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We study the viscous version of the planar Savart sheet problem, using an impacting
liquid jet up to 300 times more viscous than water. Two surprising observations are
made, contrasting with the traditional case introduced by Savart where viscosity plays
no role. First, if the radius of a viscous sheet is typically reduced compared to the case
of water for a given jet radius and impacting velocity, the smooth–flapping transition is
delayed, allowing for smooth sheet radii substantially bigger than those permitted with
water at large impacting Weber number. Second, the drop size distribution is bimodal,
with a substantial fraction of the drops having a very small, well-defined diameter. We
understand these two facts in terms of an additional model experiment, and simple
physical arguments.
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1. Introduction
In addressing the nature of liquid cohesion, Félix Savart proposed studying the

shape of deviated liquid streams. The principle consists in letting a liquid jet impact
normally a flat solid disk (Savart 1833a,b). The mass and momentum of the incident
jet are radially distributed in a symmetrical fashion, forming a stationary expanding
sheet; the expansion is bounded at some radial location, and the liquid focuses into
ligaments, further breaking into stable drops (figure 1). This simple configuration has
allowed us to discover a wealth of phenomena characteristic of atomization processes,
whether of industrial (Lefebvre 1989) or natural origin (Eggers & Villermaux 2008).
It has been established how liquid surface tension limits the maximal radial extension
of the sheet when it is smooth (Taylor 1959a,b), and the role of the ambient medium
on the existence of a flapping sheet regime (Squire 1953; Huang 1970; Villermaux
& Clanet 2002; Bremond, Clanet & Villermaux 2007; Lhuissier & Villermaux 2009)
has been documented and understood, including the reason for the formation of sharp
folds at the sheet’s extremity in that case (Lhuissier & Villermaux 2012). The drop
formation process has been the subject of more recent investigations in both the
smooth and flapping regimes, essentially through the measurement of mean drop sizes
(Clanet & Villermaux 2002; Villermaux & Clanet 2002; Bremond et al. 2007), but also
with more detailed insights into the construction of the complete drop size distribution
(Bremond & Villermaux 2006).
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FIGURE 1. (Colour online) An instantaneous view of the sheet with a viscous fluid
(η = 320×10−3 Pa s), illustrating the experimental setup and the relevant quantities of interest:
d0 = 3 mm. The inset shows water with the same injection parameters, for reference.

However, all of the above-mentioned studies were done with low-viscosity liquids
(water, ethanol), and indeed viscosity did not matter in these cases. Furthermore,
Savart (1833a) mentions that he had occasionally used ‘gummed’ water, probably
meaning that a mixture of ‘gum arabic’ and water had been used as a working liquid
(but with no indication of the viscosity of the resulting liquid) causing, according to
Savart, no qualitative difference from the pure water case.

Viscous liquid sheets are, nevertheless, commonplace in various situations ranging
from the fabrication of glass to the dynamics of tephra bubbles in volcanic explosions
(Mastin 2007), or the dynamics of the Earth’s crust, among others: see Howell,
Scheid & Stone (2010) and references therein. Their breakup into drops is of prime
importance in the food, cosmetics and cement industries for making various prills and
granules, and this is usually achieved using standard hollow cone atomizers (Lefebvre
1989; Yule & Dunkey 1994), which produce an expanding conical liquid sheet
breaking up at some point. Thus, extending Savart’s observations to the case where
liquid viscosity matters has, besides its academic interest, well-motivated applications.

We intend here to describe both the sheet shape (maximal radius, smooth–flapping
transition) and the atomization characteristics (drop size distribution) of the planar
Savart sheet, using an impacting liquid jet up to 300 times more viscous than water,
made of a solution of maltodextrin with water (§ 2). In contrast with the traditional
case introduced by Savart, where viscosity plays no role, two salient observations are
made. First, for a given jet radius and impacting velocity, the viscous sheet radius
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FIGURE 2. The D-glucose unit in the maltodextrin molecule.

can be larger compared to the case of water because the smooth–flapping transition
is delayed as the jet velocity is increased (§ 3). Then, the final drop size distribution
is bimodal, with a substantial fraction of the drops having a smaller, well-defined
diameter (§ 4). These two original facts can be understood by simple arguments and
by resorting to an additional model experiment (§ 5), featuring the ingredients to
reproduce and understand the bimodality.

2. Working fluid, setup and parameters
We have been using dilutions of maltodextrin, a powder easily incorporated into

water, as our working fluid. Maltodextrin is a polysaccharide that is used as a food
additive. It is produced from starch by partial hydrolysis and is usually found as a
white hygroscopic spray-dried powder, available in large quantities and commonly
used for the production of sodas and candy. Maltodextrin consists of D-glucose
units connected in chains of variable length (figure 2) and is typically composed
of a mixture of chains that vary from three to seventeen glucose units in length.
When diluted in water it is a Newtonian liquid, with a viscosity of η proportional
to its polymerization index (Dokic, Jakovljevic & Dokic-Baucal 1998), and strongly
dependent on its concentration: a mixture of 46 g per 100 g of solution has a
viscosity of η = 60 × 10−3 Pa s while 56 g per 100 g of solution gives a viscosity of
η = 320×10−3 Pa s. The surface tension of the mixtures is about σ = 67×10−3 N m−1

(Semenova et al. 2003). The density ρ is about 1200 kg m−3 for the concentrations we
have been using.

Once diluted at the desired viscosity, the solution is sealed in a closed container
and pushed under pressure through an injector with a contracted nozzle to produce a
potential jet of radius r0 = d0/2 = 1.5 mm. We let the jet impact on a smooth circular
impactor of radius ri = 3 mm, varying the jet velocity u0, typically in the range
1–10 m s−1. The sheet is forced to exit the impact surface parallel to it (horizontally)
by means of a thin copper jacket, as described in Clanet & Villermaux (2002). Thus
formed, the sheet is imaged quantitatively to measure its radius R and the drop sizes d
in the resulting spray, as seen in figure 1.

There are several dimensionless parameters in this problem, each associated with
distinct facets of the phenomenon. The Weber number, comparing liquid inertia ρu2

0
with capillary confinement σ/r0,

We= ρu2
0r0

σ
, (2.1)

spans between 100 and 3000, indicating that the jet is momentum-dominated, hence
the formation of an extended sheet.
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The Reynolds number, comparing the transit time r0/u0 with the diffusion time r2
0/ν,

where ν = η/ρ,

Re= u0r0

ν
, (2.2)

is relevant to evaluation of viscous dissipation at the impact location. It varies from
30 for the lowest velocity with the most viscous mixture (η = 320 × 10−3 Pa s), to
5 × 104 with pure water (η = 10−3 Pa s). The Ohnesorge number Oh = √We/Re,
a combination of the two independent numbers above, is the ratio of the viscous
capillary time ηr0/σ to the inertial capillary time

√
ρr3

0/σ , and indicates the nature
of ligament destabilization, leading to drops. It is much smaller than unity with water,
and of order unity with the most viscous mixture at η = 320× 10−3 Pa s.

Finally, it will be seen that gravity is responsible for the detachment of the drops
at the edge of the sheet, involving a gravitational capillary (equivalently, Ohnesorge)
number

Ca= η
√

ga

σ
, (2.3)

where a = √2σ/ρg is the capillary length scale, of order unity for the most viscous
solution. Gravity, on the other hand, does not influence the injection conditions, as the
Froude number

Fr = u2
0

gd0
(2.4)

is much larger than unity. The orientation of the jet, which is upwards in figure 1 to
facilitate the evacuation of residual bubbles in the feeding circuit at the beginning of
the experiments, could equally have been downwards, with no consequences.

3. Sheet shape
3.1. Localization of viscous dissipation

For an axisymmetric liquid sheet with thickness h(r), sustaining a steady radial motion
with velocity u(r), momentum and mass balances yield

ρhru∂ru= ∂r(rhσrr)− hσθθ , (3.1)
∂r(hru)= 0 (3.2)

where the stresses (Landau & Lifshitz 1987), in the Trouton approximation (see
Howell et al. 2010 for a derivation in that precise context), are given by

σrr = 2η(2∂ru+ u/r), (3.3)
σθθ = 2η(∂ru+ 2u/r). (3.4)

Evaluating the relative importance of viscosity amounts to comparing the magnitude
ρhu2/r of the inertial term in (3.1) with that of the viscous term ηhu/r, namely
to determine the radial distance r beyond which inertia dominates over viscous
dissipation, that is to say

ur

ν
> 1. (3.5)

For typical impacting velocities u0 of order 1 m s−1, and even for a liquid 300 times
more viscous than water, it is clear that the fluid particles in the sheet undergo a
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FIGURE 3. (Colour online) (a) Superposition of seven consecutive images equally spaced
in time by 4/1000 s showing the ballistic motion of a bubble injected in the sheet. The
successive positions of the bubble are indicated by an arrow. (b) The corresponding trajectory:
η = 320× 10−3 Pa s, u0 = 4.55 m s−1, u= 3.38 m s−1, R= 8.5 cm.

ballistic radial motion (constant velocity ∂ru = 0) once they have left the impactor
(ri = 3 mm). Figure 3 demonstrates that a bubble, injected by chance in the jet, does
indeed undergo a ballistic motion towards the sheet edge.

Viscous resistance therefore does not take place in the sheet itself, but must be
concentrated in the boundary layer developing on the solid impactor. The thickness (or
displacement thickness, owing to the use we will make of it further: Schlichting 1987)
of that boundary layer is of order

δ =
√
νri

u0
. (3.6)

If δ is small compared to the radius of the impactor ri and even more compared to the
radial extent of the sheet (see (3.5)), it may compare with the sheet thickness itself. Its
inviscid value at the impactor lip is given by mass conservation,

hinv = r2
0

2ri
= 0.375 mm, (3.7)

and, given the typical value of the Reynolds number Re, it is clear that the ratio

β = δ

hinv
= 2

√
(ri/r0)

3

Re
(3.8)

may reach values of order unity in the present case. Therefore, a non-negligible
fraction of the incident momentum flux ρπr2

0u2
0 is lost at impact by viscous friction,

whereas, as discussed previously, viscosity does not affect the sheet development once
it has left the impactor. We detail below the consequences of this loss on the sheet’s
features.

3.2. Smooth sheet
At impact, the incident momentum flux (per unity ρ) carried by the jet πr2

0u2
0 is

reduced by an amount of order 2πriδu0u, lost in the boundary layer. The step velocity
profile at the impactor lip relaxes by viscous smoothing as it leaves the impactor over
a short radial distance of order u0h2/ν towards a uniform (shear-free) profile with
velocity u and thickness h, carrying the rest of the momentum 2πrhu2 and the jet flow
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FIGURE 4. (Colour online) Smooth sheet radius for three different viscosities, namely
ν = η/ρ = 10−6 m2 s−1 (water, open circles, black), ν = 60× 10−3/1200 m2 s−1 (filled circles,
red online), and ν = 320× 10−3/1200 m2 s−1 (filled triangles, blue online). The solid lines are
(3.12). The inviscid (ν = 0) reference case for which R/r0 = We/4 is shown as a light grey
line: see Villermaux & Clanet (2002) for comparison. The vertical lines indicate the transition
Weber numbers to the flapping regime Wec expected from (3.14).

rate πr2
0u0 = 2πrhu. Thus,

u= u0

1+ β and h(r)= r2
0

2r
(1+ β). (3.9)

The ratio of the impulse carried by the sheet in a given radial direction (the average
over the 2π angular directions is zero for an axisymmetric sheet) to the incident
impulse is thus

sheet impulsion
incident impulsion

∼ u2hri

u2
0r2

0

= 1
1+ β , (3.10)

indeed smaller than unity. The above relations interpolate between the thin boundary
layer limit (β � 1) for which u ≈ u0(1 − β) and the viscous limit (β � 1) which
involves corrections in β2 (Watson 1964; Clanet & Villermaux 2002).

The radial expansion is halted by capillary confinement, namely when the
momentum flux of the sheet equilibrates surface tension forces, or

ρu2h(R)= 2σ, (3.11)

thus providing the sheet radius

R

r0
= We

4
1

1+ β . (3.12)

Figure 4 shows that (3.12) represents the evolution of the sheet radius R well: as
the injection velocity u0 is varied, both the Weber number and the Reynolds number
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Viscous Savart sheet 613

increase, and hence β decreases. The overall dependence of R on We is thus steeper
than that known for the inviscid case (R/r0 ∼ We), precisely because the relative
momentum loss due to viscosity progressively fades away as Re increases.

As anticipated from (3.12), the absolute value of R is smaller, at a given Weber
number, for a viscous liquid than for water. This is true for Weber numbers up to
the transition to the flapping regime for water (i.e. 2We ≈ 103: see Villermaux &
Clanet 2002, who were using a Weber number based on d0), where R saturates and
then decays as We increases. However, figure 4 shows that this transition is delayed
when the liquid viscosity is larger, and occurs for a higher Weber number. Hence, the
maximal radius of a viscous liquid sheet is larger than that of water, a fact that is a
priori unexpected, but consistent with our understanding of the ingredients ruling the
transition to the Squire or flapping regime.

3.3. Transition to the flapping regime
A thin liquid sheet expanding in an environment of density ρa at rest (air in
the present case) is known to interact with it through a Kelvin–Helmholtz type
of instability selecting preferentially a sinuous mode (Squire 1953; Huang 1970;
Villermaux & Clanet 2002), conferring to the sheet a flapping motion. The instability
wavelength λ equilibrates air inertia ρau2 if u is the relative velocity between the
in-plane motion of the sheet with ambient air and capillary restoration forces σ/λ.
This is primarily an inviscid mechanism. The mode selection in a radially expanding
sheet with a thickness profile h(r) ∼ 1/r has been discussed in Villermaux & Clanet
(2002), including the pre-factors, and we have

λ= 10πσ
ρau2

. (3.13)

This instability is likely to develop and therefore alter the sheet breakup mechanism at
its edge (see Bremond et al. 2007; Lhuissier & Villermaux 2009, 2012) if at least one
wavelength λ can fit within a sheet radius R. The condition λ/R= O(1) thus defines a
pair {Wec, βc} of critical parameters for the transition to occur such that

Wec

(1+ βc)
3/2 =

√
40π
α
, (3.14)

where α = ρa/ρ. With β given in (3.8), and by plotting the left-hand side of (3.14)
divided by

√
40π/α versus We, the criterion above is solved numerically, predicting

the transition Weber numbers reported as vertical lines in figure 4, and showing
good agreement with the observed ones. Interestingly, the transition Weber number for
the most viscous liquid we used (Wec ≈ 2300) is more than twice as large the one
corresponding to water in the same conditions (Wec ≈ 900), leading to a sheet radius
more than 50 % larger, even though viscous losses at the impact region have slowed
down the liquid velocity u0 by 25 % (see (3.9)).

There are, in fact, two concomitant reasons for this delay: the liquid is slowed down,
and the sheet is conversely thickened (equation (3.9)). For instance, the sheet thickness
at the maximal smooth radial extension is

h(R)= 2r0

We
(1+ β)2. (3.15)

It is thus doubly difficult for the weakened shear u (by a factor of 1 + β: see
(3.9)) to move a thicker – and therefore heavier – sheet (by a factor of (1+ β)2)
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perpendicular to its plane and trigger an undulatory motion (even if the transit time
has been augmented), hence the mandatory recourse to higher Weber numbers for it to
be possible, as expressed by (3.14).

4. Fragments
Having reached the border of the sheet, where they are arrested according to (3.11),

the fluid particles accumulate in a rim where they dissipate most of their kinetic
energy, and are driven at the tip of cusps from which they finally fall by their own
weight, forming ligaments that eventually break into stable drops. This is how the
spray is formed in a Savart sheet, a scenario qualitatively visible from Savart drawings,
and quantified by Clanet & Villermaux (2002).

As figure 1 demonstrates, ligament breakup is delayed with a viscous fluid
compared to water. This delay is an intrinsic consequence of the liquid viscosity
which slows down the capillary instability of jets (Eggers & Villermaux 2008), and has
an important consequence for the shape of the resulting distribution P(d) of the drop
sizes d.

4.1. Repartition of drops
When a liquid protrusion, having accumulated in the rim, is heavy enough to overcome
the capillary retraction of the sheet to which it is attached, it falls by gravity. However,
that big drop remains transiently attached to the sheet by a ligament. As the big drop
falls, the ligament stretches, and detaches by capillary breakup from both the sheet and
the big drop. After detachment, the ligament finally recoils into a smaller satellite drop.
This scenario, where capillary instabilities follow each other sequentially, was already
visible in Plateau’s experiments with olive oil (Plateau 1873), and has since then been
identified in related contexts involving viscous fluids (Tjahjadi, Stone & Ottino 1992;
Brenner, Shi & Nagel 1994; Wong et al. 2004). It is illustrated in figure 6. It causes
notorious difficulties in inkjet printing in particular (Basaran, Gao & Bhat 2013). With
water, the capillary breakup is so fast that the phenomenon is virtually absent, unless
altered by ad hoc perturbations (Lafrance & Ritter 1977).

The direct consequence of the scenario depicted above is the bimodal character of
the drop size distribution in the spray, which present two (broad) peaks, as seen in
figure 5. The peak characteristic of the biggest drops in the distribution has an average
〈d〉 which slowly shifts towards smaller sizes d as We increases, while the peak
corresponding to the smallest drops follows the same trend, with an average diameter
〈ds〉 such that

〈ds〉
〈d〉 = γ, (4.1)

with γ −1 ≈ 3–5 approximately.
The maximal probability levels of both peaks are of the same order, with no

systematic trend dependence on We. If a difference exists between the probability
levels of the two peaks, it is always at the advantage of the small drops, as
seen in figure 5. The peaks corresponding to the biggest drops in the distribution
P>(d) is invariant with We when the drop sizes are rescaled by 〈d〉, and is well
approximated by a Gamma distribution characteristic of ligament-mediated drop
formation (Villermaux 2007):

P>(x= d/〈d〉)= nn

0(n)
xn−1e−nx (4.2)
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FIGURE 5. Drop size distributions and average diameters obtained for η = 320 × 10−3 Pa s.
(a) Examples of drop size distributions with a double peak: ◦,We = 755; •,We = 988. (b) A
series of typical snapshots in the spray illustrating the alternation of big and small drops, in
even proportions: We = 988. (c) The large excursion peak of the distribution P>(d) rescaled
by its average diameter 〈d〉 for various Weber numbers ranging from 755 to 2213. The solid
line is a Gamma distribution of order 15. (d) The large excursion peak average diameter 〈d〉
(•), and the total average of the distribution 3〈d〉/5 as a function of Wea (◦). The solid line is
(4.5). The dotted lines are the dominant We−1/3

a dependence.

of order n= 15, as seen in figure 5. This fact is reminiscent of an identical observation
made by Bremond et al. (2007) for water Savart sheets, though with a lower Gamma
order (n= 5), indicating a broader distribution around the mean in that case.

The size of the big droplets simply results from a static (and thus independent of
viscosity) force balance similar to Tate’s law (Bouasse 1924), where the weight of
the detaching protrusion at the sheet rim equilibrates capillary retraction (Clanet &
Villermaux 2002):

ρgΩ? ∼ σh(R), (4.3)

with h(R) given in (3.15), and where Ω? is the critical volume of the protrusion.
Obviously

Ω? ≈ 〈d3〉 + 〈d3
s 〉 (4.4)
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h
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(a)
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ds

FIGURE 6. (Colour online) Ligaments and the mechanism for the bimodal drop size
distribution formation, for η = 320 × 10−3 Pa s. (a) Consecutive views showing the
detachment of a big drop followed by the recoil of a ligament into a smaller satellite.
(b) The model experiment of a dripping tap (of diameter 7 mm) for consecutive times
t = 0, 55, 67, 79, 84, 90 ms.

since the peaks of the small and large drops have identical relative probabilities in
P(d). At this level of description, substituting 〈d〉3 for 〈d3〉, and since 〈ds〉/〈d〉 = γ
with γ � 1, we have Ω? ≈ 〈d〉3, leading to, from (4.3) and (3.15),

〈d〉
a
=
(
(1+ β)2

Wea

)1/3

where Wea = ρu2
0a

σ
, (4.5)

with a the capillary length scale:

a=
√

2σ
ρg
≈ 3.3 mm. (4.6)

The total mean drop size of the distribution is expected to be

〈d〉 + 〈ds〉
2

≈ γ + 1
2
〈d〉 (4.7)
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which fits the measured mean well with γ = 1/5 (this value is justified from
elementary fluid mechanics in § 5), as seen in figure 5.

Relation (4.5) represents well the measured mean drop sizes of the large excursion
peak, exhibiting a slight deviation from the We−1/3

a dominant behaviour because of the
Reynolds number dependence of the sheet thickness via the parameter β. The mean
drop size 〈d〉 is essentially given by a, and depends on the sheet injection diameter
d0 via the viscous corrections β only. This is consistent in trend and in absolute value
with Clanet & Villermaux (2002), who found with water (β→ 0) that the mean drop
size was independent of the injection diameters provided that they were larger than a.

5. Bimodality and the origin of small drops
Inspired by the ligament detachment and breakup phenomena observed at the rim

of the sheet (figures 1 and 6), we study a simplified version of the process using an
analogous experiment intended to explain the origin of the two distinct peaks in the
drop size distribution, the ratio of their respective characteristic diameters, and of their
relative occurrence in the spray: the small drops are typically as frequent as the big
ones (one small drop for one big drop), and are γ −1 = 5 times smaller.

The explanation uses an analogous experiment, a simple dripping tap (i.e. a faucet)
with the most viscous solution (η = 320 × 10−3 Pa s). The tap’s diameter (7 mm) is
larger than the capillary length a, which therefore remains the only relevant length
scale setting the drop size (Rayleigh 1899), as in the real sheet case if one disregards
the weak Weber correction in (4.5). The drop hanging at the tap’s exit is slowly fed
(at flow rate 1.03 × 10−7 m3 s−1 corresponding to one detaching drop per second) and
eventually detaches when it is heavy enough. In doing so, it stretches a ligament
attached to the tap’s exit. The elongated ligament finally breaks up at its extremities,
one at the tap’s exit and the other at the falling drop: see figure 6. In contrast to
the case for water, the detachment takes a longer time period, and does so on a
viscous-dominated time scale. When the ligament has detached from both ends, it
recoils to form a unique drop, accumulating all the liquid initially contained in the
ligament. This is because the recoil time is shorter than the capillary destabilization
time of the ligament. Thus, every time a big drop detaches, its companion ligament
produces a satellite drop. This explains why the small drops are typically as frequent
as the big ones in the spray. The analysis of this scenario further provides the ratio of
satellite to main drop diameters.

5.1. Energetics of a caricatured pendant drop
We describe below the early time dynamics of the detachment of a drop, whose
geometry is suitably caricatured for the analysis to be simple, attached to a ceiling as
in figure 7.

The energy of a liquid volume Ω caricatured as a cylinder of base radius h and
height `, hanging by gravity from a ceiling (or a tap, as in figure 6), is

E =−
∫ `

0
ρgπh2z dz+ σ(πh2 + 2πh`), (5.1)

Ω = πh2`. (5.2)

Recalling that the capillary length scale is a=√2σ/ρg and setting

x = `
a
, (5.3)
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FIGURE 7. (a) Evolution of the length `, radius h and volume h2` of the ligament in figure 6,
almost independent of time in units of the viscous destabilization time tvis ≈ 0.085 s. Also
shown is the quantity h`2, as a function of time. Lengths are in metres and volumes in cubic
metres (a = 0.0033 m and a3 = 3.6 × 10−8 m3 are shown for reference). (b) Sketch of the
cylindrical drop geometry, and the velocity of the volumetric pulse δΩ .

ε =
√
πa3

Ω
, (5.4)

we have

E

ρgΩa
=− x

2
+ 1

2x
+ ε√x. (5.5)

If the liquid volume elongates in the gravity field, it lowers its potential energy, while
the corresponding deformation is made at the expense of an increase in its surface
energy. When the liquid volume is small enough (i.e. in the limit of large ε), the total
energy E has a minimum dE/dx = 0, and the drop hangs stably with a length x = `/a
as a function of ε. As the volume increases (i.e. ε decreases), the equilibrium is lost,
and E is a monotonically decreasing function of x. This happens first for dE/dx = 0
and d2E/dx2 = 0, giving the critical condition

x? =
√

3, (5.6)

ε? = 4
33/4

, (5.7)

simply expressing that the dimensions of the critical drop are given by the capillary
length scale a, a well-known fact (Rayleigh 1899; Bouasse 1924).

We now examine the dynamics of the destabilization of the above equilibrium when
the liquid volume is slightly increased by an amount δΩ from the critical volume
Ω? (correspondingly, δε/ε? = −(δΩ/Ω?)/2). Neglecting viscous dissipation close to
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equilibrium, the rate of change of the liquid volume momentum is

d
dt

∫ `

0
ρπh2v(z, t) dz=−dE

d`
(5.8)

=−a
dE

dx
. (5.9)

The axial velocity v(z, t) in the liquid volume is such that, by incompressibility
∂th2 + ∂z(vh2) = 0, and since h only depends on time in this cylindrical caricature, we
have ( ˙̀ = d`/dt)

v(z, t)=
˙̀
`

z. (5.10)

Owing to (5.9), the reduced length x = x? + δx is augmented, above the critical
condition, by an amount δx whose rate of increase in time is prescribed by the rate
at which the energy E decays when x is increased, that is, by the slope dE/dx in
x = x?. When time is made dimensionless by

√
a/g, at the critical point we have

δ̈x=−δε/√x?, or

δ̈x= 2
3
δΩ

Ω?

. (5.11)

If the volume δΩ were initially added in the critical cylinder, and remained in it for
t > 0, then the early time motion of its height would be parabolic in time, with an
apparent gravity depending on δΩ .

5.2. More realistic geometry and dynamics

This is precisely the point at which our cylindrical caricature must be corrected.
A critical hanging drop is not exactly a cylinder (see Boucher & Evans 1975 and
historical references therein), and a detaching drop certainly not either. Most of
the liquid volume is collected in a close-to-spherical falling volume, which remains
connected to the ceiling, or the tap nozzle, via an elongating ligament whose shape
is, in turn, quite close to a cylinder (figure 6). The internal pressure in the cylindrical
ligament is the Laplace pressure σ/h, and when it is connected to a sphere with radius
much larger than h, is likely to ‘empty’ into it. The volume δΩ is thus unlikely
to remain constant in time, since the more the ligament elongates the stronger the
Laplace pressure will be, enhancing the drain of the ligament. The drain will, however,
stop at some point because, as we will see, the elongated ligament destabilizes and
breaks up at its extremities. Overall, the volume δΩ therefore first increases and then
decreases, so the net incorporated volume is close to zero. (In fact it is not exactly
zero. It is known that the weight of a drop detaching from a tap depends on the flow
rate feeding it, even in the limit of very slow flow rates: Harkins & Brown 1919. Here
we disregard this correction.) We postulate that this volumetric pulse occurs within
a time scale that is short compared with the destabilization time of the ligament, an
assumption proved to be correct later. We then have

δΩ = ωδ(t), (5.12)

where δ(t) is a Dirac delta and time t is in units of
√

a/g so that ω is a volume,
a priori smaller that the critical volume of the drop Ω?, and independent of the flow
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rate feeding the drop in the limit of small flow rates. Since

x ≈ x?exp
(
δx

x?

)
(5.13)

= x?exp
(

2
3x?

∫ t

0
dt1

∫ t1

0

δΩ

Ω?

)
(5.14)

we have finally, with (5.12) and with the dimensional time restored,

x= x?exp
(

2ω
3Ω?x?

t√
a/g

)
. (5.15)

Comparison with the direct measurements of both h and `= a x, reported in figure 7,
shows that ` indeed grows exponentially from a value not far from a

√
3 ≈ 0.0057 m.

These measurements are compatible with

`= a
√

3 exp
(

0.3
t√
a/g

)
, (5.16)

suggesting that ω ≈ 0.8Ω?.
The motion of the axial velocity v(z, t) in the ligament is governed by

∂tv + v∂zv =− 1
ρ
∂zp− 3ν

h2
∂z(h

2∂zv), (5.17)

which identically cancels the viscous Trouton term in the cylindrical approximation
where v(z, t) is given by (5.10). Integrating (5.17) between z ≈ 0, where the pressure
is p(0, t) ≈ σ/h (somewhere close to the base of the ligament), and z = `, where
p(`, t)≈ 0 (in the big hanging drop), we get

h` ῭ = 2σ
ρ

(5.18)

or, since ` given in (5.16) is exponential in time,

h`2 ≈ a3. (5.19)

Figure 7 shows that h`2 is indeed roughly constant during the ligament elongation,
unlike the ligament volume which, scaling like h2`, decreases in time, consistent with
our scenario where the ligament empties into the big drop to which it is attached as it
elongates.

The above analysis suits the early time dynamics, where all the components of
the energy E in (5.5) are balanced, or nearly so. Later, when most of the mass has
concentrated in the heavy hanging drop, whose weight (∼ρga3) rapidly overcomes the
capillary (∼σh) and viscous (∼ηh2 ˙̀/`) stresses from the thinning ligament attached
to it, the dynamics of the hanging drop is of course that of free fall (i.e. ` ∼ gt2/2).
However, as will be seen, this ultimate regime is never reached, ligament breakup
having occurred earlier.

5.3. Breakup and satellite drop
Stretching inhibits capillary destabilization (Tomotika 1936; Stone 1994). However, the
time taken for the extremities of the ligament to detach from the main drop, and from
the tap’s exit, is independent of the rate at which the ligament is stretched, and is
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solely prescribed by the relevant instability time scale tcap if only capillarity and liquid
inertia are at play, or tvis if viscous slowing is dominant. Here

tcap ≈ 3

√
ρh3

?

σ
and tvis ≈ 6

ηh?
σ
, (5.20)

keeping the pre-factors of Eggers & Villermaux (2008), based on the initial transverse
size of the ligament h? = (3

√
3/4) a ≈ 1.3a. Indeed, the stretching vanishes at the

extremities (on an axial distance of the order of h?), which are pinned at the main
drop surface and at the tap’s exit (this is also true when the ligament is attached to the
sheet). These regions at the extremities thus evolve on their own, basically insensitive
to the rest of the (stretched) ligament (Henderson et al. 2000; Villermaux 2012).

The ratio of these two time scales above defines the relevant capillary (or
Ohnesorge) number for deciding which characteristic time is the longest, and hence, if
viscosity impacts the capillary destabilization of the ligament extremities,

tvis

tcap
= 2

η√
ρh?σ

(5.21)

=√2Ca, (5.22)

where

Ca= η
√

ga

σ
≈ 0.8. (5.23)

Thus
√

2Ca is slightly above unity, suggesting that tvis is the relevant instability time
scale, and indeed the observations in figure 6 show that breakup has occurred precisely
at tvis. As long as it is stretched, the rest of the ligament does not develop instabilities
since ( ˙̀/`) tvis > 1. From (5.16) and (5.20), the length of the ligament at breakup is

`s = a
√

3exp(0.3× 6Ca). (5.24)

Once detached the ligament is no longer stretched, and is thus likely to destabilize
by capillarity. The relevant time scale is again tvis, this time based on the value of
h at detachment, deduced from the invariance of h`2 during the elongation process
(figure 7):

hs = a3/`2
s . (5.25)

That destabilization competes with the spontaneous recoil of the ligament from its
extremities, receding at velocity

vrec =
√

σ

ρhs
, (5.26)

identical to that of a the plane edge of a liquid sheet (Culick 1960), and insensitive to
viscosity (Savva & Bush 2009). The ratio of the recoil time `s/(2vrec) to the capillary
instability time of the ligament 6ηhs/σ is precisely given by Ca in (5.23), and is
therefore slightly below unity in the present case, consistent with the observed fact
that all the volume constituting the ligament is included in a single satellite drop (see
also Notz & Basaran 2004; Eggers & Fontelos 2005; Castrejon-Pita, Castrejon-Pita
& Hutchings 2012; Hoath, Jung & Hutchings 2013). Its volume is such that (we
assimilate `− a with ` at detachment)

Ωs = πh2
s`s, (5.27)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

35
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.354


622 E. Villermaux, V. Pistre and H. Lhuissier

while the volume of the main drop is of order

Ω? = πh2
?`? ≈ a3. (5.28)

The volume of the ligament at breakup is indeed a small fraction of that of the main
drop,

Ωs

Ω?

≈ exp(−6Ca)≈ 0.0082, (5.29)

giving

ds

a
≈ exp(−2Ca)≈ 0.20, (5.30)

where ds = a(Ωs/Ω?)
1/3 denotes the secondary stable droplet diameter having collected

the ligament volume, consistent with the observations reported in both our model
dripping experiment (figure 6), and in the spray formed from the Savart sheet, at the
same viscosity (γ ≈ 1/5 in (4.1)). This simple model explains both the occurrence of
one secondary smaller drop per main drop, the order of magnitude of the main drop
size, given by a (the weak Weber correction has been explained in § 4.1), and the ratio
of the small to main sizes.

6. Conclusions and further remarks
180 years after his seminal publications in the Annales de Chimie, we have

supplemented one aspect of Savart’s observations with the case where viscosity
matters. When a radially expanding sheet is formed by the impact of a viscous
liquid jet on a solid disk, two new observations concerning the viscous limit are made.

For a given jet radius and impacting velocity, the viscous sheet radius can be larger
compared to water because the smooth–flapping transition is delayed as the jet velocity
is increased. There are two concomitant reasons for this delay: because a boundary
layer forms at the surface of the disk, the liquid is slowed down as it expands, and
the sheet is conversely thickened. It is thus doubly difficult for the weakened shear
with the ambient air to move a thicker (and therefore heavier) sheet perpendicular to
its plane and trigger an undulatory motion which would destroy the sheet within one
oscillation.

Viscosity not only delays shear instabilities (indirectly in the present case) but also
delays capillary breakup, providing the source of the second surprising observation: the
final drop size distribution is bimodal, with a substantial fraction of the drops having
a smaller, well-defined diameter. These originate in the recoil of ligaments left behind
the main drops detaching from the sheet rim. The ligaments stretch as long as they
are destabilized by capillarity, on a time scale increased by viscosity. The ratio of
the satellite to the main drop diameter only depends on the capillary number Ca via
(5.29). The main drop size is not appreciably affected by viscosity, since it results
from a static equilibrium between weight and capillary retraction, as seen from (4.5)
and figure 5. Thus, for a fixed viscosity, the relative distance between the two peaks
in the global drop size distribution P(d) is independent of the injection Weber number
We. However, increasing the liquid viscosity (and thus Ca) delays ligament breakup,
thus making the ligament thinner at breakup, hence producing smaller satellite drops
relative to the main drop. Smaller objects are thus paradoxically produced through
viscous slowing.
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FIGURE 8. Consecutive views showing the detachment of a drop from a tap 5 mm in
diameter (injection flow rate 2.8 × 10−7 m3 s−1), followed by partial recoil and fragmentation
of a ligament into three smaller satellites. The snapshots are separated by 11 ms; η =
320× 10−3 Pa s.

Note that the criterion for having only one satellite drop from a recoiling ligament is
that its capillary destabilization time is larger than the recoil time. In the opposite case,
the ligament breaks faster than it recoils (into a number of the order of `s/hs drops in
the extremely slow recoil and fast destabilization limit). Since the two times compare
to each other in our tap experiment, even a minute change in the injection protocol
alters the number of satellites. Figure 8 shows how using a slightly smaller injection
diameter with a somewhat larger injection flow rate produces a longer ligament, which
fragments into three rather than one unique satellite. Such variations occur naturally
in the real sheet case, explaining the tendency to have proportionally more small
drops than big drops – up to a factor of 3, to be precise, as seen by comparing
the probability levels of the two peaks for We = 755 in figure 5. This observation is
consistent with our understanding of the mechanism producing the bimodality of the
drop size distribution with viscous fluids, and also underlines the limits of our simple
analogous experiment, and the theory we have made of it.

Finally, although the mechanism described here produces ligaments thinning
approximately exponentially in time, it should not be confused with the similar
phenomenology involved in viscoelastic fluids (Entov & Hinch 1997; Oliveira &
McKinley 2005; Gier & Wagner 2012). Maltodextrin is a Newtonian liquid, which
does not resist stretching with internal elastic stresses. The dynamics of the ligament
elongation here results from the slow deformation of the energy landscape balancing
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gravity with capillarity, and not from an equilibrium between relaxing elastic stresses
and capillarity. Extending the Savart sheet problem to viscoelastic fluids, for which
bimodal drop size distributions have been observed in jet breakup (Christianti &
Walker 2000), would be another endeavour.
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