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Abstract. We adapt techniques developed by Hochman to prove a non-singular ergodic
theorem for Zd -actions where the sums are over rectangles with side lengths increasing
at arbitrary rates, and in particular are not necessarily balls of a norm. This result is
applied to show that the critical dimensions with respect to sequences of such rectangles
are invariants of metric isomorphism. These invariants are calculated for the natural action
of Zd on a product of d measure spaces.
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1. Introduction
Let G be a countable group with a non-singular left action on a standard probability space
(X, B, μ), which is assumed to be ergodic throughout. Each g ∈ G induces a non-singular
map on X which we also denote by g. The measures μ and μ ◦ g are equivalent and so the
Radon–Nikodm derivative

ωg = dμ ◦ g

dμ

is well defined and strictly positive almost everywhere. In turn each g ∈ G induces a linear
isometry on L1 given by ĝφ(x) = φ(gx)ωg(x). Note that this is not the usual transfer
operator, which in the context of group actions is given by φ(g−1x)d(μ ◦ g−1)/dμ, but
fulfils essentially the same role and simplifies notation significantly.
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1.1. Critical dimensions. For conservative integer actions the Hurewicz ergodic theorem
ensures that, for φ ∈ L1,

lim
n→∞

∑n
i=1 φ(ix)ωi(x)∑n

i=1 ωi(x)
=

∫
φ dμ

almost everywhere. Since the action is conservative, if φ > 0almost surely then both the
numerator and the denominator in the theorem diverge to infinity. Therefore the ergodic
theorem says that both are diverging at the same rate. This suggests that the growth rate
of

∑n
i=1 ωi may encode some intrinsic behaviour of the system. This motivated work by

Dooley and Mortiss [3–5, 9] in which they conducted a rigorous study of the growth rate
of

∑n
i=1 ωi and created invariants called the upper and lower critical dimensions. We aim

to extend this study from the context of Z-actions to those of other countable groups, with
Z

d -actions being the focus of this paper. The critical dimensions are defined for a countable
group G as follows.

Fix a sequence e ∈ B1 ⊆ B2 ⊆ · · · of finite subsets of G; we will refer to such a
sequence as a summing sequence. For t ∈ R write

Lt =
{
x ∈ X : lim inf

n→∞
1

|Bn|t
∑
g∈Bn

ωg(x) > 0
}

and

Ut =
{
x ∈ X : lim sup

n→∞
1

|Bn|t
∑
g∈Bn

ωg(x) = 0
}

.

Observe that Lt and Ut are decreasing and increasing respectively with t , and are disjoint.

Definition 1.1. The lower critical dimension of (X, μ, G) with respect to summing
sequence S = {Bn}∞n=1 is defined by

α = α(S) = sup{t : μ(Lt ) = 1}.
The upper critical dimension of (X, μ, G) with respect to {Bn}∞n=1 is defined by

β = β(S) = inf{t : μ(Ut) = 1}.
When α and β coincide we let γ = α = β and call it the critical dimension.

Intuitively, the lower critical dimension gives the slowest growth rate of all the
subsequences of

∑
g∈Bn

ωg(x), and the upper critical dimension the fastest. It follows
from the definitions that 0 ≤ α ≤ β and from Fatou’s lemma that α ≤ 1.

For real numbers a ≤ b let [[a, b]] = [a, b] ∩ Z. When G = Z the sets Bn are normally
taken to be the discrete intervals [[1, n]] = {1, . . . , n} in analogy with the range of the
sums in the ergodic theorem. However, in the case of a general countable group there is no
such standard choice for Bn. This raises the question: how does the choice of the summing
sequence affect the critical dimensions?

We start to address this question in §3. As the summing sequences we consider are
almost exclusively symmetric about the origin, for reasons which will become apparent
below, we first look at how the critical dimensions of T and T −1 with respect to the
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intervals [[1, n]] affect the critical dimension of T with respect to [[−n, n]]. We then move
on to examine product Zd -actions on spaces X = X1 × · · · × Xd , where each standard
generator ei acts by applying a transformation Ti : Xi → Xi to the ith coordinate. We con-
sider the critical dimensions with respect to sequences of rectangles Bn = B1

n × · · · × Bd
n

where each Bi
n = [[−si(n), si(n)]] for some increasing si : N0 → N0. Note the require-

ment that these rectangles are symmetric about the origin. For each 1 ≤ i ≤ d we write γi

for the single critical dimension (if it exists) of Ti with respect to [[−n, n]]. Our main result
in this section, Theorem 3.4, shows that for these actions the critical dimension γ (S) of
the product action is a weighted average of the γi , with weightings determined by relative
growth rates of the functions si .

THEOREM 1.2. Suppose that for an increasing function s : N → N the limits ci =
limn→∞(log si(n)/log s(n)) exist, and that one of these is non-zero. Then

γ (S) =
∑d

i=1 ciγi∑d
i=1 ci

.

A pair of illustrative applications of this result in the case d = 2 are that

γ (Ssq) = γ1 + 2γ2

3
and γ (Sexp) = γ2

where Ssq = [[−n, n]] × [[−n2, n2]] and Sexp = [[−n, n]] × [[−	en − 1
, 	en − 1
]].
For integer actions, the first and simplest demonstration of the intrinsic nature of the

critical dimensions is due to Mortiss who proved that when Bn = [[1, n]] they are invariants
of metric isomorphism [9].

Definition 1.3. Two non-singular actions of a group G on probability spaces (X, μ)

and (X′, μ′) are metrically isomorphic if there exist null sets X0 ⊂ X, X′
0 ⊂ X′ and a

bimeasurable map φ : X\X0 → X′\X′
0 such that μ′ ◦ φ ∼ μ and for all g ∈ G we have

φ(gx) = gφ(x) almost everywhere.

One of the purposes of this paper is to show that the same holds for Zd -actions when
the Bn are given by certain rectangles. More precisely, we take the Bn to be integer balls
of a metric of the form

ρ(u, v) = max
1≤i≤d

Fi(|ui − vi |) (1.1)

where each Fi : [0, ∞) → [0, ∞) satisfies Fi(0) = 0, is subadditive and strictly increas-
ing. The first two properties ensure ρ is a metric and the latter guarantees that Fi has an
inverse, which we denote by fi , and which is superadditive on [0, ∞). We call such a
metric ρ on Z

d rectangular. For a subset S ⊆ Z
d with metric ρ we say ρ is a rectangular

metric on S if it is the restriction of a rectangular metric on Z
d to S. In this case we say

(S, ρ) is a rectangular metric space.
We will refer to the balls Br(z) of rectangular metrics as rectangular balls. We assume

that rectangular balls carry the information of their radius with them, and observe that the
centre can then be determined from the ball. Rectangular metrics are translation invariant
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and so Br(z) = z + Br where

Br = Br(0) =
d∏

i=1

[[−	fi(r)
, 	fi(r)
]].

We will mainly be focused on rectangular balls with r ∈ N0. We call a summing sequence
B1 ⊆ B2 ⊆ · · · rectangular if it is constructed in this way for some rectangular metric.

Restricting temporarily to d = 2 by taking F1(s) = s and F2(s) = √
s or F2(s) =

log (1 + s), we define rectangular metrics with integer balls [[−n, n]] × [[−n2, n2]] and
[[−n, n]] × [[−	en − 1
, 	en − 1
]], respectively. In particular, the critical dimensions
calculated earlier are associated to rectangular summing sequences, and will be seen to
be invariants.

Mortiss’s proof that the critical dimensions are invariants of metric isomorphism made
use of the ergodic theorem.

1.2. Ergodic theorem. Given an ergodic action of a group G on a probability space
(X, μ) and a summing sequence B1 ⊆ B2 ⊆ · · · of finite subsets of G, the ergodic theorem
is satisfied if for every integrable function φ,

lim
n→∞

∑
g∈Bn

ĝφ∑
g∈Bn

ĝ1
=

∫
φ dμ

almost everywhere.
For non-singular actions of countable groups the question of when the ergodic theorem

holds is an area of current research. The foremost positive result is due to Hochman [7],
who proved it holds for free, non-singular and ergodic Z

d -actions and Bn = {u ∈ Z
d :

‖u‖ ≤ n} where ‖·‖ is a norm on R
d . Crucially, this does not include the case where

(Bn) is rectangular because the fi(n) may have completely different orders of growth.
For example, it excludes both the sequences Ssq or Sexp for Z2. To apply the arguments
of Mortiss verbatim it is therefore necessary to show the ergodic theorem extends to
rectangular summing sequences.

This requires care because there are natural choices of Bn for which the ergodic theorem
is known to fail. One such, due to Brunel and Krengel [8], shows the ratio ergodic
theorem (a consequence of the ergodic theorem in this context) fails for Bn = [[0, n]]d and
d > 1. The generally cited reason for this failure is that the sets [[0, n]]d fail to satisfy the
Besicovitch property, as defined in [7]. However, as noted in [2], sequences of symmetric
rectangles with increasing side lengths do have the Besicovitch property.

Prior to Hochman’s work, Feldman [6] used a simpler method to prove a weaker result;
it was assumed that each of the standard generators e1, . . . , ed of Zd acted conservatively
on X and ‖·‖ was taken to be the supremum norm on R

d . Both methods follow the standard
approach: one produces a dense subset of L1 for which the theorem holds and then applies
a maximal inequality to extend this to all of L1.

Upon a quick examination of Feldman’s proof it becomes apparent that the sets
Bn = [[−n, n]]d can be replaced by the rectangles

∏d
i=1[[−si(n), si(n)]] in the production

of an appropriate dense set of functions. The maximal inequality is then proved using
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two properties. The first is that balls of norms in R
d satisfy the Besicovitch property;

see [2] for a proof. The second is that they satisfy the doubling condition, |B2n| ≤
C|Bn|, for some fixed constant C. We have already noted that our rectangles satisfy the
Besicovitch property. Moreover, rectangles Bn satisfy an additive version of the doubling
condition,

|2Bn| = |Bn + Bn| ≤ 2d |Bn|, (1.2)

where for rectangles Bn and λ ∈ N we let λBn = ∏d
i=1[[−λsi(n), λsi(n)]]. This

coincides with the sum of λ copies of Bn. Note that when (Bn) is rectangular the
translation invariance of the metric ensures that λBn ⊆ Bλn. These sets are very
different; even in the simple case above with F1(s) = s and F2(s) = log (1 + s) we have
2Bn = [[−2n, 2n]] × [[−2	en − 1
, 2	en − 1
]] and B2n = [[−2n, 2n]] × [[−	e2n − 1
,
	e2n − 1
]]. This example exhibits that we cannot just use the metric doubling condition.

Despite using (1.2), one can still deduce that the maximal inequality holds for
rectangles. We explain this modification in §2. This means that Feldman’s result can be
extended so that the sums can be taken over rectangles.

This extension is, in fact, sufficient to show that the critical dimensions taken with
respect to rectangles are invariants of metric isomorphism between product Zd -actions of
the form considered in Theorem 1.2. This is because for actions of this type ergodicity of
the whole action implies ergodicity of the Ti , with respect to the marginals, which in turn
gives the conservativity of the generators as required by Feldman. However, we would like
to show the dimensions are invariants independent of the form of the measure space and
the particular group action.

It is then natural to ask whether similar changes can be made to Hochman’s
method for producing a dense set of functions. His approach consistently views Z

d as
a translation-invariant metric space, which is our reason for considering rectangular
metrics. It also makes use of both the doubling and Besicovitch properties to produce the
appropriate dense set of functions, in addition to a type of finite-dimensionality property
of Zd with respect to balls of norms. In §2 we will set out how one can use (1.2) and a
corresponding finite-dimensionality property with respect to rectangular metrics to adapt
Hochman’s method to prove the following ergodic theorem.

THEOREM 1.4. Let Zd have a non-singular and ergodic action on a probability space
(X, μ) and Bn = {u ∈ Z

d : ρ(u, 0) ≤ n} for some rectangular metric ρ on Z
d . Then for

every φ ∈ L1, as n → ∞, ∑
u∈Bn

ûφ∑
u∈Bn

û1
→

∫
φ dμ.

With this result in hand, the arguments of Mortiss can be applied to see that the critical
dimensions of summing sequences of rectangles are invariants of metric isomorphism.

COROLLARY 1.5. The upper and lower critical dimensions with respect to any summing
sequence of balls Bn = {u ∈ Z

d : ρ(u, 0) ≤ n}, for some rectangular metric ρ, are
invariants of metric isomorphism.
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2. The ergodic theorem for rectangles
In the standard proof for ergodic theorems there are two key ingredients. The first is a
maximal inequality. For φ ∈ L1(X) let

Rnφ(x) =
∑

g∈Bn
φ(gx)ωg(x)∑

g∈Bn
ωg(x)

.

The maximal inequality holds if there exists C > 0 such that for any φ ∈ L1 and ε > 0,

μ
(

sup
n≥1

|Rnφ| > ε
)

≤ C

ε
‖φ‖1.

The second key ingredient is a dense subset H of L1 such that for all h ∈ H and all σ ∈ G,
∑

g∈Bn\σBn
ĝh − ∑

g∈σBn\Bn
ĝh∑

g∈Bn
ĝh

→ 0 (2.1)

almost surely.
The latter condition is used to show that the ergodic theorem holds for functions in

the set

D = span{c + h − σ̂ h : c ∈ R, σ ∈ G, h ∈ H }.
The maximal inequality is used to extend the convergence of Rnφ to the closure of D

in L1. It then suffices to show that D is dense in L1. The details of this argument can be
found in [1].

In the case where H = L∞ condition (2.1) is implied by
∑

g∈Bn�σBn
ωg∑

g∈Bn
ωg

→ 0 almost surely, (nsFC)

which we call the non-singular Følner condition. For measure-preserving actions this
reduces to the standard Følner condition for the sequence Bn, implying that G is amenable.
For integer actions, if Bn = [[1, n]] then (nsFC) follows from the Chacon–Ornstein lemma,
as in [1], and the assumption that the action is conservative. Hochman’s variant of the
Chacon–Ornstein lemma in [7], summing over balls of norms, also implies (nsFC).

It should be noted that Feldman’s argument shows (2.1) directly for a smaller dense set
than L∞, rather than via (nsFC).

To see that the maximal inequality holds for Bn = {u ∈ Z
d : ρ(u, 0) ≤ n} with ρ a

rectangular metric we refer the reader to a concise proof of the maximal inequality for
balls of norms as given in [6, Inequality 5.3], attributed to Aaronson and Becker. Upon
examining this proof the reader will observe that the same argument, with two changes,
goes through for rectangles. The first is that to apply the Besicovitch property in the proof
of Inequality 5.2 one needs to intersect with a finite subset; this can be taken arbitrarily
large at the end of the proof. That rectangular metric spaces have the Besicovitch covering
property follows from a comment in [2, pp. 7]. The second is that one replaces each
occurrence of B2n with 2Bn, and then applies the modified doubling condition (1.2).
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2.1. The non-singular Følner condition. With the maximal inequality in hand it is
sufficient to show that (nsFC) holds. We will directly adapt the approach in [7]. First we
will briefly explain the changes which need to be made to Hochman’s approach, and then
we show that rectangular metrics have finite coarse dimension, the property lying at its
foundation.

2.1.1. Modifications. In order to apply the arguments from [7] to rectangular metric
spaces one needs to make two changes and then check that these do not affect the nature
of the rest of the argument.

The first is that, as with the maximal inequality, wherever the metric doubling condition
is applied, rather than considering balls Bλr(z) one instead looks at the rectangle z +
λBr and applies (1.2). This is required because rectangular metrics do not necessarily
satisfy the metric doubling condition. Specifically, this change needs to be made to the
proofs of [7], and it goes through essentially because the latter set is contained by the
former.

The second is a change in the notion of a ‘thickened sphere’. In Hochman’s paper, where
the metrics were norms, these thickened spheres are given by the sets Br+t\Br−t for t ≤ r .
The idea here is that t is very small compared to r , and so the thickened sphere looks
almost like the sphere ∂Br . In our situation this appears not to be the correct definition.
For example, if one considers the case where one side of rectangle is growing exponentially
and takes t = log 2 then for large radii the thickened sphere, which is meant to be a slight
thickening of the boundary, would consist of more than half of the points in the rectangle.
Instead we take the following definition which emulates the behaviour in the case where
the metric is given by a norm.

When S = Z
d , for rectangular balls B = z + ∏d

i=1[[−	fi(r)
, 	fi(r)
]], let ∂B

denote the set of points in Z
d which lie in the usual topological boundary of

z + ∏d
i=1[−	fi(r)
, 	fi(r)
] in R

d , and call these sets boxes. Another perspective is
that the box associated to a rectangle is the collection of points for which some coordinate
takes the maximum or minimum value in that coordinate over the rectangle.

For t ∈ N we define the t-boundary ∂tB to be the collection of z ∈ Z
d which lie within

distance t of ∂B with respect to the rectangular metric. Equivalently,

∂tB =
⋃

u∈∂B

(u + Bt).

When S ⊆ Z
d we take ∂B and ∂tB to be the intersections of their Zd counterparts with S.

We refer to a collection of t-boundaries, possibly with different values of t , as thick boxes.
The impact of this change is seen in two ways. One is that these boundaries appear

in the statements of and arguments for [7] and so one needs to check that these are
unaffected. The key point here is that the only property of thickened boundaries used
in these proofs is that it contains all the points within a given distance of the topological
boundary, which is the definition we have taken above. The other change is to the definition
of the course dimension. In the following section we show that rectangular metrics
satisfy this slightly changed definition. Theorem 1.4 then follows by applying Hochman’s
arguments.
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2.1.2. Coarse dimension. What follows is a restatement of [7] but for rectangular
metrics.

Definition 2.1. For a rectangular metric space S and R > 1 the relation cdimRS = k (read:
S has coarse dimension k at scales R or greater) is defined by recursion on k as follows:
(i) cdimRS = −1 for S = ∅ and any R;

(ii) cdimRS is the minimum integer k for which cdimtR∂Br(s) ≤ k − 1 for any t ≥ 1,
r ≥ tR and s ∈ S.

The only difference between this definition and the one in [7] is the change in the definition
of the t-boundary.

The following proposition will be useful in the proof that Zd has finite coarse dimension
with respect to the redefined boundary and rectangular metrics.

For e ∈ {±ei : 1 ≤ i ≤ d} let Fr ,u(e) be the face of Br(u) = u + ∏d
i=1[[−	fi(r)
,

	fi(r)
]] in direction e from u, that is, those points in Br(u) whose projection onto e

is maximal. The face of the thickened boundary ∂tBr(u) in direction e is the set of points
within distance t of Fr ,u(e) and is denoted by ∂tFr ,u(e).

PROPOSITION 2.2. Let (Zd , ρ) be a rectangular metric space. Then there are R =
R(ρ) > 5n, where n ∈ N satisfies nfi(1) ≥ 1 for all i ∈ [[1, d]], and k ∈ N with the
following property: given z1, . . . , zk ∈ Z

d , t (1), . . . , t (k) ≥ 1 and a decreasing sequence
r(1), . . . , r(k) with r(k) ≥ t (1) · · · t (k)R such that zi ∈ ⋂

j<i ∂t (j)Br(j)(zj ), then

k⋂
i=1

∂t(i)Br(i)(zi) = ∅.

Proof. For notational clarity we write ri = r(i) and ti = t (i) in this proof.
We use induction on the d to prove that there is k = k(d) with the required property.

With d and the metric ρ fixed, we may then choose R > 5n with n ∈ N chosen large
enough for nfi(1) ≥ 1 for all i ∈ [[1, d]].

For d = 1 let k = 2. Let f = f1. The set ∂t(1)Br(1)(z1) is a union of two closed intervals
length 2	f (t1)
 + 1 centred on ±	f (r1)
, respectively. These intervals are disjoint as
r(1) > t(1). We may assume z2 lies in the interval centred on −	f (r1)
. Now since
R > 5n we have

	f (r2)
 > f (r2) − 1 ≥ f (2t1 + t2 + 2n) − 1 ≥ 2	f (t1)
 + 	f (t2)
 + 1,

using superadditivity of f and the choice of n. In particular, ∂t(2)Br(2)(x2) does not
intersect the interval centred on −	f (r1)
.

Also

	f (r2)
 + 	f (t2)
 < 2(	f (r1)
 − 	f (t1)
),
otherwise, using R > 5n and the fact that the r(i) are decreasing,

2	f (t1)
 + 	f (t2)
 ≥ 2	f (r1)
 − 	f (r2)

≥ 	f (r1)
 ≥ f (2t1 + t2 + 2n) − 1 > 2	f (t1)
 + 	f (t2)
.
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This means that ∂t(2)Br(2)(z2) also does not intersect the interval centred on +	f (r1)
,
and the claim follows.

Now assume we have proved k(d − 1) exists. Suppose k ≥ 2dk(d − 1) + 2. By the
pigeonhole principle the thickening of some face F(e) of Br(1)(z1) contains k(d − 1) + 1
of the points z2, . . . , zk(d). As these are the only points used, we may henceforth assume
they are z2, . . . , zk(d−1)+2. Using essentially the argument from the initial step, the
thickened faces in directions ±e of each {∂t(i)Br(i)(zi)}2k(d−1)+2

i=2 cannot intersect the
thickened faces F(±e) of ∂t(1)Br(1)(z1). Therefore the ∂t(i)Br(i)(zi) intersect in ∂tF (e)

only if the projections of ∂t(i)Br(i)(zi) ∩ ∂t(1)F (e) along e onto F(e) intersect. These
projections are exactly thick boxes for projection of our rectangular metric in direction
e, so we may apply the previous case to deduce that

∂t(1)F (e) ∩
k(d−1)+1⋂

i=2

∂t(i)Br(i)(zi) = ∅,

but by assumption zk(d−1)+2 lies in that intersection. Hence k < 2dk(d − 1) + 2 and so
k(d) ≤ 2dk(d − 1) + 1.

Using the above we are able to prove the following claim.

PROPOSITION 2.3. Z
d has finite coarse dimension with respect to any rectangular metric.

Proof. As before, we write ri = r(i) and ti = t (i) in this proof.
Let R = R(ρ) and k′ = k from the previous proposition. Let k′′ ∈ N, to be determined,

and k = k′k′′ + 1. In order to show Z
d has finite coarse dimension it suffices to show that

if we are given
(1) t (1), . . . , t (k) ≥ 1,
(2) r(1), . . . , r(k) such that r(i) ≥ t (1) · · · t (k)R, and
(3) points z1, . . . , zk ∈ Z

d such that zi ∈ ⋂
j<i ∂t (j)Br(j)(zj ) for j < i,

then
⋂k

i=1 ∂t(i)Br(i)(zi) = ∅.
By the previous proposition it suffices to find a subsequence of length k′ for which the

radii are decreasing. Consider the points z2, . . . , zl (l ≥ 2) and suppose r(j) > r(1) for
each 2 ≤ j ≤ l. Each of these points lies inside ∂t(1)Br(1)(z1), by assumption. Moreover,
if i > j then

zj �∈ zi +
d∏

m=1

(−	fm(ri)
 + 	fm(ti)
, 	fm(ri)
 − 	fm(ti)
)

⊇ zi +
d∏

m=1

(−	fm(r1)
 + 	fm(r1/R)
, 	fm(r1)
 − 	fm(r1/R)
).

Let A = Z
d ∩ ∏d

m=1(−	fm(r1)
 + 	fm(r1/R)
, 	fm(r1)
 − 	fm(r1/R)
). The final line
implies that we also have zi �∈ zj + A. Now, z2, . . . , zl is a collection of points contained
by B = ∂t(1)Br(1)(z1) ∪ Br(1)(z1) such that zi �∈ zj + A for all i �= j . Then the sets
zj + 1

2A are disjoint and each B ∩ (zj + 1
2A) contains at least one orthant of zj + 1

2A,
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and hence at least
d∏

m=1

⌊
1
2
(	fm(r1)
 − 	fm(r1/R)
 − 1)

⌋

points. By the disjointness we must have

(l − 1)

d∏
m=1

⌊
1
2
(	fm(r1)
 − 	fm(r1/R)
 − 1)

⌋
≤

d∏
m=1

(2(	fm(r1)
 + 	fm(t1)
) + 1),

that is,

l ≤ 1 + 2d

d∏
m=1

2(	fm(r1)
 + 	fm(r1/R)
) + 1
	fm(r1)
 − 	fm(r1/R)
 − 3

.

Dividing through each fraction by 	fm(r1)
 and recalling from the previous proposition
that R = R(ρ) > 5n, where n ∈ N satisfies nfl(1) ≥ 1 for all l ∈ [[1, d]], we see that
fm(r1) ≥ fm(5n) ≥ 5 (from superadditivity). By using this in addition to the fact that
the fm are increasing and superadditive we see that

	fm(r1/R)

	fm(r1)
 ≤ 	fm(r1/5)


5	fm(r1/5)
 − 1
≤ 1

4

and so

l ≤ 1 + 2d

d∏
m=1

2(1 + 1/4) + 1/5
1 − 1/4 − 3/5

≤ 36d + 1.

Therefore if we take k′′ > 36d + 1, then r(j) ≤ r(1) for some 2 ≤ j ≤ k′′. We can then
repeat this process with r(j) and so on to find a subsequence with decreasing radii
satisfying the conditions, which will have length at least k′ by our choice of k.

The proof of this proposition concludes the summary of the more significant changes
which it is necessary to make to Hochman’s work [7]. The remainder of the argument can
be concluded as in that paper from Theorem 4.4 onwards, as outlined earlier in this section.

3. Critical dimension for Zd -actions
We now have a varied collection of summing sequences in Z

d for which the ergodic
theorem holds, and hence for which the critical dimensions are invariants of metric
isomorphism. In this section we restrict attention to these sequences in order to address
the first question raised in the introduction: how do α and β depend on the choice of
summing sequence?

3.1. Critical dimension for symmetric summing sets in Z. The integer theory predomin-
antly sums over the sets [[1, n]]. It will be useful to examine what the critical dimension of a
Z-action with respect to [[1, n]] says about the critical dimension with respect to [[−n, n]].

Let T : X → X be a non-singular transformation describing a Z-action. We shall refer
to the critical dimensions of T with the summing sets [[1, n]] as standard and denote the
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lower and upper standard critical dimensions by α+ and β+, respectively. We will denote
the lower and upper standard critical dimensions of T −1 by α− and β−. Let L+

t , L−
t denote

Lt for T and T −1 respectively, with the standard summing sets, and similarly with Ut .

LEMMA 3.1. Let T : X → X determine a non-singular Z-action. Let α and β be the
critical dimensions with respect to [[−n, n]]. Then

max(α+, α−) ≤ α ≤ β ≤ max(β+, β−).

Proof. We first prove the result for the lower critical dimension. Observe that

lim inf
n→∞

1
(2n + 1)t

n∑
i=−n

ωi(x) = 1
2t

lim inf
n→∞

1
nt

−1∑
i=−n

ωi(x) + 1
nt

n∑
i=1

ωi(x)

≥ 1
2t

lim inf
n→∞

1
nt

−1∑
i=−n

ωi(x) + 1
2t

lim inf
n→∞

1
nt

n∑
i=1

ωi(x).

Hence Lt ⊇ L+
t ∪ L−

t and the result follows. In the other case we get

lim sup
n→∞

1
(2n + 1)t

n∑
i=−n

ωi(x) ≤ 1
2t

lim sup
n→∞

1
nt

−1∑
i=−n

ωi(x) + 1
2t

lim sup
n→∞

1
nt

n∑
i=1

ωi(x).

Therefore Ut ⊇ U+
t ∩ U−

t and we are done.

In particular, if the standard upper and lower critical dimensions of T agree and those
of T −1 do also then α = max(α+, α−) = β.

The following theorem of Mortiss and Dooley provides a number of situations where
the upper and lower critical dimensions with respect to [[1, n]] of a transformation T , and
those of its inverse, agree.

THEOREM 3.2. (See [5]) Let T denote the odometer transformation on the space
(
∏∞

i=1 Z2,
∏∞

i=1 μi). Then the lower and upper critical dimensions are given by

α = lim inf
n→∞ −1

n

n∑
i=1

log2 μi(xi) = lim inf
n→∞

1
n

n∑
i=1

H(μi)

and

β = lim sup
n→∞

−1
n

n∑
i=1

log2 μi(xi) = lim sup
n→∞

1
n

n∑
i=1

H(μi)

almost everywhere, where H(μi) = − ∑1
j=0 μi(j) log2(μi(j)), the entropy of the

measure μi .

The entropy H(μ) of the measure μ on {0, 1} can be chosen to take any value between
0 and 1, by varying p ∈ (0, 1) where μ(0) = p. It is clear that for many choices of product
measure

∏∞
i=1 μi the sequence (1/n)

∑n
i=1 H(μi) converges as n → ∞. In this case

the upper and lower critical dimensions are equal. Moreover, any value in (0, 1) can be
achieved by the dimensions.

https://doi.org/10.1017/etds.2020.116 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.116


Non-singular Zd -actions 3733

Another consequence of this theorem is that for an odometer action T on
(
∏∞

i=1 Z2,
∏∞

i=1 μi) the inverse T −1 has the same upper and lower critical dimensions
as T . This follows from how T −1 can also be considered as an odometer on the same
space, with the roles of 0 and 1 reversed, and the fact that H(μi) = H(νi) where
νi(0) = 1 − μi(0).

These observations, combined with Lemma 3.1, ensure we can produce examples of
transformations with a single critical dimension α = β = γ with respect to [[−n, n]] for
any γ ∈ (0, 1).

3.2. Critical dimension for balls of norms. In this part we show that the critical
dimensions for balls of a norm are independent of the choice of norm.

Let Br = Br(0) ∩ Z
d where Br(0) is the closed ball of radius r with respect to a given

norm ‖·‖, and let B ′
r denote the corresponding set for another norm ‖·‖′. We consider the

summing sequences (Bn) and (B ′
n). The proof relies on essentially two properties of these

sequences, which we will make precise below. The first is that any two sequences of balls
are intertwined, in the sense that each ball is contained by a sufficiently large ball in the
other sequence. The second property is that each ball is somewhat well approximated from
above and below by balls in the other sequence.

The ideas used here make sense in a general countable group G, as in the introduction,
so we temporarily return to that setting.

Let each of {An}∞n=1 and {A′
n}∞n=1 be an increasing sequence of subsets of G. We say

that {An}∞n=1 overlays {A′
n}∞n=1 if for all n ∈ N there exists N ∈ N such that A′

n ⊆ AN .
We say that {An}∞n=1 and {A′

n}∞n=1 are interweaving if both {An}∞n=1 overlays {A′
n}∞n=1 and

vice versa. In particular, this is the case if
⋃

n An = G = ⋃
n A′

n, as is the case for the
sequences of balls in Z

d described above.
Suppose {An}∞n=1 overlays {A′

n}∞n=1. Let

m(n) = max(k ≥ 0 : A′
k ⊆ An) and M(n) = min(k ≥ 0 : An ⊆ A′

k)

where for technical reasons we take A′
0 = ∅. Then both m(n) and M(n) are increasing

with n and diverge as n → ∞. We say {An}∞n=1 closely overlays {A′
n}∞n=1 if there exists

δ ∈ (0, 1) such that for all n sufficiently large,

min
{ |A′

m(n)|
|An| ,

|An|
|A′

M(n)|
}

≥ δ.

Similarly, we say two interweaving sequences {An}∞n=1 and {A′
n}∞n=1 are closely inter-

weaving if {An}∞n=1 closely overlays {A′
n}∞n=1 and vice versa. This defines an equivalence

relation between these sequences of subsets of G.
To see that two sequences of norm balls are closely interweaving, take ‖·‖ to be the

supremum norm and observe that, by equivalence of norms, for some k ∈ N we have
Br/k ⊆ B ′

r ⊆ Bkr for all r > 0. It follows that

|B ′
m(n)|

|Bn| ≥ |B	n/k
|
|Bn| =

(
2n/k + 1

2n + 1

)d

→ k−d
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and

|Bm′(n)|
|B ′

n|
≥ |B	n/k
|

|Bnk| ≥
(

2n/k + 1
2nk + 1

)d

→ k−2d ,

which deals with the conditions on m(n) and its counterpart. A similar argument applies
for M(n), ensuring that every sequence of balls closely interweaves with those of the
supremum norm, which suffices due to transitivity.

PROPOSITION 3.3. Let G be a countable group with a non-singular ergodic action
on a standard finite measure space (X, μ). Suppose that {An}∞n=1 closely overlays
{A′

n}∞n=1. Then L′
t ⊆ Lt and U ′

t ⊆ Ut . Hence α′ ≤ α ≤ β ≤ β ′ and, in particular, when
the two sequences are closely interweaving they have the same upper and lower critical
dimensions.

Proof. We just tackle the lower case as the upper case is a similar argument involving the
function M(n) and M ′(n). Observe that with N taken sufficiently large, for all n ≥ N ,

1
|An|t

∑
g∈An

ωg(x) ≥
( |A′

m(n)|
|A′

n|
)t 1

|A′
m(n)|t

∑
g∈A′

m(n)

ωg(x)

≥ δ|t | 1
|A′

m(n)|t
∑

g∈A′
m(n)

ωg(x)

and hence

inf
n≥N

1
|An|t

∑
g∈An

ωg(x) ≥ δ|t | inf
n≥N

1
|A′

m(n)|t
∑

g∈A′
m(n)

ωg(x)

≥ δ|t | inf
n≥m(N)

1
|A′

n|t
∑
g∈A′

n

ωg(x).

By letting N → ∞, and recalling that m(N) → ∞ as n → ∞, it follows that

lim inf
n→∞

1
|An|t

∑
g∈An

ωg(x) ≥ δ|t | lim inf
n→∞

1
|A′

n|t
∑
g∈A′

n

ωg(x)

and hence L′
t ⊆ Lt . The same argument holds with the sequences exchanged.

It is an immediate consequence that every sequence of balls of norms produces the same
critical dimension.

As one might expect, it is not difficult to see that the sequences closely interweaving
is necessary to the above argument. Consider, for example, the sequences A′

n = [[−n, n]]2

and An = [[−	en − 1
, 	en − 1
] × [[−n, n]] in Z
2. We have m(n) = n and hence

|A′
m(n)|

|An| = (2n + 1)2

(2n + 1)(2	en − 1
 + 1)
→ 0.
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This means that the argument used in the above proof fails if one attempts to compare balls
of arbitrary rectangular metrics to those of norms. Next we show that these sequences give
rise to different critical dimensions for numerous actions.

3.3. Critical dimension for product measure spaces. We examine non-singular product
actions, which are constructed as follows. Suppose that for each 1 ≤ i ≤ d we are given
a non-singular transformation Ti : Xi → Xi on a probability space (Xi , μi), the factors
of the product. We can define a non-singular Z

d -action on the product measure space
X = X1 × · · · × Xd with measure μ = μ1 × · · · × μd via

(u1, . . . , ud) · (x1, . . . , xn) = (T
u1
1 x1, . . . , T

ud

d xd).

This action is ergodic if and only if every Ti is ergodic, where the reverse implication can
be deduced using Fubini’s theorem.

We consider the upper and lower critical dimensions with respect to sequences of
rectangles Bn = B1

n × · · · × Bd
n where each Bi

n = [[−si(n), si(n)]] for some increasing
functions si : N0 → N0. This set-up includes rectangular summing sequences. For each
1 ≤ i ≤ d we write αi and βi for the lower and upper critical dimensions of Ti with respect
to [[−n, n]], taken in the space (Xi , μi).

Given two increasing functions s, s′ : N → N>1, we write s � s′ and say that s is
controlled by s′ if

lim inf
n→∞

log s′(n)

log s(n)
> 0.

� defines a preorder on the space such functions, and this preorder is total. We can use �
to define an equivalence relation by declaring that s and s′ have equivalent growth, denoted
s ≈ s′, if both s � s′ and s � s′, that is, if

0 < lim inf
n→∞

log s′(n)

log s(n)
≤ lim sup

n→∞
log s′(n)

log s(n)
< ∞.

This definition ensures that all the functions 	nt
 for t > 0 are in the same equivalence
class, but 	en − 1
 is strictly greater.

Using the axiom of choice, we may fix a representative of each equivalence class.
Suppose that s̄ is the representative of the equivalence class of s. Then we set

a(s) = lim inf
n→∞

log s(n)

log s̄(n)
and b(s) = lim sup

n→∞
log s(n)

log s̄(n)
.

When referring to rectangles Bn as above, let us write ai = a(si) and bi = b(si) wherever
there is no ambiguity.

Our first, foundational, result of this part provides bounds for the critical dimensions
with respect to the rectangles Bn in terms of the critical dimensions of the product
transformations and the growth rates of the rectangle sides.

THEOREM 3.4. Let Zd act on a product space (X, μ) via a non-singular and ergodic
product action, as described above. Let D ⊆ [[1, d]] such that for each i ∈ D the function
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si is a greatest element in {s1, . . . , sd} with respect to �. Then
∑

i∈D aiαi∑
i∈D bi

≤ α ≤ β ≤
∑

i∈D biβi∑
i∈D ai

.

Note that these bounds may depend on the choice of representative s̄, but the inequalities
remain the same if s̄ is replaced by any s for which the limit limn→∞(log s(n)/log s̄(n))

exists and is non-zero. One usually chooses functions si which are related to one another in
this way, and then in addition the representative can be chosen such that ai = bi for all i.
The benefit of the above more general formulation of the theorem is that it allows for some
sides of the rectangles to grow rather slowly for periods of time but then ‘catch up’ later.

The inner bound is true by definition. The two outer bounds have slightly different
proofs but both rely on two key ideas. The first is that a small portion of the growth from
the fastest-growing sides can be used to dominate and hence neglect the behaviour from the
slower-growing sides. The second idea is that the rates of growth from the fastest-growing
sides can be compared using the representative of their equivalence class, resulting in the
weighted average of critical dimensions seen above.

We first prove the lower bound, where growth from the slow-growing sides is absorbed
by the faster-growing sides.

LEMMA 3.5. Let Zd act on a product space X via a non-singular and ergodic product
action, as described above. Let D ⊆ [[1, d]] such that for each i ∈ D the function si is a
greatest element in {s1, . . . , sd} with respect to �. Then

α ≥
∑

i∈D aiαi∑
i∈D bi

.

Proof. Suppose

t =
∑

i∈D(ai − ε)(αi − 2ε)∑
i∈D bi

for some ε > 0. It follows from considering cylinder sets and applying Fubini’s theorem
that for u ∈ Z

d we have ωu(x) = ∏d
i=1 ωi

ui
(x) where

ωi
j (x) = dμi ◦ T

j
i

dμi

(xi).

Then

1
|Bn|t

∑
u∈Bn

ωu = 1
2dt

1

(
∏d

i=1 si(n))t

d∏
i=1

∑
j∈Bi

n

ωi
j . (3.1)

Let s̄ be the representative of the growth equivalence class of the si with i ∈ D and fix
a positive real number δ. For i �∈ D we have

lim inf
n→∞

log si(n)

log s̄(n)
= 0.
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Hence for i �∈ D for all n sufficiently large, si(n) ≤ s̄(n)δ . By definition, for i ∈ D for
large n we must have s̄(n)ai−ε ≤ si(n) ≤ s̄(n)bi+δ . Therefore, for all sufficiently large n

we have
d∏

i=1

si(n) ≤ (s̄(n))dδ+∑
i∈D bi ,

and so for some η = O(δ) we have
( d∏

i=1

si(n)

)t

≤ (s̄(n))
∑

i∈D(ai−ε)(αi+η−2ε) ≤
∏
i∈D

(si(n))αi+η−2ε .

As we retain the freedom to shrink δ we can assume that each η < ε, to deduce that for
large enough n,

1
|Bn|t

∑
u∈Bn

ωu ≥ 1
2dt

( ∏
i �∈D

∑
j∈Bi

n

ωi
j

)( ∏
i∈D

1
si(n)αi−ε

∑
j∈Bi

n

ωi
j

)
.

The first bracket is always at least 1 and each term of the latter product diverges to infinity.
Hence we see that α ≥ t , but since ε > 0 was arbitrary the lemma follows.

For the upper bound a little of the growth from the fast-growing sides is used to
dominate the slower-growing sides.

LEMMA 3.6. Let Zd act on a product space X via a non-singular and ergodic product
action, as described above. Let D ⊆ [[1, d]] such that for each i ∈ D the function si is a
greatest element in {s1, . . . , sd} with respect to �. Then

β ≤
∑

i∈D biβi∑
i∈D ai

.

Proof. The result is trivial if any βi = ∞, so assume not. Suppose

t =
∑

i∈D(bi + ε)(βi + 2ε)∑
i∈D ai

for some ε > 0. Let s̄ be the representative of the si with i ∈ D and fix δ > 0. By definition,
for i ∈ D and n sufficiently large, s̄(n)ai−δ ≤ s(n) ≤ s̄(n)bi+ε . Hence for these n,

d∏
i=1

si(n) ≥ s̄(n)−|D|δ+∑
i∈D ai ,

and so for some η = O(δ) we have
( d∏

i=1

si(n)

)t

≥ s̄(n)−η+∑
i∈D(bi+ε)(βi+2ε) ≥ s̄(n)−η+ε

∑
i∈D bi

( ∏
i∈D

si(n)βi+ε

)
.

By shrinking δ we can assume that c = 1/(d − |D|)(ε ∑
i∈D bi − η) > 0 and use (3.1) to

deduce that for large n,

1
|Bn|t

∑
u∈Bn

ωu ≤ 1
2dt

( ∏
i �∈D

1
s̄(n)c

∑
j∈Bi

n

ωi
j

)( ∏
i∈D

1
si(n)βi+ε

∑
j∈Bi

n

ωi
j

)
.
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For each i �∈ D eventually s̄(n)c ≥ si(n)βi+δ and so each term in the first product tends
to 0. Similarly with each of the terms in the second product. Hence we see that β < t , but
since ε > 0 was arbitrary the lemma follows.

This completes the proof of Theorem 3.4. We can combine it with the integer theory to
start to answer our question about the dependence on the summing sequence.

In §3.1 we saw it was possible to produce transformations with any (single) critical
dimension in (0, 1). By constructing the product action using such Ti , and choosing the si

to ensure ai = bi for all i ∈ D, Theorem 3.4 ensures the resulting actions will have critical
dimension

γ =
∑

i∈D aiγi∑
i∈D ai

.

We are now equipped to examine some specific examples which answer our earlier
question.

3.3.1. Values taken by the critical dimension. The simplest examples to consider are
those where s1(n) = s2(n) = · · · = n which all satisfy a(si) = 1 with respect the natural
choice of representative of their class, s̄(n) = n. Then in the above circumstances there is
a single critical dimension

γ = γ1 + · · · + γd

d
.

This in turn means that for any d and r ∈ (0, 1) we can produce a Z
d -action with critical

dimension r .

3.3.2. Dependence on the choice of summing set. Consider a Z2-action, constructed via
the method above, and its critical dimension with respect to

[[−n, n]] × [[−	en − 1
, 	en − 1
]].

Here s2 grows strictly faster than s1 and, with the sensible choice representatives, the
critical dimension is seen to be γ = γ2. This, taken with the last example, shows that the
critical dimension very much depends on the choice of summing sequence. It also shows
that critical dimensions of the factors can be deduced from those of the product action and
vice versa.

In fact, any desired weighting of the critical dimensions can be achieved. Suppose ti ∈
[0, 1] such that t1 + · · · + td = 1. We take si(n) = n if ti = 0 and si(n) = 	(en − 1)ti 

otherwise. Then the critical dimension of the product action with respect to the cor-
responding summing sequence is given by γ = t1γ1 + · · · + tdγd . Moreover, each such
summing sequence is rectangular, and so each of these weightings is an invariant of metric
isomorphism.

4. Further questions
Underlying much of this paper is the question of how the choice of summing sequence
affects not only the critical dimension but the ergodic theorem for Zd . On the one hand,
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for the sequences [[0, n]]d in Z
d with d > 1 there is the counterexample to the ratio

ergodic Theorem [8], found by Brunel and Krengel. On the other, for balls of norms or
for rectangular summing sequences the ergodic theorem holds. If the sets in a summing
sequence have the Besicovitch property and the modified doubling condition then it seems
likely that Hochman’s method will work, so long as some analogue of the finite coarse
dimension property can be found. It is in proving this latter condition that both cases make
use of some natural structure of Zd . It would be interesting to know exactly what we require
from a summing sequence in Z

d for the ergodic theorem to hold. The fact that large parts
of Hochman’s approach can be applied to rectangles suggests that the theorems for norms
and rectangles may both be special cases of a wider phenomenon.

On the critical dimension, we have shown in the case of product actions on product
spaces that the critical dimension for rectangles can be decomposed into a weighted
average of the critical dimensions, for the projected measures, of maps corresponding
to e1, . . . , en. It is an open question whether this extends more generally, for example
the critical dimension of each ei can be calculated on (X, μ) as a Z-action regardless of
whether the Zd -action is a product action. Therefore it is reasonable to ask how the critical
dimension of the Z

d -action is related to those of the generators.
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