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Abstract

The paper presents a knowledge representation formalism, in the form of a high-level Action

Description Language (ADL) for multi-agent systems, where autonomous agents reason

and act in a shared environment. Agents are autonomously pursuing individual goals, but

are capable of interacting through a shared knowledge repository. In their interactions

through shared portions of the world, the agents deal with problems of synchronization and

concurrency; the action language allows the description of strategies to ensure a consistent

global execution of the agents’ autonomously derived plans. A distributed planning problem

is formalized by providing the declarative specifications of the portion of the problem

pertaining to a single agent. Each of these specifications is executable by a stand-alone CLP-

based planner. The coordination among agents exploits a Linda infrastructure. The proposal

is validated in a prototype implementation developed in SICStus Prolog.

KEYWORDS: Action languages, Multi-agent systems, Constraint logic programming

1 Introduction

Representing and reasoning in multi-agent domains are two of the most active

research areas in multi-agent system (MAS) research. The literature in this area is

extensive, and it provides a plethora of logics for representing and reasoning about

various aspects of MAS domains (Fagin et al. 1995; van der Hoek et al. 2005;

Gerbrandy 2006; Sauro et al. 2006; Spaan et al. 2006).

� Research partially funded by GNCS-INdAM projects, MUR-PRIN: Innovative and multidisciplinary
approaches for constraint and preference reasoning project; NSF grants IIS-0812267 and HRD-0420407;
and grants 2009.010.0336 and 2010.011.0403.
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A large number of the logics proposed in the literature have been designed to

specifically focus on particular aspects of the problem of modeling MAS, often

justified by a specific application scenario. This makes them suitable to address

specific subsets of the general features required to model real-world MAS domains.

The task of generalizing some of these existing proposals to create a uniform and

comprehensive framework for modeling several different aspects of MAS domains is

an open problem. Although we do not dispute the possibility of extending several of

these existing proposals in various directions, the task does not seem easy. Similarly,

a variety of multi-agent programming platforms have been proposed, mostly in

the style of multi-agent programming languages, like Jason (Bordini et al. 2007),

ConGolog (De Giacomo et al. 2000), 3APL (Dastani et al. 2003), GOAL (de Boer

et al. 2005), but with limited planning capabilities.

Our effort in this paper is focused on the development of a novel action

language for multi-agent systems. The foundations of this effort can be found

in the action language BMV (Dovier et al. 2010); this is a flexible single-agent action

language, which generalizes the action language B (Gelfond and Lifschitz 1998) with

support for multi-valued fluents, non-Markovian domains, and constraint-based

formulations—enabling, for example, the formulation of costs and preferences. BMV

has been implemented in CLP(FD).

In this work, we extend BMV to support MAS domains. The perspective is that

of a distributed environment, with agents pursuing individual goals but capable of

interacting through shared knowledge and through collaborative actions. A first step

in this direction has been described in the BMAP language (Dovier et al. 2009), a

multi-agent action language with capabilities for centralized planning. In this paper,

we expand on this by moving BMAP towards a truly distributed multi-agent platform.

The language is extended with Communication primitives for modeling interactions

among Autonomous Agents. We refer to this language simply as BAAC. Differently

from BMAP, agents in the framework proposed in this paper have private goals

and are capable of developing independent plans. Agents’ plans are composed in

a distributed fashion, leading to replanning and/or introduction of communication

activities to enable a consistent global execution.

The design of BAAC is validated in a prototype, available from http://www.dimi.

uniud.it/dovier/BAAC, that uses CLP(FD) for the development of the individual

plans of each agent and Linda for the coordination and interaction among them.

2 Syntax of the multiagent language BAAC

The signature of BAAC consists of:

(1) A set G of agent names, used to identify the agents in the system;

(2) A set A of action names;

(3) A set F of fluent names—i.e., predicates describing properties of objects in the

world, and providing description of states of the world; such properties might

be affected by the execution of actions; and

(4) A set V of values for the fluents in F—we assume V = �.

https://doi.org/10.1017/S1471068411000615 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000615


Autonomous agents coordination 151

The behavior of each agent a is specified by an action description theory Da,

composed of axioms of the forms described next.

Considering the action theory Da of an agent a, name and priority of the agent

are specified by agent declarations:

agent a [ priority n ] (1)

where n ∈ �. We adopt the convention that 0 denotes the highest priority—which

also represents the default priority in the absence of a declaration. As we will see,

priorities can be used to resolve possible conflicts among actions of different agents.

It is possible to specify which agents are known to the agent a, as follows:

known agents a1, a2, . . . , ak (2)

Agent a can explicitly communicate with any of the agents ai, as discussed below.

We assume the existence of a “global” set F of fluents, and any agent a knows

and can access only those fluents that are declared in Da by axioms of the form:

fluent f1, . . . , fh valued dom i (3)

with {f1, . . . , fh} ⊆ F, h � 1, and domi ⊂ V is a set of values representing the

admissible values for each fi (possibly represented as an interval [v1, v2]). These

fluents describe the “local state” of the agent. We assume that the fluents accessed

by multiple agents are defined consistently in each agent’s local theory.

Example 1

Let us specify a domain inspired by volleyball. There are two teams: black and

white, with one player in each team; let us focus on the domain for the white team

(Section 3.7 deals with the case that involves more players). We introduce fluents to

model the positions of the players and of the ball, the possession of the ball, the

score, and a numerical fluent defense time. All players know the positions of all

players. Since the teams are separated by the net, the x-coordinates of black and

white players must differ. This can be stated by:

agent player(white,X) :- num(X).
known agents player(black,X) :- num(X).

fluent x(player(white,X)) valued [B,E] :- num(X), net(NET),B is NET+1, linex(E).
fluent x(player(black,X)) valued [1,E] :- num(X), net(NET),E is NET-1.
fluent y(A) valued [1,MY] :- player(A), liney(MY).
fluent x(ball) valued [1,MX] :- linex(MX).
fluent y(ball) valued [1,MY] :- liney(MY).
fluent hasball(A) valued [0,1] :- agent(A).
fluent point(T) valued [0,1] :- team(T).
fluent defense time valued [0,1].
team(black). team(white). num(1). linex(11). net(6). liney(5).

where linex/liney are the field sizes, and net is the x-coordinate of the net.

Fluents are used in Fluent Expressions (FE), which are defined as follows:

FE ::= n | ft | FE1 ⊕ FE2 | − (FE) | abs(FE) | rei(C) (4)

where n ∈ V, f ∈ F, t ∈ {0,−1,−2,−3, . . .}, ⊕ ∈ {+,−, ∗, /, mod}, and r ∈ �. FE is

referred to as a timeless expression if it contains no occurrences of ft with t �= 0. f

can be used as a shorthand of f0. The notation ft is an annotated fluent expression.
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The expression refers to a relative time reference, indicating the value f had −t

steps in the past. The last alternative in (4), a reified expression, requires the notion

of constraint C, introduced below. rei(C) represents a Boolean value that reflects

the truth value of C. A Primitive Constraint (PC) is formula FE1 op FE2, where FE1

and FE2 are fluent expressions, and op ∈ {=, �=,�,�, >,<}. A constraint C is a

propositional combination of PCs. We will refer to the primitive constraints of the

form f = FE, where f ∈ F, as a basic primitive constraint. We accept the constraint

pair(FE1, FE3) = pair(FE2, FE4) as syntactic sugar of FE1 = FE2 and FE3 = FE4.

An axiom of the form action x in Da declares that the action x ∈ A is

executable by the agent a. Observe that the same action name x can be used for

different actions executable by different agents. This does not cause ambiguity, since

each agent’s knowledge is described by its own action theory. A special action, nop,

is executable by every agent, and it does not change any of the fluents.

Example 2

The actions for each player A of Example 1 are:

• A : move(d) one step in direction d, where d is one of the eight directions: north,

north-east, east, . . ., west, north-west.

• A : throw(d, f) the ball in direction d (same eight directions as above) with

strength f varying from 1 to a maximum throw power (5 in our example).

Moreover, the player of each team is in charge of checking if a point has been

scored (in such case, he whistles). We write the actions as act([A],action name)

and state these axioms:

action act([A],move(D)) :-whiteplayer(A),direction(D).
action act([A],throw(D,F)):-whiteplayer(A),direction(D),power(F).
action act([player(white,1)],whistle).

where whiteplayer, power, and direction can be defined as follows:

whiteplayer(player(white,N)) :- agent(player(white,N)).
power(1). power(2). power(3). power(4). power(5).
direction(D) :- delta(D, , ). delta(nw,-1,1). delta(n,0,1). delta(ne,1,1).
delta(w,-1,0). delta(e,1,0). delta(sw,-1,-1). delta(s,0,-1). delta(se,1,-1).

The executability of the actions is described by axioms of the form:

executable x if C (5)

where x ∈ A and C is a constraint. The axiom states that x is executable only if C is

entailed by the state of the world. We assume that at least one executability axiom

is present for each action; multiple executability axioms are treated disjunctively.

Example 3

In our working example, we can state executability as follows:
executable act([player(white,1)],whistle) if [S eq 0] :- build sum(S).
executable act([A],move(D)) if [hasball(A) eq 0, defense time gt 0,

Net lt x(A)+DX, x(A)+DX leq MX, 1 leq y(A)+DY, y(A)+DY leq MY] :-
action(act([A],move(D))), delta(D,DX,DY),
net(Net), linex(MX), liney(MY).

executable act([A],throw(D,F)) if
[hasball(A) gt 0,defense time eq 0, 1 leq x(A)+DX*F, x(A)+DX*F leq MX,
1 leq y(A)+DY*F, y(A)+DY*F leq MY] :-

action(act([A],throw(D,F))), delta(D,DX,DY), linex(MX), liney(MY).
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These axioms state that neither a player nor the ball can leave the field. build sum

is recursively defined to return the expression: defense time + hasball(A1) +

· · · + hasball(An), where A1, . . . , An are the players (i.e., player(white,1) and

player(black,1)). The operators =, �=,�, <, etc. are concretely represented by eq,

neq, leq, lt, respectively.

The effects of an action execution are modeled by dynamic causal laws:

x causes Eff if Prec (6)

where x ∈ A, Prec is a constraint, and Eff is a conjunction of basic primitive

constraints. The axiom asserts that if Prec is true with respect to the current state,

then Eff must hold after the execution of x.

Since agents share fluents, their actions may interfere and cause inconsistencies.

A conflict happens when the effects of different concurrent actions are incompatible

and would lead to an inconsistent state; note that we allow only consistent states to

exist during the evolution of the world. A procedure has to be applied to resolve a

conflict and determine a consistent subset of the conflicting actions (see Section 3.3).

Example 4

Let us describe the effects of the actions in the volleyball domain. When the ball is

thrown with force f in direction d, it reaches a destination cell whose distance is as

follows: a) if d is either north or south, then ΔX = 0,ΔY = f; b) if d is east or west,

then ΔX = f,ΔY = 0; c) if d is any other direction, ΔX = f,ΔY = f. An additional

effect is to set the fluent defense time (to 1 in our example).

act([A],throw(D,F)) causes hasball(A) eq 0 :- action(act([A],throw(D,F))).
act([A],throw(D,F)) causes defense time eq 1 :- action(act([A],throw(D,F))).

act([A],throw(D,F)) causes pair(x(ball),y(ball)) eq pair(x(A)−1+ F*DX,y(A)−1+ F*DY) :-
action(act([A],throw(D,F))), delta(D,DX,DY).

act([A],throw(D,F), causes hasball(B) eq 1
if [pair(x(B),y(B)) eq pair(x(A)+F*DX, y(A)+F*DY)] :-

action(act([A],throw(D,F))), player(B), neq(A,B),delta(D,DX,DY).
act([A],throw(D,F)) causes point(black) eq 1 if [x(A)+F*DX eq Net] :-

action(act([A],throw(D,F))), delta(D,DX, ), net(Net).

The effects of the other two actions move and whistle can be stated by:

act([player(white,1)],whistle) causes point(white) eq 1 if [x(ball) lt NET] :-
net(NET).

act([player(white,1)],whistle) causes point(black) eq 1 if [NET lt x(ball)] :-
net(NET).

act([A],move(D)) causes pair(x(A),y(A)) eq pair(x(A)−1+DX,y(A)−1+DY) :-
action(act([A],move(D))), delta(D,DX,DY).

act([A],move(D)) causes defense time eq defense time−1- 1 :- action(act([A],move(D))).
act([A],move(D)) causes hasball(A) eq 1

if [pair(x(ball),y(ball)) eq pair(x(A)+DX,y(A)+DY)] :-
action(act([A],move(D))), delta(D,DX,DY).

In the presence of a conflict (i.e., two agents executing actions that assign a distinct

value to the same fluent), at least two perspectives can be followed, by assigning

either a passive or an active role to the conflicting agents. In the first case, a

supervising entity is in charge of resolving the conflict, and all the agents will

comply with the supervisor’s decisions. Alternatively, the agents themselves are in

charge of reaching an agreement, possibly through negotiation. In the latter case,
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the following declarations allow one to specify in the action theories some basic

reaction policies the agents might apply:

action x [OPT] (7)

with OPT defined as: OPT ::= on conflict OC [OPT]

| on failure OF [OPT]

OC ::= retry after T [provided C]

| forego [provided C]

OF ::= retry after T [if C]

| replan [if C] [add goal C]

| fail [if C]

where T is a number of steps and C is a constraint. Notice that one can also specify

policies to be adopted whenever a failure occurs in executing an action.

We remark here the difference between conflict and failure. A conflict occurs

whenever concurrent actions performed by different agents try to make inconsistent

modifications to the state of the world. A failure occurs whenever an action x cannot

be executed as planned by an agent a. This might happen, for instance, because

after the detection of a conflict involving x, the outcome of the conflict resolution

phase requires x to be inhibited. In this case, the agent a might have to reconsider its

plan. Hence, reacting to a failure is a “local” activity the agent might perform after

the state transition has been completed. In axioms of the form (7), one can specify

different reactions to a conflict (resp., a failure) of the same action. Alternatives will

be considered in their order of appearance.

Example 5

Let us assume that the agents a and b have priority 0, while agent c has lower

priority 2. Let us also assume that the current state is such that actions act a,

act b, and act c are all executable (respectively, by agents a, b, and c), where their

effects on fluent f are of setting it to 1, 2, and 3, respectively. This indicates a

situation of conflict, since the effects of the concurrent execution of the three actions

are inconsistent. Assume that the following options have been defined:

action act a on conflict retry after 2

action act b on conflict forego

action act c on failure retry after 3

and that the plan of agent a (resp., b, c) requires the execution of action act a

(resp., act b, act c) in the current state. One possible conflict resolution is to focus

the priority of the agents. This causes act c to be removed from the execution list.

Thus, agent c fails in executing act c and will retry the same action after three

steps.

Some policy must now be chosen to resolve the conflict between a and b. The first

possibility is that agents have passive roles in conflict resolution, and a supervisor

selects, according to some criteria, a consistent subset of the actions/agents. For

example, if a is selected (e.g., by lexicographic order), then the state will be modified

by setting f = 1, declaring act a successful, while agent b will fail.
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An alternative is to allow the agents a and b to directly resolve the conflict, using

their on conflict options. This causes a to retry the execution of act a after two

time steps and b to forego the execution of act b. Both of them will get a failure

message, because neither act a nor act b is executed.

Apart from the possible communications occurring among agents during the conflict

resolution phase, other forms of “planned” communication can be modeled in an

action theory. An axiom of this form

request C1 if C2 (8)

describes a special static causal law that allows an agent to broadcast a request,

whenever a certain condition (C2) is encountered. By executing this action, an agent

asks if there is another agent that can make the constraint C1 true. Only an agent

knowing all of the fluents occurring in C1 is allowed to answer such a request.

Instead of broadcasting a help request, an agent a can send such a message

directly to another agent by providing its name:1

request C1 to agent a′ if C2 (9)

The following communication primitive subsumes the previous ones:

request C1[ to agent a′] if C2 [ offering C3 ] (10)

If the last option is used, the requesting agent also provides a “reward” by promising

to ensure C3 in case of acceptance of the proposal. Axioms of this type allow us to

model negotiations and other forms of bargaining and transactions.

In turn, agents may declare their willingness to accept requests and serve other

agents using statements of the form

help Agent List [ if C] (11)

where Agent List is either a list of agent names a1, . . . , ak—denoting that the agent in

question can serve requests coming from the agents a1, . . . , ak—or the keyword all—

denoting the fact that the agent can accept requests coming from any source. The

optional condition allows the agent to select which requests to consider depending

on properties of the current state of the world.

Example 6

Let us consider a domain with three agents: a guitar maker, a joiner that provides

wooden parts of guitars (bodies and necks), and a seller that sells strings and

pickups. We assume that the maker has plenty of money (so we do not take into

account what it spends), that the seller wants to be paid for its materials, and that

necks and bodies can be obtained for free (e.g., the joiner has a fixed salary paid

by the maker). The income of the seller is modeled by changes to the value of the

fluent seller account. In Figure 1, we report an action description that models

the agent guitar maker—analogous theories can be formulated for the other two

agents. Observe that two point-to-point interactions are modeled—namely, the one

1 Any request sent to a nonexistent agent will never receive an answer.
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agent guitar maker.
action make guitar.
executable make guitar if neck > 0 and strings ≥ 6 and body > 0 and pickup > 0.

% actions for making two different kinds of guitars:

make guitar causes guitars=guitars−1+1 and neck=neck−1-1 and body=body−1-1

and strings = strings−1 − 6 and pickup = pickup−1 − 2
if pickup ≥ 2.

make guitar causes guitars=guitars−1+1 and neck=neck−1-1 and strings = strings−1 − 6

and body=body−1-1 and pickup=pickup−1-1
if pickup < 2.

% interaction with joiner:
request neck > 0 to agent joiner if neck = 0.
request body > 0 to agent joiner if body = 0.

% interaction with seller:
request strings > 5 to agent seller if strings < 6

offering seller account = seller account−1 + 8.
request pickup > 0 to agent seller if pickup = 0

offering seller account = seller account−1 + 60.

% the goal is to make 10 guitars:
goal guitars = 10.

% initially the maker owns some material:
initially guitars = 2 and body = 3 and neck = 5 and pickup = 6 and strings = 24.

Fig. 1. An action description in BAAC for a guitar maker agent.

between the guitar maker and the joiner, to obtain necks and bodies, and the one

between the guitar maker and the seller, to buy strings ($8) and pickups ($60).

Two kind of guitars can be made, differing in the number of pickups.

Various forms of global constraint can be exploited to impose control knowledge

and maintenance goals. These constraints represent properties that must always

persist in the world where the agents act. Some examples:

• FC holds at n. This constraint is satisfied if the fluent constraint FC holds

at the nth time step.

• always FC . This constraint imposes the condition that the fluent constraint

FC holds in all the states of the evolution of the world.

Semantics of these constraints is reported in Section 3.1.

An action domain description consists of a collection Da of axioms of the form

described so far, for each agent a ∈ G. Moreover, it includes, for each agent a, a

collection Oa of goal axioms (objectives), of the form goal C, where C is a constraint,

and a collection Ia of initial state axioms of the form: initially C, where C is a

constraint involving only timeless expressions. For the sake of simplicity, we assume

that all the sets Ia are drawn from a consistent global initial state description I,

i.e., Ia ⊆ I. A specific instance of a planning problem is a triple〈
〈Da〉a∈G , 〈Ia〉a∈G , 〈Oa〉a∈G

〉
.

3 System behavior

The behavior of BAAC can be split into two parts: the semantics of the action

description language, parametric on the supervisor selection strategy, and these
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strategies that can be programmed. We present the former in Section 3.1, the latter

in Sections 3.2–3.5. Finally, some implementation notes are reported in Section 3.6.

3.1 Semantics of BAAC

The semantics of the action language are described by a transition function that

operates on states. A state s is identified by a total function v : F −→ V. We

assume a given horizon N, within which the planning activities of all agents have to

be completed.

Let�v = 〈v0, . . . , vi〉 be a state sequence, with 0 � i � N. Given�v, j ∈ {0, . . . , i}, and

a fluent expression ϕ, we define the concept of value of ϕ in�v at time j, denoted by

�v(j, ϕ), as follows:

�v(j, x) = x if x ∈ V
�v(j, ft) = vj+t(f) if f ∈ F, and 0 � j + t

�v(j, ft) = v0(f) if f ∈ F, and j + t < 0

�v(j, abs(ϕ)) = |�v(j, ϕ)|
�v(j,−(ϕ)) = −(�v(j, ϕ))

�v(j, ϕ1 ⊕ ϕ2) =�v(j, ϕ1) ⊕�v(j, ϕ2)

�v(j, rei(C)) = 1 if�v |=j C

�v(j, rei(C)) = 0 if�v �|=j C

where ⊕ ∈ {+,−, ∗, /, mod}. The last two cases specify the semantics of reification

that relies on the notion of satisfaction, which, in turn, is defined by structural

induction on constraints, as follows. Given a primitive constraint ϕ1 op ϕ2 and a

state sequence �v, the notion of satisfaction at time j is defined as: �v |=j ϕ1 op ϕ2

iff �v(j, ϕ1) op�v(j, ϕ2). The notion |=j is generalized to the case of propositional

combinations of fluent constraints in the usual manner. For the case of pair, we

have that�v |=j pair(E1, E3) = pair(E2, E4) if and only if�v |=j E1 = E2 ∧ E3 = E4.

We recall that a timeless fluent is a fluent expression of the form f0 (and f).

Given a constraint C and a state sequence�v = 〈v0, . . . , vi〉, let fluents(C) be the set

of timeless fluents occurring in C . A function σ : fluents(C) −→ V is a �v-solution

of C if 〈v0, . . . , vi, σ〉 |=i+1 C . Let us observe that this definition makes use of a slight

abuse of notation, since σ is potentially not a complete state (some fluents may have

not been assigned a value by σ). Nevertheless, the choice of fluents in fluents(C)

guarantees the possibility of correctly evaluating C . In other words, σ can be seen

as a partial state contributing (with �v) to the satisfaction of C at time i + 1. Let us

see how to complete this state using inertia: if σ is a �v-solution of a constraint C ,

ine(σ,�v) is defined as follows:

ine(σ,�v)(f) =

{
σ(f), if f ∈ fluents(C),

vi(f), otherwise.

Fluents not appearing in C are considered inertial (namely they maintain their

previous values) and therefore the state is completed using the function ine.
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An action x is executable by agent a in a state sequence �v = 〈v0, . . . , vi〉 if there is

at least an axiom executable x if C in Da and it holds that�v |=i C . If there is

more than one executability condition, it is sufficient for one of them to apply.

Let us denote with Dyn(x) the set of dynamic causal law axioms for action x. The

desired effect of executing x in state sequence �v = 〈v0, . . . , vi〉, denoted by DEff(x,�v),

is a constraint defined as follows:

DEff(x,�v) =
∧

{Eff | x causes Eff if Prec ∈ Dyn(x),�v |=i Prec} .

Request accomplishment actions can be used in the construction of this set.

Given a state sequence�v = 〈v0, . . . , vi〉, a state vi+1, and a set of actions X, a triple

〈�v,X, vi+1〉 is a valid state transition if:

• for all x ∈ X, the action x is executable in�v by some agent a, and

• vi+1 = ine(σ,�v), where σ is a�v-solution of the constraint
∧

x∈XDEff(x,�v).

Observe that if X = ∅, then 〈�v, ∅, vi〉 will be a valid state transition.

Let �v = 〈v0, . . . , vN〉 be a sequence of states, 〈(Da)a∈A, (Ia)a∈A, (Oa)a∈A〉 an

instance of a planning problem, and X1, . . . , XN be sets of actions. We say that

〈v0, X1, v1, . . . , XN, vN〉 is a valid trajectory if:

• for each agent a and for each axiom of the form initially C in Ia, we have

that�v |=0 C ,

• for all i ∈ {0, . . . ,N − 1}, 〈〈v0, . . . , vi〉, Xi+1, vi+1〉 is a valid state transition.

A valid trajectory is successful for an agent a if, for each axiom of the form

goal C in Oa, it holds that�v |=N C .

At each time step i, each agent might propose a set of actions for execution—

we assume that all the proposed actions are executable in the state sequence �vi =

〈v0, . . . , vi〉. Let Yi+1 be this set of actions. The supervisor selects a subset Xi+1 ⊆ Yi+1

such that the constraint Eff(Xi+1,�vi), defined as:

Eff(Xi+1,�vi) =
∧

x∈Xi+1

DEff(x,�vi)

is satisfiable with respect to �v—i.e., there exists a complete state vi+1 such that

〈�vi, Xi+1, vi+1〉 is a valid state transition. It is the job of the supervisor to determine

the subset Xi+1 given Yi+1 and �vi—as a maximal consistent subset, using agent

priorities or other approaches, as discussed in Section 3.3. If an agent cannot find a

plan at the time step i, it will ask for a nop and try again the next step.

Let us complete the semantics of the language by dealing with request and help

laws. A request of the agent a

request C1 to agent a′ if C2

is executable in a state sequence�v = 〈v0, . . . , vi〉 if it holds that�v |=i C2. If the request

above is executable, it can be accomplished in the successive state vi+1 if there is an

axiom

help · · · a · · · if C3
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in Da′ and 〈v0, . . . , vi, vi+1〉 |=i+1 C3. The semantics of the help law is that of enabling

a request accomplishment (after a request demand) and it can be viewed as the

execution of an ordinary action by agent a′.2 We can view this as if a′ had an

additional action y defined in Da′ as:

executable y if C3 ∧ (C2)
−1

y causes C1 if true

Observe that, as happens for executability laws, multiple help preconditions are

considered disjunctively. If the request includes also the option offering C4, then

the action y will cause C1 ∧ C4 as effect.

Let us add some comments on agents’ requests for action execution. Each agent

wishes to execute some actions and to ask for some requests. After the supervisor

has decided which actions will be executed, each agent retrieves the relevant requests

and analyzes them in order to possibly fulfill them in the next time step (see below

for further details). These requests behave like an action y, as stated above.

Two global constraints are allowed by the language BAAC. Their effect is to filter

out sequences of states that do not fulfill those constraints:

• C holds at i imposes that any valid trajectory 〈v0, X1, v1, . . . , XN, vN〉 must

satisfy 〈v0, v1, . . . , vN〉 |=i C

• always C imposes that any valid trajectory 〈v0, X1, v1, . . . , XN, vN〉 must satisfy

〈v0, v1, . . . , vN〉 |=i C for all i ∈ {0, . . . ,N}.

The supervisor is in charge of checking if these constraints can be satisfied while

selecting Xi as mentioned before. If the fluents involved in the constraints are all

known to an agent a, the set of actions proposed by a are such that they will

guarantee the property if all of them (and only them) are selected for application.

Each agent a, at each time step i, selects a set of actions Y a
i+1 it wishes to execute.

For doing that, a looks for a sequence of (sets of) actions to achieve its local goal,

given the current state sequence 〈v0, . . . , vi〉. The set of actions Y a
i+1 are those to

be executed at the current time step. If the new state vi+1 communicated by the

supervisor is different from the state it expected after the application of all the

actions in the set Y a
i+1 (due either to the fact that some of these actions are not

selected, or that other agents have executed actions that have unexpectedly changed

some values), it will need to replan. Let us observe that, although globally the

supervisor views a valid trajectory, locally this is not true (some state transitions are

not justified by the actions of agent a alone). However, in looking for a plan (and

in replanning), it reasons on an “internal” valid trajectory from the current time to

the future.

Let us focus on the problem of reacting to requests. Suppose that an agent a′,

at time i in a state sequence 〈v0, v1, . . . , vi〉, receives the requests r1, . . . , rh, where rj is

of the form

request C
j
1 to agent a′ if C

j
2

2 We hypothetically assume that a′ has access to all fluents of a.
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and, moreover, assume that these requests are ordered (e.g., by the priorities of the

requesting agent aj). For j = 1, . . . , h, if Da′ contains an axiom

help · · · aj · · · if C
j
3

such that 〈v0, v1, . . . , vi〉 |=i C
j
3, the agent a′ adds temporarily to its theory the

constraint

C
j
1 holds at i + 1 (12)

and looks for a plan in the enlarged theory. If such a plan exists, the constraint (12)

is definitely stored in Da′ , otherwise the request is ignored. In both cases, a′ proceeds

with next request (j := j + 1). At the end, some (possibly none) of the h constraints

C
j
1 , . . . , C

j
h will be fulfilled by a plan and the set of actions Y i+1

a′ of the next step of

this plan are passed to the supervisor.

Let us focus now on how the agent a deals with the options related to a failure

(this is also developed in Section 3.4). Let us assume an action x submitted for

execution at time i has not been selected by the supervisor, and, therefore, a failure

signal is returned to the agent a. The current sequence of states is�v = 〈v0, v1, . . . , vi+1〉.
Let us analyze what happens in the three options:

• fail if C1: if �v |=i+1 C1, then agent a declares its failure. From this point

onwards, the agent will not generate any actions, nor interact with other

agents.

• replan if C1 add goal C2: if�v |=i+1 C1, then goal C2 is added in Da (and

then the agent a starts replanning)

• retry after T if C1: if �v |=i+1 C1, then for T − 1 time steps the agent a

requires only nop to the supervisor, at time step T + i the action x is required

again.

If the if option is missing, the condition will be assumed to be satisfied. If the

add goal option is missing, no new goal will be added.

3.2 Concurrent plan execution

The agents are autonomous and develop their activities independently, except for

the execution of the actions/plans. In executing their plans, the agents must take

into account the effects of concurrent actions.

We developed the basic communication mechanism among agents by exploiting

a tuple space, whose access and manipulation follows the blackboard principles

introduced in the Linda model (Carriero and Gelernter 1989). Linda is a popular

model for coordination and communication among processes; Linda offers coordi-

nation via a shared memory, commonly referred to as a blackboard or tuple-space.

All the information are stored in the blackboard in the form of tuples—the shared

blackboard provides atomic access and associative memory behavior (in retrieving

and removing tuples). The SICStus Prolog implementation of Linda allows the

definition of a server process, in charge of managing the blackboard, and client

processes, that can add tuples (using the out operation), read tuples (using the rd

operation), and remove tuples (using the in operation).
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Most of the interactions among concurrent agents, especially those interactions

aimed at resolving conflicts, are managed by a specific process, the supervisor, that

also provides a global time to all agents, enabling them to execute their actions

synchronously. The supervisor process stores the initial state and the changes caused

by the successful executions of actions. It synchronizes the actions execution, and

controls the coordination and the arbitration in case of conflicts. It also sends a

success or a failure signal to each agent at each action execution attempt, together

with the list of changes to its local state.

Let us describe how the execution of concurrent plans proceeds. As mentioned,

each action description includes a set of constraints describing a portion of the

initial state.

(1) At the beginning, the supervisor acquires the specification I =
⋃

a∈G Ia of the

initial state.

(2) At each time step, the supervisor starts a new state transition:

• Each agent sends to the supervisor a request to perform an action—i.e.,

the next action of its locally computed plan—by specifying its effects on the

(local) state.

• The supervisor collects all these requests and starts an analysis, aimed at

determining the subsets of actions/agents that conflict (if any). A conflict

occurs whenever agents require incompatible assignments of values to the

same fluents. The transition takes place once all conflicts have been resolved

and a subset of compatible actions has been identified by means of some

policy (see below). These actions are enabled while the remaining ones are

inhibited.

• All the enabled actions are executed, producing changes to the global state.

• These changes are then sent back to all agents, to achieve the corresponding

updates of each agent’s local state. All agents are also notified about the

outcome of the procedure. In particular, those agents whose actions have

been inhibited receive a failure message.

(3) The computation stops when the time N is reached.

Observe that, after each step of the local plan execution, each agent needs to check

if the reached state still supports its successive planned actions. If not, the agent has

to reason locally and revise its plan, i.e., initiate a replanning phase. This is due to

the fact that the reached state might be different from the expected one. This may

occur in two cases:

(1) The proposed action was inhibited, so the agent actually executed a nop; this

case occurs when the agent receives a failure message from the supervisor.

(2) The interaction was successful, i.e., the planned action was executed, but the

effects of the actions performed by other agents affected fluents in its local state,

preventing the successful continuation of the remaining part of the local plan.

For instance, the agent a may have assumed that the fluent g maintained its

value by inertia, but another agent, say b, changed such value. There is no direct

conflict between the actions of a and b, but agent a has to verify that the rest
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of its plan is still applicable (e.g., the next action in a’s plan may have lost its

executability condition).

3.3 Conflict resolution

A conflict resolution procedure is invoked by the supervisor whenever it determines

the presence of a set of incompatible actions. Different policies can be adopted in

this phase and different roles can be played by the supervisor.

First of all, the supervisor exploits the priorities of the agents to attempt a

resolution of the conflict, by inhibiting the actions issued by low-priority agents.

If this does not suffice, further options are applied. We describe here some of the

easiest viable possibilities, that we have already implemented in our prototype. The

architecture of the system is modular (see Section 3.6), and can be easily extended

to include more complex policies and protocols.

The two approaches we implemented so far differ by assigning the active role in

resolving the conflict either (a) to the supervisor or (b) to the conflicting agents.

In the first case, the supervisor has an active role—it acts as a referee and decides,

without any further interaction with the agents, which actions have to be inhibited.

In the current prototype, the arbitration strategy is limited to:

• A random selection of a single action to be executed; or

• The computation of a maximal set of compatible actions to be executed. This

computation is done by solving a CSP—which is dynamically generated using

a CLP(FD) encoding.

Note that, in this strategy, the on conflict policies assigned to actions by axioms (7)

are ignored. This “centralized” approach is relatively simple; it has also strong

potential of facilitating the creation of optimal plans. On the other hand, the

adoption of a centralized approach to conflict resolution might become a bottleneck

in the system, since all conflicting agents must wait for supervisor’s decisions.

In the second case, the supervisor simply notifies the set of conflicting agents about

the inconsistency of their actions. The agents involved in the conflict are completely

in charge of resolving it by means of a negotiation phase. The supervisor waits for

a solution from the agents. In solving the conflict, each agent a makes use of one of

the on conflict directives (7) specified for its conflicting action x. The semantics

of these directives are as follows (in all the cases [provided C] is an optional

qualifier; if it is omitted it is interpreted as provided true):

• The option on conflict forego provided C causes the agent a to “search”

among the other conflicting agents for someone, say b, that can guarantee the

condition C . In this case, b performs its action while the execution of a’s action

fails, and a executes a nop in place of its action x. Different strategies can be

implemented in order to perform such a “search for help.” A simple one is the

round-robin policy described below, but many other alternatives are possible and

should be considered in completing the prototype.
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• The option on conflict retry after T provided C , will cause a to execute

nop during the following T time steps and then it will try again to execute its

action (if the preconditions still hold).

• If there is no applicable option (e.g., no option is defined or none of the agents

accept to guarantee C), the action is inhibited and its execution fails.

The way in which agents negotiate and exploit the on conflict options can rely

on several protocols, of different complexity. For instance, one possibility might be

to nominate a “leader” within each of the conflicting sets S of agents. The leader is

in charge of coordinating the agents in S to resolve the conflict without interacting

with the supervisor.

Another approach consists of letting each agent in S free to proceed and to find

an agreement by sending proposals to other agents (possibly by adopting some

order of execution, some priorities, etc.) and receiving their proposals/answers.

In the current prototype, we implemented a round-robin policy. Let us assume

that the state sequence already constructed is �v = 〈v0, . . . , vi〉 and let us assume

that the agents in the list A = 〈a1, . . . , am〉 aim at executing the set of actions

Y = 〈y1, . . . , ym〉, respectively. Furthermore, let us assume that the execution of all

actions in Y will introduce a constraint that does not have a �v-solution. There

is a sorting of the agents, and they take turn in resolving the conflict. Suppose

that at a certain round of the procedure the agent ak is selected. ak tries its

next unexplored on conflict OP provided C option for its action and checks

if�v |=i C .

• If�v |=i C , then ak will apply the OP option and ak and yk are removed from A

and Y , respectively.

• Otherwise, the next agent is selected and the successive call to ak will consider

the next on conflict option.

If there are no successive options for ak , then ak, yk will be removed from A, Y

and a failure for ak will occur. After each step, if Y has a �v-solution, then the

procedure will terminate and the actions in Y will be executed. Observe that this

procedure always terminates with a solution to the conflict, since a finite number of

on conflict options are defined for each action.

This a relatively rigid policy, and it represents a simple example of how to realize

a terminating protocol for conflict resolution. Alternative solutions can be added to

the prototype thanks to its modularity.

Once all conflicts have been addressed, the supervisor applies the enabled actions,

and obtains the new global state. Each agent receives a communication containing

the outcome of its action execution and the changes to its local state. Moreover,

further information might be sent to the participating agents, depending on the

outcome of the coordination procedure. For instance, when two agents agree on an

on conflict option, they “promise” to execute specific actions (e.g., the fact that

one agent has to execute T consecutive nop).
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3.4 Failure policies

Agents receive a failure message from the supervisor whenever their requested

actions have been inhibited. In such a case, the original plan of the agent has to

be revised to detect if the local goal can still be reached, possibly by replanning.

Also, in this case, different approaches can be applied. For instance, one agent could

avoid developing an entire plan at each step, but limit itself to produce a partial

plan for the very next step. Alternatively, an agent could attempt to determine the

“minimal” modifications to the existing plan in order to make it valid with respect

to the new encountered state.3

In this replanning phase, the agent can exploit the on failure options associated

with the corresponding inhibited action. The intuitive semantics of these options can

be described as follows:

• retry after T [if C]: the agent first evaluates the constraint C; if C holds,

then it executes the action nop T times and then tries again the failed action

(provided that its executability conditions still hold).

• replan [if C1] [add goal C2]: the agent first evaluates C1; if it holds, then

in the following replanning phase the goal C2 is added to the current local

goal. The option add goal C2 is optional; if it is not present, then nothing is

added to the goal, i.e., it is the same as add goal true.
• fail [if C1]: this is analogous to replan [if C1] add goal false. In this

case, the agent declares that it is impossible to reach its goal. It quits and does

not participate in the subsequent steps of the concurrent plan execution.

• If none of the above options is applicable, then the agent will proceed as if

the option replan if true is present.

All the options declared for the inhibited action are considered in the given order,

executing the first applicable one.

It might be the case that some global constraints (such as holds at and always,

cf., Section 2) involve fluents that are not known by any of the agents. Therefore,

none of the agents can consider such constraints while planning. Consequently, these

constraints have to be enforced while merging the individual plans. In doing this, the

supervisor adopts the same strategies introduced to deal with conflicts and failures

among actions, as described earlier. Namely, whenever a global constraint would be

violated by the concurrent execution of actions (taken from different agents’ plans)

a conflict is generated and a conflict resolution procedure executed. Thus, some of

the conflicting actions will be inhibited causing their failure.

3.5 Broadcasting and direct requests

Let us describe a simple protocol for implementing the point-to-point and broadcast

communications among agents, following an explicit request of the form (10). In

particular, let us assume that the current state is the ith one of the plan execution—

hence, the supervisor is coordinating the transition to the (i+1)th state by executing

3 At this time, the prototype includes only replanning from scratch at each step.
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the (i+1)th action of each local plan. The handling of requests is interleaved with the

agent–supervisor interactions that realize plan execution; nevertheless, the supervisor

does not intervene on the requests, and the requests and offers are directly exchanged

among agents. We can sketch the main steps involved in a state transition, from the

point of view of an agent a, as follows:

(1) Agent a tries to execute its action and sends this information to the supervisor

(Section 3.2).

(2) Possibly after a coordination phase, a receives from the supervisor the outcome

of its attempt to execute the action (failure or success, the changes in the state,

etc.)

(3) If the action execution is successful, before declaring the current transition

completed, the agent a starts an interaction with the other agents to handle

pending requests. All the communications associated to such interactions are

realized using Linda’s tuple-space (requests and offers are posted and retrieved

by agents).

(3.a) Agent a fetches the collection H of all the requests still pending and

generated until step i. For each request of help h ∈ H , originating from some

agent b, agent a decides whether to accept h or not. Such a decision might

involve planning activities, in order to determine if the requested condition can

be achieved by a, possibly by modifying its original plan. In the positive case,

a posts its offer into the tuple-space and waits for a rendez-vous with b.

(3.b) Agent a checks whether there are replies to the requests it previously

posted. For each request for which replies are available, a collects the set of

offers/agents that expressed their willingness to help a. By using some strategy,

a selects one of the responding agents, say b. The policy for choosing the

responding agent can be programmed (e.g., by exploiting priorities, agent’s

knowledge on other agents, random selection, trust criteria, and utility and

optimality considerations). Once the choice has been made, a establishes a

rendez-vous with the selected agent and

• declares its availability to b,

• communicates the fulfillment of the request to the other agents.

The request and the obsolete offers are removed from the tuple space.

(4) At that point in time, the transition can be considered completed for the agent a.

By taking into account the information about the outcome of the coordination

phase in solving conflicts (point (2)) and the agreement reached in handling

requests (point (3)), a might need to modify its plan. If the replanning phase

succeeds, then a will proceed with the execution of the next action in its local

plan.

Note that we have provided separate descriptions for steps (3.a) and (3.b). In a

concrete implementation, these two steps have to be executed in an interleaved

manner, to avoid that a fixed order in sending requests and offers causes deadlocks

or starvation. Furthermore, if an agent fails in executing an action, then it will skip

step (3) and proceed with step (4) in order to re-plan its activity.
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Settings Runner

spaceServer

linda/server linda/client clpfd SICStus

plan_executor supervisor

client

ictSolver 
client

ictSolver 
super

sicsplan/bmap arbitration opt

Fig. 2. The dependencies between modules in the system. The modules’ names recall the

corresponding Prolog-files names. The module runner is the starter of the application.

The module settings specify user options (policies, strategies, etc.) and the sources files

containing the action descriptions, since it is imported by all the others (we omitted drawing

the corresponding arcs, as well as the nodes relative to less relevant SICStus libraries).

3.6 Implementation issues

A first prototype of the system has been implemented in SICStus Prolog, using

the libraries clpfd for agents reasoning (by exploiting the interpreters for Action

Description Languages described in Dovier et al. (2009, 2010)), and the libraries

system, linda/server, and linda/client for handling process communication.

The system is structured in modules. Figure 2 displays the modules composing

the Prolog prototype and their dependencies. The modules spaceServer (via

lindaServer) and lindaClient implement the interfaces with the Linda tuple-

space. These modules support all the communications among agents.

Each autonomous agent corresponds to an instance of the module plan executor,

which, in turn, relies on a planner (the module sicsplan/bmap in Fig. 2) for

planning/replanning activities, and on client for interacting with other agents in

the system. As explained previously, a large part of the coordination is guided by the

module supervisor. Notice that both the supervisor and client act as Linda-

clients. Conflict resolution functionalities are provided to the modules client and

supervisor by the modules ConflictSolver client and ConflictSolver super,

respectively. Finally, the arbitration opt module implements the arbitration pro-

tocol(s). In the current code distribution, we provide an arbitration strategy that

maximizes the number of actions performed at each step.

Let us remark that all the policies exploited in coordination, arbitration, and

conflict handling can be customized by simply providing a different implementation

of individual predicates exported by the corresponding modules. For instance, to
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implement a conflict resolution strategy different from the round-robin described

earlier, it suffices to add to the system a new implementation of the module

ConflictSolver super (and for ConflictSolver client, if the specific strategy

requires an active role of the conflicting agents). Similar extensions can be done for

arbitration opt.

The system execution is rooted in the server process runner—written either for

Linux (.sh) or for Windows (.bat) platforms, in charge of generating the connection

address that must be used by the client processes.

The file settings.pl describes the planning problem to be solved. In particular,

the user must specify in this file, through Prolog facts, the number and the names

of these files containing the action descriptions, a bound on the maximum length of

the plan, and the selected strategies for conflict resolution and arbitration (default

choices can be used).

As far as the reasoning/planning module is concerned, we slightly modified the

interpreters of the BMV and the BMAP languages (Dovier et al. 2009, 2010) to accept

the extended syntax presented here. However, the system is open to further extensions

and different planners (even not necessarily based on Prolog technology) can be easily

integrated thanks to the simple interface with the module plan executor, which

consists of a few Prolog predicates.

Currently, two planners have been integrated in the system: sicsplan is the

constraint logic programming planner for the single-agent action language BMV ;

bmap is instead a constraint logic programming engine that supports centralized

planning for multi-agent systems (capable, e.g., of collaborating in pursuing a

common goal). Thus, the implementation allows each individual agent (according to

the discussion from the previous sections) to be itself a complex system composed

of multiple agents (operating in a cooperative fashion and planning in a centralized

manner).

To accommodate for this perspective, the design of the supervisor has been

modified. The framework allows each concurrent planner that executes a multiple-

action step, to specify the desired granularity of the conflict resolution phase. This is

done by specifying (for each step in a plan) a partition of the set of actions composing

the step into those subsets of actions that have to be considered independently and

as a whole.

For instance, in the next section, we describe a specification of a coordination

problem between two multi-agent systems. Each multi-agent system develops a plan

in a centralized manner. Each step of such plans consists of a set of, possibly

complex, actions (instead of a single action, as happens for the planner sicsplan).

The conflicts between the multi-agent plans occurring during the (i)th state transition

are identified/resolved by considering a single action of each (i)th step proposed by

each planner.

Let us make some considerations about the soundness of the implementation. Let

us consider one step i + 1 in the construction of the trajectory. The state sequence

already constructed is�v = 〈v0, . . . , vi〉. The agents propose some actions for execution;

the overall set of all actions proposed by all agents is Yi+1 = {y1, . . . , yk}. Agents

propose for execution actions that are executable in�v. At the implementation level,
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the soundness property is guaranteed by the correctness of the sicsplan/bmap

module—see Appendix (available online).

Let us denote with C(yj) the constraint that captures the effects of action yj; i.e.,

if the action yj has dynamic causal laws yj causes Er if Pr for r = 1, . . . , m, then

C(yj) ≡
m∧
r=1

Pr → Er.

Let A(yj) be a Boolean variable, intuitively denoting whether the supervisor has

selected action yj for execution at time i + 1.

The arbitration opt implements an arbitration protocol Φ(�v, Yi+1) producing a

substitution for {A(y1), . . . , A(yk)} such that the constraint

k∧
j=1

Φ(�v, Yi+1)(A(yj)) → C(yj)

has a�v-solution σ.

For example, in the current code distribution, the protocol Φ is defined as a

substitution that maximizes
∑k

j=1 A(yj).

From these definitions and from the properties of sicsplan/bmap, we have that

〈�v, {yj | j ∈ {1, . . . , k},Φ(�v, Yi+1)(yj) = 1}, ine(σ,�v)〉 is a valid state transition.

If the conflict resolution is left to the agents, then the protocol Φ is the outcome

of the conflict resolution procedure, e.g., the round-robin analysis of the conflicting

actions described in Section 3.3, which is currently implemented. It is immediately

necessary to check that the round-robin procedure produces a protocol Φ that

satisfies the properties shown above.

Due to the generality of the language for agent-based on-conflict resolution,

the correctness of any conflict resolution procedure must be independently proved.

Correctness is not an immediate consequence of the language itself but is dependent

on the specific on-conflict declaration used in the specific procedure.

3.7 The volleyball domain

Let us describe a specification in BAAC of a coordination problem between two multi-

agent systems—an extension of the domains described in Examples 1–4. There are

two teams: black and white whose objective is to score a point, i.e., to throw the

ball in the field of the other team (passing over the net) in such a way that no

player of the other team can reach the ball before it touches the ground. Each team

is modeled as a multi-agent system that elaborates its own plan in a centralized

manner (thus, each step in the plan consists of a set of actions).

The playing field is discretized by fixing a linex × liney rectangular grid that

determines the positions where the players (and the ball) can move (see Fig. 3).

The leftmost (rightmost) cells are those of the black (white) team, while the net

(x = 6) separates the two subfields. There are p players per team (p = 2 in Fig. 3)—

concretely, the fact num(2) is added to the theory. The allowable actions are: move(d),

throw(d, f), and whistle. During the defense time, the players can move to catch
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Time 0: Time 1: Time 2: Time 3: Time 4:
******|****** ******|****** ******|****** ******|****** ******|******
* | * * | * * | * * | * * | *
* Y | O* * Yo | O* * X | O * * Y | O * * Y | O *
* | * * | * * | * * | * * | *
* | O * * | O * * Y | O * * Y | O * *Y | *
*X | * *Y | * * | * * |o * * |Q *
******|****** ******|****** ******|****** ******|****** ******|******
Time 5: Time 6: Time 7: Time 8: Time 9:

******|****** ******|****** ******|****** ******|****** ******|******
* | * * | * * | * * | * * | *
* Y | O * * Y | O * * Y | O * *Y | O * *Y | O *
* | * * | * * | * * | * * | *
*Y | * * | O * * | O * * | O * * | O *
* o |O * * X | * * Y |o * *Y |o * *Y |o *
******|****** ******|****** ******|****** ******|****** ******|******

Fig. 3. A representation of an execution of the volleyball domain.

the ball and/or to re-position themselves on the court. When a player reaches the

ball (s)he will have the ball and will throw the ball again. A team scores a point

either if it throws the ball to a cell in the opposite subfield that is not reached by

any player of the other team in the defense time, or if the opposite team throws the

ball in the net. The captain (first player) of each team is in charge of checking if a

point has been scored. In this case, (s)he whistles.

Each team (either black or white) is modeled as a centralized multi-agent system,

which acts as a single agent in the interaction with the other team. Alternative

options in modeling are also possible—for instance, one could model each single

player as an independent agent that develops its own plan and interacts with all other

players. The two teams have the goal of scoring a point: goal(point(black) eq 1).

for blacks and goal(point(white) eq 1). for whites.

At the beginning of the execution, every team has a winning strategy, developed

as a local plan; these are possibly revised after each play to accommodate for the

new state of the world reached. An execution (as printed by the system) is reported

in Figure 3, for a plan length of 9. The symbol 0 (respectively, Y) denotes the white

(respectively, black) players, Q (resp. X) denotes a white player with the ball. The

throw moves applied are:

[player(black,1)]:throw(ne,3)(time 1)[player(black,2)]:throw(se,3)(time 3)

[player(white,1)]:throw(w,5) (time 5)[player(black,1)]:throw(e,5) (time 7)

Let us observe that, although it would be, in principle, possible for the white team

to reach the ball and throw it within the time allowed, it would be impossible to

score a point. Therefore, players prefer to avoid to perform any move.

The complete description of the encoding of this domain is available at http://

www.dimi.uniud.it/dovier/BAAC. The repository includes also additional domains—

e.g., a domain inspired by games involving one ball and two-goals, as found in soccer.

Although the encoding might seem similar to that of volleyball, the possibility of

contact between two players makes this encoding more complex. Indeed, thanks to

the fact that the net separates the two teams, in the volleyball domain rules like the

following one suffice to avoid collisions:

always(pair(x(A),y(A)) neq pair(x(B),y(B))) :-
A=player(black,N),B=player(black,M), num(N), num(M), N<M.
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In a soccer world, this is not true because only the supervisor can be aware,

in advance, of possible contacts between different team players originating from

concurrent actions. This generates interesting concurrency problems, e.g., concerning

the ball possession after a contact. A simple way to address this problem consists

in assigning a fluent to each field cell, whose value can be −1 (free), 0 (resp., 1) if

a white (resp. black) player is in the cell. The supervisor identifies a conflict when

two opponent players move to the same cell, thus assigning to that fluent a different

value. In this case, the supervisor arbitrarily enables one action, the other agent

waits a turn to retry the action:

action act([A],move(D)) on failure retry after 1 on conflict arbitrate :-
agent(A), direction(D).

4 Conclusions and future work

In this paper, we illustrated the design of a high-level action description language

for the description of multi-agent domains. The language enables the description

of agents with individual goals operating in a shared environment. The agents can

explicitly interact (by requesting help from other agents in achieving their own

goals) and implicitly cooperate in resolving conflicts that may arise during execution

of their individual plans. The main features of the framework we described in

this paper have been realized into an implementation, based on SICStus Prolog.

The implementation is fully distributed, and uses Linda to enable communication

among agents. Such a prototype is currently being refined and extended with further

features.

There have been many agent programming languages such as the BDI agent

programming AgentSpeak (Rao 1996) (as implemented in Jason (Bordini et al.

2007)), JADE (Bellifemine et al. 2007) (and its extension Jadex (Pokahr et al.

2005)), ConGolog (De Giacomo et al. 2000), IMPACT (Subrahmanian et al. 2000),

3APL (Dastani et al. 2003), and GOAL (de Boer et al. 2005). A good comparison

of many of these languages can be found in Mascardi et al. (2004). The emphasis of

the effort presented in this paper is to expand our original work on constraint-based

modeling of agents based on action languages. The generalization to a constraint-

based multi-agent action language has been presented in Dovier et al. (2009). In

this paper, we demonstrate a further extension to encompass distributed reasoning

and distributed planning. Thus, the focus of the proposal remains on the level

of creating an action language and demonstrating the suitability of constraint-

based technology to support it. As such, we do not propose here a new agent

programming language, rather we push an action language perspective and how

action languages scale to multi-agent domains; our work could be used as the

underlying formalism for the development of new agent programming languages. In

this sense, our proposal is different than many of the MAS development platforms,

which focus on programming languages for MAS and on complex protocols for

advertising and interaction among agents (e.g., FIPA).

The choice of Linda came about for simplicity; we required the use of a CLP

platform and SICStus provides support for both Linda and constraint handling—

as few other distributed communication platforms (e.g., OAA (Cheyer and Martin
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2001)). In the long term, we envision mapping our agent design on an MAS

infrastructure that enables discovery and addition of agents, handles network-wide

distribution of agents, and maps the exchange of constraints to a standard agent

communication language (e.g., FIPA-ACL/FIPA-SL (Hayzelden and Bourne 2001)).

This will require a non-trivial engineering work, to map the reasoning with action

languages (e.g., planning) to a platform that is not constraint-based—we are currently

exploring the problem in the context of Jason (Bordini et al. 2007).

The work is an initial proposal that already shows strong potential and several

avenues of research. The immediate goal in the improvement of the system consists

of adding refined strategies and coordination mechanisms, involving, for instance,

payoff, trust, etc. Then, we intend to evaluate the performance and quality of

the system in several multi-agent domains (e.g., game playing scenarios, modeling

of auctions, and other domains requiring distributed planning). We also plan to

investigate strategies to enhance performance by exploiting features provided by the

constraint solving libraries of SICStus (e.g., the use of the table constraint (Barták

and Toropila 2008)).

We will investigate the use of future references in the fluent constraints (as fully

supported in BMV )—we believe this feature may provide a more elegant approach

to handle the requests among agents, and it is necessary to enable the expression

of complex interactions among agents (e.g., to model forms of negotiation with

temporal references). In particular, we view this platform as ideal to experiment

with models of negotiation (e.g., as discussed in (Son et al. 2009)) and to deal with

commitments (Mallya and Huhns 2003) (which often require temporal references).

We will also explore the implementation of different strategies associated to conflict

resolution; in particular, we are interested in investigating how to capture the notion

of “trust” among agents, as a dynamic property that changes depending on how

reliable agents have been in providing services to other agents (e.g., accepting to

provide a property but failing to make it happen). Also concerning trust evaluation,

different approaches can be integrated in the system. For instance, a “controlling

entity” (e.g., either the supervisor or a privileged/elected agent) could be in charge of

assigning the “degree of trust” of each agent. Alternatively, each single agent could

develop its own opinion on other agents’ reliability, depending on the behavior they

manifested in past interactions.

Finally, work is needed to expand the framework to enable greater flexibility in

several aspects, such as:

• Allow deadlines for requests—e.g., by allowing axioms of the form

request C1 if C2 until T

indicating that the request is valid only if accomplished within T time steps.

• Allow constraint-based delays for requests:

request C1 if C2 while C3

indicating that the request is still valid while constraint C3 is entailed.

• Allow dynamic changes in the agents’ knowledge about other agents (e.g., an

action might make an agent aware of the existence of other agents), or about the

world (e.g., an action might change the rights another agent has to access/modify

some fluents).
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