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We investigate theoretically the statics and dynamics of bubbles in fully confined
liquids, i.e. in liquids surrounded by solid walls in all directions of space. This
situation is found in various natural and technological contexts (geological fluid
inclusions, plant cells and vessels, soil tensiometers, etc.), where such bubbles can
pre-exist in the trapped liquid or appear by nucleation (cavitation). We focus on
volumetric deformations and first establish the potential energy of fully confined
bubbles as a function of their radius, including contributions from gas compressibility,
surface tension, liquid compressibility and elastic deformation of the surrounding
solid. We evaluate how the Blake threshold of unstable bubble growth is modified
by confinement and we also obtain an original bubble stability phase diagram with a
regime of liquid superstability (spontaneous bubble collapse) for strong confinements.
We then calculate the liquid velocity field associated with radial deformations of
the bubble and strain in the solid, and we predict large deviations in the kinematics
compared to bubbles in extended liquids. Finally, we derive the equations governing
the natural oscillation dynamics of fully confined bubbles, extending Minnaert’s
formula and the Rayleigh–Plesset equation, and we show that the compressibility of
the liquid as well as the elasticity of the walls can result in ultra-fast bubble radial
oscillations and unusually quick damping. We find excellent agreement between the
predictions of our model and recent experimental results.
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1. Introduction
Bubbles are involved in a variety of processes, from bread and cheese making

(Campbell & Mougeot 1999) to the fabrication of frost-resistant concrete (Hover
1993). Bubble vibrations are associated with acoustic emissions responsible for
a wide range of sounds including those of flowing water and rain (Minnaert 1933;
Prosperetti, Crum & Pumphrey 1989) or volcanoes (Vidal et al. 2010) but their ability
to interact with sound also allows diverse applications such as ultrasonic imaging
(Becher & Burns 2000) or phonic insulation (Leroy et al. 2009). But bubbles can be
also harmful, and their fast collapse can result in severe damage to nearby materials

† Email address for correspondence: orv3@cornell.edu
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(Lauterborn & Kurz 2010), causing erosion at the surface of boat propellers (Brennen
1995) or knocking out prey when cavitation bubbles are emitted by the fast closure
of the claws of pistol shrimps (Versluis et al. 2000).

The wide range of contexts where bubbles are involved has led to a number of
investigations, from the early work of Minnaert on musical air bubbles (Minnaert
1933) to recent applications in medicine (Hsiao et al. 2013; Ohl et al. 2015).
Minnaert’s work, as well as the derivation of the well-known Rayleigh–Plesset
equation (Rayleigh 1917; Plesset 1949), considered bubbles in extended liquids;
Strasberg (1953) calculated the shift in the natural oscillation frequency of a bubble
induced by a nearby flat wall, and other types of confinement have been studied since,
particularly bubbles in cylindrical tubes (Og̃uz & Prosperetti 1998; Martynov, Stride
& Saffari 2009). Typically, the proximity of a confining solid surface increases the
effective inertia during bubble oscillations, thus decreasing the oscillation frequency,
but increases of the oscillation frequency are also expected when close to soft or free
surfaces (Strasberg 1953; Martynov et al. 2009). Striking non-spherical deformations
of oscillating bubbles due to interactions with walls have also been demonstrated close
to solid surfaces (Lauterborn & Ohl 1997) or in microfluidic cavitation experiments
(Zwaan et al. 2007).

Bubble dynamics in fully confined situations, however, has received little attention.
We define a situation as fully confined if the liquid containing the bubbles is
surrounded by walls in all directions of space, so that no flux in or out of the
confining material is possible. The condition of full confinement thus also holds for
situations where fluxes are possible in and out of the confining cavity (e.g. porous
walls), if the typical time scale of these fluxes is large compared to the time scales of
interest for the bubble dynamics. In unconfined or partially confined situations, bubble
volumetric deformations can be accommodated by pushing the liquid away. This is
no longer true in a fully confined situation, where any expansion of the bubble must
be accompanied by compression of the liquid and/or stretching of the surrounding
material.

If this situation of full confinement seems extreme, it occurs frequently in nature
and in technology. Rocks contain trapped fluid inclusions and the study of the
quasi-static behaviour of bubbles in these inclusions is used by geologists to extract
past thermodynamic conditions (Roedder and Bodnar 1980; Marti et al. 2012). Impact
of projectiles into liquid-filled tanks can generate cavitation bubbles with disastrous
consequences for the solid structure (Fourest et al. 2015). Water status in plants or
in soils is also typically measured by tensiometers where an isolated pocket of liquid
is put in equilibrium with the material and the unwanted appearance of bubbles can
disrupt the function of these devices (Tarantino & Mongiovì 2001; Pagay et al. 2014).
Plants contain fluid-filled vessels (xylem) to transport the water from the roots to the
leaves and the growth of bubbles in xylem is a cause of mortality during drought
(Tyree & Sperry 1989; Cochard 2006). Another striking example of confined bubble
dynamics in plants is the cavitation-based mechanism of ejection of spores in some
species of ferns (Noblin et al. 2012). Cavitation bubbles have also been shown to
appear during the peeling of adhesives (Poivet et al. 2003), the curing of cement
(Lura et al. 2009) or the drying of porous media (Vincent et al. 2014b), i.e. many
situations where the liquid can be effectively fully confined.

The recent development of transparent platforms with pockets of liquid confined in
porous solids (Wheeler & Stroock 2008; Vincent et al. 2014b) allowed experimental
investigations of bubble dynamics in fully confined situations with controlled
geometries (figure 1a). These experiments demonstrated an order-of-magnitude
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Polymer Solid
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Water

(a) (b)

FIGURE 1. (Colour online) (a) Bubble in a spherical pocket of liquid confined in a stiff
polymer hydrogel (adapted from Vincent et al. (2014a)). Scale bar is 20 µm. Despite
being porous, the hydrogel creates an effective confinement for the liquid because time
scales for water diffusion in the gel are much longer than the bubble dynamics (Vincent
et al. 2012). (b) Here, we consider a spherical bubble in a liquid-filled spherical cavity
embedded in a solid. We discuss different shapes for the solid, including an infinitely
extended one as sketched here, and thin shells (see text).

increase in the frequency of bubble oscillations, unusually quick damping of the
oscillations, as well as rich non-radial bubble instabilities (Vincent et al. 2014a).
Here we propose a complete, detailed and general theory to describe bubble statics
and dynamics in full confinement.

The paper is organized as follows.

(i) In § 2, we examine the statics of a fully confined bubble by deriving its potential
energy with respect to radial deformations, taking into account the effects of
gas compressibility, surface tension, liquid compressibility and solid elasticity.
We discuss the implications for bubble stability in confinement and establish a
phase diagram that predicts bubble superstability and modifications in the Blake
threshold.

(ii) In § 3, we calculate the velocity field and associated kinetic energy (setting
the effective mass for the dynamics) for radial bubble deformations in full
confinement, taking into account the liquid compressibility and the solid
deformations.

(iii) In § 4, we combine the results from §§ 2.1 (potential energy) and 3 (kinetic
energy) to establish the complete dynamics of fully confined bubbles, including
modified Minnaert and Rayleigh–Plesset equations. We also discuss the relative
importance of dissipation mechanisms (viscous, acoustic, thermal).

(iv) In a last section, § 5, we discuss the results from the previous sections with
respect to existing models (§ 5.1) and experimental results (§ 5.2), the hypotheses
of our model (§§ 5.3–5.5) and the general stability predictions from the statics
analysis (§§ 5.6 and 5.7).

1.1. Framework, hypotheses and definitions
We consider a spherical bubble of radius R in a liquid; the liquid and the bubble
are confined in a spherical cavity of radius Rc within a solid (figure 1b). This
three-layer geometry (bubble–liquid–solid) has similarities with previous studies that
have considered bubble–liquid–air (Obreschkow et al. 2006), bubble–solid shell–liquid
(Church 1995) or bubble–liquid–solid shell (Fourest et al. 2015). The case of Fourest
et al. (2015) is closest to the case considered here, however, these authors considered
a situation where the liquid is incompressible and all variations of bubble volume
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were accommodated by modifications of the shell radius. Here, we consider a more
general situation where both the liquid volume and the cavity size may vary, and
where the confinement geometry can be an extended elastic solid or an elastic shell.

For the kinematics and dynamics calculations (§§ 3–4), we will make the
simplifying assumption that the bubble is centred in the cavity, and we discuss
possible corrections in § 5.3. This assumption is not necessary for the potential
energy and statics derivations (§ 2). We consider the system to evolve isothermally
(temperature T) so that the thermodynamic potential is the free energy F; we discuss
non-isothermal effects in § 5.5. We consider that the bubble contains the saturated
vapour of the liquid (partial pressure Psat(T)) and possibly incondensable gas, later
referred to as trapped gas (in practice, trapped gas is gas that is not the vapour
of the liquid and whose diffusion in and out of the bubble is slow compared to
the typical time scales of interest) with number of particles Ng, partial pressure
pg × 4πR3/3 = NgkBT , with kB the Boltzmann constant from the ideal gas law. The
liquid–gas interface has a surface tension σ . We assume the volume of the bubble
to be small compared to the volume of the cavity, i.e. (R/Rc)

3
� 1. In practice, this

means that the radius of the bubble should not be larger than typically half of that
of the cavity (when R/Rc = 0.5, (R/Rc)

3
= 0.125). This will allow us to use the laws

of linear elasticity for the solid and the liquid, as well as to define all deformations
with respect to the reference state where R= 0. In § 5.3, we discuss how to modify
the expressions in our model if a reference state different from R= 0 is chosen.

In the following, to simplify the expressions and discussion, we will the define
driving pressure

1P= P− Psat, (1.1)

where P is the liquid pressure and Psat the saturation vapour pressure. 1P takes
account the contribution of the vapour; we will use the terms negative pressure for
1P < 0 (P < Psat) and positive pressure for 1P > 0. We also define the associated
critical radius

R∗
∞
=−

2σ
1P

(1.2)

at which a bubble is in unstable equilibrium at 1P (Brennen 1995).

2. Potential energy and statics
In this section, we evaluate the potential energy F in full confinement as a function

of the bubble radius R, and discuss the equilibrium solutions for R, i.e. the values of R
that are extrema of F(R). As mentioned in § 1, expanding a bubble in full confinement
requires compression of the liquid surrounding the bubble and/or deformation of the
solid encapsulating the liquid. As a result, liquid compressibility and solid elasticity
are key ingredients in the calculations below.

2.1. Free energy of a fully confined bubble
The contributions to the total free energy F(R) of both the liquid–gas interface Fσ
and the trapped gas Fg are related respectively to the excess energy due to surface
tension associated with changes of the interface area and the work of the gas pressure
pg associated with isothermal changes of the bubble volume:

Fσ (R)= 4πR2σ , (2.1)

Fg(R)=−3NgkBT ln
(

R
Rref

)
, (2.2)
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198 O. Vincent and P. Marmottant

where Rref is an arbitrary radius. The expressions for Fσ and Fg are identical to cases
without confinement.

In order to calculate the liquid and solid contributions, we evaluate how the
pressure 1P relates to the bubble growth (bubble volume V = 4πR3/3). We assume
that the number N` of liquid molecules is constant (neglecting the loss due to
evaporation/condensation). The relation between liquid pressure P and liquid volume
V` thus follows the liquid equation of state P(V`) at a constant number of particles,
which can be linearized in the form

P= P0 −K`

V` − V0

V0
, (2.3)

with a reference state (P0, V0) and the isothermal bulk modulus

K` =−V`

(
∂P
∂V`

)
T,N`

(2.4)

of the order of 2.2 GPa for water (Kell 1975). The linearized equation of state (2.3) is
valid when the typical pressure variations are small compared to K`. We choose the
state with no bubble as reference, for which the liquid occupies the whole volume
of the confinement. Then V0 = 4πR3

c/3 (where Rc is the confinement radius in the
reference state) and P0 is the liquid pressure in the reference state (for R= 0).

If confinement is not infinitely rigid, the growth of the bubble not only compresses
the liquid but also makes the confinement expand (volume Vc > V0). Under the
assumption of small deformations, we assume that there is a linear relationship
between P and Vc

P= P0 +Kc

(
Vc − V0

V0

)
, (2.5)

where we have defined an effective modulus of the solid confinement

Kc = Vc

(
∂P
∂Vc

)
T

. (2.6)

Note the opposite sign compared to the bulk modulus of the liquid (2.4), which allows
us to keep these coefficients positive. The value of Kc depends on the properties of
the solid. For a spherical confinement in an extended, uniform and isotropic solid
following the laws of linear elasticity,

Kc =
4
3 G, (2.7)

where G is the shear modulus of the solid (Landau & Lifshitz 1986). The parameter
Kc allows us to take into account other confinement geometries, such as solid shells
of thickness d (Fourest et al. 2015). In the case of thin shells this parameters is
Kc= (4/3)G(1+ ν/1− ν)(d/Rc), where ν is the Poisson ratio of the solid (Marmottant
et al. 2011). Using both equations (2.3) and (2.5) as well as the fact that Vc=V +V`,
we eventually find for the evolution of 1P= P− Psat

1P=1P0 +K
(

V
V0

)
=1P0 +K

(
R
Rc

)3

, (2.8)
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(a) (b)

FIGURE 2. (Colour online) Expanding a bubble from R = 0 (a) to R > 0 (b) in a fully
confined environment requires us to compress the liquid (compression modulus K`) and/or
expand the confinement size by deforming the surrounding solid (effective modulus Kc).
The system behaves as if the two moduli K` and Kc corresponded to stiffness of springs
mounted in series (see (2.9)).

where we have defined the effective modulus

K =
K`Kc

K` +Kc
, (2.9)

which is the harmonic average of the liquid compression modulus K` and of the
effective confinement modulus Kc. This association is analogous to springs in series,
with one formed by the liquid compressibility and the other by the solid elasticity
(see figure 2). The case of a rigid confinement is obtained when Kc � K`, giving
K ' K`. Inversely, for a confinement much more compressible than the liquid itself,
K'Kc. In § 5.3, we discuss how to modify the expressions above if a reference state
different from R= 0 is chosen.

The contribution to the potential energy of the liquid (and its vapour, see discussion
in the previous subsection) and of confinement elasticity is obtained by integrating∫ V

0 1P(V ′) dV ′ using (2.8). Adding the contributions of the bubble interface and of
trapped gas (equations (2.1) and (2.2)), we finally establish the total free energy

F=
4
3
πR31P0

(
1+

1
2

K
1P0

(
R
Rc

)3
)
+ 4πR2σ − 3NgkBT ln

(
R

Rref

)
, (2.10)

or, in dimensionless form,

F= F∗
[
−2X3

(
1−

γ

2
X3
)
+ 3X2

− 6α ln X
]
, (2.11)

where X = R/R∗ is a dimensionless radius normalized with

R∗ =−2σ/1P0, (2.12)

which is the critical radius that would be associated with the pressure 1P0 in
an unconfined situation (see (1.2)) and F∗ = (4/3)πR∗2σ is a typical free energy
(corresponding to the energy barrier for nucleation in the context of unconfined
cavitation, see Brennen (1995)). We have also chosen Rref = R∗. Equation (2.11) is
governed by two dimensionless parameters α and γ defined in the following manner:

α =

3
2 NgkBT
4πσR∗2

, (2.13)

γ =

(
K`

−1P0

)(
R∗

Rc

)3

. (2.14)
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These parameters represent the effect of trapped gas and the effect of confinement,
respectively. Using the expression of the critical radius R∗ (2.12), these parameters
can be rewritten

α =
3NgkBT1P2

0

32πσ 3
, (2.15)

γ =
8σ 3K

R3
c1P4

0
. (2.16)

The corresponding equilibrium solutions follow (dF/dR)R=Req = 0, leading to

1P0 +K
(

Req

Rc

)3

+
2σ
Req
− pg,eq = 0, (2.17)

where pg,eq is the equilibrium pressure of trapped gas in the bubble following pg,eq ×

(4/3)πR3
eq = NgkBT . Equation (2.17) corresponds to the Laplace equation since from

(2.8), 1P0 + K(Req/Rc)
3 is the pressure in the liquid (corrected by Psat) when the

bubble has a radius Req. The equivalent dimensionless equilibrium equation is

γX2
eq(X

3
eq − 1)+ Xeq −

α

Xeq
= 0, (2.18)

where Xeq = Req/R∗.
Note that both parameters α and γ are always positive, but the value of R∗ can

be either positive or negative depending on the value of 1P0. In cases where R∗ < 0
(1P0 > 0, i.e. P0 > Psat) there is only one equilibrium radius which is R= 0 if α= 0
and a non-zero value if there is trapped gas. In the following, we will focus on the
more interesting situation 1P0 < 0 (liquid at negative pressure, or P0 < Psat), in other
words consider only the zone where R/R∗ > 0 in the potential energy landscape.

We also remark that 1P0 identifies with the pressure in the liquid prior to nucleation
in a cavitation context, but does not correspond to the ambient liquid pressure 1P for
static, pre-existing bubbles. In that latter case, 1P0 is a reference pressure that can
be calculated using (2.17) and that is typically negative even if 1P > 0, except for
bubbles very small compared to the cavity size.

2.2. Phase diagram

Possible shapes of the free energy (2.11) as a function of the two dimensionless
parameters α and γ are shown in figure 3. In general, two stable positions of the
bubble exist, one at small radius Ra (germ) and one at higher radius Rb (bubble).
These two minima are separated by an energy barrier situated at the unstable
equilibrium radius R′ ' R∗. As can be seen in figure 3, the system behaves as a
two-state system (bubble and germ) with the order parameters γ and α controlling a
first-order transition between these states. The system also exhibits a critical point (C
in figure 3) where the two solutions merge to form a characteristic flat-bottom free
energy curve. In the following, we discuss the main features of the phase diagram
by analysing limiting cases.
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FIGURE 3. (Colour online) Phase diagram of bubble free energy and equilibrium solutions
as a function of the dimensionless parameters γ (confinement) and α (trapped gas). Line
(T) corresponds to a transition (binodal) line between two stable states: the bubble (Rb) on
the left and the germ (Ra) on the right. The dashed lines correspond to spinodals beyond
which one of the solutions disappears: (B) is the generalized Blake threshold and (S) is
the superstability line. The insets show the corresponding shapes of the potential F(R)
from (2.11). Germ, bubble and the unstable equilibrium solution R′ all merge at a critical
point (C).

2.2.1. Effect of confinement: classical nucleation theory, the bubble solution and
superstability

We first discuss the effect of confinement by assuming α = 0 (no trapped gas).
Figure 4(a) shows the shape of the free energy for increasing values of γ . The
equilibrium condition dF/dR= 0 with α = 0 always admits a trivial solution Ra = 0.
This solution describes a homogeneous, metastable liquid at negative pressure 1P0.
Such a liquid is metastable with respect to the nucleation of bubbles (cavitation), as
any bubble of size larger than R∗ grows explosively. This situation is well known and
is at the basis of classical nucleation theory (CNT) to describe cavitation and boiling
(Blander & Katz 1975; Debenedetti 1996; Caupin & Herbert 2006). CNT (γ = 0 and
α = 0), however, predicts an unphysical infinite growth of cavitation bubbles (past
R∗, the potential F(R) is continuously decreasing). As can be seen in figure 4(a),
introducing γ 6= 0 resolves that problem by allowing the existence of a stable solution
Rb, which represents the final bubble size after nucleation and growth.

For moderate confinements (γ � 1), one has from (2.18) (Rb/R∗)γ�1 = γ
−1/3 or,

using (2.14)

(Rb)γ�1 =

(
−1P0

K

)1/3

Rc. (2.19)

We note that formula (2.19) is still valid for non-zero values of α if α� 1/γ . With
the above assumption that γ � 1, this condition is thus not restrictive.

When increasing the confinement parameter γ , the bubble solution Rb gets closer
to the unstable equilibrium R′' R∗ (figure 4a), until these two solutions collapse and
disappear for a value γs (figure 4a inset). Above that point, only the homogenous
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FIGURE 4. (a) Effect of the confinement parameter γ on the potential energy F(R)
without trapped gas (α = 0). Lighter curves correspond to higher values of γ (stronger
confinement), and the following values were used: [0; 0.05; γt = 1/16; γs = 33/44

; 0.2].
Inset: corresponding equilibrium solutions (bifurcation diagram). Continuous lines indicate
stable solutions, dashed lines correspond to metastable solutions and the dotted line
correspond to the unstable solution R′. (b) Effect of the gas parameter α without
confinement (γ = 0). Lighter colours represent higher values of the dimensionless gas
parameter α (values used: [0; 0.05, αB = 4/27 (Blake threshold), 0.3]. Inset: bifurcation
diagram.

liquid (R = 0) can exist. Prior reaching γs, another remarkable point is crossed: at
γt, the homogeneous liquid and the bubble have the same energy. The value of γt
as well as the corresponding equilibrium radius Rt are found by requiring dF/dR= 0
(equilibrium condition) as well as F= 0, which yields

γt = 1/16, (2.20)
Rt/R∗ = 2. (2.21)

Similarly, γs and Rs are found by requiring dF/dX = 0 and d2F/dX2
= 0:

γs = 33/44, (2.22)
Rs/R∗ = 4/3. (2.23)

In other words, this result predicts that for sufficiently strong confinements, a liquid
at negative pressure can become absolutely stable. We discuss implications of this
surprising phenomenon of superstability in § 5 of this article. Lines (T) and (S) of the
phase diagram (figure 3) respectively extend the values of γt and γs in the presence
of trapped gas.

2.2.2. Effect of gas: the Blake threshold
We now discuss briefly the effect of gas by first assuming γ = 0 (no confinement).

Figure 4(b) shows the shape of the free energy for increasing values of α and the inset
shows the corresponding equilibrium solutions found from the condition α= (R/R∗)2×
(1 − R/R∗) from (2.18). When α = 0, the case of CNT is recovered. For α > 0, a
metastable germ (Ra) can exist. Increasing α (which corresponds to an increase of
the number of trapped gas particles, or to a decrease in the liquid pressure, see (2.15))
results in an increase of the germ size (see inset of figure 4), until the germ reaches
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FIGURE 5. (Colour online) Kinematics associated with radial deformations of a spherical
bubble with surface velocity Ṙ. (a) Sketch of the system. (b) Velocity field in the liquid
for different values of the elastic parameter κ , here plotted for x=R/Rc= 0.5. (c) Inertia
corrective factor φ (3.15), for various values of κ and for various solid densities ρs
(assuming an extended solid), expressed here in kg dm−3. The liquid is assumed to be
water.

a critical value RB = 2R∗/3 at which it becomes unstable. This situation is known
as the Blake threshold from the initial work of Blake (1949) to describe cavitation
by gaseous germs. The value of RB as well as the corresponding critical value of
αB = 4/27 can be readily obtained by requesting dF/dR = 0 and d2F/dR2

= 0 from
expression (2.11).

Our dimensionless free energy approach thus allows for a grouped description
of classical results of unconfined bubbles (CNT and Blake threshold) and evaluate
modifications introduced by confinement. Line (B) on the phase diagram is obviously
the extension of Blake threshold to fully confined situations. As can be seen from
the weak slope of (B) in figure 3, the Blake threshold is not significantly affected
by confinement. Beyond the critical point C, however, the generalized Blake line (B)
disappears. In this particular regime of large γ (strong confinement), one thus does
not observe cavitation when increasing α, but a smooth, continuous transition from a
germ to a bubble.

3. Radial kinematics and kinetic energy of fully confined bubbles
We now investigate the kinematics of fully confined bubbles by calculating the fluid

and solid motion for given radial deformations of the bubble surface (figure 5a) and
the corresponding kinetic energy. Following our model hypotheses, we assume radial
deformations. We also consider that bubble and cavity are centred and we will discuss
possible corrections for off-centred situations in § 5.3.

A stiff confinement imposes zero velocity at the liquid–solid interface. This is
possible only if the liquid is compressed during bubble growth, i.e. its average
density increases, while it decreases on phases of bubble shrinkage. In order to
capture this effect, we use a mean-field (or quasi-static) approximation where we
consider the density ρ as homogeneous throughout the liquid, changing only as a
function of time. We thus neglect second-order corrections associated with spatial
density fluctuations. We discuss this hypotheses in § 5.4. Following this quasi-static
approach, we also consider the relations obtained in the static case (§ 2) to remain
valid in dynamic situations. We thus describe the natural oscillation kinematics of
fully confined bubbles, but do not consider higher modes of vibration where the
bubble and cavity deformations do not occur in phase.
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3.1. General considerations
Within the framework discussed above, we can combine equations (2.5) and (2.8) to
relate cavity deformations to bubble deformations:

Vc = V0 + κV, (3.1)

with κ =K/Kc=K`/(K`+Kc) a dimensionless elastic parameter comprised between 0
and 1. Vc = 4πR3

c/3 is the confinement volume (V0 is its value in the reference state
without a bubble) and V = 4πR3/3 is the bubble volume. We obtain the liquid density
ρ from the conservation of mass ρ0V0 = ρ(Vc − V) where ρ0 is the density in the
reference state (R= 0), which translates into

ρ = ρ0
1− κx3

1− x3
(3.2)

using (3.1) and where we have defined the dimensionless variable x= R/Rc. In § 5.3,
we discuss how to modify the expressions above if a reference state different from
R= 0 is chosen. Differentiation of (3.1) also yields the useful relation

Ṙc = κx2Ṙ, (3.3)

which allows us to link the variations of R to those of Rc, leading to a system with
only one degree of freedom, R. We use the notation Ṙ for time derivatives.

We finally note that the dimensionless elastic parameter κ describes the relative
importance of the compressibility of the liquid and of the deformability of the
confinement, and varies between 0 and 1. When the confinement is much stiffer than
the liquid (Kc � K`), κ ' 0, whereas when K` � Kc, κ ' 1. In other words, κ = 0
corresponds to a rigid, not deformable cavity (Vc, Rc constant from (3.1) and (3.3)),
while κ = 1 corresponds to an incompressible liquid (ρ constant from (3.2)).

3.2. Velocity field
Since the liquid density varies in time, the velocity field v(r) in the liquid is not
divergence free, but follows the mass conservation equation ρ̇ + div(ρv) = 0, or
div(v)=−ρ̇/ρ following our uniform density hypothesis. Integration yields

v(r)=
a
r2
+ br. (3.4)

The constants a and b are determined by the boundary conditions v(R) = Ṙ at the
bubble surface and v(Rc)= Ṙc at the cavity wall. Using (3.3) to eliminate Ṙc, we find

a= R2
cṘ

x2(1− κx3)

1− x3
, (3.5)

b=
Ṙ
Rc

x2(κ − 1)
1− x3

. (3.6)

The resulting velocity profiles are shown in figure 5(b). The case κ = 1 corresponds
to the well-known incompressible liquid kinematics for which v(r)= Ṙ(R/r)2. When
κ is decreased (stiffer confinement), the velocity decreases faster with r, resulting in
decreased inertia. The correction is the largest for a rigid confinement (κ = 0), which
imposes v(Rc)= 0.

If the solid can be considered as infinitely extended compared to Rc, deformations
in the solid are similar as for an incompressible liquid, i.e. v(r)= Ṙc(Rc/r)2 (Landau
& Lifshitz 1986). We will mostly discuss the latter case in the following, but we will
also consider another limiting case where the solid is a thin shell, for which all the
solid can be assumed to have a radial velocity Ṙc.
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3.3. Kinetic energy and effective mass
The total kinetic energy has contributions from both the liquid and solid:

Ek = Ek,` + Ek,s, (3.7)

with Ek,` = (1/2)ρ
∫ Rc

R (4πr2) v2(r) dr and Ek,s = (1/2)ρs
∫
∞

Rc
(4πr2) v2(r) dr for an

extended solid, where ρs is the solid density. Following the discussion in the last
paragraph of the previous subsection, in the case of an extended solid:

Ek,s =
1
2 4πρsR3

cṘc
2
, (3.8)

while for a thin solid shell, Ek,s = msṘc
2
/2, where ms is the total mass of the shell.

The liquid kinetic energy is obtained from the velocity profile determined above
(equations (3.4), (3.5) and (3.5)), leading to

Ek,` =
1
2 4πρR3Ṙ2(A(x)+ 3

5 B(x)κx+ 1
5 C(x)κ2x) (3.9)

using the notations x= R/Rc and κ =K/Kc and the functions

A(x)= (1− 9
5 x+ x3

−
1
5 x6)/(1− x3)2, (3.10)

B(x)= (1− 5x2
+ 5x3

− x5)/(1− x3)2, (3.11)
C(x)= (1− 5x3

+ 9x5
− 5x6)/(1− x3)2. (3.12)

We write the total kinetic energy in the form

Ek =
1
2 m(R)Ṙ2, (3.13)

with an effective mass
m(R)= 4πρR3φ(R). (3.14)

The factor φ describes the changes introduced by confinement compared to
an unconfined bubble, for which m(R) = 4πρR3 (Leighton 1994). Using the
expressions above, using (3.3) to eliminate Rc and using the fact that xC(x)/5 =
1− x− 3xB(x)/5− A(x) we finally find

φ = κ2(1− x)+ (1− κ)
[
A(x)(1+ κ)+ 3

5 xB(x)κ
]
+ φs. (3.15)

The solid contribution is φs = xκ2(ρs/ρ) for an extended solid. For a thin shell, φs =

xκ2ms/(4πρR3
c)' xκ2ms/(3m`) where m` is the mass of liquid in the cavity.

Due to the complexity of the full expression of φ, it can be useful to use
approximated expressions. A Taylor expansion at lowest order in x = R/Rc gives
φ ' 1− e× x with

e= 1
5 [9− 3κ − (1+ 5εs)κ

2
], (3.16)

where εs = ρs/ρ0 for an extended solid, and εs =ms/(3m`) for a thin shell.
Some examples of the inertia factor φ in different situations are plotted in

figure 5(c), assuming an extended solid. In general φ < 1 due to the reduction of
inertia induced by confinement (see previous subsection), but in some situations the
confinement effect can be counterbalanced by the added inertia due to solid motion
around the cavity. The largest inertia reduction is obtained for a rigid confinement
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(κ = 0), and is considerable: a bubble only 30 % of the size of the cavity has its
inertia divided by '2.

For inclusions in quartz or in glass, κ ' 0.05 (using K` = 2.2 GPa for water
and Kc = 4G/3 ' 40 GPa for the solid of density ρs ' 2.6 kg dm−3), which results
in little difference compared to the infinitely stiff case. An intermediate case is
obtained for the experiments reported in Vincent et al. (2014a), for which κ = 0.7
and ρs = 1.25 kg dm−3. The reduction compared to an unconfined bubble is not as
strong as for an infinitely rigid cavity, due to the inertial contribution of the solid.
The value of φ corresponding to x = 0.31, which is the equilibrium relative bubble
size in Vincent et al. (2014a), is φ= 0.79. Going to even softer confinements such as
Polydimethylsiloxane (PDMS) (shear modulus G< 1 MPa so that κ ' 1, and density
ρ ' 0.95 kg dm−3), the difference with an unconfined bubble (φ = 1) is almost
unnoticeable.

In fact, the expressions above also apply to liquids surrounded by other materials
than solids. The case of an unconfined bubble is recovered when setting ρs= ρ (same
liquid inside and outside the cavity), and κ = 1 (no elasticity of the liquid–liquid
interface), leading to φ = 1 from (3.15). The case of a liquid surrounded by air or
vacuum can also be found using ρs = 0 and κ = 1, leading to φ = 1− x from (3.15),
which allows us to readily recover the formulas of the kinetic energies presented
in Obreschkow et al. (2006) (bubbles in drops) or Fourest et al. (2015) (bubbles in
spherical shells in air, neglecting the shell inertia).

4. Oscillation dynamics of fully confined bubbles
The complete radial oscillation dynamics can now be calculated knowing the

potential energy of the system Ep(R) and the kinetic energy Ek(R, Ṙ)= (1/2)m(R)Ṙ2.
We have calculated Ek and m in § 3, and we assume Ep(R) = F(R), i.e. that the
potential F(R) calculated in § 2 for static situations can be used in dynamical
situations, continuing within the framework of the quasi-static hypothesis introduced in
§ 3. We first investigate harmonic oscillations for small departures around equilibrium,
we then derive the full equation of motion that we solve numerically. These two
approaches extend to a fully confined situation both the Minnaert formula and the
Rayleigh–Plesset equation, respectively. We discuss briefly dissipation sources at the
end of this section.

4.1. The harmonic oscillator approach
As first noted by Minnaert (1933), a bubble behaves as a harmonic oscillator (mass–
spring system) for small radial oscillations around equilibrium, with the inertial part
(‘mass’) set by the motion of the displaced liquid and the elastic part (‘spring’) set
by the compressibility of the inner gas. The resulting natural angular frequency is

ωM =
1

Req

√
3Kb

ρ
, (4.1)

where Req is the equilibrium radius, and

Kb = pg,eq − 2σ/3Req (4.2)

is an effective compression modulus of the bubble including contributions from the gas
compressibility and from surface tension (Brennen 1995; Vincent et al. 2014a), with
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pg,eq the equilibrium trapped gas pressure in the bubble so that pg,eq× 4πR3
eq/3=NkBT .

Note that the Minnaert frequency is here expressed in the framework of isothermal
oscillations following the hypotheses of the present paper, although Minnaert’s early
calculations were in the adiabatic case and without considering surface tension.

More generally, the natural frequency of a harmonic oscillator is ω0 =
√

k/m with
k= (d2Ep/dR2)R=Req the effective stiffness and m the effective mass. Req is any stable
equilibrium radius satisfying (dEp/dR)R=Req = 0. Thus, the calculation below applies to
both equilibrium solutions Ra (germ) and Rb (bubble) discussed in § 2 for F(R). We
evaluate the stiffness k in our system from the second derivative of F(R) using (2.10),
leading to k= 8πσ + 8πR1P0 + 20πKR4

eq/R
3
c + 3NkBT/R2, from which we eliminate

the reference pressure 1P0 using the equilibrium condition (2.17). Eliminating 1P0
allows us to express the results in terms of the equilibrium radius Req only. We obtain
the stiffness

k= 12πReq

(
Kb +K

(
Req

Rc

)3
)
, (4.3)

with Kb the effective bubble compression modulus defined above. Using the effective
mass m= φm∞ calculated in § 3, we finally get the natural angular frequency

ω0 =
1

Req

(
3
ρφeq

)1/2
√

Kb +K
(

Req

Rc

)3

, (4.4)

where φeq = φ(Req). Equation (4.4) shows that the oscillation dynamics arises from
two stiffness contributions in parallel: one from the bubble (Kb) and one from the
surrounding liquid and solid (K). The balance of the two elastic contributions in
formula (4.4) depends on the dimensionless number

ξ = |K/Kb|(Req/Rc)
3, (4.5)

the absolute value ensuring that ξ > 0 since Kb can be negative (4.2).
When the equilibrium bubble radius Req is sufficiently small compared to Rc so

that ξ � 1 (and φ ' 1, see § 3), the Minnaert formula (4.1) for the oscillation of
unconfined bubbles is recovered. For an air bubble at atmospheric pressure in water,
equations (4.1) or (4.4) predict the constant DM = fM × Req ' 3 m s−1, where fM =
ωM/2π is the linear frequency. On the contrary, when ξ�1 the liquid compressibility
and confinement elasticity (through the combined parameter K) dominate the system
stiffness, and the contributions of surface tension and of gas pressure can be neglected,
leading to the angular frequency ω0 = 2πf0

(ω0)ξ�1 =
1

Req

(
3K
ρφeq

)1/2 (Req

Rc

)3/2

. (4.6)

As an example, for a bubble of radius one fourth of the cavity radius in water in
a rigid confinement (K = K` = 2.2 GPa, ρ = 103 kg m−3), equation (4.6) predicts
D= f0 × Req ' 55 m s−1. This order-of-magnitude increase compared to the Minnaert
frequency mainly comes from the large increase in stiffness provided by the liquid and
the solid, but is also augmented due to the decreased inertia of the system through the
parameter φ < 1, see § 3.

The equations above are valid for small oscillations around equilibrium for which
the potential F(R) can be considered as harmonic. In appendix A, we show that
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anharmonic corrections may entail a reduction of the frequency by a factor ζ up
to ∼1.25 for large oscillations. This effect is opposite to the effect of confinement
on effective mass through the parameter φ (see § 3.3). In many situations, we thus
expect ζ

√
φ to be in the vicinity of 1 so that

ω∗ =
1

Req

(
3K
ρ

)1/2 (Req

Rc

)3/2

(4.7)

(i.e. equation (4.6) with φeq = 1) should be a good approximation of the actual
oscillation frequency for large oscillations in the fully confined regime.

4.2. Fully confined Rayleigh–Plesset equation
In order to obtain the equation of motion from the potential energy Ep=F(R) and the
kinetic energy Ek, we use the Lagrangian formalism; minimization of the Lagrangian
L= Ek − Ep, leads to the Euler–Lagrange equation (see Landau & Lifshitz 1976):

d
dt

(
∂L
∂Ṙ

)
−
∂L
∂R
= 0, (4.8)

where we used the fact that the system has only one degree of freedom (R) and the
generalized coordinates are thus R and Ṙ= dR/dt. Equation (4.8) does not take into
account dissipation, that we will discuss separately (§ 4.3). Using expression (2.10) for
the potential Ep(R)=F(R) and expressions (3.13) and (3.14) for the kinetic energy, we
find from (4.8)

RR̈+
(

3
2
+

1
2

d ln(ρφ)
d ln R

)
Ṙ2
=

1
ρφ

(
pg(R)−

2σ
R
−1P0 −K

(
R
Rc

)3
)
, (4.9)

where d ln X=dX/X and where, in general, both the liquid density ρ and the kinematic
corrective factor φ vary with R (see (3.2) and (3.15)).

Compared the Rayleigh–Plesset equation that describes the radial motion of a
bubble in an infinite liquid (Rayleigh 1917; Plesset 1949).

RR̈+
3
2

Ṙ2
=

1
ρ

(
pg(R)−

2σ
R
−1P

)
, (4.10)

two important modifications can be noticed. First, an additional term on the left-hand
side proportional to (dR/dt)2 that takes into account the effect of confinement on the
effective mass of the bubble (parameter φ). This kinematic effect also affects the right-
hand side as can be seen by the additional factor 1/φ. Second, an additional term
proportional to R3 that reflects the variation of the liquid pressure because of the liquid
compressibility and confinement elasticity (parameter K).

Once again, it may be useful for some situations (e.g. pre-existing confined bubbles
not originating from cavitation events) to eliminate 1P0 from (4.9) and express the
dynamics in terms of the equilibrium properties (i.e. Rb) instead of the stretched,
metastable properties (i.e. 1P0). This can be done using the equilibrium condition
(2.17) from which we rewrite equation (4.9) into

RR̈+
(

3
2
+

1
2

d ln(ρφ)
d ln R

)
Ṙ2
=

1
ρφ

(
pg − pg,eq + 2σ

(
1

Req
−

1
R

)
+K

(
R3

eq − R3

R3
c

))
,

(4.11)
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FIGURE 6. (Colour online) Solution of the modified Rayleigh–Plesset equation for a
bubble in an elastic cavity with the physical parameters given in the text. The radius is
normalized by the cavity radius, and time is normalized by the period T∗= 1/f ∗= 2π/ω∗

as predicted by formula (4.7). Black line: exact solution of the equation of motion. Blue
lines: solutions obtained with various approximations (continuous: constant density and
linearized φ; dashed: constant density and constant φ). Red line: prediction (4.13) of the
expansion velocity (arbitrarily going through the origin). The black dotted line represent
the equilibrium radius (R= Rb).

where we recall that Req is any of the equilibrium solutions (bubble Rb, gas germ
Ra or even the unstable equilibrium R′). We note that equations (4.9) and (4.11) are
very general, and can be applied to different confinement geometries by selecting the
adequate expressions for the corrective factor φ (see § 3) and for the elastic parameter
K (see § 2.1).

Solving equations (4.9) or (4.11) can be difficult due to the non-trivial expressions
of ρ and φ (equations (3.2), (3.15)), so approximations can be useful. First, the density
of the liquid ρ can be considered to be constant, given the low compressibility of the
liquid. Second, the Taylor expansion of φ(R) = 1 − eR/Rc (3.16) can be used. We
evaluated the accuracy of these approximations by numerically solving equation (4.9)
with input parameters typical of the cavitation experiments reported in Vincent et al.
(2014a), namely cavity radius Rc= 50 µm, global elasticity K= 0.7 GPa, solid density
ρs= 1250 kg m−3, stretched water density ρ0= 988 kg m−3 and a cavitation pressure
1P0 = −20 MPa. We neglected surface tension or trapped gas effects, and chose
a finite initial size of 1 µm. Figure 6 summarizes the results. The thick black line
represents equation (4.9) solved without any approximation. The continuous blue line
uses the approximations ρ = cste and φ = 1 − eR/Rc, while the dashed line uses
φ= cste=φeq. As can be seen, these approximations result in negligible errors on the
dynamics, with an underestimation of the period of less than 1 %, and approximately
4 %, respectively. The normalization of time in figure 6 with respect to ω∗ predicted
by the approximate (4.7) shows that this latter equation provides a good estimate of
the dynamics for oscillations of large amplitude (see discussion at the end of § 4.1).

We remark here that the generalized Minnaert formula (4.4) can be obtained by
linearization of (4.9) or (4.11) for small excursions ε around Req, leading to the
harmonic oscillator equation mε̈ + kε = 0 of natural angular frequency ω0 =

√
k/m.

Also, since we expressed φ as a function of the dimensionless variable x = R/Rc
(see § 3), and since equations (4.9) and (4.11) involve derivatives of φ with respect to
R, it is useful to relate variations of x to variations of R. Since both R and Rc vary
during bubble motion, this relation is not trivial and follows dx = dR/Rc − x dRc/Rc,
or
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dx
dR
=

1
Rc
(1− κx3), (4.12)

where we have used (3.3) to eliminate dRc. We finally note from figure 6 that the
bubble velocity vi = Ṙ is approximately constant in many parts of the oscillation
when the bubble radius is close to its lowest value. We find that this velocity is well
described by the steady-state solution of the unconfined Rayleigh–Plesset equation
(neglecting gas pressure and surface tension)

vi =

√
2
3
−1P0

ρ
(4.13)

(Brennen 1995), as can be seen from the red line in figure 6.

4.3. Dissipation
For an unconfined bubble, there are three main sources of dissipation during radial
oscillations (Leighton 1994): viscous damping due to shear in the liquid, thermal
damping due to diffusion of heat in the gas and acoustic radiation. The relative
weight of each dissipation source depends on the size of the bubble and thus on the
frequency of oscillation, through the Minnaert formula (4.1). Below, we evaluate the
impact of the order-of-magnitude increase in oscillation frequency in full confinement
(4.6) on the relative importance of these contributions to dissipation. We base our
physical discussion on simplified calculations where we consider harmonic oscillations,
and where we assume that dissipation coefficients are not modified significantly by
confinement; we will thus use expressions obtained for unconfined bubbles.

Damped harmonic oscillations around equilibrium Req follow an equation of the type
mε̈+χε̇+ kε= 0 with ε=R−Req�Req and with the dissipation coefficient χ related
to the dissipated power through P = χ Ṙ2. The system is characterized by its natural
pulsation ω0 =

√
k/m and by the quality factor

Q=ω0m/χ, (4.14)

which is a dimensionless parameter characterizing damping; a low value of Q indicates
a large dissipation. We will use the relation ω0= 2πD/Req with D a constant obtained
from (4.4), and an approximate expression for the effective mass m = 4πρR3

eq (i.e.
φ ' 1, see § 3).

Viscous damping is characterized by dissipated power Pη=16πηReqṘ2 and damping
coefficient χη = 16πηReq (Leighton 1994). From (4.14) the corresponding quality
factor is

Qη '
ρω0R2

eq

4η
=

πρDReq

2η
. (4.15)

Thermal damping is characterized by the dissipation coefficient χth = 12πReqkppg,eq
d(λ)/ω where d is a dimensionless dissipation function varying between 0 (isothermal
or adiabatic) and '0.11 (Leighton 1994), and which depends only of the ratio λ of the
bubble size Req to the thermal length (

√
Dg/(2ω) with Dg the gas thermal diffusivity).

The parameter kp is the polytropic exponent, which varies between kp = 1 for purely
isothermal and the exponent γa=Cp/Cv for purely adiabatic transformations (see also
§ 5.5). Using the above value of χth, we get from (4.14)

Qth '
4π2

3d
ρD2

kppg,eq
. (4.16)
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Acoustic radiation is associated with dissipated power of P=4πR2
bρC`(k`R)2Ṙ2 with

k` = ω/C` the wave vector and C` ' 1500 m s−1 the speed of sound in the liquid
(Leighton 1994), leading to a damping coefficient χrad= 4πR2

bρC`(k`Rb)
2 and a quality

factor
Qrad '

C`

ω0Rb
=

C`

2πD
. (4.17)

From expressions (4.15)–(4.17), an increase of one order of magnitude of the
oscillation speed parameter D, as expected for fully confined bubbles, should decrease
both viscous and thermal damping, by one and two orders of magnitude respectively.
Inversely, acoustic damping is increased by an order of magnitude. Given the fact
that in the practical range (bubbles of size >1 µm), acoustic dissipation is at most
∼10 times weaker than thermal and viscous dissipation (Brennen 1995), we conclude
that for fully confined bubbles, acoustic dissipation is on the contrary dominant at
more than ∼10 times stronger than viscous dissipation and more than ∼102 times
stronger than thermal dissipation.

We illustrate the previous ideas by using the experimental value D= 39 m s−1 from
Vincent et al. (2014a) and a typical experimental bubble size Rb=20 µm. From (4.15)
we find Qη' 6× 102. From (4.16), using the properties d 6 0.11 and κ 6 1.4 (for air),
we evaluate Qth > 103 for a bubble filled with air at atmospheric pressure. Finally,
using (4.17) we estimate Qrad'6, which predicts a very fast attenuation of oscillations,
in agreement with experimental results (Vincent et al. 2014a).

5. Discussion and remarks
Here we compare our results to existing models and experiments, we evaluate some

of the hypotheses of our model and we discuss the consequences of the superstability
predictions from the bubble statics analysis.

5.1. Comparison with existing bubble dynamics models
As we have discussed in §§ 4.1 and 4.2, our dynamic model reduces to the classical
expressions for bubbles in extended liquids (Minnaert, Rayleigh–Plesset) when the size
of the bubble is negligible compared to Rc, more precisely ξ � 1 (4.5). In fact, the
case of an unconfined bubble is also obtained when using Kc = 0 (no confinement
elasticity, resulting in κ = K`/(K` + Kc) = 1) and replacing the solid density by the
density of the liquid, as discussed in the end of § 3. The expression of the static Blake
threshold is also recovered when γ � 1 (§ 2.2.2).

Other cases from the literature can be found as limiting cases of our model, for
example the case of a bubble in an incompressible liquid within a soft confining
solid shell (Fourest et al. 2015) the case of a bubble in a liquid drop surrounded
by air (Obreschkow et al. 2006). Those both correspond to the limiting case κ = 1
(confinement much softer than the liquid), with K 6= 0 and K = 0, respectively (see
appendix B).

Our results also have similarities to dynamic equations derived for bubble
oscillations in elastic materials (Alekseev & Rybak 1999; Yang & Church 2005;
Gaudron, Warnez & Johnsen 2015). Compared to those studies, the case studied
here has an extra layer of liquid between the bubble and the elastic materials, which
results in additional terms involving the relative elasticities between the liquid and
the solid (parameters K and κ), and modified liquid kinematics due to confinement
(parameter φ). Extending our model to describe this particular case would require
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setting Req = Rc (bubble of the size of the confining cavity, thus no more liquid), a
case outside of our small bubble hypothesis. In § 5.3, we suggest ways to modify
our model to relax that hypothesis. The studies mentioned above Yang & Church
(2005), Gaudron et al. (2015) have also investigated the effect of viscosity and
acoustic radiation on the dynamics, which we have not considered here except in our
qualitative discussion of damping sources.

5.2. Comparison with experiments
We now confront our theoretical predictions with experimental results on fully
confined cavitation bubbles published recently (Vincent et al. 2014a). In these
experiments, cavitation bubbles spontaneously appeared at a negative pressure 1P0 =

−20± 2 MPa in water confined in spherical microcavities of radius Rc= 15–200 µm
etched in a polymer hydrogel material of shear modulus G= 0.74± 0.08 GPa (Vincent
2012), see figure 7(a). Statics (equilibrium size) and dynamics (radial oscillations) of
the bubble were recorded as a function of confinement size Rc.

5.2.1. Statics
Bubbles did not contain gases other than the vapour of the liquid so that the trapped

gas parameter is α = 0 (§ 2). In order to estimate the confinement parameter γ , we
calculate the effective modulus K = (1/K`+ 1/Kc) (2.9) using the confinement elastic
modulus Kc = 4G/3 = 0.99 ± 0.11 GPa (see § 2.1) and the liquid water modulus
(K` = 2.195 ± 0.016 GPa in the range 20–25 ◦C, see Kell (1975)). We obtain K =
0.68 ± 0.07 GPa and the corresponding dimensionless value κ = K`/(K` + Kc) =

0.69± 0.03. Using σ = 0.072 N m−1 for water and considering that the microcavity
size is Rc > 15 µm, we thus estimate γ < 10−8 from (2.16). These values of α and
γ place the experiments in regime 2 of the phase diagram where the macroscopic
bubble of radius Req = Rb is the most stable solution, and far away from any of the
transition lines, in particular the transition lines to superstability. We discuss in § 5.6
the possibility of realizing experiments probing the superstability transition. The low
value of γ also allows us to use formula (2.19) which predicts a linear relationship
between the bubble equilibrium size Req and the microcavity size Rc, with a coefficient

xeq = Req/Rc = (−1P0/K)1/3. (5.1)

With the parameter values specified above, we predict xeq = 0.31± 0.02 which gives
good agreement with the experimental data (thick red line in figure 7b). Departures
from the prediction can be observed for big radii; they might be due to non-sphericity
of the larger microcavities or to optical deformations of the bubble as seen through
the liquid/polymer interface (Vincent 2012).

5.2.2. Dynamics
Although the value of the static confinement parameter γ is very low, the

criterion for fully confined dynamics is governed by the dynamic confinement
parameter ξ = |K/Kb|(Rb/Rc)

3 (see § 4.1), estimated to be ξ > (42/3)3 ' 3 × 103

(Vincent et al. 2014a). Since ξ � 1, the compressibility of the liquid and the
elasticity of the confinement dominate the dynamics, which allows us to use
formula (4.6) for the natural oscillation frequency, which can be rewritten f0 =

(1/2πRc)
√

3K/ρφeq(−1P0/K)1/6 using equation (5.1). As can be seen in figure 7(d)
(dashed line), this prediction (numerically f0 × Rc = 143 ± 8 m s−1) matches
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FIGURE 7. (Colour online) Comparison between available experimental data, mostly from
Vincent et al. (2014a) (black or grey data), and the theory developed in the present
paper (thick red lines). (a) Typical microphotograph of the experimental system (scale bar:
20 µm), showing the bubble after spontaneous cavitation. (b) Equilibrium bubble radius as
a function of microcavity radius (theory: equation (5.1)). (c) Extinction signal associated
with a cavitation event (cavitation at t= 0), Tn represents the period of the nth oscillation.
(d) Oscillation frequency as a function of microcavity radius compared to equations (4.6)
(dashed line) and (4.7) (continuous line). (e) Ratio of Tn to the average period 1/f ,
including all experiments (Vincent 2012). ( f ) Radial bubble dynamics extracted from laser
strobe photography experiments (Vincent et al. 2014a). Theory: equation (4.9) solved with
initial conditions R/Rc = 0.02 and Ṙ= 0.

experimental results very well using a kinematic correction factor φeq = 0.79 (see
§ 3.3), but slightly overestimates the frequency. As explained in § 4.1, this is likely due
to anharmonic effects for large oscillations, and the approximate (4.7) (numerically
f ∗ × Rc = 128± 7 m s−1) works better in that case (continuous line in figure 7d).

Anharmonic effects (appendix A) probably explain the decrease in the oscillation
period observed experimentally (figure 7e) and are naturally included in the
full equation of motion (modified Rayleigh–Plesset equation (4.9)). The latter
shows excellent agreement with direct measurements of the R(t) bubble dynamics
(figure 7f ).The fact that the experimental datapoints sit above the theoretical curve
before and after t × f ∗ ' 1 is probably due to the fact that dissipation is not taken
into account in (4.9).

Finally, the typical number of oscillations (5–6) from the experimental recordings
(figure 7c) is in excellent agreement with the prediction of a quality factor Q' 6 for
acoustic dissipation (see § 4.3), which supports our conclusion that acoustic damping
is dominant over viscous and thermal damping for fully confined bubbles.

We emphasize here the excellent agreement between the experimental data and
the model without adjustable parameters. Since cavitation bubbles in experiments are
unlikely to be centred in the cavity, this good agreement suggests that corrections
due to off-centred bubbles, as discussed in § 5.3 below, are small.
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5.3. Size, shape and position of the bubble and cavity
We have used linear expansions of the equation of state for 1P0, assuming that the
relative volume changes of the liquid and of the cavity were small. These changes are
of the order of Vb/Vc, leading to a condition of validity (Rb/Rc)

3
� 1. As mentioned

in § 1, this condition is not very restrictive. For example, in the cavitation experiments
reported in § 5.2, (Rb/Rc)

3
= x3

eq ' 0.03. We note that larger bubble sizes can in fact
be accommodated in our model by taking as a reference state not the value R= 0 but
a non-zero value for which the bubble has a volume Vref . In this case, equations (2.9),
(3.1) and (3.2) have to be changed to K=K`/([1− x3

ref +K`/Kc]), Vc=V0+κ(V−Vref )

and ρ= ρref [1− κ(x3
− x3

ref )− x3
ref ]/[1− x3

], respectively, where we have defined x3
ref =

Vref /V0 and κ =K/Kc.
The hypothesis of a bubble at the centre of the confining cavity is not necessary for

the static calculation of the potential F(R), but matters for the kinematic calculation
of the effective mass. Indeed an oscillating bubble in an off-centred position would
generate a non-radial flow field, resulting in a modified effective mass compared to
our radial calculation. Although the calculation of this effect is quite complicated
and outside of the scope of this article, the good agreement between our model and
experimental results suggest that this effect might be weak (see § 5.2). In fact, for an
unconfined bubble in the vicinity of a wall, the kinetic energy (and thus the effective
mass) is decreased by approximately 20 % at maximum (Strasberg 1953).

We have assumed that both bubble and cavity were spherical. In fact, the two
most important contributions to the free energy in fully confined situations (liquid
compressibility and solid deformability) only depend on volume (V) change, so these
hypotheses can be relaxed by defining the radii (R) of both bubble and cavity as
R= [3V/(4π)]1/3. In the statics and potential energy calculations, such a substitution
should be valid provided that the surface tension term is modified as well, and the
value of Kc adapted to the specific geometry of interest too. For the dynamics, a
non-spherical bubble or cavity create non-radial flow fields and the substitution is
thus less straightforward.

5.4. Quasi-static hypothesis
To calculate the kinematics and dynamics (§§ 3 and 4), we have assumed that the
bubble was evolving quasi-statically, and in particular that the density was uniform in
the liquid during the oscillation. We have verified that for small amplitude oscillations,
the predictions of our model were in excellent agreement with an acoustic calculation
taking into account spatial pressure and density variations around a finite-size bubble
in rigid confinement (appendix C). For larger oscillations, we expect that our modified
Rayleigh–Plesset equation still describes the dynamics well, as it includes all the
essential physics (modified kinematics, temporal density variations, nonlinearity of
the potential, compressibility of liquid and solid phases etc.), but would need to
include second-order corrections to be exact. The good agreement between our model
and the available experimental data (§ 5.2) suggests that these corrections are small,
but experimental errors make it difficult to quantify them precisely. This opens
perspectives for future experimental and simulation work to clarify these questions.

It may seem surprising that our mean-field approach compares so well with acoustic
calculations. Below, we provide suggestions that might explain this success. First, as
discussed in § 4.2, due to the low compressibility of the liquid, density variations are
small. As a result, a spatially varying density should have only weak effects on the
velocity profile calculated for the kinematics (§ 3), which is mainly constrained by
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the boundary conditions at the bubble surface and at the cavity surface (see figure 5).
Second, it is also reasonable to think that the elastic response of the liquid and of
the solid as they are compressed and stretched during bubble oscillation (i.e. the
main contribution to the stiffness for fully confined bubbles) is mainly sensitive to
global deformations and not to details of the density distribution associated with
these global deformations. Last, we expect gradients of pressure and density during
the oscillation to be located in the vicinity of the bubble surface so that most of the
liquid volume achieves values of these parameters close to the average ones. The
results of appendix C also suggest that the acoustic wavelength, which describes the
typical distance across which the fields are expected to vary, is large compared to
the cavity size.

5.5. Thermal effects
To allow for simple comparison with established formula of bubble dynamics and
nucleation theories, we have assumed that the system behaved isothermally. While this
hypothesis may seem questionable in regard to the very fast dynamics associated with
confined bubbles, we show below that this choice has little impact on the predicted
dynamics, and we suggest alternative expressions for adiabatic behaviour.

For fully confined bubbles, the key mechanical ingredients setting the dynamics are
the bulk modulus K` of the liquid and the confinement modulus Kc which depends on
the solid shear modulus G. These moduli depend weakly on the thermodynamic path
of the transformations. For example, for water in the temperature range 20–30 ◦C,
K` (isothermal) differs from K`,S (adiabatic) by less than 1.5 % (Del Grosso &
Mader 1972; Kell 1975). In fact, due to the large heat capacity of the liquid, it is
reasonable to assume an isothermal evolution outside of the bubble. However, in
the case where the bubble contained trapped gas, this gas can undergo isothermal
to adiabatic transformations depending on the oscillation frequency and the size
of the bubble (Brennen 1995). This is usually taken into account by considering
a polytropic exponent kp (varying between kp = 1 for purely isothermal and the
exponent γa = Cp/Cv for purely adiabatic transformations). The gas pressure follows
pg(R) = pg,eq(Rb/R)3kp resulting in a contribution kp × pg,eq instead of pg,eq in the
oscillation stiffness. We expect that using such a substitution in our expression of Kb
(4.2), and using the polytropic variation of pg in the Rayleigh–Plesset equations (4.9),
(4.11) should allow describing dynamics in non-isothermal situations.

5.6. Liquid superstability
The results from § 2.2.1 predict that no nucleation is possible in a liquid at negative
pressure if the liquid is confined to a sufficiently small volume, because compressing
the liquid (and/or solid) to grow the bubble is unfavourable. Equivalently, from (2.16),
for a given confinement radius Rc, the liquid is stable if the tension is low enough,
i.e. the negative pressure in the liquid 1P0 is above a value

(1P0)t =−

(
8σ 3K
R3

cγt

)1/4

. (5.2)

Using the properties of water σ = 0.072 N m−1 and K = 2.2 GPa (assuming
an infinitely stiff confinement), one obtains the numerical values of figure 8(a)
(continuous line). Also plotted as a dashed line is the value (1P0)s obtained by
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FIGURE 8. (Colour online) (a) Liquid superstability with respect to nucleation in
confinement. The continuous line is the transition line above which the liquid is absolutely
stable (5.2), and the dashed line is the spinodal line above which the homogeneous
liquid is the only possible equilibrium solution (equation (5.2) with γs instead of γt).
(b) Spontaneous collapse of pre-existing bubbles in confinement. Continuous and dashed
lines have the same signification as in (a) and correspond to (5.4) and (5.5), respectively.

replacing γt by γs in (5.2). This other transition line corresponds to the disappearance
of the bubble solution and thus corresponds to a spinodal beyond which the negative
pressure liquid is not only stable, but the only state accessible in the system. As seen
on figure 8(a), the two transitions are close. This superstabilization effect was noticed
by MacDowell, Shen & Errington (2006) and later by Vincent (2012), Wilhelmsen
et al. (2014) for nucleation in small systems with fixed volume and number of
particles. The present model considers a more general case with elastic confinement
and trapped gas, as well as dynamic situations.

Due to superstabilization, nucleation is suppressed not only when the confinement
size is less than the critical radius R∗, as often argued in the literature (Or & Tuller
2002; Tas et al. 2003), but even at much larger dimensions in fully confined situations.
Indeed, combining (2.21), (2.12) and (5.4) yields the ratio(

Rc

R∗

)
t

= 2
(

2K
−1P0

)1/3

(5.3)

below which a liquid at negative pressure 1P0 is absolutely stable. With typical
negative pressures in the MPa range and liquid/solid bulk moduli in the GPa range,
this ratio is typically larger than 10.

The superstabilization effect should be still present in situations where the liquid
is not strictly trapped in the cavity but where the time scales of liquid flow in and
out of the cavity are long compared to bubble dynamics time scales. This criterion is
verified in experimental systems consisting of microcavities surrounded by polymer
hydrogels (Wheeler & Stroock 2008, 2009; Vincent et al. 2012, 2014a) or porous
silicon (Vincent et al. 2014b). These controlled platforms might thus provide ways
to investigate the superstabilization effect experimentally. In such systems, cavitation
typically spontaneously occurs at −20 MPa (Wheeler & Stroock 2008; Vincent et al.
2014b). According to figure 8(a), a full confinement of dimensions Rc ' 100 nm and
below would suppress cavitation at that value of negative pressure. This dimension is
clearly associated with experimental challenges for the fabrication and observation of
submicrometre cavities, but could open perspectives to study the behaviour of liquids
in large tensions usually not accessible due to spontaneous cavitation.
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5.7. Spontaneous bubble collapse
The results discussed above also predict that, in full confinement, no bubble can exist
below a certain size: there are only solutions for the existence of a bubble above
Rs = 4R∗/3 and this solution is only metastable between Rs and Rt = 2R∗ (figure 4(a)
and (2.21)). We eliminate R∗ then 1P0 from these expressions using (2.12) and (2.17),
respectively. Solving for Rb = Rt using (2.21), we obtain

Rt

Rc
=

(
2σ

RcK

)1/4

, (5.4)

where we have expressed the result in terms of ratio to the size of the confinement.
Similarly, using (2.23) we obtain

Rs

Rc
=

(
2σ

3RcK

)1/4

, (5.5)

where it can be noticed that Rt = 31/4Rs ' 1.32 Rs. Equation (5.5) establishes the
smallest bubble that can exist in a container of size Rc. As can be seen in figure 8(b),
where the transition line Rt is plotted as a full line and the spinodal line Rs is plotted
as a dashed line using the values of σ and K for water (see above), containers in the
sub-µm range do not allow bubbles that are smaller than typically 10–20 % of their
own size.

This effect can be important in the context of geological fluid inclusions where the
static evolution of bubbles is used to determine the properties of the naturally enclosed
liquid (Marti et al. 2012). In such studies, the sample is heated up until the existing
bubble disappears from the thermal expansion of the liquid. The effect described here
leads to a premature spontaneous collapse of the bubble when it reaches Rs and may
thus induce artefacts in the estimate of the homogenization temperature (Marti et al.
2012). One may also wonder if the spontaneous collapse of bubbles could also play
a role in the debated phenomenon of spontaneous refilling of embolized tree vessels
(Holbrook & Zwieniecki 1999; Stroock et al. 2014).

6. Conclusion
Fully confined bubbles, i.e. bubbles in a liquid in a solid (extended or in the form

of a shell), are unique because any change in their size must be accommodated by
compression or stretching of the liquid and/or deformation of the solid. As we showed
in this article, this simple statement has many implications, both for the statics and
the dynamics of those bubbles.

In static situations, confinement only modifies Blake’s threshold (gas parameter α)
in a weak manner, but is responsible for the superstability of confined liquids which
may become absolutely stable even at negative pressure, and for the spontaneous
collapse of confined bubbles towards a homogeneous, negative pressure liquid. These
phenomena are governed by the static confinement parameter γ and result from the
interplay of surface tension and the deformability of both the liquid and the solid.

In dynamic situations, confinement has several implications. First, it decreases the
system inertia by imposing a faster radial decrease of the liquid velocity, controlled
by the dimensionless elastic parameter κ . Infinitely stiff confinements (κ = 0) provide
the strongest correction compared to a bubble in an extended liquid whereas for soft
confinements (κ ' 1), this decrease can be compensated by the inertia of the moving
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solid. Second, confinement forces the involvement of both liquid compressibility and
solid deformability in the stiffness of the system, in addition to the contributions of
inner gas and surface tension. We showed that the interplay between these elements
resulted in a picture with some stiffnesses in series and others in parallel, with
relative contributions characterized by the dynamic confinement parameter ξ . In
particular, for ξ � 1, the liquid and solid deformabilities dominate the stiffness
of the system, resulting in order-of-magnitude increase of the oscillation frequency
compared to unconfined bubbles. An interesting consequence of this fast dynamics
is the largely increased contribution of acoustic damping compared to viscous and
thermal dissipations.

We have shown that the predictions of our model were in excellent agreement with
recent experiments (with parameters α = 0, γ � 1, κ = 0.7 and ξ � 1), and we have
also discussed how the generality of our dynamic equations allow us to describe a
variety of situations including bubbles in drops, or bubbles in liquids confined in soft
or rigid shells, by using appropriate values for the dimensionless parameters.

Appendix A. Anharmonic corrections
We evaluate the effect of the anharmonicity of the potential for ξ � 1. In this

regime, from (2.10), the potential takes the simple form

F(R)= Fb

(
R
Rb

)3
[(

R
Rb

)3

− 2

]
= Fb

[(Rb

Rc

)3

− 1

]2

− 1

 , (A 1)

with Fb = (1/2)Vb(−1P0) = (1/2)(Vc/K)1P2
0 where Vb is the equilibrium bubble

volume and Vc is the cavity volume. Comparing equation (A 1) to its quadratic
approximation (see figure 9), it is clear that considerable deviations must occur for
large oscillations compared to the harmonic behaviour. The effective mass itself is also
not a constant as a function of bubble radius and typically grows as R3 (e.g. (3.14)).
Both effects are antagonistic: while the stiffness increases above Rb, increasing the
oscillation frequency, the effective mass also increases, which decreases the oscillation
frequency.

We first neglect the mass contributions (φ = 1) and we consider an oscillation of
amplitude 1R between a radius Rmin and a radius Rmax while the free energies at these
radii are F(Rmin)= F(Rmax)=−Fb + δF, where Fb is the potential well depth defined
above and where δF represents the energy above equilibrium (see figure 9a). From
the conservation of the total energy Ek + F(R),

1
2

4πρR3

(
dR
dt

)2

+ F(R)=−Fb + δF. (A 2)

Extracting dt from this equation allows us to calculate the value of half a period
by integration between Rmin and Rmax. We define the parameters θ =

√
δF/Fb, which

quantifies the energy of the oscillations relative to the potential well depth, and u=
[(R/Rb)

3
− 1]/θ so that u varies monotonically between −1 and 1 when R varies

between Rmin and Rmax, and [F(R) + Fb]/δF = u2 from (A 1). We finally obtain the
total period

T = T0

∫ 1

−1

du

π
√

1− u2
(1+ θu)−1/6, (A 3)
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FIGURE 9. (Colour online) Anharmonic effects. (a) Thick black line: shape of the
potential F(R) from (A 1), dashed line: harmonic approximation (see § 4.1). The blue
arrow represents the oscillation for an energy δF, corresponding to an oscillation amplitude
1R. (b) Oscillation period as a function of 1R. Green squares correspond to simulations
with the simplified case m = m∞, while red circles corresponds simulations in the rigid,
confined case m=φ×m∞ (fitted with T /T0' 1+ (1R/Rb)

2/6, thin red line). Thick green
line: theoretical period from (A 3), thin green line: Borda formula with m=m∞ (A 5).

where T0 = 1/f0 is the small-amplitude period (T0 = 1/f0 from (4.6)). Using
F(Rmin,max) = −Fb + δF we also get Rmin,max = Rb(1 ∓ θ)1/3 so that the amplitude
of the oscillations is

1R= Rb
[
(1+ θ)1/3 − (1− θ)1/3

]
, (A 4)

which we develop to the lowest order into 1R' 2θRb/3. Using the same procedure
on (A 3) leads to T ' T0(1+ (7/144)θ 2). Combining these two expressions leads to
a generalized Borda formula (in analogy with pendulum mechanics)

ζ =
T
T0
' 1+

7
64

(
1R
Rb

)2

, (A 5)

which represents the nonlinear correction at the lowest order. This prediction is plotted
as a thin green line of figure 9 where we also plotted the exact solution by numerical
integration of (A 3), see the thick green line. We note that the maximum oscillation
amplitude is obtained for δF = Fb or θ = 1. From (A 4), this occurs when 1R/Rb =

21/3
' 1.26.

We have assumed up to now that the effective mass was m∞ = 4πρR3 whereas
confinement induces a correcting factor φ that depends on R and thus introduces
additional nonlinearities. In order to evaluate the importance of this effect, we use
results of simulations of the complete equation of motion using m(R)= φm∞ in the
case of a rigid confinement (K=K`), for which the effective mass deviates most from
the unconfined case (see § 3). Results are displayed as red data in figure 9, showing
that the effective mass corrections introduce further deviations from the harmonic
behaviour. In general, a system where confinement is not fully rigid has an effective
mass comprised between the effective mass of a bubble in an infinite liquid and that
of a bubble in a rigid confinement. We thus expect that the green and red data bound
the possible nonlinear corrections to the oscillation period.
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Appendix B. Special cases of the confined Rayleigh–Plesset equation
Here we show that our modified Rayleigh–Plesset equation for fully confined

bubbles admits established results as limiting cases, namely softly confined cases
where the confinement cavity is much more compliant than the liquid, so that the
latter can be considered as incompressible. This is the case in the calculations of
Fourest et al. (2015) who considered a bubble in a liquid confined in a soft shell,
assuming an incompressible liquid, and neglecting the inertia of the shell during
bubble dynamics. An extreme case is also the case of a bubble in a drop, where
the ‘confinement’ is made by air. This situation was considered by Obreschkow
et al. (2006). As discussed in § 3 here, the soft confinement hypothesis entails κ = 1,
resulting in ρ=ρ0 (constant liquid density) and φ= 1− x from (3.2) and (3.15), when
solid inertia is absent or neglected. As a result, dφ/dR = −dx/dR = −1/Rc(1 − x3)
from (4.12), or d ln φ/d ln R= (R/φ) dφ/dR=−x(1− x3)/(1− x). Thus, from (4.9)

RR̈+
(

3
2
−

1
2

x
1− x

(1− x3)

)
Ṙ2
=−

1P(R)
ρ(1− x)

, (B 1)

where we have noted 1P(R)=1P0 + K(R/Rc)
3 the liquid pressure as a function of

bubble size (neglecting surface tension and trapped gas). Multiplying by 1 − x and
rearranging the terms yields

RR̈+
3
2

Ṙ2
− xRR̈− 2xṘ2

+
1
2

x4Ṙ2
=−

1P(R)
ρ

, (B 2)

which is exactly the equations derived by Obreschkow et al. (2006), Fourest et al.
(2015). In the case of an air confinement such as in Obreschkow et al. (2006), there
is no elastic component in 1P(R) (K= 0, 1P constant), while a non-zero value of K
has to be used in the case of an elastic shell confinement as in Fourest et al. (2015).
The value of K for an elastic shell is discussed in § 2.1 here.

Appendix C. Acoustic calculation for small oscillations
Here we search, for a bubble of size Rb confined in a spherical cavity of radius

Rc, what is the condition for the existence of a bubble oscillation at pulsation ω =
2πf , linked to the establishment of acoustic waves in the cavity. We assume that the
cavity is perfectly rigid (K = K`) and that the oscillations are of small amplitude so
that fluctuations of pressure around equilibrium can be described by the acoustic wave
equation C2

`∇
2p= ∂2p/∂t2 where C` =

√
K`/ρ is the velocity of sound in the liquid.

In a radial symmetry, the solutions take the form (Landau & Lifshitz 1987)

p(r, t)=
(

A
r

eikr
+

B
r

e−ikr

)
e−iωt, (C 1)

where k` = 2π/λ = ω/C` is the wave vector in the liquid, and where A and B are
complex constants. The velocity v = v(r)ur is deduced from the Euler equation
ρ∂v/∂t=−∇p, which gives −iωρv=−∂p/∂r using the notations defined above, and

v(r, t)=
i
ρω

(
A
[

1
r2
−

ik`
r

]
eik`r + B

[
1
r2
+

ik`
r

]
e−ik`r

)
e−iωt. (C 2)

The boundary conditions are p(R)= 0 at the bubble wall and v(Rc)= 0 on the solid
wall. This allows us to determine A=−Be−2ik`R from equations (C 1) and (C 2), and
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FIGURE 10. (Colour online) (a) Comparison between the acoustic predictions and our
quasi-static model for D = f × Rb as a function of the dimensionless equilibrium radius
x=Rb/Rc. Inset: ratio between the acoustic and quasi-static models. (b) Spatial variations
of the pressure (top), and the velocity (bottom), calculated with the acoustic (black dots)
and quasi-static (red line) models.

to establish the necessary condition for the existence of stationary waves in the liquid
as tan(k`[Rc − Rb])= k`Rc or

tan
(

2πD
C`x

[1− x]
)
=

2πD
C`x

, (C 3)

where we have used the notations x = Rb/Rc and D = f × Rb. This equation has
an infinite number of solutions, corresponding to different modes of oscillation. We
consider only the lowest non-zero frequency mode corresponding to the natural
frequency and compare the solution for D(x) to the prediction of our quasi-static
(QS) model:

D=
C`

2π

(
3
φ

)1/2

x3/2 (C 4)

using (4.4) with φ the kinetic correction factor as defined in § 3, with K =K` = ρC2
` ,

and neglecting surface tension or trapped gas (Kb = 0).
As can be seen in figure 10(a), the agreement between the acoustic and the QS

approaches is excellent, with a difference of less than 1 % for x = 0–0.44. The
predictions start diverging more visibly for higher values of x, a regime outside the
domain of validity of our hypothesis of small bubbles (see §§ 1 and 5.3).

Injecting A and B in (C 1) and (C 2), we also find

p(r, t)= 〈p(t)〉
1− x3

3x
k`R2

c

r
sin(k`(r− R)), (C 5)

v(r, t)= Ṙ(t)
x

k`Rc

((
Rc

r

)2

sin (k`(r− R))− k`Rc

(
Rc

r

)
cos (k`(r− R))

)
, (C 6)
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where 〈p(t)〉 represents the spatial average of the liquid pressure at time t. The
variables 〈p〉 and Ṙ are determined by the amplitude of vibration of the bubble radius:
if we note R(t)= Rb +1R0 cosωt, then 〈p(t)〉 = 3ρC2

`(x
2/1− x3)(1R0/Rc) cosωt and

Ṙ(t)=−1R0ω sinωt.
The comparison between the previous acoustic predictions and the quasi-static

model is presented in figure 10(b), showing excellent agreement concerning the
velocity field. Concerning pressure, most of the pressure gradient is located in a
shell of liquid close to the bubble which represents a small volume of liquid due
to the spherical geometry. Therefore most of the liquid volume is at a pressure that
differs only slightly from the average. It is also instructive to calculate the ratio
of the wavelength λ = C`/f to the cavity size Rc: from (C 4), λ/Rc = 2π

√
φ/(3x),

which approximates to 10 for x = 0.1, 6 for x = 0.25 and 3 for x = 0.5. For the
bubbles considered here, the wavelength is thus large compared to the liquid, and the
deviation between the mean-field predictions and the acoustic ones for x> 0.5 might
come from the fact that λ and Rc are becoming similar in that regime.
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