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In this article we formalize the framework for the supplementary variable tech-
nique in stochastic modelSpecifically we show that the use of remaining or elapsed

times(or any metri¢ as supplementary variables leads to the notion of forward or
backward Chapman—Kolmogorov equatiomespectivelyWe further show that for

a class of queueing systemssing remaining time as the supplementary variable
makes analysis simpler

1. INTRODUCTION

Queueing theory forms the classical framework for modeling stochastic service pro-
cesses which have strong applications in computers and communication ngtworks
and telecommunication systen@@ueueing systems are abound in soci€hey are

rife in commercial service systemghere examples include store checkout stations
gas stationsand bank teller station#/any social service systems and community

*This research work was carried out when the first author was with the University of Manitoba and the
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emergency systemdire, rescue police) have elements of queueing systerirs
industry tool cribs material-handling systemmaintenance systemand so forth
have been analyzed in a queueing system context

The first step in analyzing a queueing system is to set it up as a Markov process
In most practical queueing systenassupplementary variable is usually needed to
achieve thisThe alternative to that is an embedded Markov chain methothe
queueing literaturave have two kinds of supplementary varighitegeneralOne is
the elapsed servic@rrival) time and the other is the remaining servieerival)
time, and for both caseshe approaches of deriving the queueing characteristics are
different The main reason for adding supplementary variables to a stochastic pro-
cess variable is to make the system Markovilime use of the supplementary vari-
able techniquéSVT) in queueing dates back to 1942 when it was introduced by
Kosten[16]. Later, the technique became popular for most stochastic mo@lkis
was the result of the article by C¢4], in which he used the supplementary variable
by considering elapsed service time to study th&3yIl queueing systenkeilson
and Koohariarni13] gave a solution for time-dependent queueing processes for the
M/G/1 queue by considering elapsed service time as the supplementary vdrable
his work on priority queueslaiswal[11] makes heavy use of supplementary vari-
ables by considering elapsed service tieessl et al[15] applied an integral
equation approach to study the stationary distribution of the number of customersin
M/G/2 queueing systems by introducing the elapsed service times as supplemen-
tary variablesElapsed time as the supplementary variable has also been used in
reliability (Li and Cao[20] and Li, Shi, and Chad21]), and in schedulindLi,
Braun and Zhad 19]). For more details about the use of elapsed service time as the
supplementary variable in various continuous and discrete queueing systsns
Cohen[2], Cooper[3], and Takagi26—28. The technique of remaining service
time as the supplementary variable was first proposed by Hendg9%and later
used by Hoksta@i10]. The transient behavior of the AG/1 queue was studied in
[10], using remaining service time as the supplementary varidbla series of
articles Dafermos and Neu{$], Klimko and Neutd14], and Heimann and Neuts
[8] used remaining service time as supplementary variables in discrete-time analysis
of queuesA similar idea was used by Minf22] and Alfa[1] for discrete-time
analysis of time-inhomogeneous queuesfact, Minh [22] went as far as adding
another variablewhich he called the “surplus” variahlthat enabled him to study
the departure proces¥he works of Minh[22] and Alfa[1] are for queues with
time-varying parameters in which the embedded Markov chain approach is not the
best choiceThe results for the steady state system length distributions of the discrete-
time GI/G/1 queue using the residual service time as the supplementary variable
were obtained by Yang and ChaudBg]. The concept of remaining service time
has also been used for analyzing finite-capacity qudLess{ 18] analyzed the MG/
1/N queue with vacation time and exhaustive service discipline by using a combi-
nation of supplementary variable and biasing techniques

Little exists in the literature by way of discussions of the better choice of sup-
plementary variablesvhether remaining time or elapsed tinie this article we
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attempt to address this issihen we use the elapsed servieerival) time as the
supplementary variabléhe hazard rate functigthe integral boundary conditions
and initial conditions are needddowever when we use remaining servi¢arival)
time as the supplementary variapdl of these conditions are not needed and we
have much simpler calculationSrom the above observatigrene can assert that
the technique of remaining time as the supplementary variable is simple and elegant
The main purpose of this article is to describe the importance of remaining time as
the supplementary variabl@he technique of remaining time can also easily be
applied to study various problems in other areas such as inventory tlsebsdul-
ing theory manufacturing systemgansportation systemsomputer-communication
systemsand telecommunication systems

The article is organized as followls Section 2a generalized stochastic model
is presentedSection 3 gives the special cases of/GJ1 queueing systemsn
Section 4 observations for considering remaining time and elapsed time as supple-
mentary variables are giveSections 5 and 6 deal with special cases for remaining
time and elapsed timeespectivelySpecial cases for finite buffer GG/1 queueing
systems are also included in Sectios@ction 8 gives the conclusiofhe Appendix
gives some steady state results of th¢ Gl system of Section.3.

2. GENERALIZED STOCHASTIC MODEL

Consider a stochastic procgg§(t);t = 0} which assumes discrete positive values
0,1,2,.... Furtherdefinencontinuous random variables parameterized Wy (t) =

{W4 (1), Ws(1),...,W,(t)} andZ (t) ={Z,(t), Z(1),...,Z,(t)}, which assume values in
[0,00). Let the procespX(t), W(t);t = 0] be a Markov proces#$f we define

Pj(t,w,z) = Pr{X(t) =j,z=Z(t) = 2+ 6z|X(0) =i, w = W(0) = w + dw},
whereW (t),Z(t) € R", then we have

Pij (t + S,W,Z) = E J Pik(S,W,En)ij(t, Envz) dEn,
k E,

whereE,, € M". This leads to the Chapman—Kolmogorov backward difference equa-
tion. The Chapman—Kolmogorov forward difference equation is obtained from

Pij (t + S)W7Z) = 2 f Pik(t’W’En)ij(S En,Z) dEn
k E,

For more detailssee Ros$24]. In what follows we cast the GIG/1 queueing
model as backward and also as forward Chapman—Kolmogorov equadtiathe
backward systenmwe use elapsed times as the supplementary varigdoheksin the
forward systemwe use remaining times$n order to use elapsed time we need to
consider the hazard rate functiohhis is necessary in order to keep the system
Markovian
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3. SPECIAL CASES
3.1. A Queueing Model for the GI/G/1 System: Remaining Time

In this sectiona queueing model for the GG/1 system is developed by considering
remaining times as the supplementary variables

Consider a single-server queue wherein the interarrival times and service times
are independent and identically distribui@dld.) random variables having density
functionsa(x) (x = 0) andb(x) (x = 0), respectivelyandA(x) = [ a(y) dy and
B(x) = [y b(y)dy. It is perhaps possible to obtain the results without assuming
interarrival and service times to have a density functi@ee Gnedenko and Kov-
alenko[6, pp. 157-16Q), but this assumption seems to simplify the argumEnt-
ther, we know that any probability distribution is the limit of a sequence of continuous
distributions Thus our assumption could be eliminated by a continuity argument
(see Stoyah25] and Whitt[29]) and does not seem to infer any loss of generality in
the results

LetN(t) denote the number of units present in the system attjiviet) denote
the remaining interarrival time at tiniéi.e., the time until the next arrival after time
t), andU(t) denote the remaining service time for the unit in service at tifibe
state of the system at timés defined by N(t),V(t),U(t);t = 0], which is Marko-
vian in continuous time

Define

Po(v,t)Av = Prob{(N(t) = 0),(v < V(t) = v + Av)}, v=0,
P,(v,u,t) AvAu = Prob{(N(t) = n),(v < V(t) =v + Av) & (U< U(t) =u+ Au)},
v=0,u=0n=1
From the above equatioyis follows that

oo

Po(t) = Prob(N(t) = 0) =f Po(v, t) do,

0

P,(t) = Prob(N(t) =n) = fooofooo P.(v,u,t) dv du, n=1
By relating the states of the system at tit@ndt + At, we obtain the following
Chapman-Kolmogorov forward equations

Po(v — At,t + At) = Py(v, t) + Py(v,0,t) At + O(AL), 1)

Pi(v — At,u — At t + At) = Py(v,u,t) + Py(0, t)b(u)a(v) At
+ P,(v,0,t)b(u) At + O(AL), 2

P,(v — At,u— At t + At) = P,(v,u,t) + P,_,(0,u, t)a(v) At
+ P,.1(0,0,t)b(u)At + O(Al), n=2 (3)
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From(1)—(3), we have the following partial differential equations of the system

dJ dJ
(a - 5) PO(U’ t) = P]_(U,O,t), (4)
dJ dJ dJ _
(a - % - %) Pl(vvu’t) - PO(O’t)b(u)a(v) + PZ(U’O’t)b(u)v (5)

J d d
(& - %) Pa(v,u,t) = R 1(O,u, t)a(v) + Poy(v,0,t)b(w),  n=2. (6)

3.2. A Queueing Model for the GI/G/1 System: Elapsed Time

In this sectiona queueing model for the &G/1 system is developed by consid-
ering elapsed times as the supplementary variables

Consider the queueing system as in Sectidnl3et N(t) denote the number of
customers present in the system at tig¥4t) denote the elapsed interarrival time at
timet (i.e, the time since the last arrival at tini¢ and X(t) denote the elapsed
service time for the customer currently in service at ttniehe state of the system at
timetis defined by N(t),Y(t), X(t);t = 0], which is Markovian in continuous time

Define

Po(y,t)Ay = Prob{(N(t) = 0),(y < Y(t) =y +4y)};, y=0,
P.(Y, X, t)AyAx = Prob{(N(t) = n),(y < Y(t) = y + Ay) & (x < X(t) = x+ AX)},
y=0,x=0,n=1
From the above equatioyis follows that

[e’e}

Po(t) = Prob(N(t) = 0) =f Po(y, t) dy,

0
P,(t) = Prob(N(t) = n) =f f P.(y, x,t) dy dx n=1.
0 0
Further define the two hazard rate functions

y
a(y)=A(y)exp{—foA(yl)dyl], y=0,

where

a(y)

Aly) = - Ay y=0,

and

b(x) = u(x) eXp[—fOXu(xl) dxl], x=0,
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where

x=0.

By relating the states of the system at titn@ndt + At, we obtain the following
Chapman—-Kolmogorov backward equations

Po(y + At,t + At) = [1— A(y)At]Py(y, t)

+f Pi(y, X, t)u(x)Atdx + O(At),
(0]

P.(y + At,x + At,t + At) = [1— A(y)At][1— pu(x)At]R,(y, X, t)
+ O(At), n=1
The above equations can be written

a 9 ~
(5 + —)Po(y,t) = —A(y)Po(y, 1) +fo Pi(y,x, hpu(x) dx,  (7)

ay
(%54 2 )ROx0 = DA +RKIRGRD, 0=l @
at ay IX ny’Xv - y 'JX ny’X’ ’ n=1L1 ()
The integral boundary conditions are
Pa(y,0,t) = f Py, X, Ou(x)dx,  n=1, 9)
0
PO(O’ X, t) = 05 (10)
POxD= [ RalyxAMdy =1 (11)
0
The initial conditions are
Po(y,0) = 6(y — Yo), (12)
Pn(y’x7o) = ania(y_yO’X_XO)’ nZOa (13)

whered,,; is the Kronecker delta anily — yp, X — Xg) is the Dirac delta functiarin
words (13) corresponds to starting the system with a specific queue léyati the
elapsed arrival time and elapsed service timeygandx,, respectively

Equationg7)—(11) are also known as partial differential—integral equations of
the system

4. OBSERVATIONS FOR REMAINING TIME AND ELAPSED TIME

In this sectionwe give the observations for considering the supplementary variable
as the remaining time and the elapsed time
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4.1. Remaining Time

1.

The supplementary variable technique analysis for the queueing problems
by considering supplementary variable as the remaining time involves the
following:

i. probability density function

ii. partial differential equations

The algorithm for considering the supplementary variable as remaining time
works efficiently for any servicéarrival) time distribution including both
phase as well as nonphase types

The analysis using the remaining time as the supplementary variable pro-
vides a simple procedure for deriving relations among state probabilities at
various epochsarbitrary departureand prearrival

The only input required for efficient evaluation of state probabilities is the
Laplace transforniLT) of the servicgarrival) time distribution

The state-dependent service concept can easily be introduced to study the
queueing problem by considering remaining service time as the supplemen-
tary variable

The more general modél.e., state-dependent arrival and state-dependent
servicg can also be studied using remaining service time as the supplemen-
tary variable

Features 5 and 6 are more useful from a practical point of.view

4.2. Elapsed Time

1.

The supplementary variable technique analysis for the queueing prob-
lems by considering elapsed time as the supplementary variable involves
the following

i. hazard rate function

ii. partial differential integral equations
iii. integral boundary conditions
iv. initial conditions
Inthe case of elapsed tithe solution procedure is not as simple compared
to remaining time
The state-dependent service concept cannot easily be introduced to study the
queueing problem by considering the elapsed service time as the supplemen-
tary variable This is because one has to define the hazard rate function in
terms of state-dependent servitteshould also be pointed out that the def-
inition of hazard rate function involves density function
The more general modél.e., state-dependent arrival and state-dependent
servicg is also not possible to study using elapsed service time as the sup-
plementary variable
The elapsed time as the supplementary variable will not give results in a
unified way compared to remaining time as the supplementary variable
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6. Itis our observation that not much work has been done by considering elapsed
interarrival time as the supplementary variable

7. Itshould be pointed out that elapsed time is a more practical manner in which
to observe a systgraven though it is more difficult to model a system in that
form.

It should be noted here that from the above observafiohSections 41 and
4.2] one can assert that the concept of using remaining time as a supplementary
variable gives a very simple and elegant solutieege Gupta and Srinivasa Rag,
Lee and Ahr{17], and Niu and Takahash23].

Inthe study of the GIG/1 systemwe have two supplementary variahlesthe
next sectionwe show that our observation regarding remaining time and elapsed
time still hold even when there is only one supplementary variable involved

5. SPECIAL CASES FOR REMAINING TIME

Case 1: When we consider the interarrival time distribution is exponejtied re-
sulting system is the well-known K5/1 queueWe let the arrival rate ba.

Let N(t) denote the number of units present in the system atttamel letU (t)
denote the remaining service of the unit in service at tinidne state of the system
at timet is defined by[N(t),U(t);t = 0], which is Markovian in continuous time
Furtherlet Py(t) be defined as the probability that at titpéhe system is emptiy.e.,
idle), and letP,(u,t)Au (n = 1) be defined as the joint probability that at tip¢he
number of units in the system isand the remaining service time of the unit in
service lies in the intervdlu,u + Au); that is

Po(t) = Prob(N(t) = 0),
P.(u,t)Au = Prob{N(t) = nu < U(t) = u + Au}, u=0,n=1

From the above equatioyis follows that
P,(t) = Prob(N(t) = n) =f P,(u,t) duy, n=1
0

Relating the states of the system at tinamdt + At, we obtain the following partial
differential equations

% Po(t) = —APy(t) + Py(0,1), (14)
(% - :—u> Pi(u,t) = —AP(u,t) + APy(t)b(u) + P,(0, t)b(u), (15)

d J
(a - £> P.(u,t) = —AP,(u,t) + AP,_1(u,t) + P,.1(0, t)b(u), n=2 (16)
Case 2: When we consider the service time distribution to be exponetialre-
sulting model is the well-known GM /1 queueWe let the service rate e
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Let N(t) denote the number of units present in the system attiamel letV/(t)
denote the remaining interarrival time at tihelhe state of the system at time
is defined by N(t),V(t);t = 0], which is Markovian in continuous timéurther
let B,(v, t) Av (n= 0) be defined as the joint probability that at tirp¢he number in
the system is and the time until the next unit arrival lies in the inter{alv + Av);
that is

P,(v,t)Av = Prob{N(t) = n,v < V(t) = v + Av}, v=0,n=0.
From the above equatioyis follows that

P.(t) = Prob(N(t) = n) = foo Pa(v,t) do, n=0.
0

Relating the states of the system at tinamdt + At, we obtain the following partial
differential equations

Jd J B

(a a 5) PO(U’ t) - upl(vy t)’ (17)
d d

(5 - 5) Po(,1) = —HRy(v,1) + P,_1(0,D)a() + Ry a(v,t),  n=1.  (18)

6. SPECIAL CASES FOR ELAPSED TIME

Case 1: When we consider the interarrival time distribution to be exponeritial
resulting queueing system is the well-knowr/ ®/1 queueWe let the arrival rate
be A.

Let N(t) denote the number of units present in the system attiamel letX(t)
denote the elapsed service of the unit currently in service atttiiftee state of the
system at time is defined by N(t), X(t); t = 0], which is Markovian in continuous
time. Further let Py(t) be defined as the probability that at timethe system is
empty(i.e, idle) and letP,(x, t) Ax (n = 1) be defined as the joint probability that at
timet, the number in the systemrisand the elapsed service time of the unit currently
in service lies in the intervdlx, x + Ax); that is

Po(t) = Prob(N(t) = 0),
P.(x,t)Ax = Prob{N(t) = n,x < X(t) = x+ Ax}, Xx=0,n=1

From the above equationis follows that

oo

P.(t) = Prob(N(t) = n) =f P.(x, 1) dx, n=1

0
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Relating the states of the system at tinaadt + At, we obtain the following partial
differential-integral equations

d oo}
a Po(t) = —AP,(t) +fo P.(x, ) p(x) dx, (19)
(i + i) P,(x,t) = —[A + Pi(x,t 20
=4 P = —[0+ HOIP ) (20

(% + aix) P.(x,t) = —[A + U(X)]P,(X, 1) + AR, _1(X, 1), n=2. (21)

The boundary conditions are given by

[ee]

PL0.0) = APo(1) + | Pa( D00 o, (22)

P,(0,1) =fow P, u(x)dx,  n=2 (23)

The initial conditions are given by
Pi(%,0) = 8,i6(X—Xo),  nN=0, (24)

whered,,; is the Kronecker delta anti x — ) is the Dirac delta functiarin words
(24) corresponds to starting the system with specific queue langtid the elapsed
service time isg.

Case 2:When we consider the service time distribution to be exponerttial
resulting queueing system is the well-known/Gll/1 queue We let the service
rate bep.

Let N(t) denote the number of units present in the system attiamel letY(t)
denote the elapsed interarrival time at tilm&@he state of the system at tintés
defined by[N(t),Y(t); t = 0], which is Markovian in continuous timé&urther let
P.(y,t)Ay (n = 0) be defined as the joint probability that at tijghe number of
units in the system ia and the time since the last unit arrival lies in the interval
(y,y + Ay); that is

P.(y,t)Ay = Prob{N(t) = n,y < Y(t) =y + Ay}, y=0,n=0.
From the above equationse have

oo

P.(t) = Prob(N(t) = n) =f P.(y,t) dy, n=0.

0
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Relating the states of the system at tit@andt + At, we have the following partial
differential-integral equations

d d
<5 + @> Po(Y,1) = —A(Y)Po(y, t) + HPy(Y, 1), (25)

9 9
(5 + 5>Pn(y,t) = —[A(y) + W] P,(y,t) + PR a(y, 1), n=1 (26)

The boundary conditions are given by

PO(O’t) = 0’ (27)

PO, 1) :fo Pa(y,)a(y)dy, n=1 (28)

The initial conditions are given by
Pn(y,o) = 6n|6(y - y0)7 n= 07 (29)

whered,,; is the Kronecker delta an¥(y — y,) is the Dirac delta functian

7. SPECIAL CASES FOR FINITE BUFFER QUEUE

In this sectionwe consider the GIG/1/N system and show that our observations
regarding the remaining time and elapsed time is even more obvious when we have
two reflecting boundaries 0 aridl

7.1. Remaining Time

In this sectiona finite buffer GI/G/1 model is developed by considering supple-

mentary variables as the remaining timég assume that the number of waiting

places iN — 1 (i.e., the maximum number of units allowed in the systeriis
Define

Po(v,t)Av = Prob{(N(t) = 0),(v < V(1) = v + Av)}, v=0,
P,(v,u,t)AvAu = Prob{(N(t) =n),(v < V(t) =v + Av) & (U< U(t) = u+ Au)},
v=0,u=0,1=n=N.
From the above equatioyis follows that

Po(t) = Prob(N(t) = 0) :f Po(v, 1) do,

0

P,(t) = Prob(N(t) = n) =f f P,(v,u,t) dv du, l=n=N.
0 0
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By relating the states of the system at titn@ndt + At, we obtain the following
partial differential equations of the system

o 0 B
<a - 5) PO(th) - Pl(Uvo’t)’ (30)
0 d d
<5 - 5 - a) P]_(U, U,t) = PO(Ovt)b(u)a(v) + P2(U705t)b(u)’ (31)

d d d
<§ - 5 - @) Pn(U’ U,t) - Pn,]_(o,u,t)a(l}) + Pn+l(v’ovt)b(u)’

2=n=N-1 (32

(a Y %) Pn(o,ut) = Py_1(0,u, t)a(v) + Py(0,u,t)a(v). (33)

7.2. Elapsed Time

In this sectiona finite buffer G/ G/1 model has been developed by considering the
supplementary variable as the elapsed titha(y) andb(x), andA(y) andu(x) are
the density functions and hazard rate functions for the interarrival and service time
distributions respectively the system capacity idl (i.e.,, the number of waiting
places iN — 1).

Define

Po(y,t)Ay = Prob{(N(t) = 0),(y < Y(t) =y + Ay)}, y=0,
P.(y, X, 1) AyAx = Prob{(N(t) = n),(y < Y(t) =y + Ay) & (X < X(t) = x+ Ax)},
y=0,x=0,1=n=N.

From the above equatioyis follows that

Polt) = ProbiN( =0 = [ Po(y.)dy
0

P.(t) = Prob(N(t)=n)=LmePn(y,x,t)dydx 1=n=N.

By relating the states of the system at titn@ndt + At, we obtain the following
partial differential-integral equations

[e’e)

d d
(E + @) Po(y,t) = —A(Y)Po(y,1) +fo Pily,x, () dx,  (34)

ad a d
<§ + & + a—)() Py, X, 1) = —[A(Y) + H(X)]PA(X, 1), l1=n=N. (35)
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The boundary conditions are

P.(y,0,t) = J Py, X, hu(x)dx,  1=n=N-1, (36)
(0]
PN(y70’t) = O’ (37)
Po(0,%,t) = 0, (38)
PO = [ Ralyx DAy 1=n=N-1 (39)
0]
0] 0
The initial conditions are
Pn(y7x’0) = 6r‘|i6(y_y09x_x0)’ OSnS N’ (42)

whered,,; is the Kronecker delta antly — yp, X — Xg) is the Dirac delta functiorin
words (42) corresponds to starting the system with a specific queue léyati the
elapsed arrival time and elapsed service timeygandx,, respectively

8. CONCLUSIONS

In this article we have tried to give an overview on supplementary variable tech-
nique (SVT). We have also demonstrated the importance of SVT by considering
remaining time as the supplementary variatités hoped that the basic idea of
writing this article on SVT in stochastic models will help the researchmescti-
tioners and engineers apply this technique in various systems

In this article we have pointed out that the use of remaining time as the sup-
plementary variable is much easier to work witlhis technique will give results in
a unified way(e.g., one can obtain the distributions of units in the system at depar-
ture prearrival and arbitrary epochsFurtheritis easier to develop relations among
state probabilities at various epochs whetherwise one has to use level crossing
analysis(cf. Jeyachandra and Shanthikunp&2]) to derive these relations
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APPENDIX
Steady State Analysis for the GI/G/1 Queueing System
Using Remaining Times as the Supplementary Variables

Let us discuss the system of equations in steady;stegtéet the limit oft in (4)—(6) approach
infinity and define

PO(U) = lango PO(U7 t)7

P.(v,u) = t|im Pa(v,u,t), n=1

The steady state equations are

2 Py(0) = Py, (43)
v
J 0
(—— - —) P(0,0) = Po(O)b(W)a(w) + Pa(v,0)b(u), (a4)
Jdv ou
(—3 - i) PA(0,0) = Py 1(0,U)a() + Proa(,0b(W),  N=2 (45)
Jv ou
Further define

P(zv,u) = % P.(v,u)z" modz=Lv=0,u=0,
n=1
P(z0,u) = i P,(0,u)z" modz=1Lu=0,
n=1
P(zv,0) = él P.(v,0z"  modz=1v=0,
P*(zr,s) = fooofooo e e SUP(z,v,u) dv du,

Q*(z,9) =fo e YP(z,0,u) du,

R*(zr) =f e ""P(zv,0) dv.
0

Multiplying (44) by zand(45) by z" (n = 2) and then adding the tergand also using43),
we get

d d
——P(zv,u) — — P(zv,u
o P(ZoW) — == P(zv,u)

= zRy(0)a(v)b(u) + za(v)P(z,0,u) + ; b(u)P(z,,0) + b(u) % Po(v). (46)
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Again multiplying (46) by e~ ande™s" and then double integratinge get

(r +s)P*(zr,s)
= Py(0)B*(s)[1— zA(r)] + Q*(z,5)[1— zA(r)] + R*(z,r)[l— % B*(S)]

— rP&(r)B*(s). (47)

The unknown quantities i#7) areP*(z,r,s), Q*(z,s), R*(zr), andP§(r). Lettingr — 0 and
s— 0in (47), we have

sP*(z,0,s) = P,(0)B*(s)[1—z] + Q*(z,s)[1— 2] + R*(z,O)[l — % B*(S)], (48)

rP*(zr,0) = Po(0)[1— zA(r)] + Q*(z,0)[1— zA(r)] + R*(z,r)[l— %] —rPg(r). (49)
Differentiating(47) once wr.t. r and lettingr,s — O, we obtain
P*(z,0,0) = a;z[ P,(0) + Q*(z,0)] + R*(l)(z,O)[l— %] — P§(0), (50)

wherea; = —A*®(0) is the mean interarrival time
Again differentiating(47) once wr.t. sand lettingr,s — 0, we get

P*(z,0,0) = bl[é R*(z,0) — Po(0)(1 — z)] +Q*Y(z,0)(1- 2), (51)
whereb; = —B*®(0) is the mean service timéettingz — 1 in (50) and(51) we obtain
P*(1,0,0) = a;[Po(0) + Q*(1L,0)] — P5(0) (52)
and
P*(1,0,0) = b, R*(0), (53)

respectivelyFrom(52) and(53), we get

1
Po(0) = o [P5(0) + b, R*(1,0) — a;Q*(1,0)]. (54)
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