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INTERPRETING ARITHMETIC IN THE FIRST-ORDER THEORY OF
ADDITION AND COPRIMALITY OF POLYNOMIAL RINGS

JAVIER UTRERAS

Abstract. We study the first-order theory of polynomial rings over a GCD domain and of the ring
of formal entire functions over a non-Archimedean field in the language {1,+,⊥}. We show that these
structures interpret the first-order theory of the semi-ring of natural numbers. Moreover, this interpretation
depends only on the characteristic of the original ring, and thus we obtain uniform undecidability results for
these polynomial and entire functions rings of a fixed characteristic. This work enhances results of Raphael
Robinson on essential undecidability of some polynomial or formal power series rings in languages that
contain no symbols related to the polynomial or power series ring structure itself.

In [19], J. Robinson studied the first-order theories of several arithmetical struc-
tures with operations and relations a prioriweaker than addition andmultiplication,
and showed that first-order arithmetic, the first-order theory of the natural numbers
in the language of rings, was definable in them. For example (and to be used later
in this article), she showed the next theorem.

Theorem ([19], Theorem 1.2). Addition and multiplication of positive integers
are arithmetically definable in terms of the successor operation and the relation of
divisibility.

Many authors have added more arithmetical structures to the list of those in
where addition and multiplication is definable, and we refer interested readers to
the surveys found in [3,10].
In a different direction, R. Robinson showed in [20] how to interpret first-order
arithmetic inside the ring theories of different rings, and also managed to prove
the essential undecidability of some ring theories in some cases where he could not
show how to interpret arithmetic. The latter he did, for example, for polynomial
rings over an integral domain.
Throughout this article we will use the following language and interpretations.
Let L = {1,+,⊥} be a first-order language where 1 is a constant symbol, + a 2–ary
function symbol and ⊥ a 2–ary relation symbol. Over any ring with unity we will
interpret 1 as 1, + as addition and⊥ as coprimality (i.e., to have no common divisors
other than units).
Over the natural numbers, let the neighbour binary relation, denoted by Neib, be
the one satisfied by all pairs (n,m) such that |n −m| = 1.
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INTERPRETINGARITHMETIC IN THE FIRST-ORDER THEORY 1195

Our main theorem refers to two different types of structures. We will recall both
definitions for ease of reading. First, a GCD domain is an integral domain where
every pair of elements has a greatest common divisor, i.e., a common divisor that
divides every other common divisor. Some properties of GCD domains are listed in
Proposition 3.1.
The second definition is from non-Archimedean analysis. If (k, | |) is a field
together with a non-Archimedean absolute value | · |, the ring of (formal) entire
functions in one variable with coefficients in k is given by

Ak =
{∑
n

ant
n ∈ k�t� : ∀� ∈ R

+, lim
n

|an|�n → 0
}
.

There is a slight abuse of notation here, as Ak depends not only on k but also on
the absolute value. This should not affect the results presented in this article.
The aim of this article is to show the following result.
MainTheorem. The structure 〈N; 1,Neib, |〉 is interpretable in any of the following
structures:
i. 〈R[t]; 1,+,⊥〉, where R is a commutative GCD domain with unity; and
ii. 〈Ak ; 1,+,⊥〉, where (k, | |) is a field together with a non-Archimedean absolute
value | · |.

Moreover, this interpretation depends solely on the characteristic of the base ring or
field.
For an application of this result to decidability problems, observe that

Th 〈N; 1,Neib, |〉 = Th 〈N; 1, n �→ (n + 1), |〉 = Th 〈N; 1,+, ·〉 .
Thefirst equality is a result of I.Korec [9]; the second is the theoremof J.Robinson
cited above. As the first-order theory of the natural numbers in the language of rings
is undecidable, we obtain undecidability results for both types of rings.
Corollary. There are no algorithms that decide whether
i. a given L-formula holds true in R[t], for a fixed commutative GCD domain with
unity R; and

ii. a given L-formula holds true in Ak , for a fixed field k with a non-Archimedean
absolute value.

Furthermore, the fact that the interpretation of 〈N; 1,Neib, |〉 depends only on
the characteristic of the ring allows us to conclude a stronger uniformundecidability
result.
Theorem. There is no algorithm to decide whether a given L-formula holds true
in every element of a collection of polynomial rings over GCD domains and formal
rings of entire functions over non-Archimedean fields, with the sole restriction that all
of them must be of the same characteristic.
As examples of this last result, there is no algorithm to decide whether a given

L-formula holds true in every polynomial ring over GCD domains of a given
characteristic, nor is there one to decide whether a given L-formula holds true in
each of the rings ACp as p varies over the prime numbers.

Remark. The formulas used to interpret Th 〈N; 1,Neib, |〉 are obtained explicitly
in this article. Combining them with the results of J. Robinson and I. Korec, the
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1196 JAVIER UTRERAS

number of quantifier alterations required for interpreting arithmetic in each of the
structures considered can be computed, and are as follows:

• the interpretation of arithmetic in 〈R[t]; 1,+,⊥〉, where characteristic zero R
is a commutative GCD domain with unity, requires 7 quantifier alterations;

• the same problem in positive characteristic requires 15 alterations;
• the interpretation of arithmetic in 〈Ak ; 1,+,⊥〉, where k has characteristic
zero, requires 5 alterations; and finally

• the same problem in positive characteristic requires 8 alterations.

Note that none of the structures we study, despite being polynomial rings or
subrings of the ring of formal power series (both in a single indeterminate), have a
symbol for the indeterminate, nor a symbol related to it (e.g., multiplication by t,
or a predicate for being nonconstant). This is more in line with Raphael Robinson’s
work in the language of rings, but different from the majority of results for rings
of polynomials or power series, where some extra such symbols are added to the
language. For instance, similar results for a language with coprimality and two
successor functions (one for the regular successor, the other for x �→ x + t) have
been obtained byM. Vsemirnov (for polynomial rings over finite fields [21]) and J.-
L. Riquelme (for rings of entire p-adic functions [18]). Other results for the integers
with successor and either divisibility or coprimality are due to D. Richard [16, 17]
(for the full theory) and to L. Lipshitz [11], A. P. Bel’tjukov [2], and L. van den
Dries and A. Wilkie [7] (for the existential theory).
Other related results have been obtained using the full languageof rings.Undecid-
ability of the theory of a polynomial ring over a domain was shown by R. Robinson,
as stated before; for even more general rings of constants, some work is currently
being undertaken by E. Naziazeno, M. Barone, and N. Caro [13]. If one also allows
a symbol for the indeterminate t in the language, there are much stronger positive–
existential undecidability results for polynomial rings over domains by J. Denef
[5, 6], for rings of entire functions over fields of characteristic zero by L. Lipschitz
and T. Pheidas [12] and for rings of entire functions over fields of positive charac-
teristic by N. Garcia-Fritz and H. Pasten [8]. For more results in this direction we
direct the reader to the surveys [14,15].
The proof of theMain Theoremwill be split into the power series and polynomial
ring cases, and again into the positive and zero characteristic cases. This article is
organised in the following way: in Section 1 we define a weak analogue of divisibility
that is L-definable in our structures, and with it a set of irreducible-like elements we
will use continuously throughout this article.
In Section 2 we give the proof for the structures over Ak . As these rings have
nicer properties than general GCD domains, this proof is much shorter than the
remainder of the article, but it follows the same fundamentals and is useful to have
in mind before moving onto later sections.
From Section 3 onwards we work on the structure over R[t]. In that Section we
show that for polynomials of a certain type we have a form of unique factorisation,
despite R being a general GCD domain. This amount of control over a language
where divisibility is not (necessarily) definable will be crucial for the sections to
come.
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In Sections 4 and 5 we show the Main Theorem for the polynomial rings of zero
and positive characteristic, respectively. These proofs follow the ideas introduced in
Section 2 earlier, and most of the results of these sections are for shaping our set of
irreducible-like elements from Section 1 into a set of elements for which the ideas
previously introduced can be applied.
About this last point: the main problem that arises when moving from the case
whereR is a field (Section 2) to the general case whereR is aGCDdomain is the fact
that R may have elements that fit our irreducible-like definition from Section 1 and
interfere with our interpretation of the natural numbers inside R[t]. Sections 4 and
5 are about figuratively weeding out these elements by finding additional first-order
properties to isolate the “good” elements.
The author wants to thank T. Pheidas and H. Pasten for their insight and useful
comments on this work, and is especially grateful to C. Martinez and X. Vidaux
for commenting on and criticising earlier versions of the manuscript. This gratitude
also extends to the anonymous referee for their comments and suggestions.

§1. A definable weak analogue of divisibility. Fix a commutative ring R with
unity. Let A be a subring of R�t� containing R[t] and such that every unit of A is a
unit of R. For this section, let

M = 〈A; 1,+,⊥〉 .
In this sectionwewill define a binary relation onA, weaker than regular divisibility
but definable inM.With it, wewill be able to count the number of irreducible factors
of certain elements of R[t], and in particular be able to define the set Tx of powers
(p-th powers in the positive characteristic case) of some suitable x ∈ R[t].
Our desired relation, denoted by x � y, is defined as

∀z(z ⊥ y → z ⊥ x).
Note that in a UFD x � y is equivalent to stating that the radical of x divides the
radical of y. We also define x ≈ y as

x � y ∧ y � x,
which attempts to capture the property of having the same irreducible factors.
Obviously, the problem in a general GCD domain is the fact that not every nonunit
need be divisible by an irreducible factor, but we will show later that we will obtain
a UFD-like behaviour by restricting our sets using first-order properties.
First, some basic results about these two new relations.
Lemma 1.1. Fix x, y, z ∈ A.
(a) � is a partial order relation; ≈ is an equivalence relation.
(b) If x divides y then x � y.
(c) If x � y and x � z, then x � y + z.
(d) If u is a unit, then u ≈ 1 and u � x � 0
(e) If x is irreducible and y � x, then either y ≈ x or y ≈ 1.
Proof. The first four statements are trivial.
(e) If y is not a unit, then y �⊥ y. Hence y �⊥ x, and there exists a nonunit d
dividing both x and y. As x is irreducible, d must be associate to x, thus x
divides y and x � y. �
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Lemma 1.2. The set A× of units of A (hence of R as well ) is definable inM.
Proof. We have

A× = {x ∈ A :M |= x ⊥ x}. �

The set D1 ⊆ A is defined as the set of minimal elements of (A \ A×,�). By
Lemma 1.1, it is definable inM as

D1 =
{
x ∈ A :M |= ∀y �∈ A×

(
y � x → y ≈ x

)}
\ A×.

If A were a factorial ring, then D1 would consist of powers of irreducibles and
their associates.

Lemma 1.3. Every irreducible element of A is in D1.
Proof. This follows from Lemma 1.1(e). �
We recursively define the sets Dn by

Dn =

{
x ∈ A :

∃x1, . . . , xn ∈ D1
⎛
⎝∧
i

xi � x ∧
∧
i �=j
xi ⊥ xj ∧ ∀y ∈ D1

(
y � x →

∨
i

y ≈ xi
)⎞⎠

∧ ∀z
(
z � x →

(
z ≈ x ∨ z ∈ A× ∨ z ∈

n−1⋃
i=1

Di

))}
.

The set Dn collects all elements of A which are not coprime to exactly n distinct
equivalence classes in D1/ ≈. In case A is a factorial ring, it is the set of elements
with exactly n irreducible factors (up to multiplication by a unit).

§2. The case of Ak . Let (k, | · |) be a field with a non-Archimedean absolute
value. We have the obvious ring inclusions k ⊆ k[t] ⊆ Ak ⊆ k�t�. We recall the
following consequence of the Weierstrass Preparation Theorem for T1(k) (see for
example [4], Chapter 5).

Proposition 2.1. A×
k = k

×.
For the rest of this section, let

M = 〈Ak ; 1,+,⊥〉 .
We obtain the definable sets Dn ⊆ Ak as described in the previous section.
Lemma 2.2. 0 is the only maximal element of (Ak,�).
Proof. A maximal element x of (Ak,�) must be divisible by every linear poly-
nomial of k[t]. Working in a completion of k, x will be an entire function which is
zero on a dense set, hence x = 0. �
Corollary 2.3. The relations x = 0 and x = y, and the function x �→ −x are
definable inM.
Lemma 2.4. Let x ∈ Ak be a polynomial of positive degree with no repeated roots
over its splitting field. The set of multiples of x is definable inM.
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Proof. As x has no repeated factors, an entire function y is a multiple of x if
and only if every element of D1 that divides x divides y as well, and for irreducible
elements dividing and not being coprime to are equivalent. �
2.1. Characteristic zero. Assume that the characteristic of k, and hence ofAk , is
zero. A polynomial x ∈ A of positive degree is linear if and only if
• x is in D1, and
• for all units y, the sum x + y is also in D1.
Fixing a linear polynomial x of positive degree, the set Bx of all elements of the
form cxn with c a unit and n positive can be defined as the set of all elements ofD1
not coprime to x.

Lemma 2.5. Given a linear polynomial x, the set of powers of x is defined by the
formula

y ∈ Bx ∧ ¬(y − 1 ⊥ x − 1).
Proof. If y is a power of x, x − 1 divides y − 1. For the converse, write y = cxn,
and assume that x − 1 divides cxn − 1. As x − 1 also divides cxn − c, it must then
divide the difference c − 1, and thus c = 1. �
We now show how to interpret 〈N; 1,Neib, |〉 in the set of powers of a linear
polynomial x.

Lemma 2.6. For positive n and m, the difference xn − xm is in D2 if and only if
|n −m| = 1.
Proof. If |n −m| = 1, the difference xn − xm only has the irreducible factors x
and x − 1. If |n − m| = k > 1, the difference xn − xm has these two factors, but
is also divisible by xk−1 + xk−2 + · · ·+ 1, which is not divisible by either and thus
adds at least one extra distinct irreducible factor to xn − xm. �
Lemma 2.7. For positive n andm, xm− 1 is a multiple of xn− 1 if and only if n|m.
This is a known result. Note that the first part of the equivalence is definable
because of Lemma 2.4.

2.2. Positive characteristic. Let p be the characteristic of k. We say that a poly-
nomial in k[t] is basic if it is of the form ctp

n

+ d for c a unit, d ∈ k and
n ∈ N.

Lemma 2.8. Every basic polynomial is in D1, and every element x ∈ Ak such that
for any unit y their sum x + y is still in D1 is basic.
Proof. A basic polynomial ctp

n

+ d factors as the pn-th power of an irreducible
element over an algebraic closure of k; hence, it factors as a power of an irreducible
over k and belongs to D1.
For the second statement, if x ∈ Ak is as described and c0 is its constant term,
then x − c0 ∈ D1 and hence x = ctm + c0 for some c ∈ k and m ∈ N. As c0 + c is
either 0 or a unit, x− (c0 + c) ∈ D1, thus ctm − c is a power of an irreducible factor
and m is a power of p. �
Thus the set of basic polynomials is definable inM.
Given a basic polynomial x, let Bx be the set of all basic polynomials not coprime
to x, and let Tx be the set given by

{y :M |= y ∈ Bx ∧ y − 1 ∈ Bx−1} .
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As not being coprime is a transitive relation within the set of basic polynomials,
note that if a ∈ Tb then Ta = Tb .
Lemma 2.9. Given a basic polynomial x, the set Tx has a unique polynomial y of
minimal degree. This polynomial is not a p-th power. Moreover,

Tx =
{
yp

n

: n ∈ N

}
.

Proof. Assume that there are two distinct polynomials y, z ∈ Tx of minimal
degree. As y, z and x are in D1 and none of them is coprime to x, they all must
have the same irreducible as their only irreducible factor; as y and z are of the same
degree, there exists a unit u such that y = uz. Similarly, as y − 1, z − 1 and x − 1
are basic and not pairwise coprime, there exists a unit v such that y − 1 = v(z − 1).
Putting these relations together, we obtain u = v = 1 and y = z.
Suppose that y is a p-th power, say y = wp. Then w is a basic polynomial with
the same irreducible factor as y, andw − 1 has the same irreducible factor as y− 1.
Hence w ∈ Ty = Tx , contradicting the minimality of the degree of y.
As every polynomial inTy has the same unique distinct irreducible factor, and the
degree of y divides the degree of every other polynomial in Ty (they are powers of
p), then every element of Ty is of the form cyn for some unit c and natural number
n. We conclude like in Lemma 2.5. �
Proposition 2.10. For n,m ∈ N, the difference yp

n − ypm is in Dp if and only if
|n −m| = 1.
Proof. If |n − m| = 1, the difference ypn − ypm only has the basic factors y,
y − 1,. . . , y − (p − 1). If |n − m| = k > 1, the difference ypn − ypm has these p
factors, but is also divisible by yp

k−1
+ yp

k−2
+ · · · + 1, which is coprime to all of

them and thus adds at least one extra distinct irreducible factor to yp
n − ypm . �

Corollary 2.11. The element of minimal degree y is definable from x.
Proof. Note that y is the only element in Tx such that there exists exactly one
z ∈ Tx satisfying z − y ∈ Dp, namely z = yp. �
Corollary 2.12. The set of all linear polynomials is definable inM.
Proof. A basic polynomial z is linear if it is the element of minimal degree of Tz
and, for each unit u, z + u is the element of minimal degree of Tz+u . �
Given a linear polynomial x, we show how to interpret 〈N; 1,Neib, |〉 in the set
Tx . We have already interpreted Neib, we show now how to interpret divisibility.

Lemma 2.13. Let a, b ∈ N be nonzero. Then xp
a − x + 1|xpb − x + 1 if and only

if a divides b and ba ≡ 1modp.
Proof. Suppose that xp

a −x+1|xpb −x+1. Thus b ≥ a. We claim that for any
i such that b ≥ ai we have xpa − x + 1|xpb−ai − x + (1− i).
Indeed, for i = 0wehave this already, and if it holds for some i then if b ≥ a(i+1)
we have that xp

a − x +1 divides xpb−ai − xpb−a(i+1) + 1 and thus xpa − x +1 divides(
xp

b−ai − x + (1− i)
)
−
(
xp

b−ai − xpb−a(i+1) + 1
)
= xp

b−a(i+1) − x + (1− (i + 1)).

Let l be the largest i such that b ≥ ai . Then as b−al < a and xpa −x+1|xpb−al−
x + (1 − l) the polynomial xpb−al − x + (1 − l) must be zero, hence b = al and
p|1− l .

https://doi.org/10.1017/jsl.2019.21 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.21


INTERPRETINGARITHMETIC IN THE FIRST-ORDER THEORY 1201

For the converse, we claim that for any i we have xp
a − x+1|xpai − x+ i . Again

we proceed by induction. The case i = 1 is clear, and if it holds for some i then as
xp

a − x + 1 divides xpa+ai − xpai + 1 it also divides(
xp

ai − x + i
)
+
(
xp

a+ai − xpai + 1
)
= xp

a(i+1) − x + (i + 1). �

Corollary 2.14. Let a, b ∈ N be nonzero. Then xp
a − x + 1|xpb − x − 1 if and

only if a divides b and ba ≡ −1modp.
Proof. Almost the same as above. In this case we need to show by induction that
for any i such that b ≥ ai we have xpa − x + 1|xpb−ai − x + (1 + i). �
The next Proposition shows how to interpret divisibility within the set Tx for x
linear. Recall that, because of Lemma 2.4, any statement of the form xp

n − x +
1|xpm − xpk + 1 is definable inM.
Proposition 2.15. Let x be a linear polynomial and n,m ∈ N be nonzero. Then n
divides m if and only if either xp

n

= xp
m

or

M |= ∃x0, . . . , xp ∈ Tx
(
x0 = xp

n ∧ xp = xpm

∧
p−1∧
i=0

((
xp

n − x + 1|xi+1 − xi + 1
)
∨ xi+1 = xi

))
.

Proof. If the formula is satisfied by xi = xp
ni , then by the previous Lemma and

its Corollary n divides all of the ni . Conversely, if m = kn with k = qp + r and
1 ≤ r < p + 1, we can take
• xi = x(qp+i)n for 1 ≤ i ≤ r, and
• xi+1 = xi otherwise.
And then xp = xp

m

and the formula is satisfied. �

§3. Polynomials over aGCDdomain. Werecall some properties ofGCDdomains
(cf., for example, [1]).

Proposition 3.1. Let R be a GCD domain. Then

(i) every irreducible element of R is prime:
(ii) R[t] is also a GCD domain;
(iii) every element of R that factors as a product of irreducibles does so uniquely
(up to associates and order of factors); and

(iv) if a non-constant polynomial in R[t] is irreducible, then it is also irreducible in
R(0)[t], where R(0) is the field of fractions of R.

Fix a commutative GCD domain R with unity. For the rest of this article, let

MR = 〈R[t]; 1,+,⊥〉 .
In this section we will obtain some UFD-like properties for polynomials of pos-
itive degree in R[t]. This will allow us to define their sets of powers in a similar
fashion to the previous section, and later interpret the natural numbers.
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Lemma 3.2. Every linear polynomial in R[t] with coprime coefficients is
irreducible.

Proof. Letx beone suchpolynomial.As the coefficients are coprime, no constant
nonunit divides x. As R is a domain, x cannot be written as the product of two
polynomials of positive degree. �
Lemma 3.3. Let x ∈ R[t] be a polynomial of positive degree. If x ∈ D1, then
x = c�n, where c is a unit, n a positive integer and � an irreducible polynomial of
positive degree in t.

Proof. As R is a GCD domain, the gcd of all the coefficients of x exists. Call it
g. Then g and xg are coprime and both divide x, hence g must be a unit because x
belongs to D1.
We list all nonunit divisors of x, and let � be one such divisor of minimal degree.
By the previous reasoning, � is a polynomial of positive degree in t, and as any
divisor of � would be a divisor of x as well, � is irreducible.
Write x = �y. If y is not a unit, then it must be coprime to anything that x is
coprime to—and thus y and � cannot be coprime. Hence � divides y. Iterating this
process, as x has finite degree and � has positive degree, this must halt after a finite
number of steps, and x = c�n for some c and n as stated. �
Corollary 3.4. Every polynomial of positive degree is divisible by an irreducible
polynomial of positive degree.

Proof. Suppose not. Let x be a polynomial of positive degree not divisible by
any irreducible polynomials of positive degree of the least possible degree, which
must be at least two because of Lemma 3.2. We may replace x by xg , where g is the
gcd of the coefficients of x, as we are not interested in constant divisors.
As x is not irreducible, it can be written as the product of two nonunits. But as
every constant divisor of x is a unit, x is divisible by a polynomial of smaller degree
which, by the minimality of the degree of x, must be divisible by an irreducible
polynomial of positive degree. �
Let P = R[t] \ R be the set of elements of R[t] which are polynomials in of
positive degree. Note that the product of a nonzero element of R[t] and an element
of P lies in P , and that the irreducible element t belongs to P . Then, by the same
reasoning as Euclid’s proof of the infinity of primes, P contains infinitely many
monic irreducible elements. As every element in P has finite degree as a polynomial
in t, no element of P is divisible by every irreducible element. Thus no nonzero
element of R[t] is divisible by every element ofD1, and hence 0 is the only maximal
element of (R[t],�). We have shown the following.
Corollary 3.5. The relation x = 0 is definable inMR.

Corollary 3.6. The function x �→ −x and the relation x = y are definable in
MR.

To each x ∈ R[t] we associate a set Irr(x) ⊆ D1/ ≈ consisting of all equivalence
classes [y] ∈ D1/ ≈ such that y � x. This is well–defined. Any Boolean relation
between the Irr sets is definable in MR (for instance, given x, y, z we can write
formulas that hold when Irr(x) ⊆ Irr(y) or Irr(x) = Irr(y) ∪ Irr(z)).
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§4. Interpretation inMR, characteristic zero case. Throughout this section, let
R be a commutative GCD domain with unity of characteristic zero. We define the
following subsets of R[t] :

T =
{
x ∈ D1 :MR |= ∀u ∈ R×

((
x + u ∈ D1

) ∧ (((x − 1) � (u − 1))→ u = 1) )} .
For x ∈ T, Tx =

{
y ∈ D1 :MR |=

(
x ≈ y ∧ (x − 1) � (y − 1)

)}
.

Lemma 4.1. Let x ∈ T be a polynomial of positive degree in t. Then x is irreducible.
Proof. By Lemma 3.3, x = c�n for some unit c, irreducible � and positive integer
n. By definition of T , c�n − c ∈ D1; by Lemma 3.3 again we have c�n − c = dαm
for some unit d , irreducible α and positive integer m. As � − 1 divides c�n − c, we
can write � − 1 = eαl for some unit e and positive integer l .
Then �n − 1 = d

c α
m, and (� − 1)n = enαln. As � and α have positive degree in t,

by comparing degrees and coefficients we have n = 1. �
Proposition 4.2. Let x ∈ T , c ∈ R×, n ∈ N>0 be such that cxn ∈ Tx . Then
c = 1.

Proof. We have

x − 1 � cxn − 1 (definition of Tx).

x − 1 � cxn − c (divisibility).

x − 1 � c − 1 (Lemma 1.1 (iii)).

By definition of T , this implies c = 1. �
Lemma 4.3. Let x ∈ T be a polynomial of positive degree in t. Then Tx =

{xn : n ∈ N>0}.
Proof. By Lemma 4.1, x is irreducible. As every element of Tx has a common
factor with x, Lemma 3.3 implies that Tx ⊆ {cxn : c ∈ R× ∧ n ∈ N>0}. By
Proposition 4.2, Tx ⊆ {xn : n ∈ N>0}.
Assume that xm ∈ Tx and xm+1 �∈ Tx for somem ≥ 1. Then there exists y ∈ R[t]
coprime with xm but not coprime with xm+1. Let z be a nonunit that divides both
y and xm+1, and write xm+1 = zw. By Lemma 4.1 and item i of Proposition 3.1, x
is prime, and thus divides either z or w. If x were to divide z, it would divide y as
well, contradicting the fact that y and xm are coprime.
Write w = xr. Then xm+1 = zw = zxr, hence xm = zr. This contradicts the fact
that xm and y are coprime. �
We define the set

Z =
{
x ∈ T :MR |=

(
∃!w ∈ Tx (x − w ∈ D2)∧

∀a ∈ Tx
(
a �= x → ∃!(2)b ∈ Tx(a − b ∈ D2)

))}
.

where we write ∃!(n)x(P(x)) as shorthand for there exist exactly n elements x
satisfying property P. We will use this notation again during this article.
If y, z ∈ Tx are such thatMR |= y − z ∈ D2 we will refer to them as neighbours.
The set Z consists of those x ∈ T such that x has only one neighbour in Tx , but
every other element of Tx has two neighbours.
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Recalling the proof for the case of fields given in Section 2, in there we defined the
set of linear polynomials in t and, for each one of them, the set of all its powers. This
cannot be done for general R (just consider the case where R is itself a polynomial
ring on another variable), but our aim now is to refine Z into a definable set of
irreducibles “nice” enough so that we can define their respective set of powers. We
begin by showing that it contains the most basic irreducible polynomial.

Proposition 4.4. Z is nonempty.
Proof. We will show that t ∈ Z. Clearly t belongs to T . Hence Tt =

{tn : n ∈ N>0}. The conclusion follows from the next lemma. �
Lemma 4.5. Let a, b ∈ N>0. The difference ta−tb has exactly 2 distinct irreducible
factors if and only if |a − b| = 1.
Proof. Same proof as Lemma 2.6. �
For x, y ∈ Z we say that x and y are comparable, denoted by xCy, if
∀xi ∈ Tx∃yi ∈ Ty (x − y � xi − yi) ∧ ∀yi ∈ Ty∃xi ∈ Tx (x − y � xi − yi ) .

Note that comparability is by definition a symmetric relation.We say thatx observes
y, denoted by xOy, if

∀xi ∈ Tx∃yj
(
(y � yj) ∧ (x − y ≈ xi − yj)

)
.

For x ∈ Z, we will say that x is
• standard if {xn : n ∈ N>0} = Tx ; and
• nonstandard if {xn : n ∈ N>0} �= Tx .
We say that z ∈ Tx is strange if it is not of the form xn.
Lemma 4.6. Let n > 1 be such that xn is in Tx . Then xn−1 ∈ Tx .
Proof. As xn ∈ Tx , we have

Irr(x) ⊆ Irr(xn−1) ⊆ Irr(xn) = Irr(x). �

Corollary 4.7. Letx ∈ Z.Tx has strange elements if and only ifx is nonstandard.
Proof. As the neighbourhood relation is irreflexive and symmetric, and as there
is one element of Tx with exactly one neighbour and every other element of Tx has
exactly two neighbours, then Tx must be infinite. �
Lemma 4.8. Let x, y ∈ R and n ∈ N>0 be such that t − x � tn − y. Then y = xn.
Proof. As t − x � tn − xn, we have that t − x � xn − y. But xn − y is constant
as a polynomial in t, and thus it must be the zero polynomial. �
Proposition 4.9. An element x ∈ Z is comparable to t if and only if it is standard.
Proof. Let x ∈ Z be nonstandard. By Lemma ??, x ∈ R. Let y ∈ Tx be a strange
element; as y ∈ D1 and y ≈ x we have that y ∈ R. If x and t were comparable,
there would exist an element tn ∈ Tt such that t − x � tn − y. By the previous
Lemma, y = xn, contradicting the fact that y is strange.
If x ∈ Z is standard then, as x − t � xn − tn, x and t are comparable. �
Lemma 4.10. Fix x ∈ R. Then t − x ≈ (t − x)n.
Proof. This follows from item iii of Proposition 3.1. �
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Proposition 4.11. Let x ∈ Z be nonstandard. Then t observes x, but x does not
observe t.

Proof. Let z ∈ Tx be a strange element. If x observes t, then there exists � with
t � � such that t − x ≈ � − z. As both sides of the equivalence are polynomials
in t and t − x is irreducible, there exist a unit u and a positive integer n satisfying
�−z = u(t−x)n . Comparing coefficients of t0, z = uxn. By Proposition 4.2, u = 1,
contradicting the fact that z was strange. Hence x does not observe t.
For the other direction: fix tn ∈ Tt . By taking � = tn − (t − x)n, we have x � �
and, by the previous Lemma, t − x ≈ tn − �. Thus t observes x. �
We can now refineZ into a subset consisting only of standard elements: as shown
in Section 2, we look for irreducible elements for which we can define their sets of
powers.

Corollary 4.12. The set Z1 =
{
x ∈ Z :MR |= ∀y ∈ Z

(
xCy ∨ xOy

)}
con-

tains t and does not contain any nonstandard elements.

Lemma 4.13. Let x ∈ Z1 and n,m ∈ N>0. xn−xm ∈ D2 if and only if |n−m| = 1.
Proof. By the above corollary, Tx = {xn : n ∈ N>0} for any x ∈ Z1. If n �= m,
then

Irr(xn+1 − xn) ⊆ Irr(xm − xn)
and if also n > 1 then

Irr(xn−1 − xn) ⊆ Irr(xm − xn).
Clearly xm − xn does not belong toD1. By definition of Z, xn must have exactly
two neighbours (one if n = 1). The inclusions above show that these neighbours
must be xn+1 and xn−1 (only the former when n = 1). �
We will write y ∼x z to indicate that y, z ∈ Tx and they are neighbours. We
define the set

Z2 =
{
x ∈ Z1 : ∀y, z ∈ Tx

((
y − 1 ≈ z − 1→ y = z)∧(

y ∼x z → Irr(y − z) = Irr(x − 1) ∪ Irr(x))∧
y �= z → ∃!w ∈ Tx

( (
Irr(y − z) = Irr(w − 1) ∪ Irr(x))∧

∀z′ ∼x z∃!w ′ ∼x w
(
y �= z′ → Irr(y − z′) = Irr(w ′ − 1) ∪ Irr(x))∧

∀w ′ ∼x w∃!z′ ∼x z
(
Irr(y − z′) = Irr(w ′ − 1) ∪ Irr(x))

))}
.

As the next results will illustrate, the refining ofZ1 intoZ2 is necessary to interpret
divisibility of the exponents of the powers in Tx . The formula above aims to restrict
all divisibility relations between elements of the form xn − 1 to the unavoidable
ones, namely, that xn − 1 divides xm − 1 if and only if n divides m.
Proposition 4.14. t ∈ Z2.
This will follow from the next two lemmas:

Lemma 4.15. Let n,m ∈ N>0 be such that tn − 1 ≈ tm − 1. Then n = m.
Proof. This follows from item iv of Proposition 3.1. �

https://doi.org/10.1017/jsl.2019.21 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.21


1206 JAVIER UTRERAS

Lemma 4.16. Let n,m ∈ N>0 with n > m. Then Irr(tn − tm) = Irr(tn−m − 1) ∪
Irr(t).
Proof. Let y be an irreducible divisor of tn − tm. We can assume y to be monic.
Moving intoR(0)[t], y factors into a power of t, say y1, and a factor of tn−m−1, say
y2. But both y1 and y2 have coefficients in R, and thus one of them must be equal
to 1. Hence y ∈ Irr(tn−m − 1) ∪ Irr(t). �
Proposition 4.17. Let x ∈ Z2 and n,m ∈ N>0 with n > m. Then Irr(xn − xm) =
Irr(xn−m − 1) ∪ Irr(x).
Proof. By induction on n − m. If n = m + 1, then as xn ∼x xm we have
Irr(xn − xm) = Irr(x − 1) ∪ Irr(x). Assume that, for all i < k, Irr(xm+i − xm) =
Irr(xi−1)∪Irr(x). Then either Irr(xm+k−xm) = Irr(xk−1)∪Irr(x) or Irr(xm+k−
xm) = Irr(xk−2−1)∪Irr(x). Ifk = 2 thenx1 only has oneneighbour and the second
case is discarded; if k > 2 then, by the inductive hypothesis Irr(xm+k−2 − xm) =
Irr(xk−2 − 1) ∪ Irr(x), and by the uniqueness quantifier in the last line of the
definition of Z2 the second case is discarded as well. �
For x ∈ Z2, define the set Nx = {xn : n ∈ N} = Tx ∪ {1}.
Proposition 4.18. For x ∈ Z2, the relation Nbx(xa, xb) on the set (Nx)2 given
by |a − b| = 1 is definable inMR.
Proof. By Lemma 4.13, the formula

(xa = 1 ∧ xb = x) ∨ (xa = x ∧ xb = 1) ∨ xa − xb ∈ D2
defines this relation. �
Proposition 4.19. For x ∈ Z2, the relation Divx(xa, xb) on the set (Nx)2 given
by a|b is definable inMR.
Proof. We claim that the formula

xb = 1 ∨
(
xa �= 1 ∧ xa − 1 � xb − 1

)
defines this relation. Indeed, the cases a = 0 and b = 0 are covered; for the other
cases, if a divides b then xa − 1 divides xb − 1, and hence xa − 1 � xb − 1. For the
converse, assume that a, b ∈ N are such that xa − 1 � xb − 1.
Let c = gcd(a, b). There exist positive integers h, k such that bh = ak + c. Then
xa − 1 � xb − 1 � xbh − 1. As xa − 1 � xak − 1, we have xa − 1 � xak(xc − 1);
as xak − 1 and x are coprime and Irr(xak(xc − 1)) = Irr(xc − 1) ∪ Irr(x), we have
that xa − 1 � xc − 1. But as c divides a, we also have that xc − 1 � xa − 1. By
the definition of the set Z2, this implies that xa = xc . As x is not a unit, a = c and
thus a divides b. �
Theorem 4.20. Fix x ∈ Z2. The structure 〈Nx ;x,Nbx,Divx〉 is definable inMR

and isomorphic to 〈N; 1,Neib, |〉.

§5. Interpretation inMR, positive characteristic case. Throughout this section,
let R be a GCD domain of characteristic p. Note that (Fp)× ⊆ R×.
We define the following sets in R[t]:

T =
{
x ∈ D1 :MR |= ∀u ∈ R× ((x + u ∈ D1)
∧(( ((x − 1) � (u − 1)) ∨ (x � (u − 1)) )→ u = 1))} .
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For x ∈ T, Tx =
{
y ∈ T :MR |=

(
x ≈ y ∧ x − 1 ≈ y − 1

)}
.

N =
{
x ∈ T :MR |= ∃α ∈ Tx

(
∃!w ∈ Tx (α − w ∈ Dp)∧

∀a ∈ Tx
(
a �= α → ∃!(2)b ∈ Tx(a − b ∈ Dp)

))}
.

Z =
{
x ∈ N :MR |= ∃!a ∈ Tx

(
x − a ∈ Dp

)}
.

Same notation as before: if y, z ∈ Tx are such thatMR |= y − z ∈ Dp we will
refer to them as neighbours.

Lemma 5.1. Given x, y ∈ T , x ∈ Ty if and only if Tx = Ty .
Proof. ≈ is an equivalence relation. �
Lemma 5.2. If x ∈ N , then Tx ⊆ N .
Proof. At no point in the formula defining N is the specific element x of Tx
used, only the set Tx itself – any other y ∈ Tx would do as well. �
We can think of N as the union of some of the sets Tx satisfying the following
property : we wantTx to have a single element with exactly one neighbour and every
other element with exactly two neighbours, as we aim to use this construction to
interpret the natural numbers. The set Z collects, from each Tx ⊆ N , the unique
element with exactly one neighbour. The definable function � : N → Z that maps x
to the only element in Tx ∩ Z is thus well–defined.
Proposition 5.3. Let x ∈ T , c ∈ R×, n ∈ N be such that cxn ∈ Tx . Then c = 1
and n = pm for some m ∈ N.

Proof. We have

x − 1 � cxn − 1 (definition of Tx).

x − 1 � cxn − c (Lemma 1.1(b)).

x − 1 � c − 1 (Lemma 1.1(c)).

By definition of T , this implies c = 1.
Assume thatx−1 ≈ xn−1.Asx−1 ∈ D1, thenxn−1+xn−2+· · ·+1 is either a unit
or is≈–equivalent tox−1. If it is a unit, say u, then u−1 = x(xn−2+xn−3+· · ·+1).
By definition of T , this implies that u = 1 and n = 1.
In the other case, we have

x − 1 ≈ 1 +
n−1∑
i=1

xi .

x − 1 � 2 +
n−2∑
i=1

xi (adding x − 1 � 1− xn−1).

x − 1 � 3 +
n−3∑
i=1

xi (adding x − 1 � 1− xn−2).
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Inductively, x − 1 � n. This implies that n is a multiple of p, say n = pk. Then
x − 1 ≈ xn − 1 ≈ (xk − 1)p ≈ xk − 1.

Iterating this procedure, the conclusion follows. �
As in the case of characteristic zero, we aim to refine the set Z to get a set of
sufficiently “nice” elements, so that their respective Tx are the sets of pn-th powers
in order to apply the ideas from Section 2.

Proposition 5.4. Z is nonempty.
Proof. We will show that t ∈ Z. This will follow from the next lemmas.
Lemma 5.5. Let R(0) be the field of fractions of R and let w ∈ R×

(0). Suppose that

for some m, n ∈ N the polynomial
(
tp
n

+ w
)m
has all of its coefficients in R and is

irreducible in R[t]. Then m is a power of p.
Proof. Write m = hpk , with h and p coprime. Then

(
tp
n

+ w
)m
=
(
tp
n+k
+ wp

k
)h
=

h∑
i=0

(
h

i

)
wip

k

t(h−i)p
n+k
.

As h is a unit in R and hwp
k

is the coefficient of t(h−1)p
n+k
, then wp

k ∈ R; as this
polynomial is irreducible, h = 1. �
Lemma 5.6. For any n ∈ N and u ∈ R, tpn + u ∈ T .
Proof. As tp

n

+u is monic, any irreducible divisor of it must be (an associate of)
a polynomial of positive degree in t. If u = 0 and y is an irreducible divisor of tp

n

then it must be a monomial, and thus y ≈ t and Irr (tpn) = {[t]}.
If u �= 0, there exist m, r ∈ N and w ∈ R(0) such that tp

m

+ w is irreducible in

R(0)[t] and tp
n

+ u =
(
tp
m

+ w
)pr
. Let y1, y2 ∈ R[t] be monic irreducible divisors

of tp
n

+ u in R[t]. As R(0)[t] is a unique factorisation domain, and by the previous
Lemma, there exist s1, s2 ∈ N such that yi =

(
tp
m

+ w
)si . Hence s1 = s2 and

tp
n

+ u ∈ T . �
Corollary 5.7. Tt =

{
tp
n

: n ∈ N
}
.

Lemma 5.8. Let a, b ∈ N. tp
a − tpb ∈ Dp if and only if |a − b| = 1.

Proof. The case a = b is clear. Without loss of generality we may assume that
a > b, and thus

tp
a − tpb = tpb

(
tp
a−b−1 − 1

)pb
.

This has (at least) the p distinct irreducible factors (t − i), for i ∈ Fp.
If a− b > 1, by moving toR(0)[t] we can see that these irreducible factors are not
enough, as tp

a−b−1 − 1 has no repeated roots.
If a − b = 1, (tp − t)pb can be written as a product of linear irreducible factors
in R[t]. If some y irreducible divides it, then as that same factorisation over linear
irreducible factors works inR(0)[t] we have that y must be one of these factors. Thus

(tp − t)pb ∈ Dp. �
This concludes the proof of Proposition 5.4. �

https://doi.org/10.1017/jsl.2019.21 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.21


INTERPRETINGARITHMETIC IN THE FIRST-ORDER THEORY 1209

Lemma 5.9. Let x ∈ Z be a polynomial of positive degree in t. Then Tx ={
xp

n

: n ∈ N
}
.

Proof. The proof follows the proof of Lemma 5.9, using Proposition 5.3 to show
that Tx ⊆ {xpn : n ∈ N}. �
We will need the following definitions :
For x ∈ Z, we will say that x is
• standard if {xpn : n ∈ N

}
= Tx ; and

• nonstandard if {xpn : n ∈ N
} �= Tx .

We say the z ∈ Tx is strange if it is not of the form xpn . As before, Tx has strange
elements if and only if x is nonstandard.
For x, y ∈ Z, we say that x and y are comparable, denoted by x C y, if
∀xi ∈ Tx∃!yi ∈ Ty (x − y ≈ xi − yi) ∧ ∀yi ∈ Ty∃!xi ∈ Tx (x − y ≈ xi − yi) .
This relation is symmetric. Finally, we define the set

Z0 = {x ∈ Z :MR |= ∃y ∈ Z (¬y C x ∧ ∀z ∈ Ty∃� (x � � ∧ � − z ≈ x − y))} .
Proposition 5.10. An element x ∈ Z is comparable to t if and only if it is standard.
Proof. Let x ∈ Z be nonstandard. By Lemma 5.9, x ∈ R. Let y ∈ Tx be
strange, and assume that t and x are comparable. Hence there exists n such that
t − x ≈ tpn − y. As t − x ≈ tpn − xpn , then t − x � xpn − y. But the right hand
side is in R, hence it must be zero, which contradicts the fact that y is strange.
If x ∈ Z is standard and constant as a polynomial in t, by the same reasoning
as the previous paragraph we conclude that xC t. The only case remaining is when
x is a polynomial of positive degree in t. If t − x is a constant, it is clear that
t − x ≈ tpn − xpm if and only if m = n.
Assume that t − x is not a constant, m �= n and t − x ≈ tpn − xpm . As t − x �
tp
m − xpm , this implies that t − x � tpn − tpm . Without loss of generality suppose
that n > m. We have tp

n − tpm ≈
(
tp
n−m − t

)pm
.

As (tp
n−m − t) splits over Fpn−m , there exist T ∈ (Fpn−m ∩R) [t] and u ∈ R× such

that x − t = uT . Note that every nonzero coefficient in uT is a unit. As x ∈ T ,
uT + t and every element of the form uT + t+c for some unit c must be inD1. Thus
T must be of degree 0 or 1 as a polynomial in t, hence irreducible, and tp

n − xpm
must be a pn-th power of it. Thus n = m. �
Lemma 5.11. Z0 contains all nonstandard x ∈ Z.
Proof. Let x ∈ Z be nonstandard. By the previous Proposition, it is not com-
parable to y = t. For any n ∈ N, we may take � = xp

n

and, as x ∈ R, then
tp
n − xpn ≈ t − x. �
Lemma 5.12. t �∈ Z0.
Proof. Any y ∈ Z not comparable to t must be nonstandard, and thus there
exists a strange element z ∈ Ty . We claim that for any � such that t � � we have
that � − z �≈ t− y. Indeed, assume that they are equivalent. As y is not comparable
to t, it belongs to R, and thus t − y is irreducible and � − z = u(t − y)d where u is
a unit and d is the degree of � as a polynomial in t. As � is divisible by t, we have
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z = uyd . by Proposition 5.3, u = 1 and d is a power of p, contradicting the fact
that z is strange. �
Proposition 5.13. The setZ1 = Z\Z0 contains t. Every element ofZ1 is standard.
Lemma 5.14. Let x ∈ Z1 and n,m ∈ N. xp

n−xpm ∈ Dp if and only if |n−m| = 1.
Proof. We know that x has exactly one neighbour, and as a|b implies Irr(a) ⊆
Irr(b) we have

Irr (xp − x) ⊆ Irr
(
xp

2 − x
)
⊆ · · · ⊆ Irr

(
xp

i − x
)
⊆ · · ·

As |Irr (xp − x)| ≥ p, we have xp − x ∈ Dp and
∣∣∣Irr(xpi − x)∣∣∣ > p for every

i > 1. Suppose that xp
n − xpm ∈ Dp. As Irr

(
xp

(a−b) − x
)
⊆ Irr (xpn − xpm), we

conclude that |n −m| = 1. For the converse, if n �= 0 by definition of Z there must
be two elements y ∈ Tx such that xpn−y ∈ Dp. And, as x is standard, every y ∈ Tx
must be of the form xp

r

. �
Let Z2 = {x ∈ Z1 :MR |= ∀y ∈ Z1 (x C y)}. By Proposition 5.10, Z2
contains t.
We also define the set

Z3 =
{
x ∈ Z2 :MR |= ∀y ∈ Z2∀xi ∈ Tx∀yi ∈ Ty

(
(xi − yi ≈ x − y)→(

(∀xj ∈ Tx (xj − xi ∈ Dp → ∃yj ∈ Ty (yj − yi ∈ Dp ∧ xj − yj ≈ x − y))∧

∀yj ∈ Ty (yj − yi ∈ Dp → ∃xj ∈ Tx (xj − xi ∈ Dp ∧ xj − yj ≈ x − y)))
))}

.

This definition requires every element x of Z3 to satisfy the following: given any
y ∈ Z2, we know that x C y (by definition of Z2) and hence there exists a bijection
f between Tx and Ty such that, for any xi ∈ Tx , f(xi) is the unique element
of Ty satisfying xi − f(xi) ≈ x − y. For x to be in Z3 means that if xi and xj
are neighbours, f(xi) and f(xj) must be neighbours as well; as f(x) = y, this
inductively implies the next result.
Corollary 5.15. Let x, y ∈ Z3 and m, n ∈ N. x − y ≈ xpn − ypm if and only if
n = m.
Corollary 5.16. Z3 is nonempty.
Proof. By the proof of Proposition 5.10, t ∈ Z3. �
Recall that the definable map � : N → Z sends an element y ∈ N to the unique
x ∈ Z such that y ∈ Tx . Let N3 be the preimage of Z3 under �.
We will say that two elements x, y ∈ N3 are equipotent, denoted by x ∼ y, if
x − y ≈ �(x)− �(y). This relation is definable inMR.
Corollary 5.17. • N3 =

⋃
x∈Z3 Tx .

• If x, y ∈ Z3 andm, n ∈ N, then xp
n ∼ ypm if and only if n = m.

• ∼ is an equivalence relation on N3.
• Each equivalence class of ∼ contains exactly one element of each Tx as x varies
in Z3.
Each equivalence class is definable inMR. We will denote them as {En : n ∈ N},
where En =

[
tp
n ]
. Given x ∈ Z3 and an equivalence class E, x�E will denote the

unique element in Tx ∩E.
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We will write N for the quotient N3/∼ and for the first-order structure induced
on it by MR. It is interpretable in MR. If φ(x1, . . . , xn) is a L − formula and
E1, . . . En are classes in N , we will write

N |= φ(E1, . . . , En)
whenMR |= ∀x ∈ Z3φ

(
x�E1 , . . . , x�En

)
.

Lemma 5.18. E0 is definable in the interpreted structureN .
Proof. E0 is the unique element in the set{

x ∈ N : N |= x = �(x)} . �

Proposition 5.19. The relation Nb(Ea,Eb) given by |a − b| = 1 is definable in
the interpreted structureN .

Proof. By Lemma 5.14, this relation is given by the set{
(x, y) ∈ N : N |= x − y ∈ Dp

}
. �

We want to define the relation Div(Ea,Eb) given by a|b in the interpreted struc-
ture N . In order to do this, we first obtain some divisibility properties of the
polynomials of the form tp

n − tpm + 1.
Lemma 5.20. Let a, b ∈ N be nonzero. Then tp

a − t + 1|tpb − t + 1 if and only if
a divides b and ba ≡ 1modp.
Corollary 5.21. Let a, b ∈ N be nonzero. Then tp

a − t+1|tpb − t− 1 if and only
if a divides b and ba ≡ −1modp.
Proof. Same proofs as Lemma 2.13 and Corollary 2.14, respectively. �
We define the relation K(E,F,G) by the set{

(E,F,G) ∈ N : N |=
(
F = G ∨ E − E0 + 1 � G − F + 1

)}
.

This is clearly definable in the interpreted structure N and has the following three
properties:

Lemma 5.22. Let a, b, c be positive integers. N |= K(Ea,Eb,Ec) if and only if
either b = c or tp

a − t + 1 divides tpc − tpb + 1.
Proof. If N |= K(Ea,Eb,Ec) then, for any x ∈ Z3, either xpb = xpc or xpa −
x+1 � xpc −xpb +1. In particular this holds for x = t. We conclude by noting that
tp
a − t + 1 has no repeated roots and thus tpa − t + 1 � tpc − tpb + 1 is equivalent
to tp

a − t + 1|tpc − tpb + 1.
For the converse, the case b = c is trivial, so assume tp

a−t+1 divides tpc−tpb+1.
There exists g(t) ∈ R[t] such that tpc − tpb + 1 = (tpa − t + 1)g(t). This still holds
after replacing t with any x ∈ Z3, thus

MR |= ∀x ∈ Z3
(
xp

a − x + 1 � xpc − xpb + 1
)

and N |= K(Ea,Eb,Ec). �
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Corollary 5.23. Let a, b be positive integers. Then N |= K (Ea,Eb,Eb+a).
Moreover, if b > a then N |= K (Ea,Eb,Eb−a).
Proof. By the previous Lemma, the first claim follows from the fact that ta−t+1
divides tp

b+a − tpb + 1, and the second from

(ta − t + 1)
∣∣∣ (tpb − tpb−a + 1) = −

(
tp
b−a − tpb − 1

)
. �

Corollary 5.24. Let a, b, c be positive integers such that a divides b. If N |=
K(Ea,Eb,Ec ) then a divides c.

Proof. Weproceed by cases. If c ≥ b, wewrite l = c−b andwehave tpc−tpb+1 =(
tp
l − t + 1

)pb
. It is enough to show that if tp

a − t + 1 divides tpl − t + 1 then a
divides l . This follows from Lemma 5.20.

If c < b, we write l = b−c and we now have tpc − tpb +1 =
(
−
(
tp
l − t + 1

))pc
.

In a similar fashion as the previous paragraph, we use Corollary 5.21 to conclude
that a divides l . �
All these properties of the relationK serve to interpret divisibility in the quotient
structure N :

Proposition 5.25. The relation Div(Ea,Eb) given by a|b is definable in the
interpreted structureN .

Proof. Let f = �p2 �. We claim that a divides b if and only if

N |= Eb = E0 ∨ (Ea �= E0∧
∃E1, . . . , Ef+1

⎛
⎝K (Ea,E0, E1) ∧ f∧

i=1

K (Ea,Ei , Ei+1) ∧ Eb = Ef+1
⎞
⎠
⎞
⎠ .

The cases where a or b are zero are covered.
Assume a, b �= 0 satisfy the formula given, and let n1, . . . , nf+1 be such that

N |= K (Ea,E0, En1) ∧ f∧
i=1

K (Ea,Eni , Eni+1 ) ∧ Eb = Enf+1 .

As N |= (K (Ea,E0, En1), by Lemma 5.20 we have that a divides n1; as N |=∧f+1
i=1 K (E

a,Eni , Eni+1 ) we can recursively use Corollary 5.24 to see that a divides
all of the ni ; and as b = nf+1 we conclude that a divides b.
Conversely, if a divides b then we can write b = ka and k = qp + r for some
nonnegative integers k, q and r ∈ {−f + 1, . . . , f + 1} an integer.1 We proceed by
cases. If r ≥ 1, we choose
• E1 = E(qp+1)a ;
• for i ≤ r, Ei = E(qp+i)a ; and
• for i > r, Ei+1 = Ei .

1There are no problems in the case p = 2 because we do not need the uniqueness of r.
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By construction Ef+1 = Eb . By Lemma 5.20 we have N |= K (Ea,E0, E1) and
by Corollary 5.23 for each i we have N |= K (Ea,Ei , Ei+1).
If r ≤ 1, we choose
• E1 = E(qp+1)a ;
• for i ≤ 2− r, Ei = E(qp+2−i)a ; and
• for i > 2− r, Ei+1 = Ei .
The conclusion follows in the same way as before. �
And we obtain the desired interpretability.
Theorem 5.26. The quotient structure

〈
N ;E0,Nb,Div

〉
is interpretable inMR

and isomorphic to 〈N; 1,Neib, |〉.
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