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We study numerically the steady creeping motion of Bingham liquid plugs in two-
dimensional channels as a model of mucus behaviour during airway reopening in
pulmonary airways. In addition to flow analysis related to propagation of the plug,
the stress distribution on the wall is studied for better understanding of potential
airway epithelial cell injury mechanisms. The yield stress behaviour of the fluid was
implemented through a regularized constitutive equation. The capillary number, Ca,
and the Bingham number, Bn, which is the ratio of the yield stress to a characteristic
viscous stress, varied over the ranges 0.025–0.1 and 0–1.5, respectively. For the range
of parameters studied, it was found that, while the yield stress reduces the magnitude
of the shearing along the wall, it can magnify the amplitude of the wall shear stress
gradient significantly, and also it can elevate the magnitude of the wall shear stress
and wall pressure gradient up to 30 % and 15 %, respectively. Therefore, the motion
of mucus plugs can be more damaging to the airway epithelial cells due to the
yield stress properties of mucus. The yield stress also modifies the profile of the
plug where the amplitude of the capillary waves at the leading meniscus decreases
with increase in Bn. Other findings are that: the thickness of the static film increases
with increasing Bn; the driving pressure difference increases linearly with Bn; and
increasing Bn extends any wall stagnation point beneath the leading meniscus to an
unyielded line segment beneath the leading meniscus. With an increase in Bn, the
unyielded areas appear and grow in the adjacent wall film as well as the core region of
the plug between the two menisci. The plug length, LP, mostly modifies the topology
of the yield surfaces. It was found that the unyielded area in the core region between
the two menisci grows as the plug length decreases. The very short Bingham plug
behaves like a solid lamella. In all computed liquid plugs moving steadily, the von
Mises stress attains its maximum value near the interface of the leading meniscus in
the transition region. For Bingham plugs moving very slowly, Ca→ 0, the driving
pressure is non-zero.
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FIGURE 1. A schematic from the domain of calculation for the steady motion of a liquid plug
in a two-dimensional channel.

1. Introduction
Liquid plugs can be formed in airways through the introduction of liquids into

liquid-lined conduits, accumulation due to cough or gravity-driven drainage, or
Rayleigh instability of the coating liquids in such conduits (Burger & Macklem
1968; Everett & Haynes 1972; Kamm & Schroter 1989; Halpern & Grotberg 1992;
Bian et al. 2010; Tai et al. 2011). In addition, the spaces between consecutive gas
bubbles in Taylor flow (Shao, Gavriilidis & Angeli 2009) are filled by liquid plugs.
Liquid plugs are formed in the lung under a variety of circumstances, including
disease states that cause an excess of liquid there, or reductions of surfactant activity,
which increases the surface tension. As a result, they block the gas exchange in
some sections of the lung. Understanding the mechanisms involved in the formation
of mucus plugs in the respiratory airways, however, requires a separate study. The
blocked airways can be reopened through introducing a critical driving pressure
difference across the plug. The reopening procedure, however, can cause the injury
of epithelial cells that cover the surface of the airway. Plug propagation due to the
pressure difference induces stresses and stress gradients along the wall, which can lead
to lethal damage of the epithelial cells (Huh et al. 2007; Tavana et al. 2011). For
Newtonian plugs with capillary number Ca < 0.05, the most damaging feature is the
leading meniscus region where a capillary wave extends ahead and creates the thinnest
film location with the highest stresses and stress gradients. The distribution of the
boluses of liquid drugs during surfactant replacement therapy (SRT) (Long et al. 1991;
Halpern, Jensen & Grotberg 1998; Espinosa & Kamm 1999; Waters & Grotberg 2002)
also involves propagation of the liquid plugs in the airway conduits.

Figure 1 shows a scheme of a liquid plug. It contains the fluid region between
a forward and backward gas finger confined by solid walls. The plug length is the
distance between the two menisci tips. While the leading and trailing menisci in a
liquid plug may represent the rear and front sections of a long bubble, the analysis of
a liquid plug is more general than a single long bubble, since in short plugs the two
menisci interact during the motion. In addition, the driving pressure difference between
the two menisci cannot be determined through studying any individual gas bubble.

Howell, Waters & Grotberg (2000), through an analytical study identified the critical
driving pressure for reopening of a flexible tube blocked by a Newtonian plug.
They showed that, for a given precursor film thickness, the critical driving pressure
decreases with decreasing hoop and longitudinal tube tension.

Fujioka & Grotberg (2004) studied numerically the steady motion of liquid plugs
consisting of Newtonian fluids in two-dimensional channels. The effects of fluid
inertia, viscous stresses and surface tension were examined in terms of three
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dimensionless numbers: capillary number, Ca, dimensionless plug length, LP, and
Reynolds number, Re. Their results show that the shape of the two menisci is affected
significantly by Ca and Re. For small and moderate Ca, capillary waves were observed
along the leading meniscus. The amplitude of the waves was shown to increase with
increasing Re or decreasing Ca. The results also show that the interaction between the
two menisci becomes significant when the dimensional length of the plug is less than
half the width of the channel and the fluid inertia is involved. The study also presents
the required driving pressure in term of Ca, Re and LP for steady motions.

Later Fujioka & Grotberg (2005), Zheng, Fujioka & Grotberg (2007) and Zheng
et al. (2009) included the effects of the gravity, surfactant and flexible walls into
their model for the steady motion. It turned out that each of those factors affects
the menisci shapes and the wall stresses significantly. The presence of the surfactant
(Fujioka & Grotberg 2005; Zheng et al. 2007) increases the minimum of the film
thickness and as a result it reduces the maximum wall shear stress. When gravity is
perpendicular to the wall (Zheng et al. 2007), it shifts the plug tips to a position
above the midline and as a result the plug becomes asymmetric with respect to the
channel centreline. The upper and lower halves interact by a fluid flow originating
from the upper trailing film, passing through the core region between two menisci and
then entering into the lower trailing film. The stresses are larger on the upper wall
and their amplitudes increase with increasing Bond, Bo, and Reynolds, Re, numbers.
The computational results of Zheng et al. (2009) show that the stress levels and their
gradients on the highly deformable walls are larger than those on the solid walls.
This suggests that, in diseases such as emphysema where the airway walls are more
deformable, the chance of epithelial cell injuries by the plug motion is higher.

Fujioka, Takayama & Grotberg (2008) also studied the transient propagation of a
liquid plug under a constant dimensionless driving pressure, 1π , in a liquid-coated
tube. The study showed that, depending on the values of the dimensionless parameters,
for 1π larger than a critical value the plug length decreases during the motion and
it eventually ruptures. For 1π lower than the critical value, however, the plug length
increases as it propagates and as a result it does not rupture.

In all previous work the plugs consist of Newtonian fluids. The inner side of the
respiratory airways, however, is covered by a non-Newtonian mucus layer, which rests
on a Newtonian serous layer. Mucus has a yield stress, one of its important non-
Newtonian properties. The liquid plugs in the airway that develop through the closure
mechanism, therefore, consist of non-Newtonian fluids with a yield stress. This would
lead to some major differences compared to Newtonian plugs during propagation.

Non-Newtonian fluids with a yield stress, τy, behave like solids below the yield
stress, while above it they behave like fluids. A few examples out of many are: blood
and mucus as biological fluids; ketchup and mayonnaise as food products; gels, pastes
and paints as goods in daily life; and nuclear waste suspensions as fluids arising
from a series of industrial processes. The macroscopic behaviour of the yield stress
fluids can be analysed with some accuracy via some proposed constitutive equations.
Among them, the simplest one is the constitutive equation for a Bingham fluid, i.e. the
Bingham equation. It assumes a linear relation between the viscous stress and the rate-
of-strain tensors for von Mises stresses above τy, while for von Mises stresses below τy

it assumes that the material behaves like a solid. Depending on the local value of
the stresses, this divides the material domain into the yielded and unyielded regions
with liquid- and solid-like behaviours, respectively. The Bingham equation introduces
a new dimensionless parameter, the Bingham number, Bn, which is an indicator of the
ratio of τy to a characteristic viscous stress. Herschel–Bulkley (Beaulne & Mitsoulis
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1997) and Casson (Fung 1984) are two other major constitutive equations for yield
stress fluids in which the stress–strain rate relationship above τy is not linear. In most
circumstances they represent the behaviour of the yield stress fluids in a better way.
However, they make the numerical simulations harder to perform.

To the best of our knowledge, there is no published work about the propagation of
Bingham plugs in conduits in the open literature. However, some investigators have
studied problems with some level of similarities in the past. We review some of them
in the following.

Dubash & Frigaard (2004), Potapov et al. (2006), Singh & Denn (2008),
Tsamopoulos et al. (2008) and Lavrenteva, Holenberg & Nir (2009) through different
approaches studied the rise of bubbles/drops in large containers filled by quiescent
viscoplastic fluids. They all found a critical τy below which buoyancy causes flow.
Lavrenteva et al. (2009) experimentally and Singh & Denn (2008) numerically showed
that the presence of a second bubble/drop within a critical distance extends the yielded
regions and eases the motion.

Dimakopoulos & Tsamopoulos (2003, 2007) numerically studied the transient
displacement of an advancing gas finger into a constricted tube and a tube with an
expansion at the inlet and a contraction at the outlet, filled by a Bingham fluid. They
showed that, similar to the Newtonian fluids, a layer of the fluid is deposited on the
wall as the finger advances through the tube. The thickness of the layer was shown to
be a function of Ca, Bn and Re. They also discussed the variation of the finger shape,
the location of the yield surfaces and the flow patterns.

Allouche, Frigaard & Sona (2000) studied a Bingham fluid finger propagating into
a vertical channel filled with a second Bingham fluid that is displaced. They restricted
their analytical and numerical investigations to creeping motion and negligible surface
tension. Interestingly, they found a range of parameter values where the finger leaves
a zero-thickness trailing film. Outside of this parameter range they predicted an upper
bound for the thickness of the trailing film for each set of parameters.

De Sousa et al. (2007) and Thompson, Soares & Bacchi (2010) studied numerically
the steady creeping motion of an advancing gas finger in a tube filled by power-law
or Bingham fluids. They demonstrated that the flow regime and the topology of the
yielded and unyielded regions are affected significantly by the dimensionless yield
stress. For some range of the dimensionless yield stress, the computed yield surfaces
were in contradiction with the Bingham fluid equation. They attributed this to the use
of small regularized parameters in their simulations. Their results indicate that, as the
gas finger advances, similar to the Newtonian fluids, a static liquid layer is formed
adjacent to the wall. It can be inferred from their results that the thickness of the static
layer increases with dimensional yield stress in some range.

All the aforementioned works dealing with an advancing finger resemble the trailing
meniscus and not the leading one in a liquid plug. In the bubble-related works, the
container is much larger than the bubble, so that the interaction between the bubble
and the walls is negligible. In addition, the background flow is stationary. Therefore,
to analyse the displacement of liquid plugs in conduits, some separate studies are
required. It is worth noting that the simulations of the propagation of the liquid
plugs are more challenging compared to those for advancing gas fingers owing to the
presence of the leading meniscus in the plugs.

For the particular case of respiratory airways, they are lined with a serous–mucus
bilayer. The serous layer is adjacent to the epithelial cells, and the mucus layer
is next to the air core. Mucus has a yield stress under normal health conditions
of 400–600 dyne cm−2, though it can become much higher in diseases such as
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asthma, emphysema and cystic fibrosis. When the plug forms, it can pull the flexible
airway into a flattened elliptical cross-section (Heil 1999a,b) with an aspect ratio up
to 20. Because of this geometry, a two-dimensional model is a representative of the
reopening process of the occluded airways.

In this study the steady creeping motion of a liquid plug in a two-dimensional
channel filled by a Bingham fluid is investigated numerically. (The current
computations can be repeated for axisymmetric tubes without any difficulties.) This
allows us to focus on the effects of non-Newtonian properties, which can later be
compared to a fully bilayer system undertaking a transient motion. In the absence of
fluid inertia and gravity, Bn, Ca and LP are the input parameters, while the velocity
and pressure field – and from them the fluid stresses on the wall – are to be computed.
This provides the required driving pressure for the steady motion as well. Particular
attention is given to the distribution of the stresses and their gradients along the wall
and their modification by the yield stress for better understanding of the epithelial cell
injury mechanisms in the respiratory airways.

2. Regularized constitutive equation
In the Bingham constitutive equation, the fluid tolerates any level of stress less than

a threshold, the yield stress, without any strain rate. (The elastic deformation below
the yield stress is neglected in this study.) Above the yield stress, it behaves as a
generalized Newtonian fluid. The constitutive equation was formulated by Oldroyd
(1947a,b) as τ ∗ =

(
µp + τy

γ̇ ∗

)
D∗, if |τ ∗|> τy,

D∗ = 0, if |τ ∗|6 τy.

(2.1)

In (2.1), τ ∗ is the viscous stress tensor, D∗ is the rate-of-strain tensor, µp is the
plastic viscosity, τy is the yield stress, γ̇ ∗ = √(1/2)D∗ijD∗ij is the strain rate, and
|τ ∗| =√(1/2)τ ∗ij τ ∗ij is the von Mises stress.

In the Bingham equation, the transition from a rigid solid to a viscous liquid on
a surface that is not known a priori produces significant difficulties in numerical
simulations. Therefore, computational studies commonly use regularized constitutive
equations instead of the Bingham equation to ease the difficulties (Allouche et al.
2000; Liu, Muller & Denn 2002; Dimakopoulos & Tsamopoulos 2003, 2007; de Sousa
et al. 2007; Singh & Denn 2008). The regularized equations are continuous and are
characterized by a regularization parameter. In this study we use a regularized method
suggested by Papanastasiou (1987) through the following equations:

τ ∗ = η∗D∗, (2.2)

η∗ = µp + τy

γ̇ ∗
(1− exp(−m∗γ̇ ∗)), (2.3)

where η∗ is the apparent viscosity and m∗ is the regularization parameter. For
large enough values of m∗, the regularized method resemble the Bingham equation.
Regularized equations are easier for programming. In addition, the obtained velocity
fields and free surface profiles from them converge with m∗. However, in general,
there is no guarantee for the convergence of the boundaries between the yielded and
the unyielded regions, i.e. the yield surfaces with m∗, for the regularized methods
(Burgos, Alexandrou & Entov 1999; Liu et al. 2002). In addition, as m∗ increases, the
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determination of the location of the yield surfaces become more sensitive to numerical
errors.

The yield criterion for the regularized method is given by the following relation:

|τ ∗|6 τy, unyielded,
|τ ∗|> τy, yielded.

(2.4)

The criterion is used to determine the yield surfaces.
The augmented Lagrangian method (Glowinski, Lions & Tremolieres 1981;

Glowinski 1984) is another approach to deal with the Bingham equation. Some
investigators (Vola, Boscardin & Latche 2003; Moyers-Gonzalez & Frigaard 2004;
Vola, Babik & Latche 2004; Zhang 2011) have used it for Bingham fluids recently and
resolved the yield surfaces more accurately compared to the regularized methods. To
the best of our knowledge, however, the method has not yet been implemented for free
surface problems of Bingham fluids with surface tension effects.

3. The governing equations and boundary conditions
Figure 1 shows a schematic of the domain of calculation for a liquid plug with

a length of L∗P including a leading and a trailing meniscus on the left and right,
respectively. Each meniscus includes a transition region where the distance between
the interface and the wall varies with x and a flat one where the distance is constant.
The plug under a constant driving pressure difference, 1p∗ = p∗1 − p∗2, is moving from
the right to the left with a constant speed, v∗tip, in a two-dimensional channel filled by
a Bingham fluid. Neglecting the gravitational force, only the lower half of the domain
is adequate for the analysis. To work with the steady form of the governing equations,
the frame of reference is attached to the tip of the plug. Owing to the small values
of the gas–liquid density and viscosity ratios, the effects of gas phase on the motion
of the liquid phase are negligible. Therefore, the conservation equations are not solved
for the gas phase. The effects of surfactants in liquid plugs on the liquid–gas surface
tension were neglected. As a result, the shear stress along the gas–liquid interfaces
is zero. The velocity components are scaled by v∗tip; the length dimensions by the
half-width of the channel, b; the pressure and stresses by µpv

∗
tip/b; the strain rate by

v∗tip/b; and the regularization parameter by b/v∗tip.
Then the dimensionless forms of the governing equations for the liquid phase with

constant properties are given by: continuity

∇ ·V = 0, (3.1)

cauchy momentum

−∇p+∇ · τ = 0, (3.2)

where the viscous stress tensor is calculated via Papanastasiou’s regularized equations
(Papanastasiou 1987), given by

τ = ηD, (3.3)

η = 1+ Bn

γ̇
(1− exp(−mγ̇ )). (3.4)

In the above equations, p is the pressure and Bn = τyb/µpv
∗
tip is the Bingham number,

which represents the ratio of the yield stress to a characteristic viscous stress.
The boundary conditions along the plug surface are: kinematic

V ·n= 0, (3.5)
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stress

− pn+ η(∇V + (∇V)T) ·n= κ

Ca
n− pin (i= 1, 2), (3.6)

where n is the normal unit vector, κ is the local curvature and Ca = µpv
∗
tip/σ is the

capillary number, which represents the ratio of a characteristic viscous stress to the
surface tension. The subscripts 1 and 2 stand for the gas phases adjacent to the leading
and trailing menisci, respectively.

At the wall, the inflow and outflow velocity components in the moving frame of
reference are

Vx = 1, (3.7)
Vy = 0. (3.8)

In the steady motion, the plug length, LP, remains constant and the two menisci
intersect the plane of symmetry with a right angle.
Ca, Bn and LP are the input parameters, while the profile of the two menisci along

with the velocity and pressure fields including 1p are to be computed. In most of the
simulations, m is 1000. We analyse the effects of the value of m on the results as well.

4. Numerical procedure
For numerical simulations a commercial package, ANSYS FIDAP, is used. The

governing equations are discretized with a finite element mixed-discontinuous standard
Galerkin formulation. In the utilized elements, V and p are interpolated with quadratic
and linear interpolation functions, respectively.

To resolve the free surface, we used the method of spines developed by Kistler &
Scriven (1984). In this method, the displacement of the computational nodes on the
free surface is restricted to be along some predefined lines, spines. The location of
each node on the free surfaces is then parametrized through its distance, di, from a
specific point along the spine, a base point. Velocity components and pressure for
all the nodes in the domain along with di for the nodes on the free surfaces are
the unknowns of the discretized system of equations and their boundary conditions,
(3.1)–(3.8). The values of di determine the shape of the free surfaces. To maintain the
quality of the mesh, the nodes beneath the free surfaces are also allowed to move
along the spines proportional to the displacement of the nodes on the free surfaces.
In some circumstances, choosing suitable directions for the spines is crucial so that
convergence is achieved. The final shape of the free surfaces, however, is independent
of the directions of the spines. Figure 1 shows a scheme from the computational nodes
on the free surfaces, spines and the base points. The resulting nonlinear system of
equations is solved by the quasi-Newton method. The inverse of the sparse Jacobian
matrix is computed by a skyline Gaussian elimination method.

All the nodes along the two interfaces, including the two end points and the two
tips, are allowed to move along the predefined spines. Bn and Ca are the input
parameters and 1p is iteratively adjusted so that the desired LP is obtained. There is
no extra condition to relate the displacement of the two end nodes. For the converged
solutions, however, the film thickness at the two ends turns out to be the same to
machine precision. This further demonstrates that the converged solutions satisfy the
conservation of mass to machine precision since Vx is set to 1 at the two ends by (3.7).

The inflow and outflow boundaries were put far enough from the two tips that their
locations do not affect the results. For the computed cases, it was observed that a
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distance of four times the channel width between the tips and the end boundaries is
adequate for this purpose.

The computational grid consists of ∼15 000–18 000 elements and 60 000–70 000
nodes depending on the values of the dimensionless parameters. The CPU time on
average for each case on a 2.53 GHz personal computer is ∼10 min. To achieve
the convergence through the quasi-Newton method, the simulations were done in
sequences with gradual variation in the dimensionless parameters. More specifically,
the solution for each case was used as an initial condition for the next. As Bn
became larger and LP became shorter, the dimensionless parameters were changed
more slightly from one case to the next so that convergence is achieved. Under
circumstances where the grids are highly distorted, the domain that includes the
correct shape of the interfaces was re-meshed manually and then computations were
repeated. We have not observed any recognizable differences between the shape of
the interfaces after and before the re-meshing. The regularized constitutive equation is
introduced through an ANSYS FIDAP user subroutine. More information regarding the
problem setup can be found in the user manual (ANSYS FIDAP 2003).

5. Range of the dimensionless parameters
For a steady motion, the dimensionless numbers, Bn and Ca, and Re in different

generations of the respiratory airways can be represented by the following relations:

Bn(n)= τyπd3
0/µpQ, (5.1)

Ca(n)= 4µpQ/π2n/3d2
0σ, (5.2)

Re(n)= 4ρQ/22n/3
πµpd0. (5.3)

In the above relations, n is the generation number, d0 is the diameter of the trachea,
and Q is the average breathing rate. In deriving the above relations, it was assumed
that the anatomy of the respiratory airways is determined by the Weibel model (Weibel
1963) through dn = d02−n/3, where dn is the diameter of the airways at generation n.
Also there are 2n airways in generation n according to the Weibel model (Weibel
1963). We also assumed that the liquid plug velocity is the same as the average air
velocity at each airway.

We choose d0 = 1.7 cm and Q = 500 cm3 s−1, which are average values for
adults. Typical values of mucus properties are: τy = 400 dyne cm−2, µp = 1 P,
σ = 80 dyne cm−1 and ρ = 1 g cm−3 (Bush et al. 2006). Using these dimensional
parameter values, Bn is constant for all generations and it is ∼1.5. However, Ca
and Re decrease with increasing n. For n > 14, which is the subject of this study, Re
is less than 1. Therefore, for the steady motion in those generations, the effects of
the fluid inertia can be neglected. At generations 1, 10 and 15, Ca/Re are 2.19/236,
0.27/3.7 and 0.086/0.6, respectively.

Based on the above assumptions, µpv
∗
tip/b, which is the stress and pressure scale

in this study, does not vary with n. As a result, the trends of variations of the
dimensional and dimensionless stresses and pressure with n are similar.

6. Results and discussion
In this section the results of a parametric study are presented. In most of the

examples, LP is 1, while the effects of the plug length on some of the results are also
discussed. The tip of the leading meniscus is always at x= 0.
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Variation of the plug
shape with Ca for a Newtonian case. The inset shows a close-up from the wavy region of the
leading meniscus.

Ca Current study,
Lp = 1

Fujioka & Grotberg (2004),
LP = 2

Reinelt & Saffman (1985),
semi-infinite finger

0.01 0.0540 0.0535 (0.9 %) 0.0540 (0 %)
0.10 0.1750 0.1790 (−2.2 %) 0.1760 (−0.6 %)
0.20 0.2277 0.2340 (−2.7 %) 0.2268 (0.4 %)

TABLE 1. Variation of h with Ca for a Newtonian plug in comparison with some previous
computational works.

Figure 2 shows the profile of a liquid plug for Ca = 0.01, 0.1 and 0.25, and
Bn= 0 and LP = 1. For Ca= 0.01, the two menisci are nearly symmetric, but capillary
waves are present on the transient region of the leading meniscus. The transient
sections are followed by two flat regions, liquid films, where the gradients of the
velocity components in both x and y directions are nearly zero. The increase in Ca
flattens and sharpens the leading and trailing menisci, respectively. The thickness of
the liquid film, h, increases and the amplitude of the capillary waves decreases by
increasing Ca. Table 1 favourably compares the computed film thickness with some
previous computational works for advancing gas fingers and liquid plugs.

The asymmetry in the plug shape under the Stokes flow condition is due to the
pressure difference between the two gas phases. The asymmetry in the plug shape
leads to the asymmetry in the profile of the wall shear stress, as we will demonstrate
later. It should be noted that, even for the Stokes flow condition, the problem is
nonlinear owing to the free surface boundary conditions.

Figure 3(a–c) show the profile of a liquid plug for different Bn and Ca = 0.025,
0.05 and 0.1 with LP = 1. The amplitude of the capillary waves along the leading
meniscus decreases with increasing Bn. The effect, however, becomes more profound
at larger Ca, as the ratio of the yield stress to the surface tension, Bn × Ca,
increases. This behaviour is consistent with the suppression of capillary waves with
increasing Ca in Newtonian plugs and bubbles, as demonstrated by Giavedoni &
Saita (1999), Fujioka & Grotberg (2004) and Feng (2009). The yield stress is a
component of the viscous stress; therefore increasing the yield stress enhances the
viscous effects against surface tension. The local interaction between the viscous stress
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FIGURE 3. (Colour online) Profile of a liquid plug for different Bn and Ca with LP = 1. The
insets show close-ups from the wavy region of the leading meniscus.

and the surface tension modifies the local pressure, and as a result the amplitude of the
waves decreases.

Figure 4 shows the variation of h with Bn for Ca= 0.025, 0.05 and 0.1 with Lp = 1.
Here h increases with increasing Bn for all Ca values. This is also consistent with
increase of h with Ca in Newtonian plugs. For Ca = 0.1 a cubic polynomial fits very
well (R2 = 0.9997 for a cubic polynomial fit for this case, where R2 is defined as the
ratio of the sum of the squares of the regression and the total sum of the squares)
for variation of h with Bn for the range of computed data. For the two other Ca, the
variation of h with Bn is nearly linear for the range of provided data. At Bn= 1.5, h is
∼20 % larger than that for the Newtonian fluid for all three values of Ca.

Figure 5 shows the variation of 1p with Bn for Ca = 0.025, 0.05 and 0.1. For
the range of parameters studied, the variation of 1p with Bn for all three values of
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FIGURE 4. (Colour online) Variation of h with Bn and Ca, with LP = 1.
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FIGURE 5. (Colour online) Plot of1p for different Bn and Ca, with LP = 1.

Ca is linear. The increase in 1p with Bn is due to the yield stress, which has to
be overcome during the motion. At Bn = 1.5, 1p increases ∼28 %, 35 % and 44 %
compared to the Newtonian fluid for Ca = 0.025, 0.05 and 0.1, respectively. Owing
to the surface tension effect, the dimensional 1p increases for lower generations
(larger n) where Ca is smaller.

Figure 6(a,b) show the velocity vectors, streamlines and contours of Vx for liquid
plugs with Ca= 0.1, Lp = 1 and Bn= 0 and 1.5, respectively. Only the areas covering
the core flow between the two menisci and the regions around the transient sections
of each meniscus were plotted. For the Newtonian fluid, there are two counter-rotating
vortices in the core region between the two menisci. For Bn = 1.5, however, the
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FIGURE 6. (Colour online) Velocity vectors, streamlines and contours of Vx for
(a) Newtonian and (b) Bingham liquid plugs. Bottom half: velocity vectors. Top half:
contours of Vx and streamlines.

fluid velocity is nearly zero in this region. This suggests that the region is unyielded.
The value of |dVx/dx| is larger in the region beneath the transient section of the
leading meniscus in the Newtonian fluid. This is consistent with the suppression of
the capillary waves at the leading meniscus by the yield stress. Contours of Vx and
streamlines are more curved in the lower part of the core flow between the two
menisci, 0.2 < x < 0.8 and 0.2 < y < 0.5 / 1.5 < y < 1.8 for the Newtonian fluid. This
is due to the larger local apparent viscosity of the Bingham fluid compared to the
viscosity of the Newtonian fluid. The deviation from the Newtonian patterns is less
visible for the two other smaller Ca values, which have not been plotted here. This
trend is expected, as Bn × Ca (which is the ratio of the yield stress to the surface
tension) becomes smaller for the other Ca.

Figures 7(a–c) and 8(a–c) show the profiles of D12 and τ12 along the wall for
different Bn and for Ca = 0.025, 0.05 and 0.1 with LP = 1. The value of nearly all
maxima of |D12| decreases with increasing Bn. Also, the wavy regions of the profile
of D12, which are beneath the front meniscus, −2 < x < −1.5 and 0 < x < 2, become
flatter with increasing Bn. These are all due to the larger apparent viscosity of a
Bingham fluid compared to a Newtonian one.

The reduction of |D12|, however, does not necessarily lead to the decrease in |τ12|.
From (3.3) and (3.4) it can be deduced that the wall shear stress in the yielded regions
for a large value of m is

τ12
∼= D12 + Bn, τ12 > Bn, (6.1a)

τ12
∼= D12 − Bn, τ12 6−Bn. (6.1b)
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FIGURE 7. (Colour online) Profile of D12 along the wall for different Bn and Ca, with
LP = 1: (a) Ca= 0.025,Lp = 1; (b) Ca= 0.05,Lp = 1; (c) Ca= 0.1,Lp = 1. The insets show
close-ups of the line segments where D12 changes its sign.

At any point in the yielded regions, then, the wall shear stress is the sum of the
yield stress, which is Bn (−Bn for the negative stresses) non-dimensionally, and the
shearing due to D12. This leads to some qualitative differences in the profiles of D12

and τ12, where at some points |D12| decreases while |τ12| increases with increasing
Bn. The maximum of |τ12| beneath the leading meniscus remains nearly unchanged
with the variation of Bn for all three values of Ca. The maximum of |τ12| beneath
the trailing meniscus, however, increases with increasing Bn and the increase becomes
more profound as Ca gets larger. For example, at Ca= 0.1, for Bn= 1.5, |τ12| is 27 %
larger than that for Bn= 0. This shows that, beneath the trailing meniscus, the increase
in |τ12| with the yield stress dominates over its decrease with the shearing.

For all computed values of Bn, the global maximum of |τ12| for Ca = 0.025 and
0.05 is at some points beneath the leading meniscus, while for Ca = 0.1 it is beneath
the trailing one. The increase in Bn leads to an increase in the maximum of |τ12|
beneath the trailing meniscus, though it does not significantly alter the value of the
maximum beneath the leading meniscus, so the global maximum of |τ12| may shift
from the front to the back in some cases solely due to the yield stress. Figure 8(d)
shows that for the Newtonian fluid with Ca = 0.06, the global maximum of |τ12| is
at a point beneath the leading meniscus where x = −0.73, while for the same Ca
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FIGURE 8. (Colour online) Profile of τ12 along the wall for different Bn and Ca, with LP = 1:
(a) Ca= 0.025,Lp = 1; (b) Ca= 0.05,Lp = 1; (c) Ca= 0.1,Lp = 1; (d) Ca= 0.06,Lp = 1.

and Bn = 1.5, the global maximum occurs at a point beneath the trailing meniscus
where x= 1.44.

The insets in figure 7(a–c) show the close-ups of the regions where D12 changes
its sign at the wall. While for the Newtonian fluid, D12 changes its sign as it passes
through a single point with D12 = 0, the stagnation point, the change in sign of D12 for
the Bingham fluid occurs at the two sides of a line segment where D12 is almost zero,
e.g. −0.52 6 x 6−0.42 in figure 7(c) for Ca= 0.1 and Bn= 1.5. The line segment in
fact is an unyielded region according to the yield criteria for the regularized method.
The length of the segment increases with increasing Bn or Ca. Therefore, in Bingham
fluids (approximated by a regularized method), instead of a single stagnation point
beneath the leading meniscus on the wall, there is an unyielded line segment.

Another important quantity regarding epithelial cell injuries is |dτ12/dx| (Bilek, Dee
& Gaver 2003). Increase in |dτ12/dx| caused by any mechanism can be a major
contributor to injuries of the epithelial cells.

Figure 9(a–c) show close-ups of τ12 at the unyielded line segments. It is inferred
that |dτ12/dx| increases significantly in those line segments (where |dD12/dx| is almost
zero) compared to the neighbouring areas and the rest of the wall. The increase of
|dτ12/dx| in those segments is not because of an increase in |dD12/dx| but is due
to the sharp variation of τ12 across the segments. The profile of τ12 in the core
of the unyielded line segments looks to be linear, varying from Bn to −Bn despite
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FIGURE 9. (Colour online) Profile of τ12 along the unyielded line segment where D12
changes its sign: (a) Ca= 0.025,Lp = 1; (b) Ca= 0.05,Lp = 1; (c) Ca= 0.1,Lp = 1.

the low-amplitude oscillations due to the sharp gradient of the apparent viscosity.
Therefore the value of |dτ12/dx| in the unyielded segments can be approximated by
2Bn/Lus, where Lus is the length of the unyielded segment. The value of Lus increases
with increase in Bn or Ca, as shown in figures 7(a–c) and 9(a–c). Therefore, the
maximum of |dτ12/dx| increases with decreasing Ca. This indicates that the airway
walls at the lower generations (larger n, smaller Ca) experience greater gradients of the
shear stress. The trend of variation of |dτ12dx| with Bn, however, cannot be speculated
without computation. We need to emphasize that in general Lus depends on m as it
decreases with increasing m. This would enhance the aforementioned effects of Bn
and Ca on the maximum of |dτ12/dx| along the wall.

As Bilek et al. (2003) and Kay et al. (2004) explain, |dp/dx| along the wall
is another quantity significantly affecting epithelial cell injuries in the respiratory
airways. Figure 10(a) shows the profile of p along the wall for Ca = 0.1 and
different Bn with LP = 1. The profile of p varies dramatically beneath the leading
and trailing transitions owing to the surface tension and geometry effects. Beneath
the films, where the shear stress is small, the profile of p is flat. For each Bn value,
examination of the data reveals that the global maximum of |dp/dx| again is at a
point inside the unyielded line segment beneath the leading meniscus. For Ca = 0.1,
the magnitude of the global maximum increases ∼15 % at Bn = 1.5 compared to
that for the Newtonian fluid. Figure 10(b) shows the profile of p along the wall
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FIGURE 10. (Colour online) Profile of p along the wall for LP = 1: (a) variation with Bn, for
Ca= 0.1; (b) variation with Ca, for Bn= 1.5.

for Bn = 1.5 and different Ca with LP = 1. Examination of the data shows that
the global maximum of |dp/dx| increases significantly with decreasing Ca owing to
surface tension effects. Examination of the data shows that, for Bn = 0 and 1.5, the
global maximum increases by a factor of 5 and 4.5, respectively, when Ca decreases
from 0.1 to 0.025. This indicates that the airways at the lower generations (larger n)
experience larger dimensional pressure gradients.

We again emphasize that the maximum values of |dτ12/dx| and |dp/dx| in general
depend on m. Therefore, the trend of the variation of |dτ12/dx| and |dp/dx| with Bn
and Ca should be looked at in a qualitative way. For one of the computed cases,
however, we will show that the profile of the wall shear stress converges with m.

Figure 11(a–d) show the contour of γ̇ and |τ | for Ca= 0.1, LP = 1 and different Bn.
The top and bottom halves in each figure are contours of γ̇ and |τ |, respectively.
The unyielded regions are in white. The unyielded regions grow in the adjacent wall
film with increasing Bn. The unyielded area also appears and grows in the core
region between the two menisci. At Bn = 1.5, the middle of the core, 0 < x < 1 and
0.6 < y < 1.4, is entirely unyielded, which is consistent with the velocity vectors in
figure 6(b). This is also in qualitative agreement with the computational results by
Thompson et al. (2010) for an axisymmetric advancing gas finger, where an infinite
unyielded strip is attached to the front tip for large enough dimensionless yield stress.
The stress level in the region adjacent to the wall between −0.2< x< 2 increases with
increasing Bn. This is consistent with the increase in 1p with Bn. The global maxima
of γ̇ and |τ | decrease and increase with increasing Bn, respectively, which indicates
that the yield stress reduces the maximum of the shearing but enhances the maximum
of the von Mises stress. For all four cases, the von Mises stress attains its maximum
value near the interface of the leading meniscus in the transition region. This differs
significantly from the situation in fully developed two-dimensional Bingham channel
flows, where the maximum of the von Mises stress is always at the wall.

Figure 12(a–c) show the contours of |τ | for Bn = 0.6, Ca = 0.1 and different LP.
With decreasing LP, the unyielded areas grow in the core region between the two
menisci. As an example, when LP = 0.25, the middle of the core, 0.6 < y < 1.4, is
entirely unyielded. This is expected, as the two tips are stationary and therefore the
reduction in the plug length leads to a lower level of local shearing. The value of 1p
increases with increasing LP since a longer portion of the wall is being exposed to the
induced shear stress by the fluid. Examination of the data shows that, for this set of Bn

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

43
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.438


274 P. Zamankhan, B. T. Helenbrook, S. Takayama and J. B. Grotberg

0 2–2 x

1

1.5

1.0

0.5

2.0

y

0

5.73

(c)

1.0
9.95

10 2 3 4 5 6

0 2–2 x

1

1.5

1.0

0.5

2.0

0

6.03

(d)

1.5
11.09

10 2 3 4 5 6

2 3 4 5 6

0 2–2

1

1.5

1.0

0.5

2.0

y

0

5.31

(a)

0
7.69

10 2 3 4 5 6

10 2 3 4 5 6

0 2–2

1

1.5

1.0

0.5

2.0

0

(b)

0.6
9.04

10 2 3 4 5 6

1 2 3 4 5 6

2 3 4 5 6

5.31

4.73 4.53

4.96
5.56

FIGURE 11. (Colour online) Contours of γ̇ and |τ | for Ca= 0.1 and different Bn, with
LP = 1. The top and bottom halves show the contours of γ̇ and |τ |, respectively.
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FIGURE 12. (Colour online) Contours of |τ | for Ca= 0.1 and Bn= 0.6, with different LP.

and Ca, the variation of 1p with LP is linear. The computed results also show that
the film thickness decreases by 2.6 % and the global maximum of |τ12| along the wall
increases by 3.5 % when LP decreases from 1 to 0.25. Therefore, for this set of Bn
and Ca, the plug length mainly alters the topology of the yield surfaces.

We performed all the presented computations with m= 1000. In order to investigate
the effects of the value of m on the results, we repeated the simulations for Ca = 0.1,
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FIGURE 13. (Colour online) Wall shear stress for different values of m, with Ca = 0.1,
Bn = 1.5 and LP = 1: (a) entire wall; (b) close-up of the unyielded line segment where D12
changes sign.

Bn = 1.5 and LP = 1 with three different values of m ranging from 500 to 3000. We
examined the plug shape and the location of the yield surfaces for different values
of m for this case. The plug shape almost did not change with m. On the other hand,
the yielded regions grew slightly as m increased. The growth rate, however, became
slower as m increased. This suggests that the location of the yield surfaces converges
with m for this case.

Figure 13(a) shows the wall shear stress for Ca= 0.1, Bn= 1.5 and LP = 1 and four
different values of m ranging from 500 to 3000. The profile of the wall shear stress is
almost the same for all values of m. Figure 13(b) shows a close-up of the wall shear
stress for the same cases along the unyielded line segment where D12 changes its sign
and |dτ12/dx| attains its maximum. The wall shear stress profiles are nearly the same
in this region as well. As a general trend, the unyielded regions shrink as the value
of m increases. This is also true for the unyielded line segment where D12 changes its
sign and |dτ12/dx| attains its maximum. As a result, the maximum of |dτ12/dx| from
the Bingham fluid equation would be greater than that computed from regularized
methods with finite values for m. This confirms even further one of our findings in
this work that the maximum of |dτ12/dx| along the wall is larger for Bingham fluids
compared to Newtonian ones.

Figure 14(a) shows the dimensionless driving pressure 1πp = (p∗1 − p∗2)/(σ/b) for
a Newtonian and a Bingham liquid plug with LP = 1 propagating with different
speeds in a two-dimensional channel with fixed dimensions. The data points (as we
examined, the driving pressure and h are nearly insensitive to m, and therefore we
used 300< m< 500 for Ca< 0.025 to ease the numerical convergence) are individual
computational results and the dashed curve segments are best-fitting polynomial
extrapolations of cubic order. Under these conditions, Bn × Ca = τyb/σ is zero for
the Newtonian fluid and 0.04 for the Bingham fluid. Then Ca will be the only
dimensionless parameter that depends on plug velocity. The driving pressure decreases
with decreasing Ca owing to the decrease of wall shear stress. The driving pressure
for the Bingham fluid is always greater than the Newtonian one owing to the yield
stress. The driving pressure difference in the limit of Ca→ 0, 1πp0, is zero for the
Newtonian fluid but it is non-zero for the Bingham one owing to the yield stress. The
extrapolated value for the Bingham fluid is 1πp0 ∼ 0.182, but the extrapolated value
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FIGURE 14. (Colour online) (a) Driving pressure difference and (b) film thickness for a
Newtonian and a Bingham plug, propagating with different speeds in a channel with fixed
dimensions, with LP = 1.

for the Newtonian fluid is 1πp0 ∼ 0.04 rather than 1πp0 = 0. So there is some room
left for improvement through adding more data points for lower Ca values. It should
be mentioned that, as Ca gets smaller, Bn gets larger, and this combination inevitably
creates issues for the computational convergence after some point. For most of the
Ca range, the difference between Newtonian and Bingham 1πp is roughly 0.1, which
dimensionally is 2.5 times the yield stress. For two-dimensional flow in a channel
filled with a Bingham fluid, it can be shown that the dimensional pressure drop for
unit axial length is τy/b for the motion to be initiated. Therefore, for a segment of
the channel with length equal to the half-width of the channel, the driving pressure for
the initiation of the motion, 1πc0, becomes τy/σ/b, which is 0.04 for this case. We
consider this value as a lower bound for 1πp0, as 1πp > 1πc for the same channel
flow centreline velocity as the plug speed. Using this value, we provided another
dashed curve segment in figure 14(a) as a lower bound for 1πp in the region where
there are no computational data. Hence, we can suggest that 1πp in this region is
bounded between the two dashed curves.

Figure 14(b) shows h for the Newtonian and Bingham fluids in terms of the Ca
values for the same case. Again, the data points are the individual computational
data and the dashed lines are extrapolations. For both the Bingham and Newtonian
fluids, h decreases with decreasing Ca. It is bigger for the Bingham compared to the
Newtonian for the range of computed data. The thickness must asymptote to zero
for the Newtonian fluid. For the Bingham fluid in the region where there are no
computational data, the value of h lies between the two extrapolated dashed lines
where one passes through the origin.

7. Conclusions
The steady motion of Bingham liquid plugs in two-dimensional channels was

studied numerically through using a regularized constitutive equation. The governing
equations were discretized by a mixed finite element formulation and the free surfaces
were resolved by the method of spines.

From our numerical results, the following conclusions are drawn. The thickness of
the static film increases with increasing Bn. Also, the amplitude of the capillary waves
at the leading meniscus decreases with the increase in Bn. The wall stresses and their
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gradients all are magnified by the increase in Bn. The effect is more profound on
|dτ12/dx| and it is followed by |τ12| and |dp/dx|, respectively. Therefore, the motion
of mucus plugs can be much more damaging to the airway epithelial cells, specifically
due to significant enhancement of |dτ12/dx| by the yield stress. (We should note that,
for the airway epithelial cells, the damage might be less severe since the cells are
in contact with a serous layer.) The driving pressure difference increases with Bn
linearly for all the computed values of Ca. The unyielded area grows in the core
region between the two menisci and also in the adjacent wall film with the increase
in Bn. The plug length mostly affects the topology of the yield surfaces in the core
region between the two menisci. In all the computed cases, the maximum of the von
Mises stress occurred in the transition region of the leading meniscus, while for a
channel flow the maximum always occurs at the wall. The computational results also
suggest that, for Bingham plugs that move very slowly, Ca→ 0, the driving pressure
is non-zero.
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