
A family of skeletons for motion planning and geometric
reasoning applications

ATA A. EFTEKHARIAN AND HOREA T. ILIEŞ
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Abstract

The task of planning a path between two spatial configurations of an artifact moving among obstacles is an important prob-
lem in practically all geometrically intensive applications. Despite the ubiquity of the problem, the existing approaches
make specific limiting assumptions about the geometry and mobility of the obstacles, or those of the environment in which
the motion of the artifact takes place. We present a strategy to construct a family of paths, or roadmaps, for two- and three-
dimensional solids moving in an evolving environment that can undergo drastic topological changes. Our approach is based
on a potent paradigm for constructing geometric skeletons that relies on constructive representations of shapes with R-func-
tions that operate on real-valued half-spaces as logic operations. We describe a family of skeletons that have the same homo-
topy as that of the environment and contains the medial axis as a special case. Of importance, our skeletons can be designed
so that they are “attracted to” or “repulsed by” prescribed spatial sites of the environment. Moreover, the R-function for-
mulation suggests the new concept of a medial zone, which can be thought of as a “thick” skeleton with significant appli-
cations for motion planning and other geometric reasoning applications. Our approach can handle problems in which the
environment is not fully known a priori, and intrinsically supports local and parallel skeleton computations for domains
with rigid or evolving boundaries. Furthermore, our path planning algorithm can be implemented in any commercial geo-
metric kernel, and has attractive computational properties. The capability of the proposed technique are explored through
several examples designed to simulate highly dynamic environments.
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1. INTRODUCTION

Motion planning is ubiquitous in many geometrically inten-
sive applications involving moving objects such as robotics,
virtual reality, computer graphics, computer-aided design,
and manufacturing, computer-aided surgery, computational
biology, and many others. It heavily relies on spatial informa-
tion about the environment in which the navigation takes
place, and typically focuses on generating a “useful” motion
that takes a moving object, a robot, or a vehicle, between two
prescribed configurations subject to some constraints such as
minimum length of the path, collision-free trajectories, and
intermediate sites.1 One of the most useful and common ab-
stractions of this problem is to transform the motion planning

of an object in the Euclidean space into the path planning of a
point in the configuration space (or C-space) of the object
(Latombe, 1991).

Consider a moving object leaving from an initial position
and moving in the Euclidean space Ed(d¼ 2, 3) toward a pre-
scribed final destination. Such a vehicle can be a mobile ro-
bot, an autonomous vehicle, a camera flying through a scene,
or collection of spatial entities,2 a mechanical part that is
being assembled or transported, and so forth. The object
may be constrained by intermediate sites that must be either
approached or avoided during the motion, such as a fueling/
loading/unloading station or a sightseeing location. The envi-
ronment itself can be static or dynamic, case in which the ob-
stacles themselves or the boundary of the environment are
changing during the motion. The task is to find a path from
start to finish that satisfies the intermediate site constraints
and is subjected to other specific constraints as illustrated in
Figure 1. In its most general form, finding a path in such an
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1 Motion planning has been recently extended to include differential con-
straints that restrict allowable velocities during the motion, and use sampling-
based planning as discussed, for example, in LaValle (2006). 2 See Snavely et al. (2008) for a very interesting application.
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environment is a hard problem. Consequently, the existing
approaches address simplified versions of this problem.

A large amount of research has been devoted to motion
planning in static environments with both exact and approx-
imate methods. The existing approaches for finding the mo-
tion, which cannot be easily extended to dynamic environ-
ments, can be classified into the following:

1. roadmap methods that plan curves in either the config-
uration space of the moving object or in the Euclidean
space in which the object moves. There has been
some success in constructing three-dimensional (3-D)
configuration spaces (see, e.g., Sacks et al., 1999), but
computing C-spaces explicitly remains a difficult prob-
lem, which is exponential in the number of dimensions
of the C-space (Latombe, 1991). Consequently, com-
puting roadmaps in the Euclidean space has remained
a strong area of research. Current motion planning algo-
rithms that compute roadmaps rely on visibility graphs
(Jiang et al., 1999; Neus & Maouche, 2005), Voronoi
diagrams (Diaz de León & Sossa, 1998; Wilmarth
et al., 1999; Foskey et al., 2001; Garber & Lin, 2002;
Lee & Choset, 2005; Geraerts & Overmars, 2007), sil-
houette curves of semialgebraic sets (Canny, 1993), or
probabilistic roadmap planners (Kavraki et al., 1996);

2. potential field methods that introduce artificial attractive/
repulsive field in the environment can conceptually han-
dle both static and moving obstacles (Rimon & Kodit-
schek, 1992; Xidias et al., 2007). These methods cannot
take into consideration the exact geometry of the obsta-
cles, and therefore they cannot be applied to those prob-
lems in which the moving object is moving in close
proximity with the obstacles. It is of more importance
that potential field methods introduce local minima of
the potential field that can “trap” the moving object;

3. approaches based on cell decompositions, which are in-
herently approximate. These methods perform a dis-
joint decomposition of the free space, construct the con-
nectivity graph connecting these cells, and perform

graph search algorithms to select a collision free path
(Choset, 2000; Lingelbach, 2004).

An approximately time-optimal trajectory is proposed in
van den Berg and Overmars (2005) that uses a precomputed
roadmap for the static part of the scene to determine the col-
lision-free trajectory among the moving obstacles. This ap-
proach requires the complete environment and motions to
be known ahead of time. Other approaches that incorporate
into the formulation time as the extra dimension have been
discussed in Ishikawa (1991) and Fraichard (1993). More
general approaches to dynamic motion planning couple a pre-
computed probabilistic road map and a cell decomposition
to dynamically determine which cells of the roadmap are af-
fected by the motion of the obstacles (Kallman & Mataric,
2004). These methods produce successful paths when the dy-
namic subset of the environment is much smaller than the
whole environment, and when changes to the precomputed
roadmap are fairly minor. Motion planning in dynamic envi-
ronments in which both moving obstacles and target are mov-
ing with known velocities has been addressed in Masehian
and Katebi (2007). Because of the assumption of known ve-
locity vectors, this approach cannot handle the case when the
number, type, and motion of the moving obstacles are not
known in advance.

A fast motion planning algorithm in a two-dimensional
(2-D) dynamic environment based on generalized Voronoi
diagrams has been described in Hoff et al. (2000). The Vor-
onoi decomposition is computed for the prescribed
“sites”—the obstacles of the domain. For each pixel in the do-
main they compute the closest site and shortest distance to
that site. All pixels closest to the same site get assigned the
same color so that different Voronoi cells will have different
colors. The algorithm has been implemented on the graphics
processing unit, which allows the computation of the Voronoi
decomposition at each time step.

1.1. Main contributions of our work

In this paper we present a strategy to develop a family of
paths, or roadmaps, for 2-D and 3-D solids3 moving in highly
dynamic environments that can undergo drastic topological
changes. The main contribution of this paper is the definition
of a class of skeletons that have the same homotopy as that of
the environment and contains the medial axis as a special
case. It is important that our skeletons can be designed so
that they are attracted to or repulsed by prescribed sites in
the environment, whereas the attraction and repulsion are
controlled by a set of degrees of freedom (see Section 2.6).
This can effectively alter the planned path to accommodate
specific geometric constraints such as approaching a refueling
station or a sightseeing location. Furthermore, we exploit the
concept of a medial zone that we introduced in Eftekharian

Fig. 1. An object moving in an evolving environment with one intermediate
site that must be approached during the motion. [A color version of this figure
can be viewed online at journals.cambridge.org/aie]

3 These solids are closed, bounded, regular, and semianalytic sets (Requi-
cha, 1980).
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and Ilieş (2010) to control the subset of the environment in
which the roadmaps are being computed, and we show that,
for the same domain, the resulting roadmaps are shorter and
smoother than those obtained based solely on skeletons.

Once we construct the corresponding skeletons and medial
zones, we use the established Dijsktra’s algorithm to compute
shortest paths of moving points along the skeletons or within
the medial zones. Furthermore, the properties of R-functions
afford a conservative motion planning of solid objects within
the same formulation via level sets. The approach presented
in this paper can handle problems in which one or more ob-
jects move in environments that are not fully known in ad-
vance, and intrinsically supports local and parallel computa-
tions of skeleton and medial zones (and, hence, path
planning) for domains with rigid or evolving boundaries.
Our approach can be implemented in any commercial geo-
metric kernel, and has attractive computational properties.

2. PROBLEM FORMULATION

In this paper we focus on evolving spatial environments with
obstacles that can move as well as merge/split. We assume
that the initial and final position (i.e., points in the environ-
ment) of the path to be planned are known, and that two lists
of obstacles that contain the “attractive” obstacles A as well as
“repulsive” obstacles R are provided along with positive pa-
rameters l [ Rþ that quantify the extent by which each ob-
stacle will attract or repulse the path to be computed (see Sec-
tion 2.6). Each site that must be approached is specified by the
user. The task that we investigate in this paper is to compute
the shortest path along the skeleton or within the medial zones
that connects the prescribed initial and final positions subject
to the intermediate constraints, or output a message that one
does not exist for the prescribed environment.

2.1. Summary of the approach

Our approach is illustrated in Figure 2 and consists of five, not
necessarily sequential, stages:

1. Construct an exact or approximate distance function
over the given semianalytic domain.

2. Adjust the distance function according to the “attrac-
tive” and “repulsive” factors for obstacles prescribed
in A and R.

3. Extract the skeleton of the domain as the subset of
points where the continuous distance function is non-
differentiable. Note that our construction provides an
explicit mapping between each half-space defining the
environment and each branch of the skeleton, which
can play a critical role in local skeleton computations.

4. Alternatively, compute the medial zones as “thick” ver-
sions of the skeletons;

5. Compute the shortest collision free path along the skel-
eton or inside the medial zones subject to the inter-
mediate sites that must be visited.

Steps 1 and 3 above are summarized in Section 2.2 (see also
Eftekharian & Ilieş, 2009); step 2 is discussed in Section 2.3,
whereas the medial zones are summarized in Section 3 and
described in detail in Eftekharian and Ilieş (2010). Section
4 illustrates the usefulness of our approach for several do-
mains that simulate highly dynamic, topologically evolving
domains.

2.2. Preliminaries

Geometric skeletons are fundamental concepts in practically
all geometrically intensive areas of science and engineering,
such as automated finite element meshing, shape manipula-
tion, recognition, and comparison, dimensional reduction in
design and analysis, robotic surgery, and a variety of path
and motion planning in commercial and defense applications.
More recently, skeletons have been used to explore the funda-
mental geometric problems of folding and unfolding that are
the abstraction of some of the most important open problems
in science today, such as protein folding, as well as packing
and sheet metal bending. There are multiple ways to define
a skeleton of a given set, and a variety of definitions have
been proposed for different applications. Introduced by
Blum (1967) as a tool for image analysis, the medial axis
has become one of the mainstream geometric concepts due
to the fact that it provides a compact representation of the geo-
metric features of a shape and its topology. The medial axis
captures the connectivity of the shape, has a lower dimension
than the space itself, and is closely related to the distance
function constructed over the same domain.

The concept of medial axis has been described with the
help of the fire grass concept (see, e.g., Attali et al., 2008)
as follows: if a fire starts from all points of a planar curve at
the same time and moves with constant velocities in all direc-
tions in the same plane, then the medial axis is the locus of
points where the fire (in fact, a moving front) meets itself.
The concept can be extended to k-dimensional geometric
shapes in Rk, case in which the medial axis becomes a set
of dimension k 2 1. Intuitively, the points on the medial
axis are equally distant to at least two points of the boundary
of the domain. Since its formulation, the medial axis has been
used as alternative solid modeling representation (Shaham
et al., 2004), as well as in many other applications such as
shape matching and reconstruction (Liu et al., 1998; Siddiqi
et al., 1999; Sebastian et al., 2004; Damon, 2005; van Eede
et al., 2006; Goh, 2008), dimensional reduction in boundary
value problems (Suresh, 2003), representation and classifica-
tion of 2-D shapes (Sherbrooke et al., 1995; Pizer et al., 2003;
Shah, 2005), human vision (Kimia & Tamrakar, 2002), pat-
tern analysis and shape recognition (Blum & Nagel, 1978;
Bookstein, 1979), mesh generation (Sampl, 2000, 2001;
Quadros et al., 2004), and so forth.

The mathematical properties of medial axis are fairly well
understood (Choi et al., 1997; Chazal and Soufflet, 2004;
Attali et al., 2008). However, the practical uses of these
skeletons are limited by their notorious computational diffi-
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Fig. 2. (a) The three-dimensional distance function of the domain constructed with R-functions, (b) the medial axis of the domain and the shortest path that follows the medial axis of the domain, and (c) the
modified skeleton attracted to the intermediate target and the resulting shortest path. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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culties, and their instability under small perturbations of the
shape. Although it is possible, in principle, to compute the
medial axis exactly for general semialgebraic/analytic sets,
we do not seem to have any algorithms for doing so. The
most advanced algorithms make significant simplifying as-
sumptions on the geometry of these sets by focusing on pla-
nar or piecewise linear shapes. Algebraic planar curve seg-
ments whose bisectors admit rational parametrizations are
examined in Ramamurthy and Farouki (1999), whereas exact
computation of medial axis for polyhedra is described in Cul-
ver et al. (2004). The reasons behind these restrictions be-
come apparent once the algebraic difficulties in computing
medial axis (MA) are examined (Attali et al., 2008).

Consequently, these difficulties promoted a variety of algo-
rithms that approximate the complex shape by a set bounded
by a piecewise linear boundary for which the medial axis can
be computed exactly, followed by the extraction of the medial
axis of the approximating shape—the so-called pruning step.
The computed medial axis has to be postprocessed in order
to eliminate the branches that appear in the medial axis due
to the shape approximation. The main approaches to approxi-
mately compute the medial axis for piecewise linear shapes
rely on: Voronoi/Delaunay decompositions of space (Brandt
& Algazi, 1992; Amenta et al., 2001; Dey et al., 2003) where
the medial axis is the Voronoi graph defined by a piecewise lin-
ear approximation of the shape (Attali et al., 2008); solutions of
partial differential equations (such as diffusion or Hamilton–
Jacobi equations; Siddiqi et al., 2002; Du & Qin, 2004); and
level set methods (Kimmel et al., 1995; Gomes & Faugeras,
2000). A recent method to compute the medial axis for curved
planar sets (Cao & Liu, 2008) is iteratively tracing the Frenet
frames for pairs of boundary curves that bound a closed planar
domain. This algorithm does not generalize to 3-D space and its
stability appears to be problematic in 2-D due to its iterative
marching along the boundary curves.

2.2.1. R-functions as logic operators on real-valued
half-spaces

For any closed subset V of Ed , one can construct a C1

function that vanishes on the boundary @V of V. It is known

that such shapes are in fact semianalytic sets of points that can
be constructed as a finite Boolean combination of real ana-
lytic functions fi � 0. This in turn suggests an approach to con-
struct a C n function over a semianalytic subset V of E d by
subdividing the boundary of V in primitive half-spaces fi, fol-
lowed by a combination of fi into a single predicate using the
standard Boolean logic operators AND, OR, or NOT (Sha-
piro, 2007).

R-functions have been invented in the 1960s by V.L. Rva-
chev, who called these functions “logically charged func-
tions.” These functions provide the means to construct a C n

function over a domain defined by primitive half-spaces.
The main contribution of the theory of R-functions to the
topic of this paper is to replace these logical operations by real-
valued functions, which generates an implicit representation
for any semianalytic set V. One important feature of these
real valued functions is that their sign is completely deter-
mined by the sign of their arguments, and is independent of
any of their magnitudes.

There are many systems of sufficiently complete R-func-
tions. One such system is known as principal system of R-
functions

Ra(D):
1

1þ a
x1 þ x2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2

1 þ x 2
2 � 2ax1x2

q� �
, (1)

where (þ) and (2) signs correspond to the R-conjunction
(x1 _a x2) and R-disjunction (x1 ^a x2) respectively of two
real variables x1 and x2. By varying the value of a, we obtain
different systems of R-functions. In particular, by setting a¼ 1
in Eq. (1) we obtain the R1(D) system of R-functions, whereas
a value a ¼ 0 in Eq. (1) would result in the R0(D) system (see
Fig. 3).

Of importance, when expression under the square root in
Eq. (1) becomes zero, the corresponding implicit function be-
comes nondifferentiable. Because the medial axis of a semi-
analytic domain corresponds to the points where the distance
function is nondifferentiable, we will be looking for points of
the implicit function where the expression under the square
root vanishes.

Fig. 3. Three implicit representations of a polygonal domain that correspond to (a) a ¼ 0, (b) a ¼ 0.5, and (c) a ¼ 1. [A color version of
this figure can be viewed online at journals.cambridge.org/aie]
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Figure 3 shows the difference between the implicit func-
tions constructed over a polygonal domain with the Ra(D)
system for three values of a. One can see that for a = 1,
the resulting functions are differentiable (except at the origin,
not shown). In contrast, the implicit function corresponding
to R1(D) shown in Figure 3c is made of piecewise planar
patches that intersect at piecewise linear edges. In fact, by pro-
jecting the edges of the R-function surface on the plane of
the polygon we obtain a skeleton of the polygon. However,
how do we construct the function, and which skeleton do
we obtain?

2.2.2. Constructing Boolean expressions

Conceptually, the problem of constructing a Boolean ex-
pression for a domain bounded by half-spaces is the same
as that of converting a boundary representation (B-rep) into
a constructive solid geometry (CSG) representation in solid
modeling.

Several efficient algorithms for performing the B-rep to
CSG conversion for polygons are known (Tor & Middle-
ditch, 1984; Dobkin et al., 1988). However, the complexity
of the problem quickly escalates with the increase in the com-
plexity of the boundary of the domain. Separating the bound-
ary into primitive pieces is no longer sufficient to construct
the Boolean expression of the domain, because additional
half-spaces need to be introduced, which are the so-called
separating half-spaces. Determining a sufficient set of separat-
ing half-spaces is the critical step of any such algorithm,
but the problem is not well understood in general. Solutions
exist for planar domains bounded by linear and curved edges
that are subsets of convex curves (Shapiro, 2001) and solids
bounded by linear or quadric surfaces (Shapiro & Vossler,
1993).

Note that the problem of B-rep to CSG conversion is well
defined by using the natural half-spaces of the domain, but a
CSG expression may not exist for a given set of half-spaces.
This necessary and sufficient condition for the existence of a
CSG expression is formally described by the describability
theorem” in Shapiro and Vossler (1991). However, if a can-
onical CSG expression exists for a given set of half-spaces
bounding a specific domain, then this canonical CSG expres-
sion is unique. Observe that we do not require the canonical
CSG expression, because all CSG expressions that are valid
for a given domain will describe the same set of points.

Planar domains. The Boolean set representation of a
polygonal domain can be computed based on the convex de-
ficiency tree (Dobkin et al., 1988), which treats each polygon
as its convex hull minus a finite number of concavities. Note
that the polygon is a closed set, so the subtraction of concav-
ities must necessarily be regularized (i.e., one must use regu-
larized Boolean operations). Finally, we perform a syntactic
substitution to replace the union and intersection with the
R-disjunction and R-conjunction given in Eq. (1), which re-
sults in an R-function expression whose zero set is the origi-
nal planar domain. By following this procedure, we obtain an

R-function expression that corresponds to the exact distance
function for any convex planar domain polygon, and an ap-
proximate distance function for a concave domain. Note
that such a distance function is obtained from the principal
system of R-functions given in Eq. (1) by setting the value
of a ¼ 1, that is, the R1(D) system. Values of a , 1 corre-
spond to implicit functions over the same domain that have
established differential properties (Shapiro, 2007). These ap-
proximate distance functions can be converted into an exact
distance function by introducing additional half-spaces at
the concave vertices of the domain (Eftekharian & Ilieş,
2009). Specifically, each concave vertex requires a conical
half-space with a half angle of p/4 and two separating/trim-
ming half-spaces that are normal to the boundary curves
that are incident at the concave vertex.

3-D domains. It is important to note that the construction
algorithms for simple polygons can be extended to some
other point sets, such as curved polygons (Shapiro, 2001),
3-D polyhedra, and more general 3-D solids (Shapiro,
1991; Buchele & Crawford, 2003). However, converting
the resulting approximate distance function into an “exact”
distance function for such domains requires the computation
of additional halfspaces as discussed above, which can only
be computed approximately in many situations. The alterna-
tive that we take in this paper is to compute distance functions
to each face bounding the 3-D domain, and combine them
with the R-disjunction as described in more detail in Eftek-
harian and Ilieş (2010).

2.2.3. Adding/removing obstacles

Obstacles in the environment can be represented as holes/
voids of the domain. One of the main advantages of our ap-
proach to compute skeletons based on R-functions is that
obstacles can be easily added to the R-function expression
representing V (see also Eftekharian & Ilieş, 2009). The
R-function expression corresponding to the obstacle is sub-
tracted from the R-function expression defining the boundary
of V according to the R-subtraction4

R1(D) ¼ 1
1þ a

f1 � f2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

1 þ f 2
2 þ 2f1 f2

q� �
, (2)

where f1 is the function describing the outer domain and f2
represents the hole. Figure 4 shows how obstacles can be
added to the main space. Figure 4a–c illustrates this process
in which two obstacles are sequentially added to the environ-
ment, then one of them is rotated. The corresponding distance
functions are illustrated in Figure 4d–f.

One important property of the R-functions is that their sign
is independent of the magnitude of each half-space involved
in the R-function expression, and depends only on the sign of

4 Recall that the subtraction of two point sets A and B is usually defined in
terms of the Boolean operations as A 2 B¼ A > Bc, where Bc is the comple-
ment of B which implies that for solids one must use regularized set opera-
tions.
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each half-space. Consequently, holes can be easily relocated
and resized to perform, for example, parametric or topology
optimization (Chen et al., 2007; Luo et al., 2007). These mod-
ifications exploit the connection between implicit functions
defined with R-functions and level sets so that the boundary
of the domain defined by the R-function expression is the
zero level set of the corresponding implicit function, and
moving boundaries of V can be handled as easily (Eftekhar-
ian and Ilieş, 2009).

2.3. From distance functions to collision-free
trajectories

Constructing the R-function expression described above re-
sults in the distance function of any 2-D or 3-D bounded, reg-
ular, closed and semianalytic domain. The ridges of the dis-
tance function contain the points where the distance function
is nondifferentiable, and therefore, belong to the medial axis
of the domain.

In Eftekharian and Ilieş (2009) we explored two strategies
for extracting the ridges of the distance function. Specifically,

1. for the planar case, if the distance functions Hi corre-
sponding to each individual half-space fi are con-
structed in a commercial geometric kernel as a standard
3-D NURBS surface, then the distance function corre-
sponding to domain V can be obtained by combining
the individual Hi according to the Boolean expression
developed in the previous step. This outputs individual
curve segments/branches of the medial axis.

2. Alternatively, one can take advantage of the fact that the
distance function is not differentiable at the ridge
points. If one assumes that the first derivative of a given
continuous function is large (it reaches a local extre-
mum) wherever the second derivative has a zero cross-
ing, one can use Laplacian based methods for ridge de-

tection, which are widely used in image analysis and
computer vision. This leads to a numerical procedure
that outputs points of the medial axis, which needs
to be followed by a segmentation of these points into
branches of the medial axis. One practical way to perform
the medial axis segmentation (or branching) is to deter-
mine the half-spaces Hi that evaluate to zero for each
point of the medial axis. The advantage of this approach
is that it can be applied to both 2-D and 3-D path plan-
ning problems.

Regardless of the ridge extraction algorithm being em-
ployed, by constructing a single function describing the bound-
ary of each obstacle we can significantly reduce the number of
branches of the medial axis, which will significantly reduce the
computational cost of the path planning algorithm. This is illus-
trated in Figure 5, which shows a polygonal domain and its ex-
act distance function in Figure 5a. The rectangular obstacle is
bounded by four half-spaces H1, . . . , H4, to which we add
trimmed conical half-spaces C1, . . . , C4. These half-spaces
can be treated individually or collectively during the segmenta-
tion, as mentioned above. Note that even though we use linear
half-spaces for illustrative purposes, the approach remains valid
for all semianalytic half-spaces.

If each individual half-space bounding the obstacle is
treated individually during the segmentation, then one half-
space defining the outer boundary of the environment, say
H5, will generate four separate branches of the medial axis
as shown in Figure 5b. Alternatively, if we construct one
single Boolean expression Ho for the boundary of the obstacle
as

Ho ¼ (H1 < H2 < H3 < H4) < (C1 < C2 < C3 < C4), (3)

then the segmentation will effectively combine the four indi-
vidual branches of the medial axis into one single branch (see
Fig. 5c). Repeating this procedure for the remaining outer

Fig. 4. Obstacles can be added to (or removed from) the environment. (a)–(c) Distance functions to individual obstacles are illustrated, and
(d)–(f) the resulting distance functions of the domain are shown. [A color version of this figure can be viewed online at journals.cambridge.
org/aie]
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boundary of V will generate the remaining branches of the
medial axis according to

V ¼ [(H1 < H2 < H3 < H4) < (C1 < C2 < C3 < C4)]

> (H5 > H6 > H7 > H8) (4)

and replace the Boolean operations with the R-conjunction
and R-disjunction given in Eq. (1).

Figure 6 illustrates the impact of the two approaches on the
number of branches of the medial axis for a simple planar
domain. In this example, by combining the half-spaces
bounding each obstacle as described above, we reduce the
number of branches of the medial axis from 30 to 14. The

number of nodes in the graph will therefore be reduced
from 32 to 12.

After the medial axis segmentation, the last step in plan-
ning a path for a moving point is to perform a graph search
algorithm on a weighted graph. Each critical point becomes
a vertex in this graph and each branch will be represented
as a weighted edge whose weight is proportional to the length
of the branch. It should be apparent that the “smaller” the
graph the faster the computations. In this work we used the
established Dijkstra’s algorithm (Dijkstra, 1959) that has
been widely used in motion planning and routing problems
due to its simplicity, efficiency, and robustness. However,
one can use any of the other existing graph search algorithms
to generate collision-free paths in this weighted graph.

Fig. 5. Combining the half-spaces defining the obstacles into a single function reduces the number of branches of the medial axis. [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 6. The half-spaces bounding each individual obstacle are combined so that each obstacle will be defined by one single function, which
reduces the number of medial axis branches from 30 to 14. (a) Dashed lines are branches created by intersection of conical half-spaces with
the outer half-spaces (see Section 2.2.2). The black dots on the medial axis separate the branches of the medial axis. [A color version of this
figure can be viewed online at journals.cambridge.org/aie]
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Note that some domains admit more than one shortest path,
and that all standard graph search algorithms can be modified
to produce all possible shortest paths. The interested reader is
referred to Takaoka (2005), as well as to standard textbooks
on algorithms such as Dasgupta et al. (2008).

2.4. A family of skeletons that contains the medial axis

To summarize the discussion above, we are first constructing
the distance function over the domain from individual half-
spaces defining the boundary of the domain (both outer bound-

Fig. 7. (a) Exact distance functions H1 ¼ 0 and H2 ¼ 0 for two planar curves defined by f1(x, y)¼ 0 and f2(x, y)¼ 0, (b) a weighted distance
function WF2 ¼ l2H2 ¼ 0 results in a different skeleton than the medial axis, (c) the triangles formed by Pi, P 0i(i¼ 1, 2) and the corresponding
footpoints flattened on the plane, and (d) a single weight l is applied on the distance function defining the obstacle f2 ¼ 0 regardless of how
many half-spaces contribute to f2 ¼ 0. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 8. Medial zones controlled by the prescribed a values. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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ary and obstacles) as described in Section 2.2.2. As a result, we
obtain a continuous piecewise smooth surface, whose zero
level set is the boundary of the domain. This construction is fol-
lowed by the extraction of the medial axis as the subset for
which the continuous distance function is nondifferentiable.

However, by altering the distance functions defined by
each half-space fi � 0, we can deform the medial axis such
that the deformed skeleton will be “attracted” or “repulsed”
by specific obstacles inside the domain or by specific half-
spaces defining the outer boundary of the environment.

In our construction above, we define each halfspace of the
original domain as an implicit function fi � 0. Each half-space
fi in the d dimensional space Ed induces a higher dimensional
half-space in Edþ1 denoted by Hi � 0.

We will describe the concept with the help of a 2-D exam-
ple, but this discussion naturally extends to 3-D environ-
ments. Consider the example shown in Figure 7, which shows
two planar half-spaces f1 and f2, as well as their exact distance
functions that are the boundaries of the corresponding 3-D
half-spaces defined by equation Hi ¼ 0, namely,

@H1 ¼ {P(x, y, f1(x, y)) [ E3jH1(x, y, f1(x, y)) ¼ 0}, (5)

@H2 ¼ {P(x, y, f1(x, y)) [ E3jH2(x, y, f2(x, y)) ¼ 0}: (6)

Assume that the two surfaces @H1 and @H2 are the exact
distance functions to curves f1 ¼ 0 and f2 ¼ 0, and that point
P is on the intersection curve between @H1 and @H2 as illus-
trated in Figure 7. By definition, both @H1 and @H1 make with
the (x, y) plane an angle of p/4 at the footpoints of P on f1 and
f2, for all points P [ @H1 > @H2. Denote these footpoints by
Pf 1 and Pf 2. Furthermore, assume that l1 � 0 and l2 � 0 are
two positive real numbers that multiply H1 and H2, respec-
tively, such that

WF1 ¼ l1H1(x, y, f (x, y)), WF2 ¼ l2H2(x, y, f (x, y)):

Clearly, the functions WF1 and WF2 and are distance func-
tions for curves f1(x, y)¼ 0 and f2(x, y)¼ 0 if and only if l1 ¼

l2 ¼ 1. In this case, by projecting the ridge between WF1

and WF2 onto the plane of f1 and f1 we obtain the bisector
of f1 and f2, that is, the medial axis. However, if we choose
l1 ¼ 1, but we let l2 . 1 or l2 , 1, the projection of the ridge
will move closer to or farther away from f2 ¼ 0 as illustrated in
Figure 7b. Consequently, the reals li act as weights and there-
fore the resulting R-function expression for the domain gener-
ates a weighted distance function (denoted here by WF). In fact,

ui ¼ tan�1 (li),

Fig. 9. (a) The trajectory planning of a point is shown. By taking different level sets of the implicit function induced by the R-function
expression, we can plan the path of an object approximated by the (b) smallest enclosing ball. [A color version of this figure can be
viewed online at journals.cambridge.org/aie]
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Fig. 10. An environment with both static and dynamic obstacles moving independently. The planned path adapts to the changing environment. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]
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where ui is the angle formed by WFi¼ 0 and the plane (x, y) at
the footpoint Pf i on fi ¼ 0 as shown in Figure 7c. The fact that
each scalar li is constrained to be positive definite implies
that the angle ui [ [0, p/2].

In other words, scalars li act as degrees of freedom control-
ling the local attraction or repulsion of the skeleton by fi. Fur-
thermore, because each ui [ [0, p/2], the branch of the skel-
eton defined by two half-spaces fi � 0 and fj � 0 will lie in the
region of the plane where both fi . 0 and fj . 0, that is, be-
tween fi . 0 and fj . 0.

In this paper, we assign a separate scalar l to the distance
function that defines each obstacle. In other words, each l

will act as a global weight for the corresponding obstacle as
shown in Figure 7d. If the function defining each obstacle
of the domain, which is represented by one single R-function
expression, is weighted by a single weight l, we conjecture
that the resulting skeleton of the domain is homeomorphic
to the medial axis, which in turn preserves the homotopy of
the domain (Lieutier, 2003). In this case, the class of skele-
tons controlled by ui will have the same homotopy as that
of the domain.

3. MEDIAL ZONES AS THICK SKELETONS

We have been using the principal system of R-functions given
in Eq. (1) with a value of a¼ 1. This, in turn, generates piece-
wise smooth distance functions as shown in Figure 3c, and
the skeletons are obtained as the nondifferentiable points of
the distance function as discussed in Sections 2.5 and 2.6.
However, one important feature of R-functions is that they
can generate continuous functions over the domain that are
differentiable almost everywhere (for a detailed discussion,
see Shapiro & Vossler, 1991; Shapiro, 2007). In fact, this is
illustrated in Figure 3 for the principal system of R-functions
of Eq. (1), which produces such differentiable functions by
simply choosing a value of a , 1.

For a given R-function expression corresponding to a given
domain we define the medial zones as those points of Ed that
belong to the surface constructed with R-functions and are

“near” the crest of the surface,5 as illustrated in Figure 8.
The “nearness” can be defined in several different ways and
can be computed via Laplacian, Gaussian curvature, or other
differential properties of the resulting surface. Note that the
differential properties of the resulting surfaces can be con-
trolled by the specific system of R-functions being used. Con-
sequently, by adjusting the value of a and the “nearness”
metric, one can “grow” or “shrink” these medial zones. The
effect of changing a on the resulting medial zone is illus-
trated in Figure 8b and c, as detailed in Eftekharian and Ilieş
(2010).

The implications to motion planning are important because
these medial zones provide significantly increased flexibility
of the resulting path compared to the case in which the paths
are planned along the medial axis or skeleton of the same do-
main. Moreover, these medial zones can be computed with
the same computational algorithms as those used to compute
the skeletons described above. From a practical point of view,
the paths planned based on the medial zones can be shorter
and smoother than those planned based on skeletons, which
is evident in the examples discussed in Section 4.

4. EXAMPLES

We illustrate the capabilities of our approach with several ex-
amples that contain both linear and nonlinear half-spaces in
both 2-D and 3-D, as well as moving obstacles that merge
with either other obstacles or the boundary of the domain
@V to produce drastic topological changes of the environ-
ment. We implemented a commonly used finite-difference
approximation of the Laplacian (Bovik, 2005) to extract the
ridges and ravines of the weighted distance function.

Figure 9a shows the distance function of a domain and the
corresponding shortest trajectory of a point between an initial
and a final position. By taking a different level set of the dis-
tance function, we can plan within the same formulation the

Fig. 11. An environment with obstacles similar to the one in Figure 10b. The weight of the outer boundary is l¼ 0.2679, which is equiva-
lent to an angle of 15 degrees. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

5 Recall that the R-function expression generates the surface in the E dþ1

space.
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path of an object approximated by the smallest enclosing ball
as shown in Figure 9b.

The example in Figure 10 shows three instances during the
evolution of an environment in which two obstacles are mov-
ing independently while merging and splitting with other ob-
stacles. The planned path adapts to the changing environment
as shown in the third row of images in the same figure.

The environment from Figure 10b is illustrated in Figure 11,
but with a different path planning goal, namely, to have “suffi-
cient” clearance to the boundary of V. The weight l corre-
sponding to the R-function expression defining the outer
boundary of the domain is set to 0.2679 (equivalent to an angle

of 15 degrees; see Section 2.6). Note the difference between the
resulting shortest path in Figure 11 and that of Figure 10b.

Figure 12 shows the path planning for a point within a do-
main with curved boundaries (Fig. 12a) and a second path of
an object enclosed by a minimal ball while moving in the
same environment. Note that the path planned for the object
is different than the path of the point even though the space is
the same. This is due to the fact that planning the path of the
object is transformed into the path planning of a point by tak-
ing a different level set of the R-function expression describ-
ing the original environment. In this example the radius of the
minimal enclosing ball is 0.3 m.

Fig. 12. (a) An environment with curved boundaries and the corresponding trajectory of a point and (b) the problem of planning a path of a
moving object is transformed into the path planning of a point by taking a different level set of the distance function corresponding to
the original environment. Note the difference in the two planned paths. [A color version of this figure can be viewed online at journals.
cambridge.org/aie]
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A modified skeleton is shown in Figure 13 along with the
computed path of a point within a domain with curved bound-
aries. The resulting roadmap computed based on the medial
axis is shown in Figure 13a. Furthermore, the R-function ex-
pression defining the crosshatched rectangular obstacle has
been weighted by a factor l that corresponds to an angle of
85 degrees as discussed in Section 2.6. This effectively brings
the skeleton, and therefore the computed path, closer to that
particular obstacle. Note that there are five obstacles in this
example, some of which are merged together, and that only
one of the five corresponding distance functions is weighted.
Clearly, other distance functions could be weighted as well
depending on the specific path planning task being investi-
gated with important applications in assembly, robotic, or
navigation applications (as shown schematically in Fig. 1).

Figure 14 shows a domain containing multiple obstacles with
free-form planar geometry. The three different cases illustrated

there correspond to three values of a, namely, a ¼ 1, a ¼
0.95, and a ¼ 0.8, which result in the illustrated distance func-
tions. For the case when a¼ 1 illustrated Figure 14a the result-
ing skeleton is the medial axis, and the resulting shortest path is
shown in orange (lighter color). By decreasing the value ofawe
increase the smoothness of the distance function, which in turn
increases the “thickness” of the medial zones, which is illus-
trated in Figures 14b and c. Note that as a increases the length
of the roadmap decreases, while its smoothness increases.

The R-function expression describing the domain of
Figure 10b is illustrated in Figure 15a with a value of a ¼
0.90, which results in the medial zone shown in Figure 15b.
Observe that this new distance function effectively results in
a smoother shortest path (Fig. 15b) that takes a different route
than the shortest path shown in Figure 1b for the same domain.

Finally, Figure 16 shows several 3-D examples and the cor-
responding shortest paths. The 3-D domains shown in

Fig. 13. Shortest path of a point within a domain with curved boundaries and five obstacles that was computed based on (a) the medial axis
and (b) a skeleton obtained by weighing the distance function defining the rectangular (crosshatched) obstacle. [A color version of this
figure can be viewed online at journals.cambridge.org/aie]
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Figure 16a and b contain one intermediate site that must be
part of the path that is being planned. Note that a path along
the medial axis that would satisfy these constraints does not
exist. These examples contain two paths that do not satisfy
the intermediate site constraint, which are planned inside
two medial zones corresponding to values of a ¼ 1 and
a ¼ 0.9, respectively. The same examples show a third

path, which, in each case, is the shortest path connecting
the beginning and end configurations, passing through the in-
termediate site, while remaining inside a medial zone corre-
sponding to a value of a ¼ 0.9. To achieve this, the distance
function corresponding to the proximate obstacle (A) was
modified in both examples as described in Section 2.6 and
obstacle A “attracts” the resulting path. The example shown

Fig. 14. Shortest paths of a domain containing multiple obstacles with free-form planar geometry. The paths have been computed based on
medial zones for three values of a. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 15. Medial zone and shortest path for the domain of Figure 1b for a value of a¼ 0.9. The path computed in (b) is shown with dotted
line for comparison purposes. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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in Figures 16d illustrates another path planning scenario in an
environment that contains many narrow passages and free-
form obstacles.

5. CONCLUSION

This paper formulates a family of geometric skeletons that
contains the medial axis as a special case, and explores their
use in robotic path planning applications in highly dynamic
and topologically evolving environments. We propose a strat-
egy for constructing these skeletons that relies on constructive
representations of shapes with R-functions that operate on
real-valued half-spaces as logic operations. The flexibility
provided by the underlying Boolean nature of the proposed
framework makes this approach well suited to problems in-

volving substantial geometric and topologic changes of the
environment. Note that our approach

1. is applicable for general closed, bounded, regular, and
semianalytic domains;

2. results in a family of skeletons that contains the medial
axis as a special case. The computed skeleton can be
modified so that the computed path is attracted or re-
pulsed by prescribed obstacles within the domain;

3. can compute the medial zones that intuitively represent
thick skeletons of the domain. One important advantage
of these zones in the context of motion planning appli-
cations is that they generate shorter and smoother paths
than medial-axis path planning strategies for the same
environment;

Fig. 16. Collision-free paths for several 3-D domains computed based on medial zones. The intermediate sites in (a) and (c) are shown as a
points: the three paths correspond to values of a¼ 1 and a¼ 0.9; (b) the top view of the environment from (a); and (d) an environment with
narrow passages. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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4. can handle problems with evolving environments or in
which the environment is not fully known a priori be-
cause obstacles can be introduced/removed at any time
during the planning stage and within the same problem
formulation;

5. intrinsically supports local and parallel skeleton compu-
tations for domains with rigid or evolving boundaries
due to the explicit mapping between the branches of
the medial axis and the half-spaces bounding the envi-
ronment;

6. can handle trajectory planning of points as well as path
planning for 2-D/3-D objects within the same formula-
tion due to the close relationship between R-function
expressions and level sets. The simplest approach to ex-
tend the trajectory planning to solid objects is to ap-
proximate the moving object by its smallest enclosing
ball, and take different level sets of the distance function
defining the environment. This effectively offsets the
boundary of the environment so that the outer bounda-
ries of the environment shrink while, at the same time,
the obstacles grow by the same radius of the disk en-
closing the object; and

7. supports multiple representations of the input geome-
try;

We argue in this paper that the degrees of freedom that we
used to control the subset of the domain in which we are look-
ing for the shortest path afford significant flexibility in com-
puting paths that satisfies specific geometric constraints that
are common in geometric reasoning and motion planning ap-
plications. In addition, the attractive and repulsive factors li

provide a simple and elegant mechanism to deform the skele-
ton so that the resulting path gets closer to or farther away
from specific sites or obstacles in the environment.

We conjectured that the family of skeletons defined by
weights l as defined in Section 2.4 is homeomorphic to the
medial axis, which implies that the skeletons in the family
are homotopic to the domain. This property coupled with the
fact that the family of skeletons is really defined by pseudodis-
tance functions is crucial in all potential applications such as
unmanned vehicles navigation systems, robotics, autonomous
assembly systems, and shape representation and recognition.
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https://doi.org/10.1017/S0890060411000229 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060411000229

