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THE ASYMPTOTIC PROPERTIES OF
THE SYSTEM GMM ESTIMATOR IN
DYNAMIC PANEL DATA MODELS
WHEN BOTH N AND T ARE LARGE

KAZUHIKO HAYAKAWA
Hiroshima University

In this paper, we derive the asymptotic properties of the system generalized method
of moments (GMM) estimator in dynamic panel data models with individual and
time effects when both N and T , the dimensions of cross-section and time series, are
large. Specifically, we show that the two-step system GMM estimator is consistent
when a suboptimal weighting matrix where off-diagonal blocks are set to zero is
used. Such consistency results theoretically support the use of the system GMM
estimator in large N and T contexts even though it was originally developed for
large N and small T panels. Simulation results indicate that the large N and large
T asymptotic results approximate the finite sample behavior reasonably well unless
persistency of data is strong and/or the variance ratio of individual effects to the
disturbances is large.

1. INTRODUCTION

In recent decades, with the growing availability of comprehensive statistical
databases, the use of dynamic panel models has steadily increased. The advan-
tages are clear: dynamic panel models not only allow us to consider the dy-
namics of economic activity but also control for unobservable heterogeneity.
To estimate dynamic panel data models, several estimators have been proposed.
These include the instrumental variables (IV) estimator (Anderson and Hsiao,
1981), the least squares dummy variable (LSDV) estimator (Nickell, 1981), the
first-difference (FD-) GMM estimator (Holtz-Eakin, Newey, and Rosen, 1988;
Arellano and Bond, 1991), the level and the FOD-GMM estimator1 (Arellano and
Bover, 1995), the system GMM estimator (Arellano and Bover, 1995; Blundell
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and Bond, 1998), the limited information maximum likelihood (LIML)-type esti-
mator (Alonso-Borrego and Arellano, 1999), and the maximum likelihood (ML)
estimator (Bhargava and Sargan, 1983; Hsiao, Pesaran, and Tahmiscioglu, 2002).
Among these estimators, the system GMM estimator is the most widely used in
empirical analysis. For example, Blundell and Bond (2000), Bond, Hoeffler, and
Temple (2001), Dollar and Kraay (2002), and Beck, Levine, and Loayza (2000)
have all used the system GMM estimator. There are two main reasons for the
system GMM estimator’s popularity. The first is that, as shown by Blundell and
Bond (1998), the FD-GMM estimator suffers from the weak instrument prob-
lem when the persistency of data is strong, while the system GMM estimator
does not. The second is that in comparison to the FD- and level GMM estima-
tors, the system GMM estimator is more efficient. These two useful properties
render the system GMM estimator popular in empirical studies. However, with
regard to the first advantage, Bun and Windmeijer (2010) show that the system
GMM estimator suffers from the weak instrument problem if the variance ratio
of individual effects to the disturbance is large.2 This implies that the weak in-
strument problem in the GMM estimation of dynamic panel data models is not
addressed. Associated with this issue, several studies propose alternative estima-
tors or investigate the issue in detail. In line with the former approach, Hahn,
Hausman, and Kuersteiner (2007), Han and Phillips (2010), and Han, Phillips,
and Sul (2014) propose variants of IV/GMM estimators, while Hayakawa and
Pesaran (2012) extend the ML approach of Hsiao et al. (2002) to allow for cross-
sectional heteroskedasticity. In line with the latter approach, Hahn et al. (2007),
Kruiniger (2009), Hayakawa (2009a), and Hayakawa and Nagata (2013) investi-
gate the weak instrument problem in detail using the near unit root asymptotics.
Hahn et al. (2007) and Kruiniger (2009) demonstrate that the FD- and system
GMM estimators are inconsistent in general and follow nonstandard distribution
under near unit root asymptotics. Hayakawa (2009a) and Hayakawa and Nagata
(2013) show that the weak instrument problem of the FD-GMM estimator is not
always a problem if initial conditions do not follow the stationary distribution.
In fact, they demonstrate that if the process is not mean stationary, there are cases
where the instruments can be strong even if persistency is strong.

While the above studies assume small T and large N , where T and N de-
note the time-series and the cross-sectional size, respectively, motivated by the
increasing availability of panel data in which T and N are both large, many stud-
ies consider using large N and large T asymptotics.3 Early contributions include
Hahn and Kuersteiner (2002) and Alvarez and Arellano (2003). They derived the
large N and large T asymptotic properties of typical estimators for dynamic panel
data models such as the LSDV, the FOD-GMM, the LIML-type, the FD-GMM,
and the random effect ML estimators. More recently, Hayakawa (2009b) pro-
poses an IV estimator for the AR(p) model that is efficient when both N and T
are large.

Several studies also try to incorporate cross-sectional dependence in dynamic
panel data models beyond the standard dynamic panel data model assuming
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cross-sectional independence. These include Phillips and Sul (2003, 2007),
Sarafidis and Robertson (2009), Sarafidis, Yamagata and Robertson (2009),
Robertson, Sarafidis, and Symons (2010), Sarafidis and Yamagata (2010), Moon
and Weidner (2010), and Hayakawa (2012). These utilize a factor structure to
model the cross-sectional dependence. In contrast, Elhorst (2004, 2010), Su and
Yang (2007), and Yu, Jong, and Lee (2008) employ a spatial approach to model
the cross-section dependence.

The present paper contributes to the existing literature by complementing the
paper by Alvarez and Arellano (2003). As discussed above, while some poten-
tial problems exist, and alternative estimation procedures have been suggested for
models possibly with a cross-sectional dependence, the most popular estimator
in empirical studies is still the system GMM estimator. However, Alvarez and
Arellano (2003) studied only the FOD- and FD-GMM estimators. Therefore, it
is of interest to investigate the asymptotic properties of the system GMM estima-
tor under large N and T asymptotics. Moreover, although Alvarez and Arellano
(2003) consider the panel AR(1) model with individual effects only, we consider
a panel AR(1) model with both individual and time effects since time effects are
often included in empirical studies.4

To derive the properties of the system GMM estimator, we need to consider
the level GMM estimator since the system GMM estimator is obtained from the
moment conditions of the FD-(FOD-) and the level GMM estimators. Specifi-
cally, we consider two types of models in levels. The first is the original level
model (see (1)), and the second is a model transformed by the generalized least
squares (GLS) principle (see (10)). The reason we consider these two models is
as follows. In cross-section models, it is known that as the sample size and num-
ber of instruments get larger, the two-stage least squares (2SLS) estimator tends
to the limit of the OLS estimator (Kunitomo, 1980; Morimune, 1983; Bekker,
1994). Alvarez and Arellano (2003) demonstrate that a similar result also holds
for the GMM estimation of dynamic panel data models. They show that the GMM
estimator for models in forward orthogonal deviations is consistent under large
N and T asymptotics since the OLS estimator for that model is the LSDV estima-
tor, which is consistent when N and T are large.5 They also show that the GMM
estimator for models in first differences with a nonoptimal weighting matrix is
inconsistent since the OLS estimator for that model is inconsistent when N and
T are large. In this paper, we show that the same result holds true for the level
GMM estimator; that is, the GMM estimator for models transformed by the GLS
principle is consistent since the OLS estimator for that model is the random effect
GLS estimator that is consistent when N and T are large. Moreover, we show that
the GMM estimator for original level models is inconsistent since the OLS esti-
mator for that model is inconsistent when N and T are large. We then combine
this result with that of the FOD-GMM estimator to derive the asymptotic proper-
ties of the system GMM estimator. Specifically, we demonstrate that the system
GMM estimator with a suboptimal weighting matrix, wherein off-diagonal blocks
are set to zero, is consistent under large N and T asymptotics. Further, we derive
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the asymptotic distributions for the consistent GMM estimators. As a result, we
find that the FOD-, level, and system GMM estimators using all the available
instruments have the same asymptotic variance, although their biases are differ-
ent. Simulation results show that the large N and large T asymptotic results ap-
proximate the finite sample behavior reasonably well when persistency of data is
not strong and/or the variance ratio of individual effects to the disturbances is not
large. When persistency is strong, inferences based on the system GMM estima-
tors are very inaccurate and deteriorate as the variance ratio of individual effects
to the disturbances increases.

The remainder of this paper is organized as follows. In the next section, we
provide the model and estimators. The main results are reported in Section 3.
In Section 4, the simulation results are provided to assess the theoretical implica-
tions obtained in Section 3. Finally, Section 5 concludes the paper.

With regard to the notation, let us denote T1 = T −1 and −→
N ,T →∞ a convergence

when N and T jointly tend to infinity.
p−→

N ,T →∞ and
d−→

N ,T →∞ denote convergence

in probability and in distribution, respectively, when both N and T jointly tend to

infinity.
p−→

N (T )→∞ denotes convergence in probability when N tends to infinity and

T is allowed to be fixed or tend to infinity.
The proofs of theorems and all simulation results are provided in sup-

plementary material to this article, available at Cambridge Journals Online
(journals.cambridge.org/ect).

2. THE MODEL AND ESTIMATORS

We consider an AR(1) panel data model with both individual and time effects:

Yit = αYi,t−1 +γi +λt + εi t (i = 1, . . . , N +1; t = 1, . . . ,T )

= αXit +γi +λt + εi t ,

where Xit = Yi,t−1. α is the parameter of interest with |α| < 1, and γi and λt rep-
resent unobserved individual and time effects, respectively. To remove the time
effects λt , first, we take an orthogonal deviation over cross-sectional units6:

yit = αxit +ηi + vi t (i = 1, . . . , N ; t = 1, . . . ,T )

= αxit +uit , (1)

where yit = ai [Yit −(Yi+1,t +·· ·+YN+1,t )/(N +1− i)], xit = ai [Xit −(Xi+1,t +
·· ·+ X N+1,t )/(N +1− i)], ηi = ai [γi − (γi+1 +·· ·+γN+1)/(N +1− i)], vi t =
ai [εi t − (εi+1,t + ·· · + εN+1,t )/(N + 1 − i)], and uit = ηi + vi t , with a2

i =
(N +1− i)/(N +2− i).

We impose the following assumptions.

Assumption 1. {εi t } (i = 1, . . . , N +1; t = 1, . . . ,T ) are i.i.d. across time and
individuals and independent of γi and Yi0 with E(εi t ) = 0, var(εi t ) = σ 2

ε , and
finite moments up to the eighth order.
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Assumption 2. {γi } (i = 1, . . . , N ) are i.i.d. across individuals with E(γi ) = 0,
var(γi ) = σ 2

γ , and finite moments up to the eighth order.

Assumption 3. The initial observations satisfy

Yi0 = γi

1−α
+λ0 + ei0, (i = 1, . . . N +1),

where ei0 = ∑∞
j=0 α jεi,− j and are independent of γi .

Note that no assumption is required for time effects {λt }T
t=0 since we re-

move λt from both the model and instruments, implying that the time effects are
completely removed from the estimators. Furthermore, since E(v2

i t ) = σ 2
v = σ 2

ε

and E(vi tv j t ) = 0, (i �= j) under Assumption 1, the errors are cross-sectionally
uncorrelated.7 Thus, model (1), where time effects are removed by orthogonal de-
viations over cross-sectional units, is essentially the same as the one considered
in Alvarez and Arellano (2003) where time effects are not included. Additionally,
note that var(ηi ) = σ 2

η = σ 2
γ .

Assumptions 1 and 2 are stronger than those in Alvarez and Arellano (2003)
wherein finite fourth-order moments are assumed. Finite eighth-order moments
are used to derive the asymptotic properties of the two-step level and system
GMM estimators. For the FOD-GMM estimator, finite fourth-order moments
suffice. Assumption 3, which implies mean-stationarity, is required to ensure
the consistency of the level and the system GMM estimators under large N and
fixed T asymptotics.

Under Assumption 3, Yit can be written as

Yit = γi

1−α
+λ0 +

t−1∑
j=0

α jλt− j +
∞∑

j=0

α jεi,t− j .

Hence, we have

yit = μi +wi t , (2)

where μi = ηi/(1−α) and wi t = ∑∞
j=0 α jvi,t− j .

We now define the GMM estimators. Those considered in this paper are the
FOD-, level, and system GMM estimators.

GMM estimator for models in forward orthogonal deviations. Let us consider
a model in forward orthogonal deviations:

y∗
i t = αx∗

i t + v∗
i t (i = 1, . . . , N ; t = 1, . . . ,T −1), (3)

where y∗
i t , x∗

i t , and v∗
i t are defined as y∗

i t = ct [yit − (yi,t+1 +·· ·+ yiT )/(T − t)],
x∗

i t = ct [xit − (xi,t+1 + ·· · + xiT )/(T − t)], and v∗
i t = ct [vi t − (vi,t+1 + ·· ·

+ viT )/(T − t)], respectively, with c2
t = (T − t)/(T − t + 1). Note that since
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E(v∗2
i t ) = σ 2

v and E(v∗
i tv

∗
is) = 0, (t �= s), v∗

i t is homoskedastic and serially uncor-
related. Moreover, note that a pooled OLS estimator of (3) is the LSDV estimator.

The moment condition for model (3) is given by8

E[yisv
∗
i t ] = 0, (s = 0, . . . , t −1; t = 1, . . . ,T −1). (4)

Note that instead of Yi0, . . . ,Yi,T −2, which are often used in empirical studies, we
use transformed instruments yi0, . . . , yi,T −2 without time effects. This simplifies
the theoretical derivations.9 The moment conditions (4) can be written in a matrix
form as follows:

E[Zl′
i v∗

i ] = 0,

where v∗
i = (v∗

i1, . . . ,v
∗
i,T −1)

′ and Zl
i = diag(zl′

i1,zl′
i2, · · · ,zl′

i,T −1) with zl
i t =

(yi0, . . . , yi,t−1)
′.

Then, the FOD-GMM estimator is defined as

α̂F2 =
⎡⎣(

N∑
i=1

x∗′
i Zl

i

)(
N∑

i=1

Zl′
i Zl

i

)−1 (
N∑

i=1

Zl′
i x∗

i

)⎤⎦−1

×
⎡⎣(

N∑
i=1

x∗′
i Zl

i

)(
N∑

i=1

Zl′
i Zl

i

)−1 (
N∑

i=1

Zl′
i y∗

i

)⎤⎦
=

(
T −1∑
t=1

x∗′
t Ml

t x
∗
t

)−1 (
T −1∑
t=1

x∗′
t Ml

t y
∗
t

)
,

where x∗
i = (x∗

i1, . . . , x∗
i,T −1)

′, y∗
i

= (y∗
i1, . . . , y∗

i,T −1)
′, x∗

t = (x∗
1t , . . . , x∗

Nt )
′,

y∗
t = (y∗

1t , . . . , y∗
Nt )

′, zl
i t = (yi0, . . . , yi,t−2)

′, Zl
t = (zl

1t , . . . ,zl
N t )

′, and Ml
t =

Zl
t (Z

l′
t Zl

t )
−1Zl′

t .
Note that α̂F2 is optimal under Assumption 1 when T is fixed and N is large,

and computable when T ≤ N . In addition, note that the number of moment con-
ditions in (4) is ml2 = T (T −1)/2 = O(T 2).

In the following discussion of the level and system GMM estimators, we first
assume that σ 2

η and σ 2
v are known and then proceed to the case where estimated

variances are used.

GMM estimators for models in levels. Let us consider a model in levels (1).
Under Assumptions 1 and 3, we have the following moment conditions:

E[�yisuit ] = 0, (s = 1, . . . , t −1; t = 2, . . . ,T ),

where all available instruments are used, or

E[�yi,t−1uit ] = 0, (t = 2, . . . ,T ),
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where only a subset of instruments are used. These can be written in a matrix
form:

E[Zd2′
i ui ] = 0, (5)

E[Zd1′
i ui ] = 0, (6)

where ui = (ui2, . . . ,uiT )′, Zd2
i = diag

(
zd2′

i2 ,zd2′
i3 , · · · ,zd2′

iT

)
with zd2

i t = (�yi1, . . . ,

�yi,t−1)
′, and Zd1

i = diag(�yi1,�yi2, · · · ,�yi,T −1). Note that the numbers of
moment conditions in (5) and (6) are md2 = T (T − 1)/2 = O(T 2) and md1 =
T − 1 = O(T ), respectively. The infeasible level GMM estimator based on the
moment condition (5), which is optimal under Assumptions 1–3 when N is large
and T is fixed, is given by10

α̃∗
L2 =

⎡⎣(
N∑

i=1

x′
i Z

d2
i

)(
N∑

i=1

Zd2′
i 	̇		T1Zd2

i

)−1 (
N∑

i=1

Zd2′
i xi

)⎤⎦−1

×
⎡⎣(

N∑
i=1

x′
i Z

d2
i

)(
N∑

i=1

Zd2′
i 	̇		T1 Zd2

i

)−1 (
N∑

i=1

Zd2′
i y

i

)⎤⎦ , (7)

where xi = (xi2, . . . , xiT )′, y
i
= (yi2, . . . , yiT )′, and 	̇		T1 = σ 2

v IT1 +σ 2
η ιιιT1ιιι

′
T1

, with
ιιιT1 being a T1 × 1 vector of ones. Similarly, we can define α̃∗

L1 by replacing
Zd2

i with Zd1
i . Although α̃∗

L2 is easily computed when T is small, this is not
the case for a large T since we need to invert an md2 × md2 optimal weighting
matrix that becomes very large when T is large. For example, ml2 = 105 when
T = 15, ml2 = 300 when T = 25, and ml2 = 1225 when T = 50.11 Furthermore,
if ml2 > N , we cannot compute α̃∗

L2, because of the singularity of∑N
i=1 Zd2′

i 	̇		T1 Zd2
i . Although we may use a generalized inverse in such a case,

Satchachai and Schmidt (2008) show that this does not solve the problem.
A simple remedy for this problem is to use nonoptimal weighting matrices(∑N

i=1 Zd2′
i Zd2

i

)−1
and

(∑N
i=1 Zd1′

i Zd1
i

)−1
, which yield

α̂non
L2 =

(
T∑

t=2

x′
t M

d2
t xt

)−1 (
T∑

t=2

x′
t M

d2
t yt

)
, (8)

α̂non
L1 =

(
T∑

t=2

x′
t M

d1
t xt

)−1 (
T∑

t=2

x′
t M

d1
t yt

)
, (9)

where xt = (x1t , . . . , xNt )
′, yt = (y1t , . . . , yNt )

′, zd2
i t = (�yi1, . . . ,�yi,t−1)

′,
Zd2

t = (zd2
1t , . . . ,zd2

Nt )
′, Md2

t = Zd2
t (Zd2′

t Zd2
t )−1Zd2′

t , zd1
i t = �yi,t−1, Zd1

t =
(zd1

1t , . . . , zd1
N ,t )

′, and Md1
t = Zd1

t (Zd1′
t Zd1

t )−1Zd1′
t . Compared with (7), (8) and (9)

are computationally attractive since they do not require inversions of large dimen-
sional matrices and are computable when T ≤ N . Note that these nonoptimal level
GMM estimators are discussed in Bun and Kiviet (2006).
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In the cross-sectional model, it is known that as both the sample size and the
number of instruments become larger jointly, the 2SLS estimator tends to the limit
of OLS estimator. As noted in Section 1, Alvarez and Arellano (2003) demon-
strate that the same applies to the dynamic panel data models in forward orthogo-
nal deviations or in first-differences. This paper shows that the same also applies
to models in levels. Since the OLS estimator of the model yit = αxit + uit is
inconsistent when N and T are large, we can expect that α̂non

L2 would be inconsis-
tent. This is demonstrated in Theorem 3. However, since the random effect GLS
estimator of the model yit = αxit + uit is consistent when N and T are large,
we can expect that the corresponding GMM estimator would be consistent when
N and T are large.

For this purpose, we introduce a GLS transformation that simplifies the optimal
weighting matrix, which is similar to the forward orthogonal deviation. Since ui
is serially correlated owing to the individual effects and has a covariance matrix
σ−2

v E(ui u
′
i ) =			T1 = IT1 +rιιιT1ιιι

′
T1

where r = σ 2
η /σ 2

v , we apply the GLS principle.

Specifically, let 			
−1/2
T1

be the upper triangular Cholesky factorization of 			−1
T1

,

that is, 			−1
T1

= 			
−1/2′
T1

			
−1/2
T1

, and define y+
i

= 			
−1/2
T1

y
i
= (y+

i2, . . . , y+
iT )′, x+

i =
			

−1/2
T1

xi = (x+
i2, . . . , x+

iT )′, and u+
i =			

−1/2
T1

ui = (u+
i2, . . . ,u+

iT )′. Consequently, the
model to be estimated is given as follows:

y+
i

= αx+
i +u+

i (i = 1, . . . , N ). (10)

Note that a pooled OLS estimator of (10) is the random effect GLS estimator.
Since the inverse of the optimal weighting matrix under large N and fixed T
asymptotics is given by

E
(

Zd′
i u+

i u+′
i Zd

i

)
= E

(
Zd′

i 			
−1/2
T1

E
[
ui u

′
i |Zd

i

]
			

−1/2′
T1

Zd
i

)
= σ 2

v E
(

Zd′
i Zd

i

)
,

computationally convenient, infeasible, optimal level GMM estimators are given
by

α̂∗
L2 =

(
T∑

t=2

x+′
t Md2

t x+
t

)−1 (
T∑

t=2

x+′
t Md2

t y+
t

)
, (11)

α̂∗
L1 =

(
T∑

t=2

x+′
t Md1

t x+
t

)−1 (
T∑

t=2

x+′
t Md1

t y+
t

)
, (12)

where x+
t = (x+

1t , . . . , x+
Nt )

′ and y+
t = (y+

1t , . . . , y+
Nt )

′. Hayakawa (2010) shows
that α̃∗

L2 and α̂∗
L2 are numerically equivalent and that the order of magnitude of

the finite sample bias of α̂∗
L2 is smaller than that of α̂non

L2 .12

In practice, these two estimators are easily computed by using a built-in proce-
dure of Cholesky factorization contained in, say, GAUSS or MATLAB. However,
to derive the asymptotic properties of the level GMM estimators (11) and (12),
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we need the explicit form of 			
−1/2
T1

.13 The explicit expression of 			
−1/2
T1

is given
in the supplementary material (see also Hayakawa, 2010).

Thus far, we assumed that r is known. However, in empirical studies, r is usu-
ally unknown, and hence, we have to estimate it. Here, we assume that a consistent
estimate of r , r̂ = σ̂ 2

η /σ̂ 2
v , is available where σ̂ 2

v = 1
N T1

∑N
i=1

∑T1
t=1(y∗

i t − α̂x∗
i t )

2

and σ̂ 2
η = 1

N T

∑N
i=1

∑T
t=1(yit − α̂xit )

2 − σ̂ 2
v with α̂ being a consistent estimate

of α. Then, using 	̂		
−1/2
T1

with r replaced by r̂ , the two-step level GMM estimators
are defined as

α̂L2 =
(

T∑
t=2

x̂+′
t Md2

t x̂+
t

)−1 (
T∑

t=2

x̂+′
t Md2

t ŷ+
t

)
,

α̂L1 =
(

T∑
t=2

x̂+′
t Md1

t x̂+
t

)−1 (
T∑

t=2

x̂+′
t Md1

t ŷ+
t

)
,

where x̂+
t = (̂x+

1t , . . . , x̂+
Nt )

′ and ŷ+
t = (ŷ+

1t , . . . , ŷ+
Nt )

′ are obtained from x̂i =
	̂		

−1/2
T1

xi and ŷ
i
= 	̂		

−1/2
T1

y
i

for i = 1, . . . , N .

System GMM estimators. Finally, we consider the system GMM estimator.
The model of the system GMM estimators can be expressed as[

y∗
i

y+
i

]
= α

[
x∗

i
x+

i

]
+

[
v∗

i
u+

i

]
,

which we rewrite as

y†
i
= αx†

i +u†
i . (13)

The moment condition for system (13), which is proposed by Blundell and Bond
(1998), is

E(Zs1′
i u†

i ) = 0, (14)

where Zs1
i = diag(Zl

i ,Zd1
i ). The optimal system GMM estimator is defined as14

α̂∗
SY S =

[(
N∑

i=1

x†′
i Zs1

i

)
�̂

sys

(
N∑

i=1

Zs1′
i x†

i

)]−1

×
[(

N∑
i=1

x†′
i Zs1

i

)
�̂

sys

(
N∑

i=1

Zs1′
i y†′

i

)]
,

where �̂
sys

is a consistent estimate of

�sys =
[

E(Zl′
i v∗

i v∗′
i Zl

i ) E(Zl′
i v∗

i u+′
i Zd1

i )

E(Zd1′
i u+

i v∗′
i Zl

i ) E(Zd1′
i u+

i u+′
i Zd1

i )

]−1

.
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Since α̂∗
SY S is not computationally attractive for the same reason as α̃∗

L2, we
may use the GLS principle in (13) to obtain a computationally useful estima-
tor as we did in obtaining α̂L2 and α̂L1. However, we cannot use the GLS
principle in the system, because the covariance matrix of u†

i is singular. This
can be shown as follows. Let FT be a transformation matrix that induces for-
ward orthogonal deviations and u̇i = (ui1, . . . ,uiT )′. Then, using v∗

i = FT u̇i and

u+
i = 			

−1/2
T1

ui = 			
−1/2
T1

JT u̇i with JT = (0, IT1), we have u†
i = Hu̇i with H =[

F′
T (			

−1/2
T1

JT )′
]′

being a 2T1 × T matrix. Therefore, it follows that E(u†
i u†′

i ) =
H			T H′. However, this covariance matrix is rank deficient since rank(H			T H′) ≤
min

(
rank(H), rank(			T H′)

) ≤ T < 2T1, where 2T1 is the number of columns of

H			T H′. Thus, when T > 2, u†
i has a singular covariance matrix.

Therefore, to achieve computational attractiveness and simplify the theoretical
derivation, we consider the system GMM estimator using a suboptimal weighting
matrix where off-diagonal blocks of the optimal weighting matrix are set to zeros,

that is, �̂��
s1 = diag

(∑N
i=1 Zl′

i Zl
i ,

∑N
i=1 Zd1′

i Zd1
i

)
. Then, the suboptimal system

GMM estimator is given by

α̂∗
S1 =

(
T −1∑
t=1

x∗′
t Ml

t x
∗
t +

T∑
t=2

x+′
t Md1

t x+
t

)−1(T −1∑
t=1

x∗′
t Ml

t y
∗
t +

T∑
t=2

x+′
t Md1

t y+
t

)
. (15)

Note that setting the off-diagonal blocks of the weighting matrix to zero leads to
computational attractiveness at the cost of efficiency.
Next, we consider an alternative system GMM estimator that uses all available
moment conditions given by

E(Zs2′
i u†

i ) = 0, (16)

where Zs2
i = diag(Zl

i ,Zd2
i ). Note that the moment conditions included in (16)

but not in (14) are redundant since they can be obtained by a linear combination
of (14).

The suboptimal system GMM estimator obtained from the moment condition
(16) is defined as

α̂∗
S2 =

(
T −1∑
t=1

x∗′
t Ml

t x
∗
t +

T∑
t=2

x+′
t Md2

t x+
t

)−1(T −1∑
t=1

x∗′
t Ml

t y
∗
t +

T∑
t=2

x+′
t Md2

t y+
t

)
. (17)

Intuitively, using redundant moment conditions does not improve efficiency,
since they do not provide new information. In fact, Breusch, Qian, Schmidt, and
Wyhowski (1999) formally demonstrate that this is the case for the GMM with
the optimal weighting matrix. However, the setup here is different in that the
optimal weighting matrix is not used. In the supplementary material, in a gen-
eral framework, we show that, depending on the structure of redundancy and
the weighting matrix associated with the redundant moment conditions, using
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redundant moment conditions may improve or worsen efficiency compared with
the GMM without redundant moment conditions. However, for the specific panel
AR(1) model considered in this paper, we demonstrate that using redundant mo-
ment conditions as in (16) improves efficiency. However, it should be noted that
whether such an efficiency gain holds in a more general model with exogenous
variables is inconclusive and may require extensive simulation studies.

Thus far, we assumed that the variances of the individual effects and distur-
bances are known. The feasible system GMM estimators using estimated vari-
ances are defined as

α̂S2 =
(

T −1∑
t=1

x∗′
t Ml

t x
∗
t +

T∑
t=2

x̂+′
t Md2

t x̂+
t

)−1 (
T −1∑
t=1

x∗′
t Ml

t y
∗
t +

T∑
t=2

x̂+′
t Md2

t ŷ+
t

)
,

α̂S1 =
(

T −1∑
t=1

x∗′
t Ml

t x
∗
t +

T∑
t=2

x̂+′
t Md1

t x̂+
t

)−1 (
T −1∑
t=1

x∗′
t Ml

t y
∗
t +

T∑
t=2

x̂+′
t Md1

t ŷ+
t

)
.

Moreover, for comparison purposes, we consider the following system GMM
estimators:

α̂non
S2 =

(
T −1∑
t=1

x∗′
t Ml

t x
∗
t +

T∑
t=2

x′
t M

d2
t xt

)−1 (
T −1∑
t=1

x∗′
t Ml

t y
∗
t +

T∑
t=2

x′
t M

d2
t yt

)
,

α̂non
S1 =

(
T −1∑
t=1

x∗′
t Ml

t x
∗
t +

T∑
t=2

x′
t M

d1
t xt

)−1 (
T −1∑
t=1

x∗′
t Ml

t y
∗
t +

T∑
t=2

x′
t M

d1
t yt

)
.

α̂non
S2 and α̂non

S1 are the system GMM estimators that use the optimal weighting
matrix only for models in the forward orthogonal deviation, while the nonoptimal
weighting matrix is used for equation in levels. Since these estimators can be
used to obtain the first-step estimates in the two-step system GMM estimators, it
is interesting to investigate the properties of these estimators.

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

In this section, we derive the asymptotic properties of the GMM estimators
defined in the previous section when both N and T are large. The following
Theorem 1 is the result for the FOD and level GMM estimators. Note that
(a) and (d) are derived in Alvarez and Arellano (2003).

THEOREM 1. Let Assumptions 1–3 hold. Then, as N and T tend to infinity,
we have

(a) α̂F2
p−→

N ,T →∞α, if (log T )2/N → 0,

(b) α̂L2
p−→

N ,T →∞α, if (log T )2/N → 0,
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(c) α̂L1
p−→

N ,T →∞α.

(d)
√

N T1

[
α̂F2 −α + (1+α)

N

]
d−→

N ,T →∞N
(

0,1−α2
)

if (log T )2/N → 0

and T/N → c (0 ≤ c < ∞),

(e)
√

N T1

[
α̂L2 −α + (1+α)

N

(
α

r +1

)]
d−→

N ,T →∞N
(

0,1−α2
)

if (log T )2/N → 0 and T/N → c (0 ≤ c < ∞),

(f)
√

N T1 (̂αL1 −α)
d−→

N ,T →∞N (0,2(1+α)) .

Remark 1. We find that all the GMM estimators are consistent. Further, we
find that the asymptotic variances of α̂F2 and α̂L2 are identical although asymp-
totic biases are different.

Remark 2. As shown in Hahn and Kuersteiner (2002), if we assume that vi t is
normally distributed, N (0,1 −α2) is the minimal asymptotic distribution. Thus,
α̂F2 and α̂L2 are asymptotically efficient if vi t is normally distributed.

Remark 3. The intuition behind the consistency of α̂L2 is that as T gets larger,
the GMM estimator becomes close to the OLS estimator of (10), that is, the ran-
dom effect GLS estimator, which is consistent when T is large. Alternatively, we
may say that the “endogeneity bias” goes to zero as T becomes larger (Alvarez
and Arellano, 2003, p. 1129). This is similar to the relationship between α̂F2 and
the LSDV estimator discussed in Alvarez and Arellano (2003).

Remark 4. Note that α̂L1 has no asymptotic bias but has a larger variance than
α̂L2 because α̂L1 uses a smaller number of instruments than α̂L2.

The following Theorem 2 is the result for the system GMM estimators.

THEOREM 2. Let Assumptions 1–3 hold. Then, as N and T tend to infinity,
provided (log T )2/N → 0,

(a) α̂S2
p−→

N ,T →∞α,

(b) α̂S1
p−→

N ,T →∞α.

If we further assume that T/N → c (0 ≤ c < ∞), we have

(c)
√

N T1

[
α̂S2 −α + 1

N

(1+α)(r +1+α)

2(r +1)

]
d−→

N ,T →∞N
(

0,1−α2
)
,

(d)
√

N T1

[
α̂S1 −α + 1

N

2(1+α)

(3−α)

]
d−→

N ,T →∞N
(

0, (1−α2)
2(5−3α)

(3−α)2

)
.
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Remark 5. The intuition behind the consistency of α̂S2 is similar to those
for α̂F2 and α̂L2 as given in Alvarez and Arellano (2003) and Remark 3.
Namely, since the OLS estimator of system (13), which is a combination of the
large-T consistent LSDV and random effect GLS estimators, is consistent when
N ,T → ∞, it is not surprising that α̂S2 is also consistent when N and T are large.

Remark 6. If vi t is normally distributed, α̂S2 is asymptotically efficient.
Intuitively, this is because α̂S2 is a weighted sum of two efficient GMM esti-
mators, α̂F2 and α̂L2. Moreover, since α̂S2 has the same asymptotic variance as
α̂F2 and α̂L2, it implies that the efficiency gain by exploiting stationary initial
conditions vanishes as T increases. This result seems natural since as T increases,
the effects of initial conditions become weak. Further, note that, as is the case for
α̂F2 and α̂L2, α̂S2 and α̂S1 have a bias of order O(1/N ).

Remark 7. In the supplementary material, by comparing the theoretical val-
ues of asymptotic variances under large N and fixed T , we show that using
redundant moment conditions improves efficiency, i.e., var (̂α∗

S2) < var (̂α∗
S1).

Theorems 2(c) and (d) show that a similar result is also obtained when N and T
are large. Since 1 < 2(5−3α)/(3−α)2 < 9/8 for |α| < 1, the variance of α̂S1 is
at most approximately 1.125 times that of α̂S2.

Next, we derive the asymptotic properties of the GMM estimators with nonop-
timal weighting matrices.

THEOREM 3. Let Assumptions 1–3 hold. Then, as both N and T tend to
infinity,

(a) α̂non
L2

p−→
N ,T →∞α +

cr
2

(
1

1−α

)
cr
2

(
1

1−α

)2 + 1
1−α2

if T/N → c (0 ≤ c < ∞),

(b) α̂non
L1

p−→
N ,T →∞α,

(c)
√

N T1

[
α̂non

L1 −α − 2r(1+α)

N (1−α)

]
d−→

N ,T →∞N (0,2(1+α))

if T/N → c (0 ≤ c < ∞).

Remark 8. From (a), we find that the level GMM estimator α̂non
L2 is inconsistent

when both N and T are large. This result is analogous to the case of the first-
difference-GMM estimator as shown by Alvarez and Arellano (2003). However,
from (b), we find that if we reduce the number of moment conditions from O(T 2)
to O(T ), the level GMM estimator is consistent. This result can be conjectured
from Bun and Kiviet (2006).

Remark 9. Surprisingly, the asymptotic variances of α̂L1 and α̂non
L1 are iden-

tical. However, there is a significant difference in their biases. The bias of
α̂non

L1 increases as r grows.
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The last result is the asymptotic properties of the system GMM estimators using
a nonoptimal weighting matrix for equation in levels.

THEOREM 4. Let Assumptions 1–3 hold. Then, as both N and T tend to
infinity,

(a) α̂non
S2

p−→
N ,T →∞α + cr

4
1+α + cr

1−α

if T/N → c (0 ≤ c < ∞),

(b) α̂non
S1

p−→
N ,T →∞α,

(c)
√

N T1

[
α̂non

S1 −α + 2(1+α)

(3−α)

1− r

N

]
d−→

N ,T →∞N
(

0, (1−α2)
2(5−3α)

(3−α)2

)
if T/N → c (0 ≤ c < ∞).

Remark 10. Since only α̂non
S1 is consistent, it can be used to obtain the first-step

estimates to compute the two-step GMM estimators.

Remark 11. From (c), we find that the asymptotic bias in α̂non
S1 disappears when

r = 1, implying that the bias of α̂non
S1 can be small when r = 1. This result is

consistent with the literature; see, for example, Blundell and Bond (1998), Bun
and Kiviet (2006), and Hayakawa (2007). Moreover, note that the bias becomes
larger as r becomes larger.

4. MONTE CARLO EXPERIMENTS

In this section, we confirm the theoretical implications through Monte Carlo
experiments. We consider the following AR(1) model:

Yit = αYi,t−1 +γi +λt + εi t (i = 1, . . . , N ; t = 2, . . . ,T ), (18)

where γi ∼ i idN (0,σ 2
γ ), λt ∼ i idN (0,σ 2

λ ), and εi t ∼ i idN (0,σ 2
ε ). Initial val-

ues Yi1 are generated from the stationary distribution. We set α = 0.3,0.6,0.9,
N = 200, T = 5,10,20, σ 2

γ = 0.2,1,5, σ 2
λ = 1, and σ 2

ε = 1. The number of repli-
cations is 1000 for all cases. For the FOD and the level GMM estimators, we
compute α̂F2, α̂∗

L2, α̂L2, α̂non
L2 , α̂∗

L1, α̂L1, and α̂non
L1 . We use α̂non

L1 to obtain a con-
sistent estimate of r . Similarly, for the system GMM estimator, we compute α̂∗

S2,
α̂S2, α̂∗

S1, α̂S1, α̂non
S2 , α̂non

S1 , α̂∗
SY S , and α̂SY S . We use α̂non

S1 to obtain a consistent
estimate of r . For each estimator listed above, we compute the mean, the standard
deviation, the root mean squared error (RMSE), and the empirical sizes of the
Wald test at the 5% significant level on the basis of fixed T and large N asymp-
totics, and large T and large N asymptotics. In Table 1, we report the means,
standard deviations, and the empirical sizes based on fixed T and large N asymp-
totics. Complete results are provided in Tables A1 to A6 in the supplementary
material.

We summarize the simulation results. From Tables 1 and A1, we find that
α̂F2 is negatively biased and its degree is substantial when T is small, and that
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α and r are large. Further, it is observed that as T becomes larger, the bias of α̂F2
decreases. This result conforms with the theoretical result that α̂F2 is consistent
when T is large. With regard to the level GMM estimators, we find that infea-
sible optimal level GMM estimators, α̂∗

L2, and α̂∗
L1, perform quite well for most

values of T , α, and r . Before we consider the two-step level GMM estimators,

TABLE 1. Simulation results

α = 0.3 α = 0.6 α = 0.9
Estimator T N r = 0.2 r = 1 r = 5 r = 0.2 r = 1 r = 5 r = 0.2 r = 1 r = 5

Mean

F2 5 200 0.290 0.283 0.278 0.578 0.562 0.534 0.699 0.490 0.399
S2 5 200 0.296 0.299 0.312 0.591 0.601 0.644 0.889 0.933 0.973
S2non 5 200 0.298 0.309 0.359 0.595 0.615 0.696 0.902 0.952 0.986
S1 5 200 0.295 0.294 0.299 0.590 0.595 0.616 0.878 0.914 0.956
S1non 5 200 0.297 0.305 0.342 0.595 0.613 0.677 0.898 0.946 0.984
SY S 5 200 0.300 0.303 0.310 0.595 0.603 0.626 0.882 0.914 0.957

F2 10 200 0.290 0.289 0.288 0.583 0.575 0.569 0.794 0.724 0.695
S2 10 200 0.296 0.297 0.301 0.595 0.598 0.617 0.899 0.942 0.983
S2non 10 200 0.300 0.321 0.411 0.603 0.636 0.749 0.916 0.960 0.989
S1 10 200 0.294 0.294 0.295 0.590 0.587 0.588 0.870 0.898 0.959
S1non 10 200 0.295 0.303 0.338 0.594 0.610 0.676 0.896 0.943 0.982
SY S 10 200 0.298 0.299 0.299 0.598 0.597 0.596 0.880 0.899 0.958

F2 20 200 0.292 0.291 0.290 0.587 0.584 0.583 0.848 0.831 0.826
S2 20 200 0.296 0.297 0.299 0.596 0.596 0.603 0.896 0.927 0.979
S2non 20 200 0.305 0.338 0.465 0.609 0.657 0.786 0.923 0.965 0.991
S1 20 200 0.295 0.294 0.294 0.591 0.588 0.590 0.866 0.872 0.932
S1non 20 200 0.296 0.301 0.328 0.594 0.604 0.652 0.890 0.929 0.976
SY S 20 200 0.295 0.294 0.295 0.592 0.589 0.590 0.867 0.872 0.932

Standard deviation

F2 5 200 0.069 0.090 0.110 0.100 0.148 0.186 0.306 0.414 0.439
S2 5 200 0.056 0.072 0.098 0.065 0.088 0.125 0.086 0.097 0.078
S2non 5 200 0.055 0.073 0.115 0.063 0.082 0.117 0.067 0.061 0.042
S1 5 200 0.062 0.079 0.103 0.077 0.106 0.147 0.115 0.131 0.122
S1non 5 200 0.060 0.072 0.102 0.072 0.087 0.113 0.082 0.072 0.049
SY S 5 200 0.056 0.064 0.073 0.065 0.079 0.111 0.093 0.116 0.107

F2 10 200 0.033 0.038 0.042 0.041 0.049 0.055 0.086 0.117 0.125
S2 10 200 0.030 0.035 0.042 0.034 0.041 0.056 0.040 0.040 0.025
S2non 10 200 0.030 0.038 0.068 0.033 0.043 0.059 0.027 0.022 0.014
S1 10 200 0.034 0.039 0.044 0.040 0.048 0.057 0.066 0.082 0.062
S1non 10 200 0.033 0.037 0.046 0.038 0.041 0.054 0.043 0.035 0.021
SY S 10 200 0.032 0.033 0.036 0.034 0.037 0.047 0.051 0.072 0.060

Table continues on overleaf
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TABLE 1. continued

F2 20 200 0.020 0.021 0.021 0.021 0.023 0.023 0.030 0.036 0.038
S2 20 200 0.019 0.020 0.021 0.019 0.022 0.024 0.023 0.028 0.017
S2non 20 200 0.019 0.025 0.051 0.018 0.027 0.039 0.015 0.012 0.006
S1 20 200 0.021 0.022 0.022 0.022 0.024 0.024 0.031 0.040 0.048
S1non 20 200 0.020 0.021 0.025 0.021 0.023 0.028 0.023 0.021 0.013
SY S 20 200 0.021 0.022 0.022 0.022 0.024 0.024 0.031 0.040 0.048

Empirical size (standard errors obtained under large N and fixed T asymptotics)

F2 5 200 0.052 0.053 0.055 0.067 0.070 0.077 0.151 0.217 0.222
S2 5 200 0.060 0.065 0.092 0.072 0.101 0.199 0.087 0.326 0.715
S2non 5 200 0.053 0.067 0.148 0.060 0.092 0.296 0.068 0.341 0.749
S1 5 200 0.058 0.063 0.067 0.068 0.089 0.130 0.090 0.215 0.566
S1non 5 200 0.058 0.058 0.111 0.059 0.068 0.227 0.047 0.210 0.655
SY S 5 200 0.078 0.093 0.132 0.097 0.140 0.298 0.199 0.434 0.774

F2 10 200 0.056 0.062 0.071 0.081 0.081 0.094 0.258 0.407 0.460
S2 10 200 0.061 0.060 0.071 0.075 0.070 0.148 0.161 0.579 0.935
S2non 10 200 0.051 0.098 0.453 0.069 0.180 0.704 0.179 0.776 0.985
S1 10 200 0.061 0.062 0.063 0.066 0.057 0.075 0.145 0.289 0.681
S1non 10 200 0.054 0.057 0.174 0.059 0.059 0.373 0.053 0.355 0.918
SY S 10 200 0.159 0.173 0.245 0.191 0.214 0.402 0.417 0.733 0.942

F2 20 200 0.071 0.068 0.069 0.096 0.114 0.115 0.428 0.545 0.562
S2 20 200 0.068 0.060 0.062 0.072 0.080 0.092 0.192 0.539 0.974
S2non 20 200 0.070 0.374 0.951 0.082 0.627 0.992 0.450 0.985 1.000
S1 20 200 0.068 0.064 0.061 0.078 0.088 0.071 0.243 0.230 0.509
S1non 20 200 0.060 0.054 0.244 0.060 0.057 0.543 0.068 0.352 0.988
SY S 20 200 0.748 0.768 0.796 0.801 0.828 0.864 0.926 0.944 0.985

Note: F2, S2, S1, and SY S denote α̂F2, α̂S2, α̂S1, and α̂SY S , respectively. S2non and S1non denote α̂non
S2 and α̂non

S1 ,

respectively. r = σ2
η /σ2

v .

α̂L2 and α̂L1, we consider the nonoptimal level GMM estimators, α̂non
L2 and α̂non

L1 ,
since the latter, α̂non

L1 , is used to compute the two-step GMM estimators. On ex-
amining the results, we observe that the biases of α̂non

L2 and α̂non
L1 increase as the

variance ratio r becomes large. This result has already been obtained in the liter-
ature. Further, it coincides with the theoretical implication of Theorem 3 that the
bias becomes larger as r grows. The large bias of α̂non

L1 results in a poor estimate
of r , which is used to compute α̂L2 and α̂L1. Consequently, although two-step
level GMM estimators are less biased than the (inconsistent) nonoptimal level
GMM estimators, they are more biased than the infeasible optimal level GMM
estimators for most values of T , α, and r .

Next, we consider the system GMM estimators. We find that when T = 5
and α = 0.9, although values of α̂F2 are heavily biased on account of the well-
known weak instrument problem, the system GMM estimators are not, unless r is
large. We also observe that the biases of the infeasible system GMM estimators,
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α̂∗
S2 and α̂∗

S1, are small except for certain cases of α = 0.9. In the case of α̂∗
S1,

a large bias results from the fact that α̂∗
S1 is a linear combination of α̂F2 and

α̂∗
L1 whose biases are both negative for a large r . For instance, see the values

of α̂F2, α̂∗
L2, and α̂∗

S1 in the case of T = 20. Prior to considering the two-step
system GMM estimators, we consider α̂non

S2 and α̂non
S1 , where the latter is used to

compute α̂S2 and α̂S1. On examining the results, we find that the performance
of these estimators is heavily affected by the variance ratio r . This is because
these system GMM estimators are linear combinations of the FOD-GMM estima-
tor and nonoptimal level GMM estimator whose bias heavily depends upon r .15

With regard to the two-step system GMM estimators, we find that although
α̂S1 and α̂S2 are very similar when α = 0.3,0.6, α̂S1 is less biased than α̂S2
when α = 0.9.

With regard to dispersion, we find from the Tables 1 and A2 that when T = 5,
α̂SY S is more efficient than other estimators. However, as T becomes larger, the
difference in efficiency between α̂F2, α̂L2, α̂S2, and α̂SY S becomes very small.
This is consistent with the theoretical result that α̂F2, α̂L2, and α̂S2 have the
same asymptotic variance. Moreover, in the supplementary material, we showed
that α̂S2, which uses redundant moment conditions, is more efficient than α̂S1.
From the simulation results, we find that similar results are also observed when
T = 5,10,20.

In terms of RMSE, which is reported in Table A3 in the supplementary material,
although α̂SY S performs best when T = 5, the results of α̂S2, α̂S1, and α̂SY S are
comparable when T = 10,20 and α is not large. Further, note that when T = 5,
the degree of improvement of the system GMM estimators over α̂F2 becomes
larger as α grows.

With regard to the inference, we find from Tables 1, A4, and A5 that inference
based on large N and fixed T asymptotics is more accurate than that based on
large N and large T asymptotics even when T is large. From Tables 1 and A4, we
find that the size distortion of α̂SY S becomes substantial as T and/or r grow larger.
The unreported simulation result indicates that this is owing to the underestimated
standard error.16 With regard to α̂S2 and α̂S1, although their sizes are close to the
nominal level when α = 0.3,0.6, the size distortion becomes substantial when
α = 0.9. This is because of the bias in estimates and standard errors.

Finally, to assess the accuracy of large N and large T approximations, we
tabulate theoretical values of estimators in Table A6 for the case of T = 20.17

For simplicity, we exclude two-step estimators. In Table A6, we provide theo-
retical values of each estimator. Note that all the consistent estimates are in the
form of α̂ ≈ α + μ/q where μ are μF2, μ̄L2, μ̄L1, and μnon

L1 , which are given
in Lemmas A4, A7, (C.33), and (C.34) in the supplementary material, and q is
the probability limit of 1

N T

∑
t x∗′

t Ml
t x

∗
t , 1

N T

∑
t x+′

t Md
t x+

t , and 1
N T

∑
t x′

t M
d
t xt .

For inconsistent estimators, theoretical values are based on their probability
limits. In Table A6(a), approximated μ and theoretical asymptotic value q are
used. Note that theoretical values in Table A6(a) are identical to those obtained
from asymptotic distributions and probability limits given in Theorems 1–3.
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On comparing Tables A1 and A6(a), we observe that although simulated values
are close to the theoretical ones when α = 0.3,0.6, it is not the case when α = 0.9
and/or r = 5. To ascertain the source of the poor approximation, we see Table
A6(b)–(d). In Table A6(b), the exact μ and theoretical asymptotic values q are
used. However, the results are not so different from Table A6(a), implying that
q does not approximate 1

N T

∑
t x∗′

t Ml
t x

∗
t , 1

N T

∑
t x+′

t Md
t x+

t , and 1
N T

∑
t x′

t M
d
t xt

well. Hence, in Table A6(c) and (d), we use a simulated q on the basis of 1000
replications. On comparing Table A6(c) that uses an approximate value of μ with
Table A6(d) that uses an exact value of μ, it is observed that Table A6(d) provides
more accurate values. Thus, poor approximation of the estimates arises from a
poor approximation of both μ and q. Further, it is also observed that estimates
of two-step estimators are not close to the theoretical values. This is because a
two-step procedure causes additional finite sample bias in α̂L1.

On summarizing the simulation results, we present the following implications.
In terms of bias, the large N and large T asymptotic results can explain the finite
sample behavior of estimators reasonably well unless r is large. When r is large,
the large N and large T asymptotic distributions are poor approximations to fi-
nite sample distributions. In terms of inference, using the standard errors under
large N and fixed T asymptotics is preferable to using the standard errors under
large N and large T asymptotics even when T is as large as T = 20. However,
although the sizes are generally close to the nominal level when α = 0.3 and 0.6,
it is not the case when α = 0.9. Hence, despite the fact that the system GMM
estimator is known to address the weak instrument problem associated with α
being close to one, it does not work well in terms of inference even when r is
not large.

5. CONCLUSION

In this paper, we considered the asymptotic properties of system GMM estima-
tors when both N and T are large. We first showed that the two-step level GMM
estimator with an optimal weighting matrix is consistent under large N and T
asymptotics, while this is not the case with the nonoptimal weighting matrix.
Next, using this result, we derived the asymptotic properties of the two-step sys-
tem GMM estimators. Consequently, we found that the system GMM estimator
using the suboptimal weighting matrix is still consistent even when T is large.
We also found that using redundant moment conditions could improve efficiency
in both small and large T cases. This result implies that the system GMM estima-
tor originally developed for large N and small T panel data is also usable for large
N and large T panel data. The simulation studies revealed that the large N and
large T asymptotic results approximate the finite sample behavior reasonably well
if persistency of data is not strong and/or the variance ratio of individual effects to
disturbances is not large. When persistency is strong, inferences are very inaccu-
rate and deteriorate as the variance ratio of individual effects to disturbances gets
larger.
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Finally, we indicate certain possibilities for future research. Although we con-
sidered a panel AR(1) model, it is important to consider a more general model
that contains additional regressors and investigate whether results similar to those
of this paper are obtained. In particular, investigating whether using redundant
moment conditions improves efficiency would be an interesting issue.

NOTES

1. The FOD-GMM estimator refers to the GMM estimator where individual effects in the model
are removed by forward orthogonal deviation (FOD) transformation and instruments in levels are
used in the estimation. In Alvarez and Arellano (2003), the FOD-GMM estimator is simply termed
the GMM estimator.

2. Hayakawa (2007) demonstrates that the finite sample bias of the system GMM estimator be-
comes large when the variance ratio of individual effects to the disturbances is large.

3. Phillips and Moon (1999) develop a general asymptotic theory where both N and T tend to
infinity.

4. In the literature, Hahn and Moon (2006) and Hsiao and Tahmiscioglu (2008) consider dynamic
panel models with both individual and time effects.

5. Alvarez and Arellano (2003) provide an insightful interpretation that consistency follows be-
cause the “endogeneity bias” goes to zero as T gets larger.

6. This transformation is suggested by a referee.
7. If we remove time effects by taking a deviation from a cross-sectional average over all units,

a cross-section dependence would be induced. In such a case, some corrections may be required for
the results of this paper.

8. Although additional moment conditions suggested by Ahn and Schmidt (1995, 1997) may be
used, we do not exploit them to simplify the derivation.

9. Unreported Monte Carlo simulation results show that behaviors of the GMM estimators using
Yi0, . . . ,Yi,T −2 and the ones using yi0, . . . , yi,T −2 are very similar.

10. A superscript ∗ indicates that the estimator is infeasible.
11. Note that if additional regressors are included in the model, further moment conditions are avail-

able.
12. Although Hayakawa (2010) derives the order of magnitude of finite sample bias, consistency

and asymptotic distribution are not derived. Hence, in this paper, we derive consistency and asymptotic
distribution for the AR(1) case.

13. Although an alternative expression of 			
−1/2
T1

is derived by Wansbeek and Kapteyn (1982, 1983),
it cannot be used in this context, because it is not upper triangular.

14. Note that since we use a parameter-dependent transformation for equation in levels, the system
GMM estimator is slightly different from the original one suggested by Blundell and Bond (1998).
Additionally, let α̂SY S denote a feasible version of α̂∗

SY S .
15. Note that the same result is found in Bun and Kiviet (2006) that considered α̂non

S1 .
16. See also Bond and Windmeijer (2005).
17. To save space, we provide the results with T = 20 only. Other results are available on request.
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