well captured by the conditional
averaging. The spanwise scale appears to be approximately δ.

Figure 5(b) shows the spanwise structure of the relationship between uL and
ũS: near the wall, uL and ũS are positively correlated, but above z/δ ≈ 0.1, they
are negatively correlated. This crossing point is different from z/δ ≈ 0.2 seen in
figure 4(a). The discrepancy is resolved by noting the inclusive (A1 = uL − U > 0) and
non-collocated (two-point) nature of the conditioning used for the averages 〈uL|A1〉
and 〈ũS |A1〉, as well as the single plane rather than integral representation. In contrast,
the correlation R (see (3.17)) is constructed from the one-point collocated statistic,
〈uLũS〉 ≡

∫
〈uL|uL〉〈ũS |uL〉p(uL) duL, which is not the same as

∑
A〈uL|A〉〈ũS |A〉P {A}.

The opposite uL–ũS configuration of the weaker flanking regions in figure 5(b)
suggests that these too experience phase reversal.

Figure 5(c, d ) shows the streamwise–wall-normal structure of the dominant large-
scale motion and the relationship between the small and large scales. Despite a
filter size of δ, the coherence indicated in the figure suggests a wavelength of order
6δ, suggesting that the very long structures are the dominant contributors to the
uL(x×) − U < 0 signal. Clearly, the large-scale coherence has a streamwise phase that
is dependent on the wall-normal location, at least where the coherence is strongest.
Close to the wall this phase variation is weak, while the conditional averages with
x+

× =(0, 0, 1000) ⇔ x×/δ = (0, 0, 0.5) shown in figure 7 show that far from the wall
the phase variation with increasing z/δ is also weak, but close to π rather than zero.
In the intermediate region, the phase changes rapidly with wall-normal distance. The
contours of constant |ũ+

S − 〈ũ+
S 〉| in figure 5(d ) reveal a surface that cuts through the

large-scale low-speed region at a diagonal such that the region of negative correlation
is larger where 
x < 0 but smaller where 
x > 0. The angle of this separatrix, at
least in the aforementioned intermediate region, is about 14◦, suggesting that the
modulation reversal (Mathis et al. 2009a) is related to the structure inclination angle
(Marusic & Heuer 2007).
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Figure 6. Sketch of observed large-scale–small-scale interaction.

0.8
–2000

(a)

–1000

�y+

�y/δ

z+

0

0.1

0 0.5–0.5–1.0 1.0

1000 2000
1500

1000

500

0

0.6

z/
δ 0.4

0.2

0

(b) 0.8

14°

�x/δ

–3.0 –2.0 –1.0 0 1.0 2.0

–6000 –4000 –2000 0

�x+

z+

2000 4000
3000

2000

1000

0

1.6

1.2

z/
δ 0.8

0.4

0

Figure 7. Conditionally averaged streamwise velocity fields in (a) spanwise–wall-normal and
(b) streamwise–wall-normal planes, with 〈u+

L |A2〉(
x) and 〈ũ+
S |A2〉(
x), where A2 is the

low-speed event uL(x×) − U < 0 with probability P {A2} = 0.47 at x×/δ = (0, 0, 0.5): filled
contours of |〈u+

L |A2〉 − U+| = 0.1, 0.3, 0.5, 0.7, line contours of |〈ũ+
S |A2〉 − 〈ũ+

S 〉| = 0.01, 0.02,
0.03, 0.04. Darker to lighter shades and dashed lines for negative values. Vectors represent
in-plane velocity components. Data from snapshot of Reτ = 2K channel flow LES, run G1b
(table 1).

Figure 5(c, d ) and P {A1} ≈ 1/2 suggest the stylized picture of a streamwise train
of alternating high-speed and low-speed regions with the shape in figure 5(c), as
illustrated in figure 6. We propose that this sign change of uL − U determines the
shape of the ũS region over a range of wall-normal distances. Consider the governing
equation for ũ2

S , which contains the production term −2ũ2
S∂uL/∂x (Reynolds &

Hussain 1972). Now, ∂uL/∂x < 0 between a high-speed region placed upstream (−
x)
of a low-speed region. Then, the production −2ũ2

S∂uL/∂x > 0 increases ũ2
S , resulting in

the picture 5(d ). The opposite mechanism applies between a low-speed region placed
upstream of a high-speed region, in which case −2ũ2

S∂uL/∂x < 0, a backscatter of
small-scale streamwise energy. This results in the quarter-phase shift between the uL

and ũS region.
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Figure 8. Conditionally averaged streamwise velocity fields in (a) spanwise–wall-normal
and (b) streamwise–wall-normal planes, with 〈u+

L |A3〉(
x) and 〈ũ+
S |A3〉(
x), where A3 is

the streamwise high-speed-to-low-speed boundary event (∂uL/∂x)(x×) < 0 with probability
P {A3} = 0.48 at x×/δ = (0, 0, 0.090): filled contours of |〈u+

L |A3〉 − U+| = 0.1, 0.3, 0.5, 0.7, line
contours of |〈ũ+

S |A3〉 − 〈ũ+
S 〉| = 0.01, 0.02, 0.03, 0.04. Darker to lighter shades and dashed lines

for negative values. Vectors represent in-plane velocity components. Data from snapshot of
Reτ =2K channel flow LES, run G1b (table 1).

A clearer picture emerges when we compute averages conditioned on the uL > 0 to
uL < 0 boundary, signalled by the event A3 = (∂uL/∂x)(x×) < 0 (figure 8), interpreted
as a quarter-phase streamwise shift of figure 5(c, d ). As expected, ũS is lowest precisely
where ∂uL/∂x is minimum (at x×), figure 8(b). The bulge-like shape of the uL regions
is preserved (see figure 8a), although with smaller sizes. Like the average conditioned
on A1, this figure is also reversible, with P {A3} =0.48.

The interactions further from the wall can be investigated by repeating the
conditional averaging at x×/δ = (0, 0, 0.5). A different relationship between the large-
and small-scale activity emerges, as shown in figures 7 and 9. Instead of the 0–
π/2 phase difference close to the wall, |u+

L − U+| and |ũ+
S − 〈ũ+

S 〉| are substantially
out of phase, that is, the phase difference is approximately π. This variation is in
good agreement with boundary-layer results over a Reynolds number range of three
decades, namely Bandyopadhyay & Hussain (1984) and the recent work of Guala
et al. (2010). From these other works, it would be expected that the large and small
scales have close-to-zero phase difference very close to the wall; the LES formulation
prevents us from confirming this point.

From figure 5 we estimate the peak values: u+
L ≈ 0.8, v+

L ≈ 0.2 and w+
L ≈ 0.05. Thus,

the peak shear stress carried directly by these large-scale structures is estimated
from this conditionally averaged picture as −〈uLwL〉+ ≈ 0.04, and the peak large-
scale streamwise intensity is estimated as 〈u2

L〉+ ≈ 0.64. The relative magnitude and
phase of the other velocity components associated with the large-scale structure
can be confirmed by looking at equivalent conditional averages for the other
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Figure 9. Conditionally averaged streamwise velocity fields in (a) spanwise–wall-normal
and (b) streamwise–wall-normal planes, with 〈u+

L |A4〉(
x) and 〈ũ+
S |A4〉(
x), where A4 is

the streamwise high-speed-to-low-speed boundary event (∂uL/∂x)(x×) < 0 with probability
P {A4} = 0.48 at x×/δ = (0, 0, 0.5): filled contours of |〈u+

L |A4〉 − U+| = 0.1, 0.3, 0.5, 0.7, line
contours of |〈ũ+

S |A4〉 − 〈ũ+
S 〉| = 0.01, 0.02, 0.03, 0.04. Darker to lighter shades and dashed lines

for negative values. Vectors represent in-plane velocity components. Data from snapshot of
Reτ = 2K channel flow LES, run G1b (table 1).

velocity components. Note that it is extremely difficult to obtain this sort of data
experimentally, so we are effectively using the LES data in a predictive capacity to
complete the description of the trends in the structure of the large-scale motions.

Figures 10(a, b), 11(a, b) and 12(a, b) reveal that while the spanwise velocity exhibits
a footprint consistent with the implied swirl of figure 5, such that vL = 0 statistically
on the conditioning plane, but with a wall-normal phase variation similar to that
exhibited by the streamwise velocity uL. By contrast, the wall-normal velocity velocities
in figures 10(c), 11(c) and 12(c) are substantially in phase in the wall-normal direction,
independent of the conditioning criterion.

The conditional averaging technique can be taken one step further to demonstrate
that, despite a large wall-normal footprint in the streamwise velocity, the large scales
will contribute locally to the mean shear stress because of the relative wall-normal
phases of the large-scale streamwise and wall-normal velocities. Figures 10(c), 11(c)
and 12(c) show the conditioned shear stress distributions associated with the large
scales, that is the product of the conditional averages of uL and wL. A conditionally
averaged uLwL yields a different answer that includes the effects of smaller structures
since 〈uLwL|A1〉 �= 〈uL|A1〉〈wL|A1〉. The relative phases of uL and wL imply that there
will be a contribution to the mean shear stress close to the wall. Note that this result is
subject to the success of the conditional averaging in capturing streamwise coherence
in uL and wL, but the trend is believed to be robust.
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Figure 10. Spanwise and wall-normal velocities, and Reynolds stress associated with
the conditionally averaged streamwise velocity in (a) spanwise–wall-normal and (b, c)
streamwise–wall-normal planes, with 〈u+

L |A1〉(
x) and 〈ũ+
S |A1〉(
x), where A1 is the low-speed

event uL(x×) − U < 0 with probability P {A1} = 0.53 at x×/δ = (0, 0, 0.090): (a) filled contours
of |〈ṽ+

L |A1〉| = 0.04, 0.08, 0.12, 0.16; (b) filled contours of |〈w̃+
L |A1〉| = 0.03, 0.06, 0.09, 0.12;

(c) filled contours of |〈w̃+
L |A1〉(〈ũ+

L |A1〉 − U+)| =0.02, 0.04, 0.06, 0.08; and (a–c) line contours
of |〈ũ+

S |A1〉 − 〈ũ+
S 〉| = 0.01. Darker to lighter shades and dashed lines for negative values.

Vectors represent in-plane velocity components. Data from snapshot of Reτ = 2K channel flow
LES, run G1b (table 1).

Finally, we note that the same large-scale–small-scale interaction is largely
unaffected by Reynolds number differences, as shown in the comparison between
Reτ = 2K and Reτ = 200K data (figures 13 and 14). This is consistent with
the well-known collapse of the streamwise intensity (and spectrum) in outer
variables. It is to be expected that any significant changes in the conditionally
averaged fields due to the effect of increasing Reynolds number would be
observed nearer the wall, exactly in the region that is not accessible in our LES
data.
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Figure 11. Spanwise and wall-normal velocities, and Reynolds stress associated with
the conditionally averaged streamwise velocity in (a) spanwise–wall-normal and (b, c)
streamwise–wall-normal planes, with 〈u+

L |A2〉(
x) and 〈ũ+
S |A2〉(
x), where A2 is the low-speed

event uL(x×) − U < 0 with probability P {A2} = 0.47 at x×/δ = (0, 0, 0.5): (a) filled contours
of |〈ṽ+

L |A1〉| = 0.04, 0.08, 0.12, 0.16; (b) filled contours of |〈w̃+
L |A1〉| = 0.03, 0.06, 0.09, 0.12;

(c) filled contours of |〈w̃+
L |A1〉(〈ũ+

L |A1〉 − U+)| =0.02, 0.04, 0.06, 0.08; and (a–c) line contours
of |〈ũ+

S |A1〉 − 〈ũ+
S 〉| = 0.01. Darker to lighter shades and dashed lines for negative values.

Vectors represent in-plane velocity components. Data from snapshot of Reτ = 2K channel flow
LES, run G1b (table 1).

4. Summary and conclusions
We have designed a series of LES runs that are well suited to the investigation

of large-scale structures in a long channel. The observations from this study
lend themselves to an interpretation of the ubiquitous influence of large-scale
structures in turbulent channel flow, consistent with the boundary-layer experiments
of Bandyopadhyay & Hussain (1984), Mathis et al. (2009a) and Guala et al. (2010).

Using simultaneous time and spatial data to construct the spatio-temporal spectrum,
we compute the convection velocity, and show that departure from Taylor’s frozen-
turbulence hypothesis is noticeable near the wall, z/δ < 0.08, and for large scales, >6δ,
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Figure 12. Spanwise and wall-normal velocities, and Reynolds stress associated with the
conditionally averaged streamwise velocity in (a) spanwise–wall-normal and (b, c) streamwise–
wall-normal planes, with 〈u+

L |A4〉(
x) and 〈ũ+
S |A4〉(
x), where A4 is the

streamwise high-speed-to-low-speed boundary event (∂uL/∂x)(x×) < 0 with probability
P {A4} = 0.48 at x×/δ = (0, 0, 0.5): (a) filled contours of |〈ṽ+

L |A1〉| = 0.04, 0.08, 0.12, 0.16;
(b) filled contours of |〈w̃+

L |A1〉| = 0.03, 0.06, 0.09, 0.12; (c) filled contours of
|〈w̃+

L |A1〉(〈ũ+
L |A1〉 − U+)| =0.02, 0.04, 0.06, 0.08; and (a–c) line contours of |〈ũ+

S |A1〉 −
〈ũ+

S 〉| = 0.01. Darker to lighter shades and dashed lines for negative values. Vectors represent
in-plane velocity components. Data from snapshot of Reτ = 2K channel flow LES, run G1b
(table 1).

in channel flow at Reτ = 2K. This is consistent with the footprint of the very large
scales reaching down to the wall. The opposite effect – that the large scales convect
slower than the local mean – is also observed for these large scales away from the
wall (z/δ = 0.5). This, too, is consistent with the conditional averages that show that
these large-scale structures reach far away from the wall.

Flow fields constructed from conditional averages confirm the extent of the influence
of scales with λx ≈ 6δ and reveal the wall-normal dependence of the spatial relationship
between the high-speed large-scale region and the underlying small-scale intensity.
The LES results appear to underline that the apparent amplitude modulation effect
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Figure 13. Reynolds number effect, (a, c) Reτ = 2K, (b, d ) Reτ = 200K, on conditionally
averaged streamwise velocity fields in the (a, b) spanwise–wall-normal and (c, d ) streamwise–
wall-normal planes, with 〈u+

L |A1〉(
x) and 〈ũ+
S |A1〉(
x), where A1 is the low-speed event

uL(x×) − U < 0 with probability P {A1} = 0.53 (Reτ = 2K) and P {A1} = 0.51 (Reτ = 200K)
at x×/δ = (0, 0, 0.090): filled contours of |〈u+

L |A1〉 − U+| = 0.1, 0.3, 0.5, 0.7, line contour of
|〈ũ+

S |A1〉 − 〈ũ+
S 〉| = 0.01. Darker to lighter shades and dashed lines for negative values. Vectors

represent in-plane velocity components. Data from snapshots of Reτ = 2K and Reτ = 200K
channel flow LES, respectively runs G1b and H3 (table 1).
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Figure 14. Reynolds number effect, (a, c) Reτ =2K, (b, d ) Reτ = 200K, on conditionally
averaged streamwise velocity fields in (a, b) spanwise–wall-normal and (c, d ) streamwise–
wall-normal planes, with 〈u+

L |A2〉(
x) and 〈ũ+
S |A2〉(
x), where A2 is the low-speed event

uL(x×) − U < 0 with probability P {A2} = 0.47 (Reτ = 2K) and P {A2} = 0.47 (Reτ =200K)
at x×/δ = (0, 0, 0.5): filled contours of |〈u+

L |A1〉 − U+| = 0.1, 0.3, 0.5, 0.7, line contours of
|〈ũ+

S |A1〉 − 〈ũ+
S 〉| = 0.01, 0.02, 0.03, 0.04. Darker to lighter shades and dashed lines for negative

values. Vectors represent in-plane velocity components. Data from snapshots of Reτ = 2K and
Reτ =200K channel flow LES, respectively runs G1b and H3 (table 1).
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is better described in terms of the spatial phase between the large and the small
scales; indeed our correlation coefficients, Rρ and Rτ , are formulated in terms of
this phase relationship. In this context, the zero in the correlation between the large-
and small-scale activity described in § 3.2 can be interpreted as the location where,
on average, the corresponding signals are π/2 out of phase. A picture emerges in
which the small scales are nominally in phase with the large scales near the wall
and π out of phase further from the wall. In the intervening region, where the
phase difference is approximately π/2, the small scales track the sign of ∂uL/∂x, as
per the small-scale production/backscatter term −2ũ2

S∂uL/∂x. We can interpret the
small-scale activity, ũS , in terms of local structure, noting that the inferred locus of
the maximum small-scale energy corresponds to the well-known structure inclination
angle of approximately 10◦–20◦, at least at this Reynolds number.

We conclude by observing that the very large scales appear to dictate some of the
turbulence behaviour close to the wall, with interesting implications for the ‘top-down
versus bottom-up’ debate concerning the dynamical significance of different regions
of the flow. It is perhaps more correct to say simply that the two regions can now be
determined to be inextricably linked.
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