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Abstract

A nonparaxial investigation for propagation characteristics of q-Gaussian laser beam in rip-
pled density plasma is studied by considering the relativistic nonlinearity. The field distribu-
tion in the medium is expressed in terms of q parameter and beam width parameter
f. Nonlinear parabolic partial differential equation governing the evolution of complex enve-
lope in slowly varying approximation is solved in a modulated density profile. Analytical the-
ory of self-focusing including higher order terms in the expansion of dielectric function up to
fourth order is developed and the variation of beam width parameter f with the distance of
propagation for different parameters is studied. One may note that increased value of density
ripple, laser intensity and depth of modulation, increases self-focusing whereas a lower value
of q shows strong self-focusing. A comparative study between paraxial and nonparaxial study
has also conducted. This study is useful for research in high energy density physics.

Introduction

Study of nonlinear phenomenon as a subject of experimental and theoretical research in laser
plasma physics is an active area in modern plasma research. Interaction of laser radiation with
plasma gives rise to a number of nonlinear processes such as self-focusing, self-modulation,
harmonic generation etc. It is important to study the underlying principle of this nonlinear
phenomenon. The laser beam propagation in plasma has potential relevance due to their
applications in X-ray sources (Zhang et al., 1998; Miller et al., 2012), laser-driven plasma accel-
erators (Hoffmann et al., 2005; Xie et al., 2009), harmonic generation (Salih et al., 2003), and
fast ignition concept (Ghoranneviss et al., 2008). Further, such electromagnetic interactions
are also important on account of their relevance in exotic ionospheric phenomena like profile
modification and distortion of radio wave signal. In order to practically realize the laser
plasma-based applications, it is desirable that laser beam should propagate hundreds of
Rayleigh lengths. When high power laser beam propagates through plasma, instabilities, and
nonlinear phenomenon like self-phase modulation, filamentation instability, group velocity
dispersion, the finite pulse effects, relativistic and ponderomotive self-focusing become
important.

Among the fundamental processes self-focusing and self-trapping are important nonlinear
phenomena. The self-focusing is a process in which electromagnetic beam of light comes to
focus as a consequence of nonlinear response of a material medium. In a nonlinear medium,
a high power electromagnetic beam creates a refractive index profile across its cross-section
corresponding to its intensity profile. The refractive index of the medium increases with the
beam intensity. As a result, the beam focuses of its own. Self-focusing was reported for the
first time by Askar’yan (1962) and since then, it has been focus attention of scientific commu-
nity for nearly five decades because it affects a number of other processes. In laser–plasma
interaction, it plays a crucial role in the beam propagation. The self-focusing is strongly
affected by the transverse distribution of beam irradiance.

As mentioned above, the basic physical mechanism responsible for self-focusing is nonlin-
ear refractive index of the medium which is an increasing/decreasing function of laser intensity
and thus modifies the dielectric characteristics of the medium. This mechanism takes place by
various methods like ohmic heating (Litvak, 1966), ponderomotive force and relativistic mass
modification (Hora, 1975). When the laser power is sufficiently large, the electric field associ-
ated with high power laser pulse leads to quiver motion of electrons with a velocity comparable
with the velocity of light in vacuum. This quiver motion of electrons in laser beam further
expels the electrons from high-intensity region to low intensity region due to ponderomotive
force. This will set up a space charge field that retards the electrons and a quasi-steady state is
created. This modifies the refractive index of the plasma, causes curvature of the wavefront and
focuses the beam. The transverse gradient of the nonlinear refractive index is responsible for
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relativistic self-focusing (Singh and Walia, 2010; Bokaei and
Niknam, 2014; Abari et al., 2017; Kaur et al., 2017a).

Self-focusing of the laser beam results in a minimum spot size
due to relativistic nonlinearity. As a consequence, the diffraction
leads to increase in spot size and nonlinearity weakens. This is
followed by oscillating self-focusing/defocusing. To increase the
focusing length in a plasma, density ramp (Bonabi et al., 2009)
and density ripple (Kaur and Sharma, 2008) are used. Kaur and
Sharma (2009) studied the effect of density ripple on self-
focusing of the laser beam in a plasma. A suitable wave number
m = kn−nk1 is of the rippled in the direction of laser propagation
provides uncompensated momentum to turn the process into res-
onant one, where m is the ripple wave number, kn is the wave
number of the harmonics, kl is the wave number of the funda-
mental laser beam and n is an integer.

Most of the research work carried out is confined to focusing
of the laser beam with Gaussian intensity profile (Kruglov and
Vlasov, 1985; Singh and Walia, 2013). Only a few investigations
have been reported on self-focusing of cosh-Gaussian (Patil
et al., 2009), dark hollow Gaussian beam (Gill et al., 2010b),
super-Gaussian beam (Gill et al., 2015), Hermite cosh-Gaussian
beam (Kaur et al., 2017b) and so on. These types of beams
have different types of irradiance across their wavefront. The opti-
cal beam having central shadow known as dark hollow beams
which are known by its potential applications in modern physics,
atomic optics and plasma (Yin et al., 2003; York et al., 2008).
Similarly, Hermite cosh Gaussian (HChG) beam is one of the
solutions of the paraxial wave equation and it can be obtained
in the laboratory by the superposition of two decentered
Hermite-Gaussian beams. Further, HChG can possess high
power in comparison with that of a Gaussian laser beam.
Moreover, the self-focusing phenomenon of such beams is very
sensitive to the decentered parameter b and different mode indi-
ces. Decentered parameter plays a crucial role in propagation
characteristics of these beams.

In a recent investigation, researchers have presented a modi-
fied paraxial like approach to study the self-focusing of a hollow
Gaussian beam in a plasma by taking into account ponderomo-
tive, collisional and relativistic mass nonlinearities by Sodha
et al. (2009). Self-focusing of super-Gaussian laser beam in a
plasma with the transverse magnetic field in the relativistic regime
is studied by Gill et al. (2012). Aggarwal et al. (2014) have used
density ripple in a plasma to show the significant enhancement
in self-focusing of cosh-Gaussian laser beam in the relativistic-
ponderomotive regime. Kaur et al. (2017b) have reported the
comparative study between relativistic self-focusing/defocusing
of HChG laser beam in plasma in the presence and absence of
density ripples and observed strong focusing due to density rip-
ples and decentered parameter.

Several analytical methods are used to study the self-focusing of
the laser beam. These are paraxial ray approximation (PRA) (Akh-
manov et al., 1966), moment theory approach (Lam et al., 1975),
variational approach (Firth, 1977; Anderson and Bonnedal,
1979), and source dependent expansion method (Sprangle et al.,
2000). Akhmanov et al. (1966) demonstrated PRA which is further
developed by Sodha et al. (1976) and it has been used extensively
by the various scientific community due to its mathematical simpli-
fications. The PRA method is based on the expansion of
the dielectric constant and eikonal up to r2, where r is the radial
distance from the beam axis. In this method, the shape of the radial
profile of the beam remains unchanged as the beam propagates
into the medium. This theory qualitatively agrees with the

experimental results. The paraxial theory is valid for r2/r20 f
2 ≪ 1

and it is adequate to predict the position of the focus, correspond-
ing to the minimum width of the beam, where r is radial
co-ordinate of the cylindrical co-ordinate system, r0 is the spot
size of the laser beam at z = 0 and f is the dimensionless beam
width parameter.

When the radial profile of laser beam departs from Gaussian
distribution then higher order approach is more appropriate.
Many investigators (Liu and Tripathi, 2000; Faisal et al., 2007;
Gill et al., 2010b; Kaur et al., 2017a) have developed self-
consistent paraxial theory by incorporating the higher order
terms to account for the off-axis approximation where eikonal
(S), dielectric constant and irradiance of the laser beam is
expanded up to fourth order of r/r0.

In recent experiments, measurement of the intensity profile of
vulcan petawatt laser, it was found that intensity profile departs
from Gaussian intensity distribution. Nakatsutsumi et al. (2008)
suggested that q-Gaussian distribution given as,

f (r) = f 0( ) 1+ r/4.4539mm
( )2[ ]−1.4748

, (1)

Further investigation of laser beam spot profile in Rutherford
Appleton laboratory (Davies, 2010), it was proposed that intensity
profile be given in the following form,

f r( ) = f 0( ) 1+ r2

qr20

( )−q

, (2)

Recently, this distribution attracted the attention of several research-
ers. Sharma and Kourakis (2010) studied the spatial evolution of
q-Gaussian laser beam in a relativistic plasma. A nonparaxial theory
was used, taken into account nonlinearity via relativistic decrease of
the plasma frequency. Analytical and numerical dynamics of the rel-
ativistically guided beam exhibited the dependence on q-parameter.
Singh and Gupta (2015) reported an investigation of relativistic self-
focusing of a q-Gaussian beam in a preformed parabolic plasma
channel. They employed the moment theory approach and studied
the role of relativistic self-focusing of q-Gaussian beam on second
harmonic generation (SHG). The detailed effects of laser beam
intensity, q-parameter and depth of the plasma channel on self-
focusing and SHG were investigated. Kaur et al. (2017a) studied
the relativistic effect on the evolution of q-Gaussian beam in the
magnetoplasma. Higher order terms in the expansion of the dielec-
tric function and eikonal were considered and the phenomenon of
self-trapping was investigated under a variety of parameters. It was
found that q-parameter and higher order terms play a key role in
determining the self-focusing/ defocusing of the beam. Recently,
Wang et al. (2017) also studied the propagation of q-Gaussian
laser beam in a preformed plasma channel. They used the varia-
tional approach to obtain a nonlinear differential equation so that
we can study the variation of beam width parameter. The effects
of relativistic self-focusing, ponderomotive self-channeling and pre-
formed plasma channel were addressed. They further observed that
focusing the power of q-Gaussian laser beam is lower than that of a
Gaussian laser beam.

The aim of this paper is to investigate self-focusing of
q-Gaussian laser beam due to relativistic nonlinearity in a period-
ically modulated density profile. In order that laser plasma-based
applications are plausible, laser should propagate over several
hundred of Rayleigh lengths in the plasma. The idea of density
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transition/density ramp profile is introduced for improvement of
the self-focusing (Suk et al., 2001; Gupta et al., 2007; Bonabi et al.,
2009). Furthermore, the self-focusing can also be increased by
introducing density ripple in the plasma. Lin et al. (2006) made
use of longitudinal spatial structure to achieve arbitrary plasma
structure. Kuo et al. (2007) reported enhancement of the har-
monic generation in a preformed periodic plasma waveguide.
Liu and Tripathi (2008) studied the third harmonic generation
of a short pulse laser in a plasma density ripple. We have used
the analytical theory of self-focusing in higher order PRA and
nonlinear parabolic partial differential equation governing the
evolution of complex envelope in slowly varying approximation
is solved. In section ‘Intensity variation of q-Gaussian laser
beam’, we have given the description of the q-Gaussian intensity
profile for different q-values. In section ‘Self focusing of q-
Gaussian laser beam’, we have developed the basic formalism to
derive the wave equation for the beam width parameter by
using higher order paraxial theory in the presence of modulated
density profile. The section ‘Results and discussion’ is devoted
to discussion of results, followed by a conclusion.

Intensity variation of q-Gaussian laser beam

The initial intensity profile of q-Gaussian laser beam along its
wavefront is given by Sharma and Kourakis (2010) is;

E2|z=0 = E2
00 1+ r2

qr20

( )−q

(3)

where E is the normalized laser field, E00 is the initial normalized
value of field amplitude, r is radial co-ordinate of the cylindrical
co-ordinate system, r0 is the spot size of the laser beam at z = 0, q
is a parameter which defines the deviation from the Gaussian inten-
sity distribution. Figure 1 shows the normalized intensity distribu-
tion of q-Gaussian laser beam for different q-values. The intensity
distribution of the beam gradually converges to the Gaussian profile
as the q-value increases and becomes exactly Gaussian as q→∞
(Fig. 1). We know that a = 0.85× 10−9

��
I

√ × l, where I is
expressed in W/cm2 and λ is expressed in μm.

Self-focusing of q-Gaussian laser beam

We assume the equilibrium electron density n0 be sinusoidal,

n0 = n00 1+ a2Cosmz( ) (4)

where a2 = (n2)/(n00) is the depth of density modulation, n00 is the
maximum electron density and m is the ripple wave number.

Let us consider a circularly polarized laser beam propagating
in the axial z-direction,

E(r, z) = A(r, z)(ex + iey)exp −i(vt − kz)[ ] (5)

where ex and ey are the unit vectors along the x- and y-axis respec-
tively. The amplitude A is a slowly varying function of space (r, z).
The electric field satisfies the wave equation (Eqs. 6, 8).

The general wave equation governing the propagation of elec-
tromagnetic waves is

∇2
⊥ + ∇2

‖
( )

�E + �∇ ∇. �E( )+ v2

c2
e�E = 0 (6)

One may note that it can be directly derived from Maxwell’s equa-
tion. For transverse field

∇ · �E = �k · �E = 0 (7)

here k
Q

being the propagation vector. We note that a term
∇ ∇ · �E)(

has been neglected in deriving Eqs. (6, 8) even for �E
has a longitudinal component, the term ∇ ∇ · �E( )

can be
neglected provided (c2)/(v2) (1/1)∇2ln1

∣∣ ∣∣ ≪ 1, which is satisfied
in most of the cases. Several approximations are used to reduce
the vectorial wave equation to the scalar wave equation. First,
we assume that the electric field remains linearly polarized
along the êt that is transverse to the propagation axis (z-axis in
the present case). Thus, �E = Eêt , �J = Jêt and �P = Pêt . In other
words, electric field and plasma response take place in the direc-
tion perpendicular to �k. The carrier distribution as a result of a
relativistic effect takes place along the wavefront. In that case,
�∇( �∇. �E) can be neglected. This assumption breaks down when
numerical aperture is significant leading to developement of lon-
gitudinal component Ez. Thus Eq. (6) can be written as,

∇2
⊥ + ∂2

∂z2

( )
�E + v2

c2
e�E = 0 (8)

The effective plasma permittivity ε(r, z) is given by,

1 r, z( ) = 100 −
v2

p0

v2
1− 1+ a2Cosmz( )

g

( )
(9)

where vp =
�����������
4pn0e2/m

√
is the plasma frequency, e and m are the

electronic charge and rest mass, γ = (1 + a2)1/2 is the relativistic
Lorentz factor depends upon the intensity of laser beam and
a = (e|E0|)/(mωc) is the normalized laser amplitude at z > 0. For
ωp/γω<1, the equation can be solved iteratively.

The relativistic nonlinear dielectric constant which appears in
Eqs (6, 8) can be expressed in the nonparaxial approximation as:

1 r, z( ) = 10 z( ) − 12 z( ) r
2

r20
− 14 z( ) r

4

r40
(10)

where ε0(z), ε2(z) and ε4(z) are coefficients in the expansion of
nonlinear dielectric constant.

By substituting Eq. (5) in Eqs (6, 8) and neglecting (∂2A/∂z2)
(A to be slowly varying function of z) one obtains,

− 2ik
∂A
∂z

− 2iz
∂A
∂z

∂k
∂z

− 2iA
∂k
∂z

− 2Azk
∂k
∂z

− iAz
∂2k
∂z2

− Az2
∂k
∂z

( )2

+ ∂2A
∂r2

+ 1
r
∂A
∂r

( )
+ v2

c2
1 r, z( ) − 10( )A = 0

(11)

Equation (11) represents the evolution for the field envelope and
includes the effect of diffraction, focusing and nonlinearity. In this
equation, the term in the parentheses (∂2A)/(∂r2) + (1/r)(∂A)/
(∂r) represents Laplacian in the perpendicular direction which is a
diffraction term. The last term where ε(r, z) is nonlinear dielectric
constant, is a function of intensity and represents self-focusing phe-
nomenon and ε0 is a linear part of dielectric constant. The long-
standing problem of understanding the interplay between finite
beam effects and medium nonlinearity in the presence of both
transverse and longitudinal diffraction must be addressed. In
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PRA, it is neglected and it reduces to usual nonlinear Schrodinger
equation. In the nonlinear Schrodinger Eq. (8), the second term
in the parenthesis ∂2E/∂z2 represents the ultra-narrow beam may
result in beam evolution that involves strong focusing stage, even
when the input beam is reasonably paraxial. Parameter
k = (1/ [0)(l/r0)2 reflects the role of the transverse size of the
beam and the tendency for light to travel off-axis in nonlinear prop-
agation. PRA becomes invalid as light focuses down to the dimen-
sion of the optical wavelength. For a chosen set of parameters κ is
10−3 and as observed from the dimensionless propagation (in
Rayleigh lengths) in Figure 2, the PRA is valid over a few wave-
lengths. Hence, the neglect of term (∂2A/∂z2) is justified.

The complex amplitude A(r, z) can be expressed as:

A(r, z) = A0(r, z)e−ikS r,z( ) (12)

where S is known as eikonal and A0 (r, z) and S (r, z) are real
functions of space variables. By substituting Eq. (12) in Eq.
(11), a complex differential equation with real and imaginary
parts is obtained.

The real part of the resulting equation is given by,

2
∂S
∂z

+ 2S
k
dk
dz

+ 2zS
k2

∂k
∂z

( )2

+ 2z
k
∂S
∂z

∂k
∂z

+ 2z
k
∂k
∂z

+ z2

k2
∂k
∂z

( )2

+ ∂S
∂r

( )2

= 1
2k2A2

0

∂2A0

∂r2
+ 1

r
∂A0

∂r

( )

− 1
4k2A4

0

∂A2
0

∂r

( )2

− r2

r20

12 z( )
10 z( ) −

r4

r40

14 z( )
10 z( )

(13)

And imaginary part is given by,

1
A2
0

∂A2
0

∂z
+ z

kA2
0

∂A2
0

∂z
dk
dz

+ 2
k
dk
dz

+ z
k
∂2k
∂z2

+ ∂2S
∂r2

+ 1
r
∂S
∂r

( )
+ 1

A2
0

∂A2
0

∂r
∂S
∂r

= 0

(14)

Further, the higher order terms are introduced in beam irradiance
A2
0 r, z( ) and eikonal S(r, z) can be expressed as:

A2
0 =

E2
0

f 2
1+ a2

r2

r20 f 2
+ a4

r4

r40 f 4

( )
1+ r2

qr20 f 2

( )−q

(15)

and

S r, z( ) = S0 z( ) + r2

r20
S2 z( ) + r4

r40
S4 z( ) (16)

where r0 is the initial radius of the q-Gaussian laser beam and a2,
a4, S0, S2, S4, and f are the functions of z. f is the dimensionless
beam width parameter. The parameters S0, S2, and S4 are the eiko-
nal (S) components, here S2 represent the spherical curvature of
the wavefront and S4 indicates its departure from the spherical
nature. The parameters a2 and a4 represents the departure of
the beam from q-Gaussian nature. This prompts us to write the
expression for beam radiance given by Eq. (15), where higher
order corrections are included.

Using A2
0 and (S) from Eqs (15) and (16) in Eq. (14) and fol-

lowing (Liu and Tripathi, 2000; Sodha and Faisal, 2008; Gill et al.,
2010a), one obtains the following equations,

S2 = r20
2f

df
dz

+ zr20
4f 10

df
dz

d10
dz

− r20
410

d10
dz

+ zr20
16120

d10
dz

( )2

− r20z
810

d210
dz2

(17)

da2
dj

= −16S′4f
2 1+ j

210

d10
dj

[ ]−1

+ a2 − 1( )

× 1
10

d10
dj

− j

4120

d10
dj

( )2

+ j

210

d210
dj2

[ ]

× 1+ j

210

d10
dj

[ ]−1

(18)

Fig. 1. Variation of normalized intensity (E2|z=0/E
2
00)

with normalized radial distance r/r0 for different values
of q that is q = 3, 5, 100.
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da4
dj

= a2
da2
dj

+ 1
2q

+ a4 − a22
2

( )
1+ j

210

d10
dj

[ ]−1

× 2
10

d10
dj

+ j

10

d210
dj2

− 1
210

d10
dj

( )2
( )[ ]

− 8S′4 a2 − 1( )
f 2

1+ j

210

d10
dj

[ ]−1

(19)

where

S′4 = S4
v

c

Eliminate S′4 from Eqs (18) and (19) and integrate the resulting
equation with the initial conditions a4 = 0 and a2 = 0 at ξ = 0,
Eqs (18) and (19) can be used to obtain a4 in terms of a2.
Similarly using the value of A2

0 and S from Eqs (15) and (16) in
Eq. (13) and equating the coefficients of r2 and r4 in the resulting
equation to zero, we obtained the following equations which gov-
ern the beam width parameter f and S′4:

d2f

dj2
1+ j

210

d10
dj

+ j2

2120

d10
dj

( )2
[ ]

=
1+ 8a4 − 3a22 − 2a2 + 4

q

( )
10f 3

− 12r
2f

10

− df
dj

1
2
d10
dj

+ 1
210

d10
dj

+ j

410

d10
dj

( )2

+ j

210

d210
dj2

− j2f
210

d10
dj

( )2

− j

210

d10
dj

− j

410

d310
dj3

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

− f
d210
dj2

− j

810

d10
dj

− 3
410

+ j

410

d10
dj

+ j2

32130

d10
dj

( )2
[

+ j2

8120

d10
dj

( )2

+ j2

64120

]
− f

d10
dj

( )2 7
8120

− 1
410

( )

− f j
d10
dj

( )3 1
16120

− 3
4130

( )
− j

410

d310
dj3

+ j2f
32140

d10
dj

( )4

− 5j2f
64120

d10
dj

( )4

− jf
410

d10
dj

d310
dj3

(20)

dS′4
dj

1+ j

10

d10
dj

( )
=

a32 + 6a22 − 6a2a4 + 2a2
q

− 6
q2

( )
10f 6

−

− 14r
2

210
− 1

10

d10
dj

S′4 −
jS′4
210

d10
dj

− 8S′4

1
f
df
dj

+ d10
dj

j

2f 10

df
dj

− 1
210

+ j

8120

d10
dj

− j

810

d210
dj2

( )( )
(21)

where j = cz/vr20 and ρ = ωr0/c are the dimensionless distance of
propagation and dimensionless original beam width.

Now introducing the q-dependent field distribution of laser
beam from Eq. (15) in Eq. (9), we obtained the components of
dielectric constant in Eq. (10) as,

10 z( ) = 100 +
v2

p00

v2
1− 1+ a200

f 2

( )−1
2

[ ]
1+ a2Cosdj( ) (22)

12 z( ) = 1
2

v2
p00

v2
1+ a2Cosdj( ) 1+ a200

f 2

( )−3/2a200
f 2

1− a2( )
f 2

(23)

14 z( ) = v2
p00

v2
1+ a2Cosdj( ) 1+ a200

f 2

( )−3/2a200
f 6

1+ a200
f 2

( )− 1
2

× 3
8
a200
f 2

a2 − 1( )2

1+ a200
f 2

( )−1/2 −
1
2

a4 − a2 + q+ 1
2q

( )

1+ a200
f 2

( )
⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦
(24)

where ξ = z/Rd is the normalized propagation distance and d =m
Rd is the normalized ripple wave number, where m is the ripple
wave number and Rd is the diffraction length.

Results and discussion

The evolution of the q-Gaussian beam profile can be analyzed by
numerically solving the coupled differential equation using appro-
priate boundary conditions for evaluating the beam width param-
eter f as a function of z. The initial boundary conditions taken are,
(df)/(dξ) = 0, S4 = 0 and a2 = 0 at ξ = 0 for an unperturbed initial
plane wave. Lin et al. (2006) used a 10 Terawatt (TW), 45 femto-
second ( fs), 810 nanometre (nm) and 10 Hertz (Hz) of Ti:
Sapphire laser in spatial light modulator to produce rippled den-
sity structure by ionizing a gas by machining beam and probe
beam. Eqs (18), (20) and (21) are nonlinear coupled ordinary dif-
ferential equation governing the evolution of a2, f, and S4 as a
function of the dimensionless distance of propagation. The evolu-
tion of q-Gaussian beam can also be analyzed numerically by
solving the ordinary differential Eq. (20) coupled with (18),
(19) and (21). We have performed a numerical computation for
the following laser plasma parameters I0 = 4.2X 1017 W/cm2,
r0ω/c = 75, v2

p0/v
2 = 0.038, a200 = 0.2, d = 75, α2 = 0.2, 0.7, and

q = 1.4, 3, 5, 100.

Fig. 2. Variation of beam width parameter ( f) with a normalized distance of propa-
gation (ξ) for different q-values q = 3, 9, and 100. The other parameters are
(v2

p0)/(v2) = 0.038, a200 = 0.7, d = 75, α2 = 0.2, and ωr0/c = 75.
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For the paraxial theory of ring formation to be valid, which
demands the following inequality to be satisfied (Misra and
Mishra, 2009)

1 < a2 < 1.27 for the bright ring
−1.47 < a2 < 0.76 for the dark ring.

Figure 1 represents the variation of normalized intensity
(E2|z=0/E

2
00) with normalized radial distance r/r0 for different q

values that is q = 3, 5, 100. We found that large value of q corre-
sponds to Gaussian distribution, where the small value of q indi-
cates a departure from the Gaussian profile. In Figure 2, we have
displayed the variation of beam width parameter f with the nor-
malized distance of propagation ξ for the chosen set of parame-
ters. This figure displays the self-focusing effect for different
value of q parameter. A small change in self-focusing is observed
for lower q-values. The focusing of the beam dominates over dif-
fraction due to the nonlinear effect of relativistic mass variation in
nonparaxial regime. For q = 100 (green dotted line), beam acts
like a Gaussian distribution and diffraction effects are relatively
smaller whereas for the lower value of q, decreased focusing is
observed. Therefore, lower value of q has expanded wings of
intensity distribution which will require higher power for self-
focusing in comparison of the larger value of q in the intensity
distribution. Focusing becomes faster in the nonparaxial case as
in comparison with the paraxial case.

Figure 3 displays f as a function of the dimensionless distance
of propagation ξ for three values of the density ripple d = 30 (blue
solid line), 55 (dotted red line), 85 (dotted green line). The other
parameters are, v2

p0/v
2 = 0.038, a200 = 0.2, q = 1, α2 = 0.7 and

r0ω/c = 85. Self-focusing length decreases with a decrease in ripple
wave number. A wiggle is seen in the graph for lower wave
number of the ripple. The spot size r0f0 decreases and the beam
self-focuses on the distance of propagation. The self-focusing
length is increased for higher d value.

Figure 4 shows the variation of the beam width parameter f as
a function of distance of propagation for different intensity profile
a200 = 0.2, 0.7 with other parameters v2

p0/v
2 = 0.038, α2 = 0.2, q =

1, d = 75 and ωr0/c = 75. Self-focusing is observed in both the
cases. At a200 = 0.2 (solid blue line), the beam focuses and after
the minimum is attained, the beam defocuses due to diffraction.
However, increase in intensity, leads to stronger self-focusing.

For higher intensity a200 = 0.7 (dotted red line) the self-focusing
length increases. As the value of normalized laser amplitude
increases further beyond the critical value, the laser undergoes
sharp self-focusing up to z = 0.23Rd. Laser power corresponding

Fig. 3. Variation of beam width parameter ( f) with a normalized distance of propa-
gation (ξ) for different values of ripple wave number d = 30 (blue line), 55 (dotted red
line), and 85 (dotted green line). The other parameters are (v2

p0)/(v2) = 0.038, a200 =
0.2, q = 1, α2 = 0.7, and ωr0/c = 85.

Fig. 4. Variation of beam width parameter ( f) with normalized distance of propaga-
tion (ξ) for different laser intensities a200 = 0.2 (blue line) and 0.7 (dotted red line).
The other parameters are (v2

p0)/(v2) = 0.038, α2 = 0.2, q = 1, d = 75, and ωr0/c = 75.

Fig. 5. Variation of beam width parameter ( f) with normalized distance of propaga-
tion (ξ) for different depth of modulation α2 = 0.2 (blue line) and 0.7 (dotted red line).
The other parameters are (v2

p0)/(v2) = 0.038, a200 = 0.7, q = 1, d = 30, and ωr0/c = 75.

Fig. 6. Variation of beam width parameter ( f) with normalized distance of propaga-
tion (ξ) for simple paraxial theory, that is a2 = 0 (blue line) and higher order paraxial
theory that is a2≠ 0 (dotted red line). The other parameters are (v2

p0)/(v2) = 0.038,
a200 = 0.2, d = 75, α2 = 0.2, q = 1.95, and ωr0/c = 75.
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to this value of critical power for self-focusing may be treated as
PPcr = (cc3/8) (0.7 mmωrr0/ee)

2. The physics behind this is as
follows: A laser beam self-focuses with the distance of propaga-
tion and the spot size monotonically decreases and attains a min-
imum. Beyond this point diffraction effect dominates, but they are
not sufficient to overcome self-focusing, with a result laser beam
continue to focus. For low-intensity region, diffraction effect pre-
vails and beam defocuses. Overall, there is a strong focusing and
beam width parameter f decreases with increasing laser intensity.

Figure 5 represents the variation of beam width parameter f as
a function of the distance of propagation ξ for different depth of
modulation α2 = 0.2 (solid blue line) and 0.7 (dotted red line) for
relativistic case a200 = 0.7. Significant enhancement in self-focusing
for the higher value of depth of modulation is observed. One
would have expected the focusing effect to dominate over density
crest and diffraction effect to prevail near the trough. The ripple
wave number is so large that curvature of the wavefront continu-
ous to focus the beam in the trough region. Thus the role of ripple
to enhance the self-focusing is observed for the higher value of the
depth of density modulation.

Figure 6 indicates a comparative graph for propagation charac-
teristics of q-Gaussian laser beam in a ripple density plasma with
paraxial and nonparaxial theory. The variation of beam width
parameter f with the normalized distance of propagation ξ for
the following parameters v2

p0/v
2 = 0.038, a200 = 0.2, d = 75, α2 =

0.2, q = 1.95 and ωr0/c = 75 have been studied. It is noteworthy
to observe that there is focusing in both cases, nontheless nonpar-
axial study indicates strong and sharp self focusing in case of rip-
pled density plasma. Although in paraxial study (blue line) the
beam width parameter monotonically decreases, obtained a min-
imum spot size up to ξ = 0.13Rd whereas for nonparaxial study
(dotted red line) which is a complete study of propagation as it
accounts for off axis approximation demonstrate that self focusing
occur at lower values of distance of propagation in comparison
with paraxial study. In the present investigation density ripple
in nonparaxial regime yields superior propagation characteristics.

Conclusion

In the present research work, we have studied nonparaxial theory
for self-focusing of q-Gaussian laser beam in a rippled density
plasma. The other parameters v2

p0/v
2 = 0.038, a200 = 0.2, 0.7,

d = 30, 55,75, 85, α2 = 0.2, 0.7 and q = 3, 9, 100. In the paraxial
study, self-focusing is observed. However, in nonparaxial study,
strong and fast self-focusing is observed with a lower value of ξ.
We also elucidate that higher value of density ripple and intensity
enhances self focusing whereas a lower value of q-parameter small
change in self focusing is observed. Depth of density modulation
also play a key role in this study. With the inclusion of higher
order terms, one can understand self-focusing/defocusing of the
beam. This study is useful in inertial fusion, fast ignition, high
energy X-ray radiography and high energy density physics
research.
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